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Multimessenger astrophysics is undergoing a transition towards low-latency searches based on signals
that could not individually be established as discoveries. The rapid identification of signals is important
in order to initiate timely follow-up observations of transient emission that is only detectable for short
time periods. Joint searches for gravitational waves and high-energy neutrinos represent a prime
motivation for this strategy. Both gravitational waves and high-energy neutrinos are typically emitted
over a short time frame of seconds to minutes during the formation or evolution of compact objects. In
addition, detectors searching for both messengers observe the whole sky continuously, making
observational information on potential transient sources rapidly available to guide follow-up electro-
magnetic surveys. The direction of high-energy neutrinos can be reconstructed to subdegree precision,
making a joint detection much better localized than a typical gravitational-wave signal. Here we present
a search strategy for joint gravitational-wave and high-energy neutrino events that allows the
incorporation of astrophysical priors and detector characteristics following a Bayesian approach. We
aim to determine whether a multimessenger correlated signal is a real event, a chance coincidence of two
background events, or the chance coincidence of an astrophysical signal and a background event. We use
an astrophysical prior that is model agnostic and takes into account mostly geometric factors. Our
detector characterization in the search is mainly empirical, enabling detailed realistic accounting for the
sensitivity of the detector that can depend on the source properties. By this means, we can calculate the
false alarm rate for each multimessenger event which is required for initiating electromagnetic follow-up

campaigns.
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I. INTRODUCTION

Multimessenger astrophysics produced two foundational
discoveries in 2017: the detection of a binary neutron star
(BNS) merger through gravitational waves (GWs) and
electromagnetic emission [1], and the observation of a
blazar through high-energy neutrinos and electromagnetic
emission [2]. The multimessenger science reach of the GW
detectors had been enabled by decades of effort preceding
the discovery [1,3-28].

The third leg of multimessenger astrophysics will be the
discovery of GWs and high-energy neutrinos from a common
source [18,21]. Such a detection could shed light on, e.g.,
how newly formed compact objects accelerate particles to
extreme energies. In addition, some high-energy neutrinos
are identified rapidly with localization accuracies much
better than that available with GW detectors, which can
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guide observatories in their search for the electromagnetic
counterparts of GW sources.

Several source candidates are considered to generate GWs
and high-energy neutrinos, including core-collapse super-
novae [16,29], gamma-ray bursts (see, e.g., Refs. [30,31]),
BNS mergers [32], neutron star—black hole mergers [33],
soft gamma repeaters [34,35], and microquasars [11].
Besides these candidate sources, searches might reveal
unknown source populations or production mechanisms.
Detecting even one joint source of GWs and high-energy
neutrinos will significantly increase our understanding of the
underlying mechanisms that create them [18,21].

Searching for joint GW + high-energy neutrino (here-
after GW + neutrino) sources has only become viable in
recent years with the advent of large-scale detectors, in
particular the Advanced LIGO [36] and Advanced Virgo
[37] observatories on the GW side, and the IceCube [38],
ANTARES [39], and Pierre Auger [40] observatories on
the neutrino side. Both sides will experience significant
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upgrades in the coming years. Advanced LIGO and
Advanced Virgo are set to reach their design sensitivities
within the next few years [41]. IceCube started an upgrade
towards a second-generation detector, IceCube-Gen2,
with several times improved sensitivity [42]. Another
neutrino detector, KM3NeT, is being constructed in the
Mediterranean [43]. Due to these advances, our ability to
identify GW and neutrino sources is set to rapidly increase in
the near future and beyond.

While no joint GW + neutrino discovery has been con-
firmed to date, there has been significant effort to search for
such events. Following the first observational constraints on
common sources in 2011 [13], independent searches were
carried out using Initial LIGO/Virgo and the partially
completed ANTARES and IceCube detectors [19,23].
With the completion of Advanced LIGO, several searches
were carried out to find the neutrino counterpart of GW
discoveries [25-27]. A separate search was carried out to find
joint events for which neither the GW nor the neutrino signal
could be independently confirmed to be astrophysical [44].

Most of these searches were based on the analysis
method developed by Baret et al. [15]. This method
combines the GW amplitude, neutrino reconstructed
energy, temporal coincidence, and directional coincidence
to separate astrophysical events from chance coincidences.
The method aims to be emission-model agnostic and does
not impose constraints on the source properties except
by assuming that higher neutrino energy is more likely to
indicate an astrophysical signal.

Following the success of the search method by Baret
et al. [15] spanning over a decade, it is time to upgrade it to
enhance its sensitivity and aid newly relevant real-time
searches. Two particular motivations for the upgrade are to
facilitate the incorporation of astrophysical information and
detector characteristics in the search. Regarding astrophysi-
cal information, while it is beneficial to keep the search
largely model independent, in many cases signal con-
straints can be specified that do not depend strongly on
a particular model. Regarding detector characteristics, a
more complex detector model will improve sensitivity and
accuracy, but it requires the incorporation of prior infor-
mation on these characteristics into the search.

In this paper, we present a new search algorithm for
common sources of GWs and high-energy neutrinos based
on Bayesian hypothesis testing. A Bayesian framework is a
natural choice to incorporate prior astrophysical and
detector information. Bayesian solutions are becoming
more common in GW [45-48] and more recently multi-
messenger data analysis [49-54].

The paper is organized as follows. The general idea for
this analysis is described in Sec. II, followed by proba-
bilities describing the signal hypothesis in Sec. III, null
hypothesis in Sec. IV, and chance coincidence hypothesis
in Sec. V. We define the use of odds ratios in Sec. VL.
We conclude in Sec. VIIL.

II. MULTIMESSENGER SEARCH METHOD

To determine whether a multimessenger coincident
signal is a real event or a random coincidence, we formulate
the problem in the context of Bayesian hypothesis testing.
We further incorporate detector and background character-
istics as well as astrophysical information on the messenger
particle and its source.

We will compare multiple hypotheses. Our signal
hypothesis H is that all considered messengers originated
from the same astrophysical source. Our null hypothesis
H, is that triggers in all messengers arose from the
background. Additionally, we will consider a chance
coincidence hypothesis H that one type of the messengers
has an astrophysical trigger, but the other type of messenger
only has triggers from the background. We will neglect the
possibility that different messengers from distinct astro-
physical signals coincide as this is highly unlikely given
our low signal rate.

For GWs we use the following observational information
for the search: (i) the detection time f,,,; (ii) the recon-
structed sky location probability density Py, = Py (€2),
called the sky map, where Q is the source sky location;
(iii) the GW data analysis pipeline specific signal-to-noise
ratio (SNR) of the GW event in the GW detector network
Pew> Which is the individual SNRs of the signals at each
detector summed in quadrature; and (iv) the reconstructed
distance distribution Dy, = D,y (r), where r is the distance
of the event to Earth [55]. We define a vector containing the
measured properties of a GW trigger as

ng = {tngpgw7pngDgW}' (1)
For multiple source types, an additional variable could be
the source-dependent gravitational waveform. We omit this
as a factor in the following description.

For observational information used for high-energy neu-
trinos includes (i) their detection times #,, (ii) their recon-
structed sky location probability densities P, = P, (L),
and (iii) their reconstructed neutrino energies €,. As high-
energy neutrinos are not directly observed, the observed
energies of the leptons produced in the neutrino interactions
are taken as ¢,. Generally, the reconstructed neutrino sky
location P, can be described as a Gaussian distribution
centered on the reconstructed neutrino direction €,
with reconstructed uncertainty o, [56,57]. We define a
matrix containing the measured properties of all neutrino
triggers as

with rows
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Xbi:{tIA? vi» Ovis 1/1} (3>

Throughout the paper we will assume that we have N
neutrino triggers. We define a vector containing our model
parameters for the signal hypothesis as

0= {t;,,7.Q,E,,.E,} (4)

where £, is the reference time, r is the luminosity distance,
Q is the sky location, E,,, is the isotropic-equivalent total
GW energy, and E, is the isotropic-equivalent total high-
energy neutrino energy emitted from the astrophysical
event. The reference time can be thought of as the time
of a relevant astrophysical event to which we compare the
other times of arrival, delayed by the travel time of
information to Earth at the speed of light. The neutrino
energies considered here render the neutrino travel time
practically the same as the travel time at the speed of light.

At the end of our analysis we will compute a Bayes
factor for our signal hypothesis given the observational
data as

P(H Xy, X,)

O = - . 5
o S Bl g X,) + P(Ho kg X))

III. SIGNAL HYPOTHESIS

We first introduce our signal hypothesis H. This
hypothesis considers having at least one coincident signal
neutrino with the gravitational wave which is also signal.
Therefore, we split this hypothesis into subhypotheses for
different numbers of coincident signal neutrinos and denote
them by H?, where n is the number of coincident neutrinos.
What this means is that, for example, for n = 1 we would
have one neutrino which comes from the same source as the
gravitational wave and other neutrinos that belong to the
background, or to the null hypothesis. In order to label
the signal neutrinos and the background neutrinos sepa-
rately we will use the notation X!, = X, \x,, to refer to the
X, matrix without the ithrow = x,,;. Given the observa-
tional data, the probability of the signal hypothesis being
true can be written as

N
P(HS|ngvXu) = ZP(HH|ngv ) (6)

n=1
We apply Bayes’ rule to this expression,
N N p(x

> P(HI|Xg. X)) = >

n=1 n=1

gw, X, [H?)P(HY)
Xgws Xp)

(7)

We are interested in the ratio of such probabilities for
different hypotheses, and hence the denominator above will
cancel out. We therefore omit its computation. Then, we

further expand the first term by specifying the signal
neutrinos,

P(Xgw. X, |HY)

=Y P(Xp. X [HE s ={ij...})P(s={i.j....}|HY).
{ij...}

(8)

The sum in Eq. (8) is over all (V) subsets of the set of
integers from 1 to N with n elements, which are denoted by
the set s in the sum which stands for the signal set. The
second term on the right-hand side corresponds to the
probability of each combination, which is

re— gy = (V) o

We further decompose the first term in Eq. (8) by separating
the signal and background neutrino terms via their inde-
pendence with a memoryless detector assumption as

( gW?X |Hs’s = {ivj’ })

_P( Xows Xpi> Xpjs - |Hn) (XLJ|H0) (10)

In Eq. (10), for convenience, we dropped the s set from the
conditions of the first term on the right side of the equation
since there are already only n neutrinos in that probability,
for convenience. The second term corresponds to the
probability that all other than those n neutrinos belong
to the background. Next, to obtain the first term on the right
side of Eq. (10) we marginalize over the parameters,

P(xgw, X,is xvj...|Hg’)

= /P(xgw,xy,-,xw-...

Since X, and all of the x,; (which belong to the signal
hypothesis) are dependent on @ but otherwise can be
considered independent of each other, we can separate
the GW and high-energy parts from each other, such as

O|H)do. (1)

P(Xgy Xy, X, j...10, HY)
= P(xg4|0, HY)P(x,,|0, H)P(x,;|0, HY)...  (12)

We now specify the independent elements of Egs. (7), (11),
and (12) in the context of our astrophysical and detection
models. P(X}""|Hy) in Eq. (10) will be explained
in Sec. IV.

A. Parameter and hypothesis priors (H,)
There are two types of prior probabilities that we need to
compute in our signal hypothesis: P(@|H) and P(H?).
In order to find P(@|H") we again use Bayes’ rule,
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(H:|0)P(0)

POy =200 (13)

P(H?) in the denominator and in Eq. (7) cancel. So actually
we need to have P(@) and P(H?|@). We first discuss the
prior probability distribution of the parameters, P (). Here
we review the role of each source parameter.

(1) Time (t,): We assume that a signal is equally likely to
occur at any time during an observation period. We
further assume that no other parameter depends on
the time of observation, and therefore we can treat
this probability independently. Taking the live-time
duration of the joint observation period to be T,
the resulting prior probability distribution is

P(t) = le‘. (14)

(2) Source distance (r): We assume a uniform distri-
bution of sources in the Universe such that
P(r) = 3r%/r}ax. Tmax i the maximum value of r
and its divergence is not important as it gets canceled
in the analysis. We further assume that a GW signal
can be detected if its root-sum-squared GW strain
h. 1s above a detection threshold Ao [58]. The
probability density that an observed GW + neutrino
event occurred at distance r is dependent on r since
the volume in space in the distance range [r, r + dr]
is o r’dr; however, the probability of detecting n
neutrinos from the source falls according to Poisson
probabilities for n detections whose means are
proportional to r~2. This dependency is valid up
to the GW distance range rof4(€.%,,), beyond
which sources are not detected. Here, rq is the
GW detection range for optimal source direction,
and fA(Q,1t,,) is the antenna pattern of the GW
detector network. The latter is the square root of the
quadrature sum of the antenna responses of each
detector for the two polarizations of GWs,

fA(Qy tgw)
= ¢2Fk,+<w,sz,rgw>2+Fk,x<w,sz,rgw>2, (15)
k

where the sum over k allows for the sum over
different detectors, the F functions are the antenna
responses for each polarization, and the angle y is
the GW emission inclination which vanishes after
the quadrature sum. Its maximum value is 1, which
corresponds to the optimal source position. The
range ry satisfies ro(Eqy) o E;(VZ and is defined as
the distance at which an event that emits energy E,,,
creates the least acceptable SNR p,., or the strain
hys0- The relationship between Eyy,, pgy, and ry is

explained in Eq. (24) with pgy = ppin and r = r
such that ry = KOEé\/VZ / Prmin-

(3) Energy (E,, and E,): We need to specify our
dependency on energies. A naive choice can be
independent log-uniform distributions over the en-
ergy ranges [Eg,,Eg,], [E;.E,] with probability
density

P<ngva> = P(ng)P(Ev)

Efy E;\\!
= (EgWE,, log (E—Q“/) log (E_,j> ) .
(16)

Throughout the paper, instead of the expression for
the specific log-uniform model, P(E,,., E,) will be
used to express the universality of the method.
(4) Sky position (): We assume a uniform prior
distribution in the sky, P(Q) = 1/4x.
Overall, we find

2
P(0) = M_ (17)
4 TobsN 1
with a suitable normalization constant N, = 73, /3 for the
maximum assumed possible distance r,,,. Its divergence is
not important and all divergences in the analysis cancel.
Next we consider the term P(H”|@) which depends on
the expected detection count of multimessenger events.
A useful quantity for it is the expected number of detected
neutrinos for a given emission energy, sky location, and
distance per event,

E r -2
E,r,Q)) = Q z .
(n,(E,, r,Q)) = n,51100( )(1051 erg) <100 Mpc>

(18)

Here, n, 5.100(€) is a detector-specific parameter. The sky-
averaged n, 51 100 ~ 1.1 for IceCube [59] and n, 51100 (L)
depends on the declination but not the right ascension due
to the axial symmetry of the detector, whose symmetry axis
coincides with Earth’s rotation axis due to its location at the
South Pole.

The probability of detection of multimessenger events
given the source parameters will be

Pie(0) = Poiss(n, (n,(E,, r,Q2)))

« { 1 r< rO(ng)J_[A(Q’ tS)’

. (19)
0 otherwise,

with the time-averaged antenna pattern f,(Q, z,) between
[ty + tgw. t, + 13y]. The parameters 5, and g, will be
explained in Sec. III B. Poiss(k, 4) is the Poisson proba-
bility density function with mean 4 and k observed events.
Then, the expected count is

083017-4



BAYESIAN MULTIMESSENGER SEARCH METHOD FOR ...

PHYS. REV. D 100, 083017 (2019)

Cget(a) = ﬁgW-&-uTobnget(a)’ (20)

where 714y, is the total multimessenger event rate in the
whole Universe, which is bounded by the distance 7. Its
divergence cancels the divergence of N;. Then, the prior
probability will be

P(H!|0) :Niz n.(0). 21)

with a suitable normalization constant N,. This constant,
which is the sum of the expected event counts of all
hypotheses, will be present in our other hypotheses too and
will be canceled out.

B. Gravitational waves (H,)
We now consider the probability P(X,, |0, HY). We have

P(Xgy|0. HY) = P(1g|0. HY)P(pgy|tew. 0, HY)
X P(Pgw|tgwapgw’ 0, H?)
X P(Dgw|Pow: tgw: Pow- 0. HY). (22)
The term P(t,,|0, H) should only depend on the
difference 1y, — ;. We adopt the assumption that the
probability P(ty,|t,, HY) is uniform within a time window

tow — 15 € [tgw. t4y] for suitable parameters fg,, and z,, and
is zero elsewhere:

(tgw — taw) ™"ty — 15 € [fgy. Taw].

P(toy|ts, HY) =
( gw| s s) {O otherwise.

(23)

For example, previous GW + neutrino searches used the
parameters tg, = —fg, = 250 s [9,15,23,25-27]. We
assume that the other source parameters are independent
of Zgy-

To understand the second term on the right-hand side of
Eg. (22), we make use of the fact that p,,, on average is
proportional to the GW signal’s amplitude at Earth,
characterized by the root-sum-squared GW strain A,.
Assuming here for simplicity that all gravitational wave-
forms are similar, the GW strain is fully determined by r,
Eqy, Q, and 1,,,. The time dependence arises due to the
Earth’s rotation if we measure the sky location in equatorial
coordinates. Assuming that p,,, precisely describes /i,
this term represents a constraint on the source parameters,
which need to be such that they produce an A value at
Earth that corresponds to the measured pg, value. This
means that only the combination Eé\/yzr‘l Fa(Q tgy,) is
constrained, where f (€2, 17,,) is the direction-dependent
antenna pattern of the GW detector network. This combi-
nation is proportional to the measured GW strain
amplitude.

We therefore write the probability as a constraint,

P(pgw|tng 0, Hf) = 5[pgw - KOEI‘I;/Wzr_lfA(Qv tgw)]’ (24)

where ¢ is the Dirac delta function and « is an appropriate
constant that depends on the noise spectrum in the GW
detector at the time of detection and on the GW search
algorithm. The delta distribution is an approximation for
the accurate measurement of the SNR, although in practice
there is always an uncertainty in the measured SNR. We do
not consider this uncertainty in our analysis.

Next, we look at the term P(Pyy |fow, Pow. 0. HE). Using
Bayes’ rule, we write

P(Pywltyw: pew. 0, HY)

_ P(alpgw7 tngpgw’Hg)P(,Pgwltgwang7Hg)
P(B|tgy. pow- HY)

(25)

Regarding P(Pgy|tew: Pew. HE), we assume that the dis-
tribution of P, is independent of the underlying hypoth-
esis, i.e., P(Pgwltow:Pow: H!) = P(Pgy|taw: Pow). This
term appears in the alternative hypothesis as well; however,
it cancels out and therefore we can ignore it here. For the
remaining terms, assuming that our reconstructed GW sky
map is accurate, we have

P(0|’Pgw’tngpngH;l) NQ
P<0|tgw7pngHg) fA(Q’ tgw)

The numerator on the left side gives the sky map since the
sky map determines the probability of the signal coming
from a given sky location . The denominator on the left
side is proportional to the antenna pattern at the time of
detection, normalized by the factor Ng,.

Now we look at the term P(Dgy|Pgy. tow: Pow- 0. HY).
The handling of this term is identical to P(Pgy|fow: Pgw-
0. HY). Again, we assume the independence of D,,, and the
hypothesis, and write

P(Dgw|PgwaIngpgwa0»Hg)
:P(0|Pngtng/)ngDgW7H;l)P(DgW‘,PgW7tgwﬁogW’Hgl)
P(0|’Pgw’tgw’pngHg)

(27)

We again ignore the second term in the denominator as it
cancels with the corresponding terms in other hypotheses.
Assuming that our reconstructed GW distance distribution
is accurate, we have

P(0|Dng ,Pgw’ Lows Paws H:l) _

28
P[Pyt P HY) 28)

The first term on the right side comes from the numerator
on the left side since the distance distribution determines
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the probability of the signal coming from a source
distance r. The second term on the right side represents
the denominator on the left side. It is obtained by
multiplying the prior 72 distribution and the r~! distribution
of the likelihood of r for known p,,. Here N, (pgy)
is the normalization for the r distribution between
[\/ ng’ \/ ng]pgw/KO-

Putting everything together, without the canceling terms
the GW term is

P(ng|07 H:l)
= NQNr(pgw)‘S[pgw - KOEéévzr_lfA<g7 tgw)]
Puw () Dyy(r)
X
fA(Qv tgw) r
% { (tgw - tgw)_l if tgw — I € [fng t;rw}’
0 otherwise.

(29)

C. High-energy neutrinos (H,)

We now turn our attention to the high-energy neutrino
term P(X,;, X,;...|0, HY) as in Eq. (12). We assume that the
observables of different neutrinos are not dependent on
other neutrinos’ observables, except for the dependence
through . Therefore, we can separate each neutrino term as

P(x,;.X,;...|0.H!) = P(x,,|0, H{)P(x,;|0, H)...  (30)

We treat the temporal term similarly to the GW case. We
assume that the time difference ¢,; — f, is the only relevant
temporal value. We further use a uniform probability
density within the time interval [r;, 7], and O outside
the time interval:

t —5)"

0 otherwise.

P, if t,,—1t,€[t;,1]],

() = { (31)

Previous GW + neutrino searches used the parameters
tf = —t; =250 s [9,15,23,25-27].

The remaining neutrino observables—Q,;, 0,;, and €,,—
are not independent. The sensitivity of neutrino detectors
varies with both energy and sky location, and localization
accuracy depends on source direction and energy.

Let us take the remaining neutrino term P(Q,;, 6,4, €,;|7,
Q. E,, H!). We assume that the signal distribution of ¢,
follows a power law, and therefore the neutrino spectrum is
independent of the source distance. Such a power-law
distribution is typical in neutrino emission models [60].
Consequently, the parameters r and E, do not affect the
probability here. We further assume that the directional
uncertainty variable ¢, and the reconstructed sky position
of neutrinos €, do not depend on r and E,.

We use the chain rule to write

P(gyi»eyi96vi|g’ Hg)
= P(Qbi|6bivgyivg’ Hg)P(GUi|€Di,Q, Hg)P(€yl|Q,H:l)
(32)

Given the source direction as a parameter, the probability
of reconstructing €, for a detected neutrino depends on the
energy- and direction-dependent effective area A.(€,, )
of the neutrino detector, as well as the source power
spectral density. Here we ignore the difference between
the true and reconstructed energy when calculating the
effective area as this should not significantly change its
value. We take the neutrino spectral density to be
dN,/de, x €;%, which is the standard spectrum expected
from Fermi processes [60]. With these dependencies, we
write

1
P(e,i|Q.HY) = ﬁAeff(eui’Q)e;iz? (33)

€

where

Ne = / dQ o e;erff(ew Q)dé‘y, (34)

€min

where the dQ integral is over the entire sky, and e,,;, and
€max are the minimum and maximum reconstructible
energies.

We assume that P(o,;|¢,;) does not depend on the hypo-
thesis under consideration or its parameters; therefore, it
will cancel with the same term in the other hypotheses when
the ratio of probabilities is taken at the very end. Hence, we do
not consider the actual value of P(o,;e,;, Q, HZ).

For the first term on the right-hand side of Eq. (32), we
adopt the normal distribution [56]

1 _leyi-0?
P(Qui|abi’€vi7gﬂ H?) =53¢ ; (35)

2
2roy;

by assuming no further dependence for ,; on €,; except for
that through Q. Putting everything together, we have for the
neutrino term

1 1 _‘ﬂbi;9\2
P(X"i 0’ Hg) = EAeff (€I/i7 Q)e;iz 277"631 e Y
o { (=)' if ;-1 € 17, 65],
0 otherwise.

(36)
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D. Combination of probabilities (H)

We can combine the above results to obtain the prob-
ability of the joint event being a signal by taking Eqs. (29)
and (36) and substituting them into Eq. (12). We then
substitute Eq. (12) into Eq. (11).

To solve Eq. (11), we further substitute P(@|H”) from
Eq. (13), for which we use Egs. (17) and (21). Then, we can
substitute Eq. (11) into Eq. (10). Finally, we substitute
Eq. (10) into Eq. (8) with Eq. (9), which is the required term
for Eq. (7), where we obtain P(H{|x,,.X,), except for
the factor P(X,,. X,) which will cancel out in comparison
to the alternative hypothesis. The computation of

P(X,"j‘" "|H) will be explained in Sec. IV.

IV. NULL HYPOTHESIS

We now move to our null hypothesis H,. Given the
observational data, the probability of the null hypothesis
being true can be written as P(H,|Xgy. X,). We apply
Bayes’ rule to express this probability as

_ P(ng, XD|H0)P(HO)

P(H X,)) =
( O‘ng’ u) P(ng,Xy) (37)

Here the denominator will cancel with the same denom-
inator in the signal hypothesis, and therefore we do not
need to consider it further. Since the background events for
GW and neutrino observations are independent, we can
write

P(ng’ leHO) = P(XgW‘HO)P(XAHO)‘ (38)

We will now specify the independent elements of Eqs. (37)
and (38) in the context of our background model. We can
perform the calculations in this section without the need for
additional parameters to marginalize over due to the fact
that every measured parameter is assumed to be indepen-
dent of one another for the background.

A. Hypothesis prior (H)

There is one prior probability that we need to compute in
our null hypothesis: P(H,). This probability is again
proportional to the expected detection count of background
events. Given the observation period T, and the back-

ground GW and rate Ry, 1., We have TR,y pe back-
ground GW events. Hence,
1
P(HO) = N_ng,bgTobs- (39)
2

The normalization factor N, will cancel with the same
factor in the signal hypothesis; see Eq. (21).

B. Gravitational waves (Hy)

We now consider the GW component P(Xg,|H). We
assume that f,, and p,, are independent. We can then
define the probabilities of measuring each parameter
independently:

P(nglHO) = P(tgw|H0)P<pgw|H0)
X P(Pgw|tgw7pgw’ HO)
XP(Dgw|tngpng7)gw’H0)' (40)
Starting with the first term on the right-hand side, we
expect the probability distribution of the detection time for
a background event to be independent of time, and there-

fore we adopt a uniform distribution within the observation
time. We therefore have

1
Tobs ‘

P<tgw|H0) = (41)

The distribution of p,,, depends on the detector proper-
ties as well as the properties of the reconstruction algo-
rithm. We therefore estimate this distribution empirically.
We use the p,,, background distribution obtained from the
GW search pipelines which produce it by time shifting
data between multiple GW observatories and carrying out
the full analysis algorithm over this time-shifted data.
We do not extrapolate beyond the maximum p,,, from the
background distribution and conservatively choose it
as the highest value for the background triggers. We
denote the empirically established distribution of p,,, as
Pemp(Pow|Hp). The pg,, obtained by time shifts will be
acquired from the GW data analysis pipelines.

Considering the terms P(Pgy|toy. Pows Hy) and P(Dy,|
tows Paws Paw- Hp), we do not have any prior information on
P(Pqw|Hy) and P(Dgy,|Hy), and therefore we assume that
it is independent of P,,, and D,,,. Since there are similar
terms in our signal hypothesis, these cancel out. We
therefore ignore these terms in the following.

Putting everything together, we have for the background
GW term

1

P(ng|H0) = Pemp<pgw|H0)ﬁ' (42)
obs

C. High-energy neutrinos (H,)

Next, we examine P(X,|H;) in Eq. (38) and also
P(X.”|H,) in Eq. (10). Given the background neutrino
rate R}, the probability of having N background neu-
trinos in the observation period is Poiss(N, R, o7 ops)
which allows us to write

P(X,|Hy) = P(X,|Hy,#y, = N)P(#,, = N|H,),  (43)

with P(#,, = N|H) = Poiss(N, R, o Tons), Where #,, is
the number of background neutrinos. We will use the
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shorthand notation H)) instead of both H, and g = N.
Now we can decompose the first term into single neutrino
terms as we did previously in Sec. IIl. Then, we first
separate the temporal term which we assume to be
independent of the other parameters. We assume that the
time of arrival of a background neutrino signal is time
independent, and can be any time during the observation
period. We therefore have for each neutrino

1

Pl = 7.
obs

(44)

The remaining measured parameters will not be inde-
pendent of one another. In particular, the reconstructed
neutrino direction and energy are interconnected. As we
explained before, the term for the directional uncertainty
parameter o,; will be canceled when we decompose the
remaining terms as

P(Qvi7€vivavi|H6V>
= P(Qvi|o-”i’ €uivH(1)v)P(avi|€ui’H0N>P(€vi|H{JV)' (45)

In addition, we assume that the P(Qyi|ayi,eyi,H{)\' ) term
does not have any o,; dependence. We therefore effectively
need to examine the probability P(Q;|e,i, HY )P (e,:|HY)=
P(Q,.¢,|HY). Given a sufficient number of observed back-
ground events, this probability can be estimated empirically
using observed data. Let {Q,;.¢€,;}.j € N, be the
reconstructed parameters for a set of N, neutrino
candidates. For the direction we only care about the
declination angle in the equatorial coordinate system
6,:(Q,;) primarily because of the axial symmetry for
IceCube, which is described in Sec. III A when comment-
ing on 7, 51 100(€2). For detectors that are not coaxial with
the Earth’s rotation axis, the full Q should be considered.
We then have the empirical estimate with the kernel density
estimation

Pemp(gviv eyilH(];])
- ZjeNmbb“évi - 5v,j‘ < A5&|€ui - €I./,j| < Ae(evi)}
4”Nv.0bs| 003(6”- + Aﬁ) - COS(5W- - A5)|Ae(eui) '

(46)

where we use the bracket notation such that [P] is 1 if P is
true and O if P is false, which corresponds to the top-hat
kernel. We further introduced the constants As and A (e,),
which should be selected such that the uncertainty on the
probability estimate is minimal.

Putting everything together, we have for the background
neutrino term

1
P(XuilH(];]) = Pemp(guiﬂevi|H0N) T

obs

(47)

D. Combination of probabilities (H)

We can combine the above results to obtain the prob-
ability of the joint event being from the background by
taking Eq. (47) for each neutrino and substituting them into
Eq. (43). Then, Egs. (42) and (43) can be substituted into
Eq. (38). Finally, Eq. (38) along with Eq. (39) can be
substituted into Eq. (37). Equation (37) will miss a
normalization factor from both Eq. (39) and the denom-
inator on the right side, both of which cancel out upon
calculating the Bayes factor. For the background terms in
other hypotheses such as P(X,”|H,) in Eq. (10), Eq. (43)
can be used similarly for N —n number of background
neutrinos instead of N.

V. CHANCE COINCIDENCE HYPOTHESIS

We finally calculate the probability for the chance
coincidence hypothesis H.. Given the observational data
the probability of the chance coincidence hypothesis being
true can be written as P(H|X,, X, ). H, can be separated
into two parts: one considers a background neutrino event
and a foreground gravitational-wave event denoted by H.. o,
and the other considers a background gravitational-wave
event and a foreground neutrino event denoted by H.. ,. Since
these two cases are mutually exclusive and complementary
to each other for the chance coincidence hypothesis, we can
write P(Hclxgw»xv) :P(Hc,gw|xgw’xv) +P(Hc,v|xgw7xv)'
H_ o, is a special case for the signal hypothesis H{ with
n = 0, so all of the explanations in Sec. III apply for it. Due
to the absence of related events, we have a simpler case. We
apply Bayes’ rule again,

P(Xqw> Xy He ow ) P(He ow)
P(H , X )= gw vitdc.gw C,gwW
( c.gw|xgw u) P(ng, XD)

(48)

P(X,y, X, ) is omitted, as it is throughout the paper. Then we
separate the first term in the numerator due to independent
detections as

P(Xgy, X, [He gw) = P(Xgw |He gw)P(X | Hegw).  (49)

Then we obtain the GW part by marginalizing over the
parameters 6,

P(ngch.gw) = /P<ng 0, Hc,gw)P(0|Hc,gW)d0’ (50)

with
0= {ts,r,Q,EgW,EU}, (51)

which are the same parameters defined in Sec. III. Now we
move on to analyzing P(H ,|X,y. X, ). We first decompose
it into subhypotheses for different numbers of signal
neutrinos, denoted as H{, for n signal neutrinos,
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N

P(He,[Xgy, X P(Hg,|Xgw. X)), (52)
=1

n
We again apply Bayes’ rule to each term,

P(Xg. X, |H, ) P(HE,)
P(Xgy. X))

P<Hg,v|xgw’ Xu) = (53)
Here the denominator again cancels with the same denom-
inator in the signal and null hypotheses. We again separate

the first term in the numerator due to independent detections
as
P(ng, Xung,u) = P(ng|Hg,u)P(Xv|Hg,v>' (54)

We further decompose the neutrino term by identifying the
signal neutrinos with the set s which has n elements, as in

Sec. II1,
P(X,|HL,) = Y P(X,|HE,.s
{ijo}
={i,j,...})P(s ={i.j,...}|HL,), (55)
with

P&={LLWHH&)=<Z>4- (56)

We separate the signal and background neutrinos due to the
independence of different detections and drop the set s in the
notation as we did in Eq. (10),

={i,j,..-})
|H2,)P(XJ"|Hy).  (57)

P(X,|HE,, s
= P(X,;, X, ...

The second term was explained in Sec. I'V. In order to obtain
the first term we marginalize over the parameters 6,

P(Xui’ XI./]

— [ P 0. HE PO 0. (58)

~|Hey)

(1-5)

Pa0.5) = {ﬂPoiss(n, (n

with f being the ratio of the total multimessenger event rate
to the total astrophysical neutrino event rate. Then,

1 M v,n
P(H,10) = - — T2 Rog it PSS (0.8).  (65)

with 1, being the total astrophysical neutrino event rate in
the whole universe.

(B, 1, Q))) +

We again split each neutrino as we did in Sec. III,

P(Xl/l’ l/j’ b Cl/) = P(X g,l/)P<Xl/ (’)l,l/)"'
(59)
A. Parameter and hypothesis priors (H, o)
For P(0|H. ) we use Bayes’ rule,
P(H.,|0)P()
PO|H ) = —— 00— (60)
N P(Hgy)

where P(@) is given in Eq. (17).
We write the probability density for detecting a GW
event but not a neutrino as

C gW(o a)

det

(aPoiss(0, (n,(E,,r,Q)))
F-ay{ ) ErEnTaen)

. (61)
0 otherwise,

with a being the ratio of the total multimessenger event rate
to the total astrophysical GW event rate. Then,

1 o C W
P(Hc.,gw|0) = N_zTObSngw degt (0 a) (62)

with 7, being the total astrophysical GW event rate in the
whole universe.

B. Parameter and hypothesis priors (H.,)
For P(0|H!,) we use Bayes’ rule,

P(H¢,|0)P(0)
P(HZ,)
where P(0) is given in Eq. (17).

We write the probability density for detecting n neutrinos
but not a GW event as

P(O|He,) = (63)

r< rO(ng)]_CA(Q’ ts)?
otherwise,

(1=75)

C. Remaining terms

(1) The term P(x, |0, HE") is equal to the same term
for our signal hypothesis, i.e., P(ng|0, H?) [see
Eq. (29)], since in both cases there is a detected
astrophysical gravitational-wave signal.

(2) The term P(x cew) 18 equal to the same term
for our null hypothesis, ie., P(x,|H,) [see
Eq. (47)], since in both cases there is a background
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neutrino event, and neither term depends on the GW
signal.
(3) The term P(X,,|H{,) is equal to the same term for
our background hypothesis, i.e., P(Xqy|Hy) [see
Eq. (42)], since in both cases there is a GW false
detection from the background, and neither term
depends on the neutrino signal.
(4) The term P(x,;|0, H?,) is equal to the same term for
our signal hypothesis, i.e., P(x,;|0, H?) [see
Eq. (36)], since in both cases there is a detected
astrophysical neutrino, and neither term depends on
the GW signal.
The combinations of probabilities are calculated similarly
as in the signal and null hypothesis cases.

VI. ODDS RATIO

We test our signal hypothesis using odds ratios. We
compare our signal hypothesis against both the null and
coincident hypotheses as in Eq. (5).

It should be noted that this end result does not depend on
Tps, Which is a quantity fixed by humans’ decisions and
expected not to affect the significance of any astrophysical
event. In addition, there are no terms with explicit N
dependence, as expected, since it could be arbitrarily large
due to the linear dependence on T,,. However, overall
there is still a dependence due to the maximum possible
signal neutrino count. In other words, the N dependences of
all terms cancel, but the number of terms depend on it.

This comparison will be applicable for both (i) GW and
neutrino candidates that are not independently established
detections, and (ii) detections that are already confirmed
through one channel. For the former case, the first term in
the denominator will be relevant, while in the latter case it
will be the second term.

Although the odds ratio can be converted to a Bayesian
probability for having a signal given the observations, it
will be dependent on the parameter priors and the event rate
densities, which can be very uncertain. Therefore, the odds
ratio can be used as a test statistic. We empirically
characterize the required threshold values based on back-
ground data and simulations for frequentist significances,
similarly to Ref. [44]. For the searches with confirmed GW
detections, the simulations consist of randomly paired
simulated GWs and background neutrinos from previous
detections. The number of background neutrinos in the time
window around a GW is determined by a Poisson distri-
bution whose mean is the actual background neutrino rate
times the duration of the time window. For searches with
unestablished GW detections (namely, subthreshold
searches), besides the GW and neutrino pairs for the
previous case there are pairs of time-shifted background
GW detections (which are acquired from GW data analysis

pipelines) and background neutrinos, and pairs of back-
ground GW detections and signal neutrinos as well. All
pairs are mixed in proportion to their estimated rates. These
background comparisons allow us to determine a false
alarm probability—namely, the p-value or significance—
for the given events, which can be reported to initiate
electromagnetic follow-up observations.

During the O3 public alert search for coincident GW
and high-energy neutrinos the following parameter values
were used: fgy, = —tgy = 1, = —t; = 2508, flgy 4, =gy =
(47riax/3)1500Gpe3year™", a=1, R, ;,,=6.4x107* Hz,
Ef =10°" erg, E; = 10% erg, Ay =2.5° and A.(e,) =
0.3 x ¢,. Furthermore, since it is a public alert search for
verified GW detections, we set P(H,) = P(H.,) = 0.

VII. CONCLUSIONS

We presented a search algorithm for common sources of
GWs and high-energy neutrinos based on Bayesian hypoth-
esis testing. This algorithm upgrades the method of Baret
et al. [15] that was used in most prior joint searches. The
main advantages of the new method are that (i) it incor-
porates astrophysical priors about the source that help
differentiate between signal and background, while being
largely independent of the specific astrophysical model
under consideration, and (ii) it incorporates a more realistic
model of the detector background, for example, by taking
into account the direction-dependent background rate and
energy distribution. These detector properties are straight-
forward to establish empirically, and the method gives a
straightforward way to incorporate them as priors.

In the presentation of the method, we made simplifica-
tions that make the algorithm easier to implement and can
make the computations simpler. As an example, we
assumed that all GW and neutrino sources emit the same
energy. It will be useful to study how these simplifications
affect the sensitivity of the search, and how much model
dependence they introduce. This will be carried out in a
future work.
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