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Multimessenger astrophysics is undergoing a transition towards low-latency searches based on signals
that could not individually be established as discoveries. The rapid identification of signals is important
in order to initiate timely follow-up observations of transient emission that is only detectable for short
time periods. Joint searches for gravitational waves and high-energy neutrinos represent a prime
motivation for this strategy. Both gravitational waves and high-energy neutrinos are typically emitted
over a short time frame of seconds to minutes during the formation or evolution of compact objects. In
addition, detectors searching for both messengers observe the whole sky continuously, making
observational information on potential transient sources rapidly available to guide follow-up electro-
magnetic surveys. The direction of high-energy neutrinos can be reconstructed to subdegree precision,
making a joint detection much better localized than a typical gravitational-wave signal. Here we present
a search strategy for joint gravitational-wave and high-energy neutrino events that allows the
incorporation of astrophysical priors and detector characteristics following a Bayesian approach. We
aim to determine whether a multimessenger correlated signal is a real event, a chance coincidence of two
background events, or the chance coincidence of an astrophysical signal and a background event. We use
an astrophysical prior that is model agnostic and takes into account mostly geometric factors. Our
detector characterization in the search is mainly empirical, enabling detailed realistic accounting for the
sensitivity of the detector that can depend on the source properties. By this means, we can calculate the
false alarm rate for each multimessenger event which is required for initiating electromagnetic follow-up
campaigns.
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I. INTRODUCTION

Multimessenger astrophysics produced two foundational
discoveries in 2017: the detection of a binary neutron star
(BNS) merger through gravitational waves (GWs) and
electromagnetic emission [1], and the observation of a
blazar through high-energy neutrinos and electromagnetic
emission [2]. The multimessenger science reach of the GW
detectors had been enabled by decades of effort preceding
the discovery [1,3–28].
The third leg of multimessenger astrophysics will be the

discovery ofGWsandhigh-energyneutrinos froma common
source [18,21]. Such a detection could shed light on, e.g.,
how newly formed compact objects accelerate particles to
extreme energies. In addition, some high-energy neutrinos
are identified rapidly with localization accuracies much
better than that available with GW detectors, which can

guide observatories in their search for the electromagnetic
counterparts of GW sources.
Several source candidates are considered to generate GWs

and high-energy neutrinos, including core-collapse super-
novae [16,29], gamma-ray bursts (see, e.g., Refs. [30,31]),
BNS mergers [32], neutron star–black hole mergers [33],
soft gamma repeaters [34,35], and microquasars [11].
Besides these candidate sources, searches might reveal
unknown source populations or production mechanisms.
Detecting even one joint source of GWs and high-energy
neutrinos will significantly increase our understanding of the
underlying mechanisms that create them [18,21].
Searching for joint GWþ high-energy neutrino (here-

after GWþ neutrino) sources has only become viable in
recent years with the advent of large-scale detectors, in
particular the Advanced LIGO [36] and Advanced Virgo
[37] observatories on the GW side, and the IceCube [38],
ANTARES [39], and Pierre Auger [40] observatories on
the neutrino side. Both sides will experience significant*imrebartos@ufl.edu
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upgrades in the coming years. Advanced LIGO and
Advanced Virgo are set to reach their design sensitivities
within the next few years [41]. IceCube started an upgrade
towards a second-generation detector, IceCube-Gen2,
with several times improved sensitivity [42]. Another
neutrino detector, KM3NeT, is being constructed in the
Mediterranean [43]. Due to these advances, our ability to
identifyGWand neutrino sources is set to rapidly increase in
the near future and beyond.
While no joint GWþ neutrino discovery has been con-

firmed to date, there has been significant effort to search for
such events. Following the first observational constraints on
common sources in 2011 [13], independent searches were
carried out using Initial LIGO/Virgo and the partially
completed ANTARES and IceCube detectors [19,23].
With the completion of Advanced LIGO, several searches
were carried out to find the neutrino counterpart of GW
discoveries [25–27].A separate searchwas carried out to find
joint events for which neither the GWnor the neutrino signal
could be independently confirmed to be astrophysical [44].
Most of these searches were based on the analysis

method developed by Baret et al. [15]. This method
combines the GW amplitude, neutrino reconstructed
energy, temporal coincidence, and directional coincidence
to separate astrophysical events from chance coincidences.
The method aims to be emission-model agnostic and does
not impose constraints on the source properties except
by assuming that higher neutrino energy is more likely to
indicate an astrophysical signal.
Following the success of the search method by Baret

et al. [15] spanning over a decade, it is time to upgrade it to
enhance its sensitivity and aid newly relevant real-time
searches. Two particular motivations for the upgrade are to
facilitate the incorporation of astrophysical information and
detector characteristics in the search. Regarding astrophysi-
cal information, while it is beneficial to keep the search
largely model independent, in many cases signal con-
straints can be specified that do not depend strongly on
a particular model. Regarding detector characteristics, a
more complex detector model will improve sensitivity and
accuracy, but it requires the incorporation of prior infor-
mation on these characteristics into the search.
In this paper, we present a new search algorithm for

common sources of GWs and high-energy neutrinos based
on Bayesian hypothesis testing. A Bayesian framework is a
natural choice to incorporate prior astrophysical and
detector information. Bayesian solutions are becoming
more common in GW [45–48] and more recently multi-
messenger data analysis [49–54].
The paper is organized as follows. The general idea for

this analysis is described in Sec. II, followed by proba-
bilities describing the signal hypothesis in Sec. III, null
hypothesis in Sec. IV, and chance coincidence hypothesis
in Sec. V. We define the use of odds ratios in Sec. VI.
We conclude in Sec. VII.

II. MULTIMESSENGER SEARCH METHOD

To determine whether a multimessenger coincident
signal is a real event or a random coincidence, we formulate
the problem in the context of Bayesian hypothesis testing.
We further incorporate detector and background character-
istics as well as astrophysical information on the messenger
particle and its source.
We will compare multiple hypotheses. Our signal

hypothesis Hs is that all considered messengers originated
from the same astrophysical source. Our null hypothesis
H0 is that triggers in all messengers arose from the
background. Additionally, we will consider a chance
coincidence hypothesis Hc that one type of the messengers
has an astrophysical trigger, but the other type of messenger
only has triggers from the background. We will neglect the
possibility that different messengers from distinct astro-
physical signals coincide as this is highly unlikely given
our low signal rate.
For GWs we use the following observational information

for the search: (i) the detection time tgw; (ii) the recon-
structed sky location probability density Pgw ¼ PgwðΩÞ,
called the sky map, where Ω is the source sky location;
(iii) the GW data analysis pipeline specific signal-to-noise
ratio (SNR) of the GW event in the GW detector network
ρgw, which is the individual SNRs of the signals at each
detector summed in quadrature; and (iv) the reconstructed
distance distributionDgw ¼ DgwðrÞ, where r is the distance
of the event to Earth [55]. We define a vector containing the
measured properties of a GW trigger as

xgw ¼ ftgw;Pgw; ρgw;Dgwg: ð1Þ

For multiple source types, an additional variable could be
the source-dependent gravitational waveform. We omit this
as a factor in the following description.
For observational information used for high-energy neu-

trinos includes (i) their detection times tν, (ii) their recon-
structed sky location probability densities Pν ¼ PνðΩÞ,
and (iii) their reconstructed neutrino energies ϵν. As high-
energy neutrinos are not directly observed, the observed
energies of the leptons produced in the neutrino interactions
are taken as ϵν. Generally, the reconstructed neutrino sky
location Pν can be described as a Gaussian distribution
centered on the reconstructed neutrino direction Ων,
with reconstructed uncertainty σν [56,57]. We define a
matrix containing the measured properties of all neutrino
triggers as

Xν ¼

2
64
xν1

xν2

…

3
75; ð2Þ

with rows
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xνi ¼ ftνi;Ωνi; σνi; ϵνig: ð3Þ

Throughout the paper we will assume that we have N
neutrino triggers. We define a vector containing our model
parameters for the signal hypothesis as

θ ¼ fts; r;Ω; Egw; Eνg; ð4Þ

where ts is the reference time, r is the luminosity distance,
Ω is the sky location, Egw is the isotropic-equivalent total
GW energy, and Eν is the isotropic-equivalent total high-
energy neutrino energy emitted from the astrophysical
event. The reference time can be thought of as the time
of a relevant astrophysical event to which we compare the
other times of arrival, delayed by the travel time of
information to Earth at the speed of light. The neutrino
energies considered here render the neutrino travel time
practically the same as the travel time at the speed of light.
At the end of our analysis we will compute a Bayes

factor for our signal hypothesis given the observational
data as

Ogwþν ¼
PðHsjxgw;XνÞ

PðH0jxgw;XνÞ þ PðHcjxgw;XνÞ
: ð5Þ

III. SIGNAL HYPOTHESIS

We first introduce our signal hypothesis Hs. This
hypothesis considers having at least one coincident signal
neutrino with the gravitational wave which is also signal.
Therefore, we split this hypothesis into subhypotheses for
different numbers of coincident signal neutrinos and denote
them byHn

s , where n is the number of coincident neutrinos.
What this means is that, for example, for n ¼ 1 we would
have one neutrino which comes from the same source as the
gravitational wave and other neutrinos that belong to the
background, or to the null hypothesis. In order to label
the signal neutrinos and the background neutrinos sepa-
rately we will use the notation Xi

ν ¼ Xνnxνi to refer to the
Xν matrix without the ith row ¼ xνi. Given the observa-
tional data, the probability of the signal hypothesis being
true can be written as

PðHsjxgw;XνÞ ¼
XN
n¼1

PðHn
s jxgw;XνÞ: ð6Þ

We apply Bayes’ rule to this expression,

XN
n¼1

PðHn
s jxgw;XνÞ ¼

XN
n¼1

Pðxgw;XνjHn
s ÞPðHn

s Þ
Pðxgw;XνÞ

: ð7Þ

We are interested in the ratio of such probabilities for
different hypotheses, and hence the denominator above will
cancel out. We therefore omit its computation. Then, we

further expand the first term by specifying the signal
neutrinos,

Pðxgw;XνjHn
s Þ

¼
X

fi;j;…g
Pðxgw;XνjHn

s ;s¼fi;j;…gÞPðs¼fi;j;…gjHn
s Þ:

ð8Þ

The sum in Eq. (8) is over all ðNnÞ subsets of the set of
integers from 1 to N with n elements, which are denoted by
the set s in the sum which stands for the signal set. The
second term on the right-hand side corresponds to the
probability of each combination, which is

Pðs ¼ fi; j;…gjHn
s Þ ¼

�
N

n

�−1
: ð9Þ

We further decompose the first term in Eq. (8) by separating
the signal and background neutrino terms via their inde-
pendence with a memoryless detector assumption as

Pðxgw;XνjHn
s ; s ¼ fi; j;…gÞ

¼ Pðxgw;xνi;xνj;…jHn
s ÞPðXi;j;…

ν jH0Þ: ð10Þ
In Eq. (10), for convenience, we dropped the s set from the
conditions of the first term on the right side of the equation
since there are already only n neutrinos in that probability,
for convenience. The second term corresponds to the
probability that all other than those n neutrinos belong
to the background. Next, to obtain the first term on the right
side of Eq. (10) we marginalize over the parameters,

Pðxgw;xνi;xνj…jHn
s Þ

¼
Z

Pðxgw;xνi;xνj…jθ; Hn
s ÞPðθjHn

s Þdθ: ð11Þ

Since xgw and all of the xνi (which belong to the signal
hypothesis) are dependent on θ but otherwise can be
considered independent of each other, we can separate
the GW and high-energy parts from each other, such as

Pðxgw;xνi;xνj…jθ; Hn
s Þ

¼ Pðxgwjθ; Hn
s ÞPðxνijθ; Hn

s ÞPðxνjjθ; Hn
s Þ… ð12Þ

We now specify the independent elements of Eqs. (7), (11),
and (12) in the context of our astrophysical and detection
models. PðXi;j;…

ν jH0Þ in Eq. (10) will be explained
in Sec. IV.

A. Parameter and hypothesis priors (Hs)

There are two types of prior probabilities that we need to
compute in our signal hypothesis: PðθjHn

s Þ and PðHn
s Þ.

In order to find PðθjHn
s Þ we again use Bayes’ rule,
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PðθjHn
s Þ ¼

PðHn
s jθÞPðθÞ
PðHn

s Þ
: ð13Þ

PðHn
s Þ in the denominator and in Eq. (7) cancel. So actually

we need to have PðθÞ and PðHn
s jθÞ. We first discuss the

prior probability distribution of the parameters, PðθÞ. Here
we review the role of each source parameter.
(1) Time (ts): We assume that a signal is equally likely to

occur at any time during an observation period. We
further assume that no other parameter depends on
the time of observation, and therefore we can treat
this probability independently. Taking the live-time
duration of the joint observation period to be Tobs,
the resulting prior probability distribution is

PðtsÞ ¼
1

Tobs
: ð14Þ

(2) Source distance (r): We assume a uniform distri-
bution of sources in the Universe such that
PðrÞ ¼ 3r2=r3max. rmax is the maximum value of r
and its divergence is not important as it gets canceled
in the analysis. We further assume that a GW signal
can be detected if its root-sum-squared GW strain
hrss is above a detection threshold hrss;0 [58]. The
probability density that an observed GWþ neutrino
event occurred at distance r is dependent on r since
the volume in space in the distance range ½r; rþ dr�
is ∝ r2dr; however, the probability of detecting n
neutrinos from the source falls according to Poisson
probabilities for n detections whose means are
proportional to r−2. This dependency is valid up
to the GW distance range r0fAðΩ; tgwÞ, beyond
which sources are not detected. Here, r0 is the
GW detection range for optimal source direction,
and fAðΩ; tgwÞ is the antenna pattern of the GW
detector network. The latter is the square root of the
quadrature sum of the antenna responses of each
detector for the two polarizations of GWs,

fAðΩ;tgwÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

Fk;þðψ ;Ω;tgwÞ2þFk;×ðψ ;Ω;tgwÞ2
r

; ð15Þ

where the sum over k allows for the sum over
different detectors, the F functions are the antenna
responses for each polarization, and the angle ψ is
the GW emission inclination which vanishes after
the quadrature sum. Its maximum value is 1, which
corresponds to the optimal source position. The
range r0 satisfies r0ðEgwÞ ∝ E1=2

gw and is defined as
the distance at which an event that emits energy Egw

creates the least acceptable SNR ρmin or the strain
hrss;0. The relationship between Egw, ρgw, and r0 is

explained in Eq. (24) with ρgw ¼ ρmin and r ¼ r0
such that r0 ¼ κ0E

1=2
gw =ρmin.

(3) Energy (Egw and Eν): We need to specify our
dependency on energies. A naive choice can be
independent log-uniform distributions over the en-
ergy ranges ½E−

gw; Eþ
gw�, ½E−

ν ; Eþ
ν � with probability

density

PðEgw; EνÞ ¼ PðEgwÞPðEνÞ

¼
�
EgwEν log

�
Eþ
gw

E−
gw

�
log

�
Eþ
ν

E−
ν

��
−1
:

ð16Þ

Throughout the paper, instead of the expression for
the specific log-uniform model, PðEgw; EνÞ will be
used to express the universality of the method.

(4) Sky position (Ω): We assume a uniform prior
distribution in the sky, PðΩÞ ¼ 1=4π.

Overall, we find

PðθÞ ¼ PðEgw; EνÞr2
4πTobsN1

: ð17Þ

with a suitable normalization constant N1 ¼ r3max=3 for the
maximum assumed possible distance rmax. Its divergence is
not important and all divergences in the analysis cancel.
Next we consider the term PðHn

s jθÞ which depends on
the expected detection count of multimessenger events.
A useful quantity for it is the expected number of detected
neutrinos for a given emission energy, sky location, and
distance per event,

hnνðEν; r;ΩÞi ¼ nν;51;100ðΩÞ
�

Eν

1051 erg

��
r

100 Mpc

�
−2
:

ð18Þ
Here, nν;51;100ðΩÞ is a detector-specific parameter. The sky-
averaged nν;51;100 ≈ 1.1 for IceCube [59] and nν;51;100ðΩÞ
depends on the declination but not the right ascension due
to the axial symmetry of the detector, whose symmetry axis
coincides with Earth’s rotation axis due to its location at the
South Pole.
The probability of detection of multimessenger events

given the source parameters will be

Pn
detðθÞ ¼ Poissðn; hnνðEν; r;ΩÞiÞ

×

�
1 r ≤ r0ðEgwÞf̄AðΩ; tsÞ;
0 otherwise;

ð19Þ

with the time-averaged antenna pattern f̄AðΩ; tsÞ between
½ts þ t−gw; ts þ tþgw�. The parameters t−gw and tþgw will be
explained in Sec. III B. Poissðk; λÞ is the Poisson proba-
bility density function with mean λ and k observed events.
Then, the expected count is
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Cn
detðθÞ ¼ _ngwþνTobsPn

detðθÞ; ð20Þ

where _ngwþν is the total multimessenger event rate in the
whole Universe, which is bounded by the distance rmax. Its
divergence cancels the divergence of N1. Then, the prior
probability will be

PðHn
s jθÞ ¼

1

N2

Cn
detðθÞ; ð21Þ

with a suitable normalization constant N2. This constant,
which is the sum of the expected event counts of all
hypotheses, will be present in our other hypotheses too and
will be canceled out.

B. Gravitational waves (Hs)

We now consider the probability Pðxgwjθ; Hn
s Þ. We have

Pðxgwjθ; Hn
s Þ ¼ Pðtgwjθ; Hn

s ÞPðρgwjtgw; θ; Hn
s Þ

× PðPgwjtgw; ρgw; θ; Hn
s Þ

× PðDgwjPgw; tgw; ρgw; θ; Hn
s Þ: ð22Þ

The term Pðtgwjθ; Hn
s Þ should only depend on the

difference tgw − ts. We adopt the assumption that the
probability Pðtgwjts; Hn

s Þ is uniform within a time window
tgw − ts ∈ ½t−gw; tþgw� for suitable parameters t−gw and tþgw and
is zero elsewhere:

Pðtgwjts; Hn
s Þ ¼

� ðtþgw − t−gwÞ−1 if tgw − ts ∈ ½t−gw; tþgw�;
0 otherwise:

ð23Þ
For example, previous GWþ neutrino searches used the
parameters tþgw ¼ −t−gw ¼ 250 s [9,15,23,25–27]. We
assume that the other source parameters are independent
of tgw.
To understand the second term on the right-hand side of

Eq. (22), we make use of the fact that ρgw on average is
proportional to the GW signal’s amplitude at Earth,
characterized by the root-sum-squared GW strain hrss.
Assuming here for simplicity that all gravitational wave-
forms are similar, the GW strain is fully determined by r,
Egw, Ω, and tgw. The time dependence arises due to the
Earth’s rotation if we measure the sky location in equatorial
coordinates. Assuming that ρgw precisely describes hrss,
this term represents a constraint on the source parameters,
which need to be such that they produce an hrss value at
Earth that corresponds to the measured ρgw value. This

means that only the combination E1=2
gw r−1fAðΩ; tgwÞ is

constrained, where fAðΩ; tgwÞ is the direction-dependent
antenna pattern of the GW detector network. This combi-
nation is proportional to the measured GW strain
amplitude.

We therefore write the probability as a constraint,

Pðρgwjtgw; θ; Hn
s Þ ¼ δ½ρgw − κ0E

1=2
gw r−1fAðΩ; tgwÞ�; ð24Þ

where δ is the Dirac delta function and κ0 is an appropriate
constant that depends on the noise spectrum in the GW
detector at the time of detection and on the GW search
algorithm. The delta distribution is an approximation for
the accurate measurement of the SNR, although in practice
there is always an uncertainty in the measured SNR. We do
not consider this uncertainty in our analysis.
Next, we look at the term PðPgwjtgw; ρgw; θ; Hn

s Þ. Using
Bayes’ rule, we write

PðPgwjtgw; ρgw; θ; Hn
s Þ

¼ PðθjPgw; tgw; ρgw; Hn
s ÞPðPgwjtgw; ρgw; Hn

s Þ
Pðθjtgw; ρgw; Hn

s Þ
: ð25Þ

Regarding PðPgwjtgw; ρgw; Hn
s Þ, we assume that the dis-

tribution of Pgw is independent of the underlying hypoth-
esis, i.e., PðPgwjtgw; ρgw; Hn

s Þ ¼ PðPgwjtgw; ρgwÞ. This
term appears in the alternative hypothesis as well; however,
it cancels out and therefore we can ignore it here. For the
remaining terms, assuming that our reconstructed GW sky
map is accurate, we have

PðθjPgw; tgw; ρgw; Hn
s Þ

Pðθjtgw; ρgw; Hn
s Þ

¼ PgwðΩÞ NΩ
fAðΩ; tgwÞ

: ð26Þ

The numerator on the left side gives the sky map since the
sky map determines the probability of the signal coming
from a given sky location Ω. The denominator on the left
side is proportional to the antenna pattern at the time of
detection, normalized by the factor NΩ.
Now we look at the term PðDgwjPgw; tgw; ρgw; θ; Hn

s Þ.
The handling of this term is identical to PðPgwjtgw; ρgw;
θ; Hn

s Þ. Again, we assume the independence ofDgw and the
hypothesis, and write

PðDgwjPgw; tgw;ρgw;θ;Hn
s Þ

¼ PðθjPgw; tgw;ρgw;Dgw;Hn
s ÞPðDgwjPgw; tgw;ρgw;Hn

s Þ
PðθjPgw; tgw;ρgw;Hn

s Þ
:

ð27Þ

We again ignore the second term in the denominator as it
cancels with the corresponding terms in other hypotheses.
Assuming that our reconstructed GW distance distribution
is accurate, we have

PðθjDgw;Pgw; tgw; ρgw; Hn
s Þ

PðθjPgw; tgw; ρgw; Hn
s Þ

¼ DgwðrÞ
NrðρgwÞ
r2 × r−1

: ð28Þ

The first term on the right side comes from the numerator
on the left side since the distance distribution determines
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the probability of the signal coming from a source
distance r. The second term on the right side represents
the denominator on the left side. It is obtained by
multiplying the prior r2 distribution and the r−1 distribution
of the likelihood of r for known ρgw. Here NrðρgwÞ
is the normalization for the r distribution between
½ ffiffiffiffiffiffiffiffi

E−
gw

p
;

ffiffiffiffiffiffiffiffi
Eþ
gw

p �ρgw=κ0.
Putting everything together, without the canceling terms

the GW term is

Pðxgwjθ; Hn
s Þ

¼ NΩNrðρgwÞδ½ρgw − κ0E
1=2
gw r−1fAðΩ; tgwÞ�

×
PgwðΩÞ

fAðΩ; tgwÞ
DgwðrÞ

r

×

� ðtþgw − t−gwÞ−1 if tgw − ts ∈ ½t−gw; tþgw�;
0 otherwise:

ð29Þ

C. High-energy neutrinos (Hs)

We now turn our attention to the high-energy neutrino
term Pðxνi;xνj…jθ; Hn

s Þ as in Eq. (12). We assume that the
observables of different neutrinos are not dependent on
other neutrinos’ observables, except for the dependence
through θ. Therefore, we can separate each neutrino term as

Pðxνi;xνj…jθ; Hn
s Þ ¼ Pðxνijθ; Hn

s ÞPðxνjjθ; Hn
s Þ… ð30Þ

We treat the temporal term similarly to the GW case. We
assume that the time difference tνi − ts is the only relevant
temporal value. We further use a uniform probability
density within the time interval ½t−ν ; tþν �, and 0 outside
the time interval:

Pðtνijts; Hn
s Þ ¼

� ðtþν − t−ν Þ−1 if tνi − ts ∈ ½t−ν ; tþν �;
0 otherwise:

ð31Þ

Previous GWþ neutrino searches used the parameters
tþν ¼ −t−ν ¼ 250 s [9,15,23,25–27].

The remaining neutrino observables—Ωνi, σνi, and ϵνi—
are not independent. The sensitivity of neutrino detectors
varies with both energy and sky location, and localization
accuracy depends on source direction and energy.
Let us take the remaining neutrino term PðΩνi; σνi; ϵνijr;

Ω; Eν; Hn
s Þ. We assume that the signal distribution of ϵν

follows a power law, and therefore the neutrino spectrum is
independent of the source distance. Such a power-law
distribution is typical in neutrino emission models [60].
Consequently, the parameters r and Eν do not affect the
probability here. We further assume that the directional
uncertainty variable σν and the reconstructed sky position
of neutrinos Ων do not depend on r and Eν.

We use the chain rule to write

PðΩνi; ϵνi; σνijΩ; Hn
s Þ

¼ PðΩνijσνi; ϵνi;Ω; Hn
s ÞPðσνijϵνi;Ω; Hn

s ÞPðϵνijΩ; Hn
s Þ:
ð32Þ

Given the source direction as a parameter, the probability
of reconstructing ϵν for a detected neutrino depends on the
energy- and direction-dependent effective area Aeffðϵν;ΩÞ
of the neutrino detector, as well as the source power
spectral density. Here we ignore the difference between
the true and reconstructed energy when calculating the
effective area as this should not significantly change its
value. We take the neutrino spectral density to be
dNν=dϵν ∝ ϵ−2ν , which is the standard spectrum expected
from Fermi processes [60]. With these dependencies, we
write

PðϵνijΩ; Hn
s Þ ¼

1

Nϵ
Aeffðϵνi;ΩÞϵ−2νi ; ð33Þ

where

Nϵ ¼
Z

dΩ
Z

ϵmax

ϵmin

ϵ−2ν Aeffðϵν;ΩÞdϵν; ð34Þ

where the dΩ integral is over the entire sky, and ϵmin and
ϵmax are the minimum and maximum reconstructible
energies.
We assume that PðσνijϵνiÞ does not depend on the hypo-

thesis under consideration or its parameters; therefore, it
will cancel with the same term in the other hypotheses when
the ratio of probabilities is taken at the very end.Hence, we do
not consider the actual value of Pðσνijϵνi;Ω; Hn

s Þ.
For the first term on the right-hand side of Eq. (32), we

adopt the normal distribution [56]

PðΩνijσνi; ϵνi;Ω; Hn
s Þ ¼

1

2πσ2νi
e
−jΩνi−Ωj2

2σ2
νi ð35Þ

by assuming no further dependence forΩνi on ϵνi except for
that throughΩ. Putting everything together, we have for the
neutrino term

Pðxνijθ; Hn
s Þ ¼

1

Nϵ
Aeffðϵνi;ΩÞϵ−2νi

1

2πσ2νi
e
−jΩνi−Ωj2

2σ2
νi

×

� ðtþν − t−ν Þ−1 if tνi − ts ∈ ½t−ν ; tþν �;
0 otherwise:

ð36Þ
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D. Combination of probabilities (Hs)

We can combine the above results to obtain the prob-
ability of the joint event being a signal by taking Eqs. (29)
and (36) and substituting them into Eq. (12). We then
substitute Eq. (12) into Eq. (11).
To solve Eq. (11), we further substitute PðθjHn

s Þ from
Eq. (13), for which we use Eqs. (17) and (21). Then, we can
substitute Eq. (11) into Eq. (10). Finally, we substitute
Eq. (10) into Eq. (8) with Eq. (9), which is the required term
for Eq. (7), where we obtain PðHn

s jxgw;XνÞ, except for
the factor Pðxgw;XνÞ which will cancel out in comparison
to the alternative hypothesis. The computation of
PðXi;j;…

ν jH0Þ will be explained in Sec. IV.

IV. NULL HYPOTHESIS

We now move to our null hypothesis H0. Given the
observational data, the probability of the null hypothesis
being true can be written as PðH0jxgw;XνÞ. We apply
Bayes’ rule to express this probability as

PðH0jxgw;XνÞ ¼
Pðxgw;XνjH0ÞPðH0Þ

Pðxgw;XνÞ
: ð37Þ

Here the denominator will cancel with the same denom-
inator in the signal hypothesis, and therefore we do not
need to consider it further. Since the background events for
GW and neutrino observations are independent, we can
write

Pðxgw;XνjH0Þ ¼ PðxgwjH0ÞPðXνjH0Þ: ð38Þ

We will now specify the independent elements of Eqs. (37)
and (38) in the context of our background model. We can
perform the calculations in this section without the need for
additional parameters to marginalize over due to the fact
that every measured parameter is assumed to be indepen-
dent of one another for the background.

A. Hypothesis prior (H0)

There is one prior probability that we need to compute in
our null hypothesis: PðH0Þ. This probability is again
proportional to the expected detection count of background
events. Given the observation period Tobs and the back-
ground GW and rate Rgw;bg, we have TobsRgw;bg back-
ground GW events. Hence,

PðH0Þ ¼
1

N2

Rgw;bgTobs: ð39Þ

The normalization factor N2 will cancel with the same
factor in the signal hypothesis; see Eq. (21).

B. Gravitational waves (H0)

We now consider the GW component PðxgwjH0Þ. We
assume that tgw and ρgw are independent. We can then
define the probabilities of measuring each parameter
independently:

PðxgwjH0Þ ¼ PðtgwjH0ÞPðρgwjH0Þ
× PðPgwjtgw; ρgw; H0Þ
× PðDgwjtgw; ρgw;Pgw; H0Þ: ð40Þ

Starting with the first term on the right-hand side, we
expect the probability distribution of the detection time for
a background event to be independent of time, and there-
fore we adopt a uniform distribution within the observation
time. We therefore have

PðtgwjH0Þ ¼
1

Tobs
: ð41Þ

The distribution of ρgw depends on the detector proper-
ties as well as the properties of the reconstruction algo-
rithm. We therefore estimate this distribution empirically.
We use the ρgw background distribution obtained from the
GW search pipelines which produce it by time shifting
data between multiple GW observatories and carrying out
the full analysis algorithm over this time-shifted data.
We do not extrapolate beyond the maximum ρgw from the
background distribution and conservatively choose it
as the highest value for the background triggers. We
denote the empirically established distribution of ρgw as
PempðρgwjH0Þ. The ρgw obtained by time shifts will be
acquired from the GW data analysis pipelines.
Considering the terms PðPgwjtgw; ρgw; H0Þ and PðDgwj

tgw; ρgw;Pgw; H0Þ, we do not have any prior information on
PðPgwjH0Þ and PðDgwjH0Þ, and therefore we assume that
it is independent of Pgw and Dgw. Since there are similar
terms in our signal hypothesis, these cancel out. We
therefore ignore these terms in the following.
Putting everything together, we have for the background

GW term

PðxgwjH0Þ ¼ PempðρgwjH0Þ
1

Tobs
: ð42Þ

C. High-energy neutrinos (H0)

Next, we examine PðXνjH0Þ in Eq. (38) and also
PðXi;j;…

ν jH0Þ in Eq. (10). Given the background neutrino
rate Rν;bg, the probability of having N background neu-
trinos in the observation period is PoissðN;Rν;bgTobsÞ,
which allows us to write

PðXνjH0Þ ¼ PðXνjH0; #bg ¼ NÞPð#bg ¼ NjH0Þ; ð43Þ

with Pð#bg ¼ NjH0Þ ¼ PoissðN;Rν;bgTobsÞ, where #bg is
the number of background neutrinos. We will use the
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shorthand notation HN
0 instead of both H0 and #bg ¼ N.

Now we can decompose the first term into single neutrino
terms as we did previously in Sec. III. Then, we first
separate the temporal term which we assume to be
independent of the other parameters. We assume that the
time of arrival of a background neutrino signal is time
independent, and can be any time during the observation
period. We therefore have for each neutrino

PðtνijHN
0 Þ ¼

1

Tobs
: ð44Þ

The remaining measured parameters will not be inde-
pendent of one another. In particular, the reconstructed
neutrino direction and energy are interconnected. As we
explained before, the term for the directional uncertainty
parameter σνi will be canceled when we decompose the
remaining terms as

PðΩνi; ϵνi; σνijHN
0 Þ

¼ PðΩνijσνi; ϵνi; HN
0 ÞPðσνijϵνi; HN

0 ÞPðϵνijHN
0 Þ: ð45Þ

In addition, we assume that the PðΩνijσνi; ϵνi; HN
0 Þ term

does not have any σνi dependence. We therefore effectively
need to examine the probability PðΩνijϵνi;HN

0 ÞPðϵνijHN
0 Þ¼

PðΩν;ϵνjHN
0 Þ. Given a sufficient number of observed back-

ground events, this probability can be estimated empirically
using observed data. Let fΩν;j; ϵν;jg; j ∈ Nν;obs be the
reconstructed parameters for a set of Nν;obs neutrino
candidates. For the direction we only care about the
declination angle in the equatorial coordinate system
δνiðΩνiÞ primarily because of the axial symmetry for
IceCube, which is described in Sec. III A when comment-
ing on nν;51;100ðΩÞ. For detectors that are not coaxial with
the Earth’s rotation axis, the full Ω should be considered.
We then have the empirical estimate with the kernel density
estimation

PempðΩνi; ϵνijHN
0 Þ

¼
P

j∈Nν;obs
½jδνi − δν;jj < Δδ&jϵνi − ϵν;jj < ΔϵðϵνiÞ�

4πNν;obsj cosðδνi þ ΔδÞ − cosðδνi − ΔδÞjΔϵðϵνiÞ
;

ð46Þ

where we use the bracket notation such that [P] is 1 if P is
true and 0 if P is false, which corresponds to the top-hat
kernel. We further introduced the constants Δδ and ΔϵðϵνÞ,
which should be selected such that the uncertainty on the
probability estimate is minimal.
Putting everything together, we have for the background

neutrino term

PðxνijHN
0 Þ ¼ PempðΩνi; ϵνijHN

0 Þ
1

Tobs
: ð47Þ

D. Combination of probabilities (H0)

We can combine the above results to obtain the prob-
ability of the joint event being from the background by
taking Eq. (47) for each neutrino and substituting them into
Eq. (43). Then, Eqs. (42) and (43) can be substituted into
Eq. (38). Finally, Eq. (38) along with Eq. (39) can be
substituted into Eq. (37). Equation (37) will miss a
normalization factor from both Eq. (39) and the denom-
inator on the right side, both of which cancel out upon
calculating the Bayes factor. For the background terms in
other hypotheses such as PðXi;j;…

ν jH0Þ in Eq. (10), Eq. (43)
can be used similarly for N − n number of background
neutrinos instead of N.

V. CHANCE COINCIDENCE HYPOTHESIS

We finally calculate the probability for the chance
coincidence hypothesis Hc. Given the observational data
the probability of the chance coincidence hypothesis being
true can be written as PðHcjxgw;XνÞ. Hc can be separated
into two parts: one considers a background neutrino event
and a foregroundgravitational-wave event denoted byHc;gw,
and the other considers a background gravitational-wave
event and a foregroundneutrino event denoted byHc;ν. Since
these two cases are mutually exclusive and complementary
to each other for the chance coincidence hypothesis, we can
write PðHcjxgw;XνÞ¼PðHc;gwjxgw;XνÞþPðHc;νjxgw;XνÞ.
Hc;gw is a special case for the signal hypothesis Hn

s with
n ¼ 0, so all of the explanations in Sec. III apply for it. Due
to the absence of related events, we have a simpler case. We
apply Bayes’ rule again,

PðHc;gwjxgw;XνÞ ¼
Pðxgw;XνjHc;gwÞPðHc;gwÞ

Pðxgw;XνÞ
: ð48Þ

Pðxgw;XνÞ is omitted, as it is throughout the paper. Thenwe
separate the first term in the numerator due to independent
detections as

Pðxgw;XνjHc;gwÞ ¼ PðxgwjHc;gwÞPðXνjHc;gwÞ: ð49Þ

Then we obtain the GW part by marginalizing over the
parameters θ,

PðxgwjHc;gwÞ ¼
Z

Pðxgwjθ; Hc;gwÞPðθjHc;gwÞdθ; ð50Þ

with

θ ¼ fts; r;Ω; Egw; Eνg; ð51Þ

which are the same parameters defined in Sec. III. Now we
move on to analyzing PðHc;νjxgw;XνÞ. We first decompose
it into subhypotheses for different numbers of signal
neutrinos, denoted as Hn

c;ν for n signal neutrinos,
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PðHc;νjxgw;XνÞ ¼
XN
n¼1

PðHn
c;νjxgw;XνÞ: ð52Þ

We again apply Bayes’ rule to each term,

PðHn
c;νjxgw;XνÞ ¼

Pðxgw;XνjHn
c;νÞPðHn

c;νÞ
Pðxgw;XνÞ

: ð53Þ

Here the denominator again cancels with the same denom-
inator in the signal and null hypotheses. We again separate
the first term in the numerator due to independent detections
as

Pðxgw;XνjHn
c;νÞ ¼ PðxgwjHn

c;νÞPðXνjHn
c;νÞ: ð54Þ

We further decompose the neutrino term by identifying the
signal neutrinos with the set s which has n elements, as in
Sec. III,

PðXνjHn
c;νÞ ¼

X
fi;j;…g

PðXνjHn
c;ν; s

¼ fi; j;…gÞPðs ¼ fi; j;…gjHn
c;νÞ; ð55Þ

with

Pðs ¼ fi; j;…gjHn
c;νÞ ¼

�
N

n

�−1
: ð56Þ

We separate the signal and background neutrinos due to the
independence of different detections and drop the set s in the
notation as we did in Eq. (10),

PðXνjHn
c;ν; s ¼ fi; j;…gÞ

¼ Pðxνi;xνj;…jHn
c;νÞPðXi;j;…

ν jH0Þ: ð57Þ
The second term was explained in Sec. IV. In order to obtain
the first term we marginalize over the parameters θ,

Pðxνi;xνj…jHn
c;νÞ

¼
Z

Pðxνi;xνj;…jθ; Hn
c;νÞPðθjHn

c;νÞdθ: ð58Þ

We again split each neutrino as we did in Sec. III,

Pðxνi;xνj;…jθ; Hn
c;νÞ ¼ Pðxνijθ; Hn

c;νÞPðxνjjθ; Hn
c;νÞ…

ð59Þ

A. Parameter and hypothesis priors (Hc;gw)

For PðθjHc;gwÞ we use Bayes’ rule,

PðθjHc;gwÞ ¼
PðHc;gwjθÞPðθÞ

PðHc;gwÞ
; ð60Þ

where PðθÞ is given in Eq. (17).
We write the probability density for detecting a GW

event but not a neutrino as

Pc;gw
det ðθ;αÞ¼ðαPoissð0;hnνðEν;r;ΩÞiÞ

þð1−αÞÞ
�
1 r≤ r0ðEgwÞf̄AðΩ;tsÞ;
0 otherwise;

ð61Þ

with α being the ratio of the total multimessenger event rate
to the total astrophysical GW event rate. Then,

PðHc;gwjθÞ ¼
1

N2

Tobs _ngwP
c;gw
det ðθ; αÞ; ð62Þ

with _ngw being the total astrophysical GW event rate in the
whole universe.

B. Parameter and hypothesis priors (Hc;ν)

For PðθjHn
c;νÞ we use Bayes’ rule,

PðθjHn
c;νÞ ¼

PðHn
c;νjθÞPðθÞ
PðHn

c;νÞ
; ð63Þ

where PðθÞ is given in Eq. (17).
Wewrite the probability density for detecting n neutrinos

but not a GW event as

Pc;ν;n
det ðθ; βÞ ¼

� ð1 − βÞ r ≤ r0ðEgwÞf̄AðΩ; tsÞ;
βPoissðn; hnνðEν; r;ΩÞiÞ þ ð1 − βÞ otherwise;

ð64Þ

with β being the ratio of the total multimessenger event rate
to the total astrophysical neutrino event rate. Then,

PðHn
c;νjθÞ ¼

1

N2

T2
obsRbg;gw _nνP

c;ν;n
det ðθ; βÞ; ð65Þ

with _nν being the total astrophysical neutrino event rate in
the whole universe.

C. Remaining terms

(1) The term Pðxgwjθ; Hgw
c Þ is equal to the same term

for our signal hypothesis, i.e., Pðxgwjθ; Hn
s Þ [see

Eq. (29)], since in both cases there is a detected
astrophysical gravitational-wave signal.

(2) The term Pðxνijθ; Hc;gwÞ is equal to the same term
for our null hypothesis, i.e., PðxνijH0Þ [see
Eq. (47)], since in both cases there is a background
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neutrino event, and neither term depends on the GW
signal.

(3) The term PðxgwjHn
c;νÞ is equal to the same term for

our background hypothesis, i.e., PðxgwjH0Þ [see
Eq. (42)], since in both cases there is a GW false
detection from the background, and neither term
depends on the neutrino signal.

(4) The term Pðxνijθ; Hn
c;νÞ is equal to the same term for

our signal hypothesis, i.e., Pðxνijθ; Hn
s Þ [see

Eq. (36)], since in both cases there is a detected
astrophysical neutrino, and neither term depends on
the GW signal.

The combinations of probabilities are calculated similarly
as in the signal and null hypothesis cases.

VI. ODDS RATIO

We test our signal hypothesis using odds ratios. We
compare our signal hypothesis against both the null and
coincident hypotheses as in Eq. (5).
It should be noted that this end result does not depend on

Tobs, which is a quantity fixed by humans’ decisions and
expected not to affect the significance of any astrophysical
event. In addition, there are no terms with explicit N
dependence, as expected, since it could be arbitrarily large
due to the linear dependence on Tobs. However, overall
there is still a dependence due to the maximum possible
signal neutrino count. In other words, theN dependences of
all terms cancel, but the number of terms depend on it.
This comparison will be applicable for both (i) GW and

neutrino candidates that are not independently established
detections, and (ii) detections that are already confirmed
through one channel. For the former case, the first term in
the denominator will be relevant, while in the latter case it
will be the second term.
Although the odds ratio can be converted to a Bayesian

probability for having a signal given the observations, it
will be dependent on the parameter priors and the event rate
densities, which can be very uncertain. Therefore, the odds
ratio can be used as a test statistic. We empirically
characterize the required threshold values based on back-
ground data and simulations for frequentist significances,
similarly to Ref. [44]. For the searches with confirmed GW
detections, the simulations consist of randomly paired
simulated GWs and background neutrinos from previous
detections. The number of background neutrinos in the time
window around a GW is determined by a Poisson distri-
bution whose mean is the actual background neutrino rate
times the duration of the time window. For searches with
unestablished GW detections (namely, subthreshold
searches), besides the GW and neutrino pairs for the
previous case there are pairs of time-shifted background
GW detections (which are acquired from GW data analysis

pipelines) and background neutrinos, and pairs of back-
ground GW detections and signal neutrinos as well. All
pairs are mixed in proportion to their estimated rates. These
background comparisons allow us to determine a false
alarm probability—namely, the p-value or significance—
for the given events, which can be reported to initiate
electromagnetic follow-up observations.
During the O3 public alert search for coincident GW

and high-energy neutrinos the following parameter values
were used: tþgw ¼ −t−gw ¼ tþν ¼ −t−ν ¼ 250 s, _ngwþν¼ _ngw¼
ð4πr3max=3Þ1500Gpc−3year−1, α¼1, Rν;bg¼6.4×10−3Hz,
Eþ
ν ¼ 1051 erg, E−

ν ¼ 1046 erg, Δδ ¼ 2.5°, and ΔϵðϵνÞ ¼
0.3 × ϵν. Furthermore, since it is a public alert search for
verified GW detections, we set PðH0Þ ¼ PðHc;νÞ ¼ 0.

VII. CONCLUSIONS

We presented a search algorithm for common sources of
GWs and high-energy neutrinos based on Bayesian hypoth-
esis testing. This algorithm upgrades the method of Baret
et al. [15] that was used in most prior joint searches. The
main advantages of the new method are that (i) it incor-
porates astrophysical priors about the source that help
differentiate between signal and background, while being
largely independent of the specific astrophysical model
under consideration, and (ii) it incorporates a more realistic
model of the detector background, for example, by taking
into account the direction-dependent background rate and
energy distribution. These detector properties are straight-
forward to establish empirically, and the method gives a
straightforward way to incorporate them as priors.
In the presentation of the method, we made simplifica-

tions that make the algorithm easier to implement and can
make the computations simpler. As an example, we
assumed that all GW and neutrino sources emit the same
energy. It will be useful to study how these simplifications
affect the sensitivity of the search, and how much model
dependence they introduce. This will be carried out in a
future work.
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