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Abstract. Since the start of the gravitational wave observation era, no joint high energy
neutrino and gravitational wave event has been found. These non-detections could be used
for setting an upper bound on the neutrino emission properties for gravitational wave events
individually or for a set of them. Although in the previous joint high energy neutrino and
gravitational wave event searches upper limits have been found, there is a lack of consis-
tent method for the calculation. The problem addressed in this paper is finding those limits
for astrophysical events which are localized poorly in the sky where the sensitivities of the
neutrino detectors change significantly and can also emit neutrinos, for example the gravita-
tional wave detections. Here we describe methods for assigning limits for expected neutrino
count, emission fluence and isotropically equivalent emission based on maximum likelihood
estimators. Then we apply described methods on the three GW detections from aLIGO’s
first observing run (O1) and find upper limits for them.
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1 Introduction

With the observational discovery of gravitational waves (GW), humanity acquired another
way of observing the universe [1]. It could allow us to observe phenomena which we are not
able to see with other methods such as observations based on electromagnetic or neutrino
emission, as well as observing cosmic events which could be observed via a multitude of
messengers [2, 3]. There has been three such fundamental observations so far; the binary
neutron star (BNS) merger which was observed with GWs and electromagnetic radiation
in various bands [4], the blazar which was observed with high energy neutrinos (HEN) and
electromagnetic radiation [5] and the SN1987a supernova which was observed with lower
energy neutrinos (in MeV energy) and in various electromagnetic bands [6]. Having one
or more additional messengers beyond GWs might shed a brighter light on the physical
processes happened before, during, and after the astrophysical event [7, 8] which can enable
having new observations that wouldn’t be possible [9, 10]. Moreover absence of an additional
messenger is also informative as in the case of the first multimessenger observational result
with GWs that addressed the origin of a short-hard gamma-ray burst from the direction of
the Andromeda galaxy [11]. Despite well over a decade long effort [12–22], one remaining
two messenger combination is a joint observation with HENs and GWs.

During aLIGO’s first observing run (O1) and second observing run with aVirgo (O2)
searhces for joint GW and HEN events couldn’t find any significant event [19–22]. Moreover
during the first half of the third observing run of aLIGO and aVirgo (O3a), search on every
public alert of LIGO-Virgo Collaboration is performed [23]; no significant event was found
and the results for each search was reported via The Gamma-ray Coordinates Network (GCN)
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Notices by IceCube Collaboration [24–26] Such searches are based on assigning a test statistic
(TS) to each observed HEN, which are detected in a fixed time window before and after the
detected GW [15, 27]. Based on the value of the TS for each detected event, a significance
is assigned to each event by comparing it to a known background TS distribution. Unless
the observed event’s TS exceeds a threshold, which is determined by a fixed significance
level and the background TS distribution, the event is not counted as a multi-messenger
detection. One physical information that can be extracted from GW detections is an upper
limit on the neutrino emission fluence (time and energy integrated flux in units of energy
per area), on the expected neutrino count or an isotropically equivalent neutrino emission
energy from the GW event’s source. In case of a non-detection these upper limits can still
be used to make inferences. Although in the previous searches upper limits were calculated
for these quantities in various ways, there hasn’t been a consistent method used for those
calculations [19, 21, 22]. In [19, 21], upper limits on emission fluence for each point in the sky,
and lowest and highest upper limits on isotropically emitted energy for 90 and 95% credible
levels of localization are given for individual events. In [22] a non-explained count of 3.9
events is used for determining a rate upper limit. In none of them a single limit on fluence or
energy for each event is not found which requires proper handling of the direction dependent
sensitivities of the detectors together with events’ large localizations.

The neutrino detectors’ sensitivities are usually direction dependent, therefore the re-
quired fluence/energy for a given number of event number depends on the sky location of
the neutrino. When the localization of the event is large compared to the directional change
of the sensitivity (i.e. if the sensitivity varies significantly in the localization region as in the
case for GW localizations and neutrino detectors) then it would not be trivial to find a single
fluence/energy value corresponding to a given neutrino count. In previous studies, instead
of a single limit for the events, limits for every point in the localization were found. Due to
the need of having such a formalism, with this paper we propose a method for calculating
frequentist upper limits based on maximum likelihood estimators.

Although the TS can directly be used for finding an upper limit without an estimator
for a higher statistical power, it can result in extremely low upper limits or empty con-
fidence intervals when less background events are observed than the expectation. One of
the ad-hoc solutions currently used for this problem is to put a lower bound to TS equal
to the median of the background TS distribution, namely the sensitivity, when calculating
upper limits directly from TS. Moreover due to possible nonideal constructions of TS (such
as approximations and assumptions), unphysical small variations can be present which can
unnecessarily differentiate between the physically identical observations. These unphysical
variations can be systematic variations at any part of the analysis which are not accounted
for completely. Limitations on the energy estimation of individual neutrinos or simplifying
assumptions in the TS which do not represent the actual complicated physics can be given as
examples for such variations. By the Neyman’s construction of frequentist upper limits [28],
these variations reduce (tighten) the limits unnecessarily. The method we present here brings
solution to both of these problems. It restores the unphysical variations by using the distribu-
tions calculated from physical simulations and finds upper limits about the background-free
upper limits (i.e. 2.3 for 90% upper limits) even when highly non-significant observation is
made (i.e. less number of background is seen than expectation), as we demonstrate at the
end of the paper with real events.

As the sensitivities of GW observatories get better and number of GW observatories in
the GW detection network increases, the rate of GW observations will increase. For example,
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in the first 6 months of the third observing run of aLIGO and aVirgo 33 GW candidate
detections have been announced publicly compared to total 11 detections announced from
O1 and O2 after offline analysis [29]. Thus, it is expected to have a population for the GW
detections in future. Therefore a proper quantification of the upper limits for the counterparts
of these GW events will let us infer about the physics involved in them.

In this paper we describe a method of finding frequentist upper limits based on max-
imum likelihood estimators for expected neutrino count and neutrino emission fluence for
single GW events which we explain in sections 2 and 3 respectively; and in section 4 we de-
scribe the method for finding the upper limit on the isotropically equivalent emitted energy
for an ensemble of events of same kind, assuming the energy is same for all. Considering
the correspondence of frequentist limit from maximum likelihood estimation and Bayesian
limit for uniform prior on an ideally counted Poisson variable, we also compare frequentist
and Bayesian limits for uniform prior for the neutrino count which is inferred by a TS in
section 2.3. Finally in section 5 we demonstrate our method by finding the upper limits for
the 3 GW events detected during the first observing run of aLIGO (O1).

Generally a 90% upper limit is desired to be found in the joint GW-HEN event
searches [19, 21, 22] although it is an arbitrary confidence interval. Without loss of gen-
erality, throughout this paper we aim to find 90% upper limits for clarity. However any kind
of confidence interval at any confidence level can be found with this method, by requiring
a different relationship between the estimators of the true quantity and the measurement
at the very end of the calculation. Furthermore, due to inferred low chance of detecting
a joint HEN with GW from absence of such an example, again without loss of generality
we also assume that we are dealing with 2 or less neutrinos detected from the same source
with the GW for simplicity. We will refer such neutrinos as signal neutrinos, and all other
detected neutrinos, which may be real or noise originated and are not associated with GWs,
as background neutrinos.

2 Upper limit for neutrino count

2.1 Frequentist upper limit

In this section we find the 90% upper limit for the expected number of neutrinos from a single
measurement via maximum likelihood estimators, where the measurement’s significance is
quantified by a test statistic (TS). In order to write the likelihood we need to have the
TS distributions for 0, 1 and 2 signal neutrinos. First write the likelihood and denote the
expected number of neutrinos with θ;

L(θ;TSm) = P (TSm|θ) =
∞∑
n=0

P (TSm|θ, n)P (n|θ), θ ≥ 0 (2.1)

where n is the number of signal neutrinos from the common source and TSm is the measured
TS. As said before we assume to have at most 2 signal neutrinos.

L(θ;TSm) = e−θP0(TSm) + θe−θP1(TSm) +
θ2

2
e−θP2(TSm) (2.2)

where P0, P1, P2 are the TS distributions corresponding to 0, 1, and 2 signal neutrinos.
Now find the local maximum of the likelihood. After taking derivative with respect to θ and
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equating to 0, we have

P1(TSm)− P0(TSm) + (P2(TSm)− P1(TSm))θ − P2(TSm)
θ2

2
= 0 (2.3)

we find the local maximum at

θ̂ = 1− P1(TSm)

P2(TSm)
+

√
1 +

P1(TSm)2

P2(TSm)2
− 2P0(TSm)

P2(TSm)
(2.4)

(other root corresponds to local minimum). For P2(TSm) = 0 it is

θ̂ = 1− P0(TSm)

P1(TSm)
(2.5)

For P2(TSm) = P1(TSm) = 0 there is no local maximum. The absolute maximum is at,

θ̂ = 0 (2.6)

The hat on θ is for denoting the maximum likelihood estimator. Local maximum may not
be the absolute maximum in θ = [0,∞). The only other candidate for absolute maximum is
the border value θ̂ = 0. So maximum likelihood estimator for expected neutrino number is

either 0 or 1− P1(TSm)
P2(TSm) +

√
1 + P1(TSm)2

P2(TSm)2
− 2P0(TSm)

P2(TSm) , it can be determined by comparing the

value of likelihood at these two points. Let’s keep denoting it as θ̂.
Now the upper limit for expected neutrino number is defined as the neutrino number

above which we have 90% probability to have a higher maximum likelihood estimator than
the one for our measurement, in mathematical notation we find the θ which satisfies the
equation (2.7)

P (θ̂ < θ̂′|θ) = 0.9 (2.7)

where θ̂′ is the maximum likelihood estimator for θ, and θ̂ is the maximum likelihood esti-
mator for our current measurement. It is equivalent to

∫ θ̂+0+

0−
f(θ̂′|θ)dθ̂′ = 0.1 (2.8)

where f(θ̂′|θ) is the probability distribution function for the maximum likelihood estimator
for true expected neutrino number θ. It consists of delta distributions at integers and a
continuous distribution between θ̂′ = [0, 2]. Delta distribution at integers ≥ 3 are identical
to Poisson distribution and strengths’ of delta distributions at 0, 1 and 2 are less than the
corresponding Poisson strengths. The missing probability is contained in the continuous
distribution.

2.2 Bayesian limit with uniform prior

Now we discuss the Bayesian credible limits with for a uniform prior θ. Frequentist limits
with maximum likelihood estimators and Bayesian limits for uniform priors give the same
limits if the quantity of interest is a location parameter [30], such as the mean of a Gaussian
distribution. Moreover as shown in section 2.3.1, they also correspond to each other for the
mean of a Poisson distribution although the mean of Poisson distribution is not a location
parameter.
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Bayesian upper limit requires having a posterior distribution for θ as

P (θ|TSm) =
P (TSm|θ)P (θ)

P (TSm)
(2.9)

where P (TSm) acts like a normalization constant. For uniform prior P (θ) = k

P (θ|TSm) =
kP (TSm|θ)
P (TSm)

(2.10)

Again if we are sure that signal neutrino number ≤ 2

P (θ|TSm) =
e−θP0(TSm) + θe−θP1(TSm) + θ2

2 e
−θP2(TSm)

P0(TSm) + P1(TSm) + P2(TSm)
(2.11)

The Bayesian 90% upper limit is defined as the point where cumulative posterior probability
is 0.9, or the θ′ which satisfies the equation (2.12)

P (θ < θ′|TSm) =

∫ θ′

0
P (θ|TSm)dθ = 0.9 (2.12)

Hence

e−θ′
(
1 +

θ′(P1(TSm) + P2(TSm)) + θ′2
2 P2(TSm)

P0(TSm) + P1(TSm) + P2(TSm)

)
= 0.1 (2.13)

2.3 Comparison of frequentist and Bayesian limits for uniform prior

Now we compare the frequentist and Bayesian limits for a uniform prior for the quantity
we estimate. First we show that these two limits have correspondence for the ideal Poisson
counting case and then we show that when we have a measurement with a TS they do not
necessarily correspond to each other.

2.3.1 Ideal Poisson counting experiment

Before comparing frequentist and Bayesian limits for uniform prior for the case of interest,
compare them for a Poisson counting experiment where we count the events and the maximum
likelihood estimator and the TS are equivalent to the observed event count, in other words
there is no ambiguity in the signal neutrino count. Denote it with θobs. The frequentist 90%
upper limit θL satisfies

∞∑
n=θobs+1

Poisson(n, θL) =
∞∑

n=θobs+1

θnLe
−θL

n!
= 0.9 (2.14)

The Bayesian posterior distribution with uniform prior becomes

P (θ|θobs) = Poisson(θobs, θ) (2.15)

and the Bayesian limit θL satisfies

∫ θL

0

θθobse−θ

θobs!
dθ = 0.9 (2.16)
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Now compare
∫ θL
0

θθobse−θ

θobs!
dθ and

∑∞
n=θobs+1

θnLe
−θL

n! . First differentiate them with respect to
θL. From the sum’s derivative we have

∞∑
n=θobs+1

θn−1
L e−θL

(n− 1)!
− θnLe

−θL

n!
=

θθobsL e−θL

θobs!
(2.17)

From the integral’s derivative we have

θθobsL e−θL

θobs!
(2.18)

the same expression. Hence
∫ θL
0

θθobse−θ

θobs!
dθ and

∑∞
n=θobs+1

θnLe
−θL

n! can only differ by a constant.
However when θL = 0 they are both 0. Therefore equations∫ θL

0

θθobse−θ

θobs!
dθ = 0.9 (2.19)

and ∞∑
n=θobs+1

θnLe
−θL

n!
= 0.9 (2.20)

give the same limit values. Frequentist and Bayesian upper limits with uniform prior are
same. This is not specific to Poisson distribution and valid for all distributions where the
estimated parameter is a location parameter [30] although for Poisson distribution mean is
not a location parameter. Hence this is not a trivial result for Poisson distribution.

2.3.2 Measurement with a TS

The ideal Poisson counting experiment is a special case of measurement with a TS where
the TS distributions of each detection count are separate. When we check the relationship
between frequentist and Bayesian with uniform prior limits we see that there is not such
a coincidence like the ideal counting experiment. This can be demonstrated with a simple
counter example. Consider having uniform TS distribution for 0 detections in between [a,b]
and for 1 detection in between [c,d] such that c < b and b − a > d − c. TS distributions
for other detection counts are separate such that there is no ambiguity there. For a TS
measurement which may correspond to 0 or 1 count (c < TSm < b) one needs to solve the
equation (2.21) in order to find the Bayesian limit for uniform prior

e−θ

(
1 +

θ(d− c)−1

(b− a)−1 + (d− c)−1

)

= e−θ

(
1 +

θ(b− a)

b− a+ d− c

)
= 0.1

(2.21)

where we plugged in P1(TSm) = (d− c)−1 and P0(TSm) = (b− a)−1 to equation (2.13).
However, in the frequentist approach we solve equation (2.22)

e−θ

(
1 +

θ(b− c)

d− c

)
= 0.1 (2.22)

which follows from equation (2.8). In frequentist approach, the length of the intersection of
P0(TS) and P1(TS) (b− c) affects the limit whereas in the Bayesian interpretation it has no
such direct role. When the intersections between the distributions vanish, we get the ideal
counting example.
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3 Upper limit for fluence with a gravitational wave skymap

Now instead of the neutrino count we want to estimate the fluence. Neutrino detectors, have
a sky position dependent sensitivity due to the interaction of neutrinos and cosmic rays with
the Earth and atmosphere; hence detected number of neutrinos depend on their position on
the sky for a constant fluence. Again start by writing the likelihood, denote the fluence by φ,

L(φ;TSm,PGW ) = P (TSm,PGW |φ) = P (PGW |φ)P (TSm|PGW , φ)

= αP (TSm|PGW , φ) = α
∞∑
n=0

P (TSm|φ, n,PGW )P (n|φ,PGW ) (3.1)

= α

∞∑
n=0

P (TSm|φ, n,PGW )

∫
P (n|φ,Ω,PGW )P (Ω|φ,PGW )dΩ, φ ≥ 0

where n is the signal neutrino number from the joint source, Ω is the sky position of source
and PGW is the probability distribution of sky position acquired from the gravitational wave
detection, namely the skymap. P (Ω|φ,PGW ) has no fluence dependency and is PGW (Ω).
P (PGW |φ) doesn’t have a fluence dependency and is denoted with α. Since it doesn’t affect
the maximum likelihood estimator it will be dropped for the rest of analysis. Also denote
the position dependent coefficient which relates fluence to the expected neutrino number as
c(Ω) which is proportional to the effective area of the neutrino detector [31]. Again assume
we are sure that we only have at most 2 neutrinos, then we have

L(φ;TSm,PGW ) = P0(TSm)

∫
e−c(Ω)φPGW (Ω)dΩ+ P1(TSm)

∫
c(Ω)φe−c(Ω)φPGW (Ω)dΩ

+ P2(TSm)

∫
(c(Ω)φ)2

2
e−c(Ω)φPGW (Ω)dΩ (3.2)

After taking the derivative with respect to φ and equating to 0 for finding the local
maximum, we have the condition for φ

∫
PGW (Ω)e−c(Ω)φc(Ω) (3.3)

×
[
P1(TSm)− P0(TSm) + (P2(TSm)− P1(TSm))c(Ω)φ− P2(TSm)

c(Ω)2φ2

2

]
dΩ = 0

Although for neutrino detectors, c(Ω) can be well approximated; since PGW (Ω) doesn’t
have an apriori estimated form we cannot go further in solving the equation analytically.
Therefore in order to find the maximum likelihood estimator φ̂ for fluence, one needs to find
it numerically with known PGW (Ω).

Similar to the neutrino count case, the upper limit for fluence is found by finding the φ
which satisfies equation (3.4)

P (φ̂ < φ̂′|φ) = 0.9 (3.4)

where φ̂′ is the maximum likelihood estimator for φ, and φ̂ is the maximum likelihood esti-
mator for our current measurement.
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4 Upper limit on isotropically equivalent emission energies of an ensemble
of events with volume localization

In this section we consider finding an upper limit for an ensemble of similar GW events, for
example same kind of events like binary black hole mergers (BBH) or binary neutron star
(BNS) mergers. Due to expected different distances of these events, it can’t be expected to
have a similar neutrino count or fluence from each event due to the suppression with distance
squared. Instead one quantity which can be similar for them is the isotropically equivalent
emission energy (Eiso) for neutrinos. Here by assuming all the events having the same Eiso, we
describe the procedure of finding an upper limit on Eiso with maximum likelihood estimation.
Although it is clear that true Eiso will be different for each event, this assumption enables us
to infer more stringent information about the physics involved in same kind of processes. In
order this assumption to be meaningful, the set of events should be downselected for having
same kind of events. For example using BBH and BNS events together doesn’t make sense
as the physics involved in those are different.

We consider having N events with volume localizations VGW,i and measured TS values
TSm,i for i

th event. We write the likelihood for Eiso whose value is denoted as Eiso.

L(Eiso;TSm,1...N ,VGW,1...N )

=
N∏
i=1

P (TSm,i,VGW,i|Eiso)

=
N∏
i=1

P (TSm,i|Eiso,VGW,i)P (VGW,i|Eiso) = β

N∏
i=1

P (TSm,i|Eiso,VGW,i)

= β

N∏
i=1

∞∑
n=0

P (TSm,i|Eiso,VGW,i, n)P (n, |Eiso,VGW,i)

= β
N∏
i=1

∞∑
n=0

P (TSm,i|Eiso,VGW,i, n)

×
∫

P (n|Eiso,VGW,i, r,Ω)P (r,Ω|Eiso,VGW,i)r
2drdΩ, Eiso ≥ 0 (4.1)

where n is the number of signal neutrinos from the joint source, r is the distance of the
source, Ω is the sky position of the source. We assume the GW volume localizations are not
affected by Eiso and hence are effectively a constant for the likelihood which is denoted by β
which will be dropped. For having at most 2 neutrinos from the joint source the likelihood
becomes

L(Eiso;TSm,1...N ,VGW,1...N )

=

N∏
i=1

∫ (
P0,i(TSm,i) + c′(Ω)

Eiso

4πr2
P1,i(TSm,i) +

1

2

(
c′(Ω)

Eiso

4πr2

)2

P2,i(TSm,i)

)

× e−c′(Ω)
Eiso
4πr2 VGW,i(r,Ω)r

2drdΩ (4.2)

where P0,i, P1,i, P2,i are the TS distributions corresponding to 0, 1, and 2 signal neutrinos
for the ith event and

c′(Ω) =
c(Ω)∫

Eν
dN
dEν

dEν

(4.3)
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since φ and Eiso are connected as ∫
Eνφ

dN

dEν
dEν =

Eiso

4πr2
(4.4)

where Eν is the neutrino energy and dN
dEν

is the energy dependency of the differential neutrino

fluence; i.e. = E−2
ν spectrum over a range of energies which is expected from relativistic jet

outflows [32]. Similarly to the fluence case, we can’t go further in analytically maximizing the
likelihood. The maximum likelihood estimators should be found by numerically evaluating
the likelihood with known VGW,i(r,Ω). Then the 90% upper limit is found for Eiso by finding
Eiso which satisfies

P
(
Êiso < Êiso

′|Eiso

)
= 0.9 (4.5)

where Êiso
′
is the maximum likelihood estimator for Eiso and Êiso is the maximum likelihood

estimator for the measurements of the ensemble of events.

5 Limits for the GW events in aLIGO’s first observing run

Now, by using publicly available data, we illustrate our method and find the neutrino emission
limits on the 3 GW events from aLIGO’s first observing run O1; GW150914, GW151012 and
GW151226 [1, 29, 33, 34]. These events were analyzed before and the temporally coincident
neutrinos in ±500s window are reported [19, 21]. The list of neutrinos can be found in table 1
and the GW localizations overlayed with the neurinos can be found in figure 1. Volume
localization of the GW events are also available in [35]. We use the significance calculation
method of the Low-Latency Algorithm for Multi-messenger Astrophysics (LLAMA) search
which has been used in the third observing run of aLIGO and aVirgo (O3) for joint GW-
HEN event search [27, 36]. 9 of the 10 reported neutrinos were detected by the IceCube
Observatory and the other one was detected by ANTARES Observatory which was coincident
with GW151226 [21]. Here we only use the neutrinos detected by IceCube for simplicity as
the method for calculating the significance assumes a single neutrino detector at the moment.
We assume these 3 GW events are certain detections without any significance ambiguity. The
significance calculation uses detector specific background distributions. In the case of certain
GW events, only a background neutrino sample is needed. We use the most recent publicly
available all-sky point source sample of IceCube from year 2012 in its final configuration with
86 strings [37]. We assume the sensitivity of IceCube hasn’t changed significantly from 2012
to 2015 as it has reached to its final configuration with 86 strings in 2011 [38].

5.1 Event generation

The neutrino detection rate in the sample is about 3.5 in 1000s, vast majority of which
we assume to be unassociated with GWs. Consequently we have the average background
neutrino rate of 3.5 per GW, as we consider neutrinos in ±500s window around the GW event.
In order to construct the significance distribution for zero signal neutrinos, we drew average
of 3.5 neutrinos from the public events list according to a Poisson distribution and distributed
these events uniformly on a ±500s window around the GW event. We calculated significance
for 1000 such events for obtaining P0 for each event. For obtaining P1, we generated signal
neutrinos by using the effective area distribution of IceCube for the same configuration which
is also publicly available. First we generate the sky coordinates of these neutrinos by sampling
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Event
Neutrino

number
Time difference [s] Right ascension [◦] Declination [◦]

Angular

uncertainty [o]
Energy [TeV]

GW150914 1 37.2 132.6 −16.6 0.35 175

GW150914 2 163.2 167.0 12.0 1.95 1.22

GW150914 3 311.4 −108.5 8.4 0.47 0.33

GW151012 1 −423.3 360.0 28.7 3.5 0.38

GW151012 2 −410.0 7.5 32.0 1.1 0.45

GW151012 3 −89.8 115.5 −14.0 0.6 13.7

GW151012 4 147.0 9.0 12.3 0.3 0.35

GW151226 1 −290.9 325.5 −15.1 0.1 158

GW151226 2 −22.5 88.5 14.9 0.7 6.3

Table 1. List of neutrinos which were in the ±500s window around the three GW events. Data taken
from [19, 21].

Figure 1. Sky localization [35] of the three GW events in equatorial coordinates overlayed with
neutrinos according to the labelling in table 1. Darker color represents higher probability density for
the GW source location. Green crosses shows the location of the neutrinos.
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coordinates from the sky according to the probability distribution of GW localization from the
parameter estimation sample. We also keep the distance information of the chosen points from
the as distance distribution is needed for Eiso calculation and distance and sky position are not
independent. We assume the time of the GW event is not a random variable and therefore
all the events with the same GW data create the same localization. The effective area
depends on the neutrino energy and the declination of neutrinos [31]. By assuming an E−2

ν

spectrum [16–22] and using the effective area, we assign these neutrinos energies. However the
data sample has the reconstructed energies which can be different than the true energy [37].
By using the distribution in figure 20 of [39] we convert the true energies to reconstructed
energies. This energy variation is not taken in account in the significance calculation method,
therefore it could lead unphysical variations in the calculated limits if the significance TS was
used directly. By generating TS distributions for various scenarios (i.e P0, P1) the suggested
method in this study minimizes such effects when these effects were not considered in the
previous stages of the analysis. One remaining property of the generated neutrinos is their
angular uncertainty. In order not to lose the dependency of angular uncertainty to energy
and declination, for each generated neutrino we narrowed the list of real events via their
energies and declinations. We required declination difference with the generated neutrino
to be less than 10◦ and differences of their base 10 logarithm of energies to be less than
1.5. From the remaining neutrinos we picked one of their angular uncertainty uniformly and
assigned it to the generated neutrino. We set the energy and declination difference constraints
by considering the number of neutrinos remained after cuts. Having more stringent cuts
causes some of the generated neutrinos to have no similar real neutrino for taking its angular
uncertainty. With a larger sample, more stringent cuts could be imposed. Due to the axial
symmetry of IceCube we did on put a constraint on the right ascension of neutrinos. Next,
we shift the position of each generated neutrino, by randomly choosing a offset distance
according a normal distribution with zero mean and with variance angular error squared.
Then a uniformly random angle is chosen in 0–2π and neutrinos’ positions on the sky is shifted
along that direction by the chosen distances. After the neutrinos are generated we sampled
the time of each signal neutrino from a symmetric triangular distribution whose mode is
the GW event time and extend is ±500s. This distribution is obtained if one assumes the
GW and neutrino emission to be uniformly in ±250s window around the same astrophysical
event [40]. Convolution of two uniform distributions give a triangular distribution which
implies that temporally closer neutrinos to the GW are more likely to be associated than
background neutrinos which are distributed uniformly around the GW event. Finally we
choose background neutrinos to accompany each signal neutrino. These background neutrinos
are chosen identically as the ones chosen for obtaining P0. Similarly we generate 1000 of such
events. We do not consider any of these neutrinos to be coming from the same source as for
each combination of two, the positional difference is larger than the sum of angular errors.
Hence we take P2 to be zero for all of the events.

5.2 Calculation and results

We find the maximum likelihood estimators for the events with actual coincident neutrinos,
as well as the generated background and signal neutrinos. Then we find the value of the true
quantity which satisfies eqs. (2.7), (3.4) or (4.5). In order to do it, and also for finding the
estimators for fluence and Eiso, we need to find the expected number of neutrinos for unit
fluence at a given declination which has been denoted as c(Ω) in this paper. The requirement
when calculating the value of the true quantity arises due to the fact that we directly sampled
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Figure 2. Expected number of particles for the differential fluence of 1 GeV/cm2E−2
ν vs. declination,

obtained from the effective area distribution.

Event
Signal

neutrino count

Fluence

[GeV/cm2]
Eiso [ergs]

GW150914 2.3 0.80 5.1× 1053

GW151012 2.2 0.40 1.1× 1054

GW151226 2.3 0.45 2.6× 1053

Combined – – 6.1× 1052

Table 2. 90% upper limits for the signal neutrino count, fluence and Eiso for three events and Eiso for
the population of three events. The combined limit is found by following the description in section 4
and by assuming the same emission energy for all events.

the signal neutrino positions from the GW skymap; but didn’t account for the declination
dependency of the IceCube’s sensitivity or the effective area. Up to this point we only used the
effective area for the energies of the neutrinos after we had chosen the positions. By using
c(Ω) we get the expected signal neutrino count distribution for the unit fluence for every
point in the sky, which assures the use of full effective area dependency in the calculation.
With that distribution we weight the signal neutrino events with the Poisson probabilities
whose mean is determined by the true value of the estimated quantity, declination and the
distance of the simulated emission. For events with 2 or more signal neutrinos we take the
corresponding estimator to be higher than the estimator of the actual event. c(Ω) is obtained
by integrating the effective area of each declination in energy after scaling with E−2

ν . For
E−2

ν spectrum the obtained c(Ω) is shown in figure 2.
The obtained 90% frequentist upper limits with maximum likelihood estimators are

shown in table 2. The Bayesian upper limits for the neutrino count with uniform prior are
found to be 2.3 for all events.

5.3 Discussion

The 90% frequentist upper limit for the mean count of a background free ideal Poisson
process is 2.3 and as shown in section 2.3 it also corresponds to a 90% Bayesian upper
limit with uniform prior for the count. When we look at the neutrino count limits we have
we see that except the frequentist limit for the event GW151012 we have the upper limit
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as 2.3 neutrinos. It shows that for GW150914 and GW151226 the background and signal
distributions are separated sufficiently for behaving as ideal counting processes. The fact
that for GW151012, the frequentist limit is less than 2.3 points a substantial intersection
of background (P0) and signal (P1) distributions in a region of higher significance than
the event’s significance. The fact that its Bayesian limit is still 2.3 implies that for the
values around event’s significance the intersection of background and signal distributions
is negligible. When we look at the fluence upper limits, we see that the upper limit for
GW150914 is about twice of other events’ limits. This can be explained by the localization
of the GWs and IceCube’s declination dependent sensitivity, i.e. figure 2. Required fluence
for the same number of neutrinos is about an order larger in the south hemisphere compared
to the northern hemisphere, therefore fluence requirement from southern regions dominates
the northern regions for comparable probabilities. As GW150914 is completely localized
in the southern hemisphere and the other two events are more or less equally localized in
both hemispheres, it is expected to have twice the limits of GW151012 and GW151226 for
GW150914. When we look at the upper limits for Eiso, we see that the limit of GW150914
is twice of GW151226. Both events have similar median distances, 440Mpc and 450Mpc
for GW150914 and GW151226 respectively [29]. Therefore we expect their Eiso upper limit
ratio to be similar to their fluence upper limits. The expected distance of GW151012 is
1080Mpc [29], about twice of GW150914 and GW151226. Therefore we expect a factor of 4
difference between the fluence upper limits and Eiso upper limits, which is present. In [19, 21]
Eiso upper limits were found for every point in the sky. Our method allows one to have a single
upper limit value for the whole event. Our upper limits fall in the previously reported upper
limit range in the whole sky. Finally we comment on the Eiso upper limits for combination of
the three events. We see that when three GW events which don’t have sufficient significance
for having a counterpart in neutrino emission are combined for an upper limit, we get an
order of magnitude more stringent upper limit. This illustrates the importance of having
collection of events when constraining astrophysical parameters.

6 Conclusion

We described the methods of finding frequentist upper limits with maximum likelihood es-
timators for expected neutrino count, neutrino emission fluence and isotropically equivalent
neutrino emission energy for an ensemble of events which are specifically aimed for joint
GW and HEN events; but could be used for any similar search which uses TS for counting
discrete events. Then we applied this method on the GW events in aLIGO’s first observing
run (O1) and found upper limits for them. Through the paper we considered 90% upper
limits although different confidence intervals at arbitrary confidence levels can also be found
with this method instead of 90% upper limits; by requiring different relationships between the
estimators of the true quantity and the measurement instead of equations (2.7), (3.4) or (4.5).

Acknowledgments

The authors are grateful for the useful discussion with Klas Hulqvist and Hans Niederhausen,
and comments from Austin Schneider. The authors thank Columbia University in the City of
New York and University of Florida for their generous support. The Columbia Experimental
Gravity group is grateful for the generous support of the National Science Foundation under
grant PHY-1708028. DV is grateful to the Ph.D. grant of the Fulbright foreign student
program.

– 13 –



J
C
A
P
0
5
(
2
0
2
0
)
0
1
6

References

[1] LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a
Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].

[2] LIGO Scientific and VIRGO collaborations, Astrophysically Triggered Searches for
Gravitational Waves: Status and Prospects, Class. Quant. Grav. 25 (2008) 114051
[arXiv:0802.4320] [INSPIRE].

[3] I. Bartos, P. Brady and S. Marka, How Gravitational-wave Observations Can Shape the
Gamma-ray Burst Paradigm, Class. Quant. Grav. 30 (2013) 123001 [arXiv:1212.2289]
[INSPIRE].

[4] LIGO Scientific et al. collaborations, Multi-messenger Observations of a Binary Neutron
Star Merger, Astrophys. J. Lett. 848 (2017) L12 [arXiv:1710.05833] [INSPIRE].

[5] IceCube collaboration, Neutrino emission from the direction of the blazar TXS 0506+056
prior to the IceCube-170922A alert, Science 361 (2018) 147 [arXiv:1807.08794] [INSPIRE].

[6] W.D. Arnett, J.N. Bahcall, R.P. Kirshner and S.E. Woosley, Supernova SN1987A, Ann. Rev.
Astron. Astrophys. 27 (1989) 629 [INSPIRE].
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