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Abstract
The central argument of this chapter is that in mathematical development, children’s failure to
reason often leads to their performance being shaped by spurious associations from problem
input and overgeneralization of inapplicable procedures rather than by whether answers are
plausible or procedures make sense. We review research demonstrating how imbalanced
distributions of problems, particularly in textbooks, lead children to create spurious associations
between arithmetic operations and the numbers they combine. When conceptual knowledge is
absent, these spurious associations contribute to the implausible answers, flawed strategies, and
violations of principles characteristic of children’s mathematics in many areas. To illustrate
mechanisms that create flawed answers and strategies in some areas but not others, we contrast
computer simulations of fraction and whole number arithmetic. Most of their mechanisms are
similar, but the model of whole number arithmetic, unlike the model of fraction arithmetic,
possesses conceptual knowledge that precludes strategies that violate basic mathematical
principles. Presenting balanced problem distributions and inculcating conceptual knowledge for
distinguishing flawed from legitimate strategies are promising means for improving children’s

learning.
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INTRODUCTION
In 1799, Francisco de Goya y Lucientes created the painting, “El suefio de la razon
produce monstruos,” a title that roughly translates to, “The sleep of reason produces monsters”
(Figure 1). Although Goya’s painting has been interpreted in many ways, a common theme is

that failure to reason produces nightmarish consequences (Huxley 1960).

Insert Figure 1 about here

This disquieting painting might seem far removed from children’s mathematics learning.
However, we believe that the origins of the owls, bats, and malign cats in the sleeper’s dream are
not so different from the origins of common errors in children’s mathematics. In both, failure to
reason opens the door to irrational thoughts.

The central argument of this chapter is that children’s failure to reason often leads to their
mathematics performance being shaped by factors other than the plausibility of answers and
procedures. We find that mathematically-irrelevant aspects of learning environments, in
particular distributions of problems in textbooks, contribute to children’s weak performance and
shape the errors they make and the flawed strategies they use. We illustrate these points
primarily in the context of fraction arithmetic, though we more-briefly describe how other subtle
features of the learning environment influence other areas of mathematics learning as well. To
explain #ow biased problem input exercises its effects, we present a computer simulation of the
way that problem distributions in textbooks, together with standard learning mechanisms of
association and generalization, give rise to the specifics of children’s fraction arithmetic. We
conclude by discussing how improved conceptual understanding can promote better mathematics
learning and minimize the influence of mathematically-irrelevant factors.

BACKGROUND



Research on rational number arithmetic presents endless examples of children making
errors that are implausible, violate basic mathematical principles, or both. For example, errors
such as “1/2+3/4=4/6" are common (Mack 1995; Ni & Zhou 2005). The answer “4/6” is
implausible, because it is much too small to be correct; it also violates the mathematical principle
that adding positive numbers must yield answers larger than any of the addends.

Such rational number arithmetic errors take many forms. When thousands of US 8
graders were asked on the 1978 National Assessment of Educational Progress (NAEP) whether
12/13+7/8 was closest to 1, 2, 19 or 21, only 24% answered “2” (Carpenter et al. 1980). The
most common answers were “19” and “21.” This and similar findings triggered a variety of
reform efforts to improve mathematics education, culminating in the Common Core State
Standards. However, Lortie-Forgues et al. (2015) found that when the same problem was
presented to 8" graders in 2014, percent correct had increased only from 24% to 27% over the
more than three decades.

Lack of understanding of rational number arithmetic is not limited to fractions but rather
is general across rational number notations. When 7" graders were presented the seemingly
simple decimal arithmetic problem 6+.32, more than half answered incorrectly, with the most
common error being .38 (Hiebert & Wearne 1985). Understanding of arithmetic with percentages
is similarly flawed: for example, 55% of 7" and 8" graders in Gay & Aichele (1997) claimed that
87% of 10 was “greater than 10.”

Such errors might be interpreted as implying that children failed to learn correct rational
number arithmetic procedures, but that interpretation is only partially correct. The same children
who use flawed strategies and generate implausible errors on some trials use correct strategies

and answer correctly on other trials. For example, in Siegler & Pyke (2013), most 6" and 8"



graders who were presented pairs of virtually identical fraction arithmetic problems (e.g.,
3/5%1/5 and 3/5%4/5) used different strategies on at least one pair of the highly similar problems;
65% of such differing pairs of strategies included both a correct strategy and an incorrect one.
Equally striking, children were not much more confident in their correct than in their incorrect
answers. Together, these findings suggest that children learn both correct and incorrect strategies
but are unable to identify through reasoning which are correct, leading to a competitive retrieval
process without a reliable filter for rejecting incorrect strategies when they are retrieved.

The weak understanding of rational numbers extends beyond arithmetic. For example,
when asked on the 2004 NAEP to order the three fractions 5/9, 2/7, and 1/2, 50% of 8™ graders
failed to do so (Martin et al. 2007). Similarly, few elementary, middle, and high school students
know that there are an infinite number of numbers between pairs of decimals such as .7 and .8
and pairs of fractions such as 1/3 and 1/4 (Hansen et al. 2017, Vamvakoussi & Vosniadou 2010).
Unsurprising, given this weak understanding of rational numbers, majorities of both children and
adults report far more negative attitudes toward dealing with fractions than whole numbers
(Sidney et al. 2019).

Poor understanding of rational numbers matters, because good understanding of them is
crucial for later success in and out of school. Consistent with the view that such knowledge is
important for success in school, 5™ graders’ knowledge of fractions predicts 10 graders’ overall
math achievement in both the U.S. and the U.K., even after statistically controlling for I1Q,
reading comprehension, working memory, whole number knowledge, socioeconomic status,
race, and other variables (Siegler et al. 2012). Consistent with the view that such knowledge is

important beyond school, 68% of adults working in upper- and lower-level blue-collar and



white-collar jobs report using rational numbers at work (Handel 2016), and many employees fail
at their jobs due to poor knowledge of rational numbers (McCloskey 2007).

Children’s (and adults’) difficulty understanding rational numbers and rational number
arithmetic has many sources. Here, we focus on one source that has only been recognized
recently — spurious associations between problems and procedures, with the associations formed
largely in response to biased distributions of problems in textbooks. One reason for focusing on
the role of textbook problem distributions in children’s difficulty is that this source of difficulty
could be remedied far more easily than many others, such as socioeconomic inequalities, uneven
societal valuation of the importance of learning math, limited understanding of math by teachers,
and weak motivation among many students. Indeed, changing from less to more effective
textbooks has been found to be more cost-effective for improving student achievement than
alternatives such as teacher professional development and class-size reductions (Chingos &
Whitehurst 2012, Koedel & Polikoff 2017).

Several other considerations also recommend studying textbooks to better understand
children’s mathematics learning. Textbooks are an ecologically valid part of the learning
environment, used by millions of children each year. Not only do textbooks indicate which
problems are presented, they also indicate the order in which problems are presented. A third
advantage of studying textbooks is that the raw data are widely available; this makes it easy to
replicate analyses of textbook problems and perform new analyses to test alternative
interpretations. A fourth advantage is that parallel analyses of textbooks can easily be done
cross-nationally; textbooks are used throughout the world, and many features are easy to
compare. In a survey of fourth and eighth graders from more than 20 countries who were

surveyed as part of the 2011 TIMSS (Trends in International Mathematics and Science Study),



75% of students reported that their teachers primarily used textbooks for mathematics instruction
(Horsley & Sikorova 2014). Thus, analyzing textbook content is a promising means for assessing
the environments within which children learn math and therefore for understanding the learning
process itself.
The chapter is organized into five main sections:
1) Descriptions of main phenomena in children’s fraction arithmetic
2) Characteristics of fraction arithmetic problem distributions in textbooks and
classroom assignments
3) A computer simulation of fraction arithmetic
4) Analyses of relations between input problems and children’s performance in other
mathematical domains: decimal arithmetic, the measurement interpretation of
fractions, geometric shapes, counting, and mathematical equality
5) Conclusions regarding the roles of input problems and conceptual understanding in
determining when and how spurious associations influence mathematical
performance, and how instruction can reduce their influence
MAIN PHENOMENA IN CHILDREN’S FRACTION ARITHMETIC
At least eight consistent phenomena have emerged from studies of children’s fraction
arithmetic (Byrnes & Wasik 1991, Hecht & Vagi 2010, Jordan et al. 2013, Ni & Zhou 2005). All
eight were present in Siegler & Pyke (2013); we illustrate the phenomena with data from that
study to demonstrate that all of the phenomena can be observed in a single study and cite
converging findings from other studies that used different procedures and problems to illustrate

the generality of the phenomena.



The children in Siegler & Pyke (2013) were sixth and eighth graders, half from schools in

a predominantly low-income school district and half from schools in a predominantly middle-

income district. They were presented eight types of problems — four arithmetic operations, each

with equal or unequal denominators, and two items of each problem type, for a total of 16 items.

To maximize the comparability of items across operations, the same four pairs of operands — 3/5

and 1/5, 3/5 and 1/4, 3/5 and 2/3, and 4/5 and 3/5 — were presented with each of the four

arithmetic operations. Children were given pencil and paper, but not calculators, to solve the

problems.

Eight Basic Phenomena of Fraction Arithmetic

The eight phenomena observed in Siegler & Pyke (2013) and other studies were:

)

2)

3)

Low overall accuracy: Numerous studies in Europe and North America have found
that 4" to 8" graders’ fraction arithmetic is highly inaccurate (e.g., Hecht & Vagi
2010, Newton et al. 2014, Torbeyns et al. 2015). Accuracy improves beyond 8"
grade, but slowly and to a low asymptotic level; both high school and community
college students are quite inaccurate (Brown & Quinn 2006, Richland et al. 2012).
Consistent with these findings, the 6™ and 8" graders in Siegler & Pyke (2013)
correctly answered only 52% of items.

Especially low accuracy for division: Accuracy tends to be especially low on
fraction division problems (Siegler et al. 2011). In Siegler & Pyke (2013), only 20%
of division answers were correct.

Variable responses within individual problems: Children generate multiple
answers on each problem (Hecht 1998, Newton et al. 2014). For example, presented

4/5+3/5, children in Siegler and Pyke advanced on at least 4% of trials these answers:



4)

5)

6)

“1/5” (21% of trials), “20/15” or “4/3” (20%), “15/20” or ‘3/4” (7%), “1.3/5” or
“1.33/5” (7%), “1” (7%), “1.3” or “1.33” (6%), and “6/5” (4%).

Variable strategy use by individual children: Variable strategy use is not solely
due to different children using different strategies; rather, the same child often uses
different strategies on closely similar problems. This strategic variability is a
widespread phenomenon (Siegler 2006), and rational numbers are no exception: As
noted earlier, 65% of children in Siegler & Pyke (2013) used different strategies on at
least one pair of closely similar problems (e.g., 3/5%1/5 and 3/5%4/5).

More strategy errors than execution errors: Mathematical errors are of two types:
ones where the intended strategy is incorrect and ones where the intended strategy is
correct but executed incorrectly. In fraction arithmetic, strategy errors are far more
common than execution errors (Gabriel et al. 2012, 2013; Hecht 1998): 91% of errors
in Siegler & Pyke (2013) were strategy errors.

The most common errors are independent-whole-number errors and wrong-
fraction-operation errors: The best documented type of fraction arithmetic error
involves treating numerators and denominators as independent whole numbers (e.g.,
Gelman 1991, Ni & Zhou 2005). These errors involve applying the arithmetic
operation independently to numerators and denominators, as when claiming that
3/5+2/3=5/8. However, Siegler & Pyke (2013) found that wrong-fraction-operation
errors are at least as common. These errors involve overgeneralization of procedures
for solving other fraction arithmetic operations. For example, on a fraction
multiplication problem, a child might apply the fraction addition procedure of

performing the operation on the numerators and passing through the denominator,
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resulting in errors such as 3/5x4/5=12/5. Failure to detect wrong-fraction-operation
errors in previous studies seems due to the problems in those studies not including
equal denominator multiplication and division items, where such errors are most
common.

7) Equal denominators increase addition/subtraction accuracy but decrease
multiplication/division accuracy: Problems with equal denominators elicit more
accurate addition and subtraction performance but less accurate multiplication and
division performance (Gabriel et al. 2013, Siegler et al. 2011). In Siegler & Pyke
(2013), relative to unequal denominators, equal denominators elicited more accurate
addition and subtraction answers (80% versus 55% correct), but less accurate
multiplication and division answers (37% versus 58% correct).

8) Frequency of different types of errors on each operation varies with whether
denominators are equal: On addition and subtraction problems, children make the
most common error, independent-whole-number errors, more often on problems with
unequal than equal denominators (e.g., responding that 3/5+2/3=5/8 is more common
than responding that 3/5+4/5=7/10) (Gabriel et al. 2013, Newton et al. 2014, Siegler
& Pyke 2013). In contrast, on multiplication problems, the most common error,
wrong-fraction-operation errors, are more common on equal than on unequal
denominator problems (e.g., children more often respond that 3/5x4/5=12/5 than that
3/5%2/3=60/20 or 3/1).

To understand the genesis of these phenomena, we examined the problems that children
encounter while learning fraction arithmetic.

PROBLEM INPUT



11

A Basic Assumption: Textbooks Are a Major Source of Input

Understanding any aspect of development requires understanding the input that shapes
development in that domain. In arithmetic instruction, textbooks provide a major part of that
input (Cai 2014, Moseley et al. 2007, Valverde et al. 2002). In an international survey of 20
countries, the number of 8" grade textbook pages devoted to a given topic and the number of
class periods that 8" grade teachers reported teaching the topic were strongly correlated; in the
U.S., the correlation was 7=0.95 (Schmidt, 2002).

Textbooks also provide the majority of examples that teachers assign (e.g., Horsley &
Sikorova 2014). For example, a recent large-scale survey of math teachers found that 93% of
teachers reported using textbooks in more than half of their lessons for purposes such as
selecting examples (Blazar et al. 2019). The present chapter focuses primarily on textbook input
in the context of fraction and decimal arithmetic, but similar analyses of input are possible in all
areas of mathematics learning (e.g., Geary 1996, Hamann & Ashcraft 1986).

This section presents research on the problems that children receive in learning rational
number arithmetic. The primary focus is on problems from textbooks, which have the advantage
of being used by millions of students and of being publicly available. Some attention is also
given to problems assigned in classrooms, which have the advantage of more directly measuring
the problems that children encounter. In our analyses of input problems, we only coded items
that were presented without a word problem context, due to the impossibility of knowing which
operation children would use to solve problems for which the operation was not specified.
Textbook Problems

To assess the fraction arithmetic problems in textbooks, Braithwaite et al. (2017) coded

all symbolic rational number arithmetic problems presented in the fourth through sixth grade
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volumes of three popular U.S. mathematics textbook series: Pearson Education’s enVisionMATH
(Charles et al. 2012), Houghton Mifflin Harcourt’s GO MATH! (Dixon et al. 2012a, 2012b), and
McGraw Hill Education’s Everyday Mathematics (University of Chicago School Mathematics
Project 2015a, 2015b, 2015c¢). The problems were all those that a) had two operands, at least one
of which was a fraction or mixed number, b) were in symbolic form (i.e., not word problems),
and c) required exact answers (i.e., not estimates). Problems with these characteristics constituted
the large majority of problems in all three textbooks that we analyzed, as well as in three other
textbook series analyzed by Cady et al. (2015).

The analyses revealed strikingly nonrandom relations between arithmetic operations and
the operands (numbers) in the problems. First, consider fraction arithmetic problems involving
two fractions. As shown in Table 1A, in the 4"-6" grade volumes of the three textbook series
cited above, only 4% of multiplication and division problems had equal denominators (e.g.,
3/5%4/5). In contrast, in the same textbooks, 50% of addition and subtraction problems had equal

denominators (e.g., 3/5+4/5).

Insert Tables 1A and 1B about here

Other types of imbalances were also present in the distributions of fraction arithmetic
problems in the textbooks. Consider the distribution of problems having one fraction and one
whole number (Table 1B). Only 4% of addition and subtraction problems in the textbooks with
at least one fraction operand also included a whole number operand (e.g., 6-3/5). In contrast,
59% of multiplication and division problems with at least one fraction operand also had a whole
number operand (e.g., 6x3/5).

These imbalanced problem distributions do not have any apparent mathematical

justification. Learners need to be able to multiply fractions with identical denominators, just as
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they need to be able to multiply fractions with unequal denominators. Learners also need to be
able to add and subtract whole numbers and fractions, just as they need to be able to multiply and
divide them.

Problems Used in Instruction

The fact that problems appear in textbooks does not guarantee that children encounter
them. Teachers do not typically present all problems in textbooks; they also might compensate
for the paucity of certain types of problems in textbooks by emphasizing them in class or
homework assignments.

To test the assumption that textbook problems reflect the input children receive, J. Tian et
al. (manuscript in preparation) asked fourteen 4%, 5%, and 6 grade math teachers from five
school districts in the greater Pittsburgh area to provide all problems that they presented to
students in math class or as homework during the 2017 — 2018 school year. The problems were
coded as in Braithwaite et al. (2017).

One main finding was that 73% of the in-class and homework assignments came from
textbooks; most of the other 27% of problems were teacher-created. Another significant finding
was that the fraction arithmetic problems that teachers presented and assigned showed very
similar distributions as those in the math textbooks in Table 1. This was true both for the
textbook problems that teachers assigned and for the problems from other sources. These
findings supported our assumption that textbook problems are a good proxy for the problems that
children encounter.

Do Children Learn Characteristics of Problem Input?
The fact that distributions of textbook and homework problems are biased does not mean

that children learn the biases. Indeed, there was reason to believe that they would not.
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Mathematics instruction emphasizes general principles and procedures, not distributions of
problems; there also would be no obvious reason for textbooks or teachers to call students’
attention to imbalanced distributions of problems.

To determine whether children learned the distributions of problems in their textbooks,
Braithwaite & Siegler (2018) presented 6" and 8" graders with two complementary types of
problems. Choose-operation problems specified operands and asked children to choose an
arithmetic operation that was likely to accompany them (e.g., 3/5(12/5). Generate-operand
problems specified an arithmetic operation and asked children to choose two numbers that were
likely to accompany it (e.g., [ 1x[1). Children were told that the two numbers should be two
fractions on half of the problems and a fraction and a whole number on the other half.

Children clearly learned the spurious operator-operand associations that were present in
textbooks. On the generate-operands task, when the specified operation was addition or
subtraction, they usually generated pairs of fractions with equal denominators. When the
specified operation was multiplication or division, they usually generated operand pairs with a
whole number and a fraction. Similarly, on the choose-operation task, when presented two
fractions with equal denominators, children chose addition or subtraction more often than
multiplication or division; when presented a whole number and a fraction, they chose
multiplication or division more often than addition or subtraction. Children even learned the
particular fractions (e.g., 3/4, 7/8) that were most likely to appear. The frequency with which
each fraction appeared in textbooks and the frequency with which children generated that
fraction on the generate-operand problems was 7=.78. Thus, children are exceptionally good at

learning mathematically irrelevant characteristics of instructional input, such as relations
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between operations and operands and frequencies of particular fractions. Unfortunately, they are

much less apt at learning desired procedures and concepts.

A COMPUTATIONAL MODEL OF FRACTION ARITHMETIC

To illustrate the mechanisms through which textbook input could give rise to children’s

fraction arithmetic performance, Braithwaite et al. (2017) generated a computer simulation,

FARRA (Fraction Arithmetic Reflects Rules and Associations). As input, FARRA received all

fraction arithmetic items from enVision Math in the order in which the problems appeared in the

4™ 5t and 6 grade volumes of the series. As output, FARRA produced patterns of strategy

choices, accuracies, and particular errors for all four fraction arithmetic operations on problems

with equal and unequal denominators. FARRA reflected three main hypotheses:

1)

2)

3)

Imbalances in the distribution of input problems that children receive from textbooks
impair their learning of fraction arithmetic, particularly on the underrepresented
problems.

Children use statistical associations between problem features and solution procedures
to guide their strategy choices. Such associative learning is beneficial in many
situations, but can be harmful in mathematics learning, where correct performance
usually depends on explicit rules rather than statistical associations. In particular, if the
practice problems that children receive are biased, the children’s choices of strategies
will reflect the biases.

Conceptual knowledge plays little, if any, role in most children’s learning of fraction
arithmetic. Because most children lack a conceptual basis for determining which
procedures to use for which problems, they often commit overgeneralization errors—use

of procedures that are correct for some types of problems to solve problems for which



16

those procedures are inappropriate.

Relevant to the third hypothesis, FARRA provides a test of whether a model devoid of
conceptual knowledge can generate and explain the development of fraction arithmetic. FARRA
lacks conceptual knowledge not because we believe that no children have such knowledge —
some clearly do — but rather because the data indicate that most children have little or no
conceptual understanding of fraction arithmetic, or at minimum do not use any conceptual
knowledge that they have, leading them to routinely violate basic mathematical principles when
solving fraction arithmetic problems (e.g., Siegler & Lortie-Forgues 2015).

How the Simulation Operates

FARRA is a production system that includes both correct and flawed strategy rules, as
well as rules for implementing the strategies (execution rules). As with other production systems,
each rule is a condition-action pair that includes both a set of conditions under which it can fire
and a set of actions that are taken when it fires. Correct rules are standard fraction arithmetic
procedures; all but one of FARRA'’s flawed strategy rules are overgeneralized versions of the
correct procedures in which the arithmetic operation is not specified. The flawed rules lead to
some correct answers (when the rule happens to be used on a problem for which it is appropriate)
but also to overgeneralization errors (when the rule is used on a problem for which it is not
appropriate). For example, the correct rule for adding fractions with equal denominators involves
executing the operation on the numerators and passing through the denominator (e.g.,
3/5+4/5=7/5). However, this rule is often overgeneralized to multiplication, resulting in errors
such as 3/5x4/5=12/5. FARRA learns the strong association present in textbooks between
operands having equal denominators and the addition/subtraction rule being appropriate. This

leads to frequent overgeneralization of the addition/subtraction rule to multiplication and
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division on items involving equal denominators. The blocked presentation of fraction arithmetic
problems of a given type (e.g., in the textbook chapter on equal denominator addition) may
contribute to the problem by reducing attention to the operation, because if the last N problems
could be solved by executing the operation on the numerators and passing through the
denominator, the next problem almost certainly can be solved in the same way (Rohrer et al.
2020).

FARRA also includes execution rules, procedures for implementing the strategies. The
execution rules involve whole-number arithmetic operations, such as doing the multiplication
needed to create common denominators on fraction addition and subtraction problems that do not
initially have them. Most execution rules produce correct answers, but three do not: incomplete
execution (e.g., leaving numerators unchanged when multiplying to establish a common
denominator), changing the operation to multiplication but not inverting either operand on
division problems, and inverting a random operand rather than the correct one on division
problems.

During the problem-solving process, FARRA often needs to choose between two or more
applicable rules. To choose among them, the model assumes stochastic rule selection combined
with a reinforcement learning mechanism, in which increases in the strength of rules are greater
when the rule is part of a sequence leading to a correct answer rather than an incorrect one.
Input to the Simulation

In Braithwaite et al. (2017; Study 1), FARRA received 659 input problems in the order in
which the problems appeared in the 4™ to 6" grade volumes of enVision MATH (Charles et al.
2012). That series was chosen as the learning set, because it was intermediate between the other

two series in the number of problems it included.
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After FARRA was presented the learning set of 659 textbook problems, it was presented
a test set of the problems presented to the 6™ and 8" graders in Siegler & Pyke (2013). The test
set included 16 items: two items each for the four arithmetic operations with equal and unequal
denominators. A set of 1,000 simulated students was created by randomly choosing values for
FARRA'’s three free parameters (learning rate, error discount, and decision noise) and presenting
the learning set to FARRA using the values for each “student.” The learning rate parameter
determined the amount of reinforcement (increase in strength) that a correct answer produced in
the productions that fired on the way to generating it. The error discount parameter specified how
much less reinforcement the productions receive when the answer was wrong than when it was
right. The decision noise parameter introduced random variability from trial to trial. To better
understand the impact of these parameters and the simulation more generally, see Braithwaite et
al. 2017 and (especially) Braithwaite et al. 2019.
FARRA'’s Performance and Its Relation to Children’s Performance

FARRA generated all eight phenomena of children’s performance noted above, with
values quite close to those of the children in Siegler & Pyke (2013) on the same problems:

Low overall accuracy. FARRA’s percent correct was 52%, exactly equal to the 52%
accuracy of children in Siegler & Pyke (2013).

Especially low accuracy on division problems. Like children, FARRA was far less
accurate on division than on the other arithmetic operations (20% correct for children; 26% for
FARRA). This lower accuracy reflected less practice with division, interference from
overgeneralized procedures used on earlier-presented operations, and frequent incorrect

executions of the correct rule.
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Variable responses within individual problems. Like children, FARRA generated a range
of responses for each fraction arithmetic problem. Table 2 illustrates this phenomenon by showing
the most common answers generated by FARRA and by children on one problem (see
Braithwaite et al. 2017; Table 6, for similar data from other problems). Most answers generated
by children were also generated by the simulation, with frequencies approximating those in the
children's data. Over the entire set of problem-answer pairs (N=391), answer frequencies
between the experimental and model datasets correlated »=.96. The strength of this correlation
partially reflected correct answers being relatively frequent in both the children’s and the
simulation’s data. However, the correlation remained strong when only the frequency of errors
was considered (N=354, r=.88). Thus, children’s and FARRA’s frequencies of different answers

were closely related.

Insert Table 2 about here

Variable strategy use by individual children and simulation runs. FARRA, like children,
generated variable strategies on virtually identical problems. Nearly all runs of the simulation
(99%) used different strategies on at least one of the eight pairs of virtually identical problems in
the test set, such as 3/5+1/5 and 4/5+3/5.

Greater frequency of strategy errors than execution errors. Strategy errors comprised
91% of children’s errors and 93% of FARRA’s errors.

The most common errors were wrong-fraction-operation and independent-whole-
numbers errors. As among children, almost all of FARRA’s strategy errors (93%) were wrong-
fraction-operation or independent-whole-number errors. Wrong-fraction-operation errors
accounted for 64% of FARRA’s strategy errors; independent-whole-number errors accounted for

29%. Each type of error also was most common on the same types of problems in the children’s
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and FARRA'’s performance. Wrong-fraction-operation errors (e.g., 3/5x4/5=12/5) were most
common on multiplication and division problems; independent-whole-number errors
(3/5+1/4=4/9) were most common on addition and subtraction problems.

Equal denominators increase addition and subtraction accuracy but decrease
multiplication accuracy. Like children, FARRA was more accurate on addition/subtraction
problems when operands on a problem had equal denominators (81% correct) than unequal ones
(46% correct). Also as with children, FARRA showed the opposite pattern on multiplication
problems: lower accuracy when operands had equal denominators (40% correct) than unequal
ones (62% correct). Division did not follow the anticipated pattern for either children or FARRA,
because performance on the rarely-presented equal denominator division problems was better
than expected. The reason appeared to be use of an incorrect strategy that happened to yield a
correct answer on one of the two equal-denominator division problems (see Braithwaite et al.
2017 for details).

The most frequent type of error on each operation varies with denominator equality.
FARRA overgeneralized the addition/subtraction strategy more often on equal than on unequal
denominator multiplication and division problems (40% vs. 18% of trials). In contrast, it
overgeneralized the multiplication strategy more often on unequal than on equal denominator
addition and subtraction problems (24% vs. 10% of trials). Children showed the same pattern
(41% vs. 25%, and 26% vs. 14% of trials, respectively). Again, the phenomena appeared to stem
from children and FARRA learning the statistical relations between denominator equality and
arithmetic operation in the input problems.

Subsequent analyses of FARRA’s performance in Braithwaite et al. (2017; Study 2)

demonstrated that the simulation’s success in modeling children’s performance was equally
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apparent with learning set problems from a different textbook series (GO MATH!) that had more
problems and with a test set of problems from a different study that included the same eight
types of problems (Siegler et al. 2011).

Of particular interest were the results of Braithwaite et al. (2017; Study 5) in which we
tried to optimize FARRA'’s performance (within the bounds of plausibility). Tripling the number
of learning set problems, presenting each of the eight types of problems equally often in the
learning set, and improving the three free parameter values of the simulation led to substantial
improvements in FARRA’s accuracy (from 52% to 80% correct). Note, however, that the
improved learning was still well short of 100% accuracy.

EFFECTS OF PROBLEM INPUT ON LEARNING IN OTHER AREAS OF

MATHEMATICS

Similar relations between children’s performance and distribution of problems in
textbooks and other printed material have been found in a number of other areas of mathematics.
Among them are decimal arithmetic, the measurement interpretation of fractions, geometric
shapes, counting, mathematical equality, and order of operations.

Decimal Arithmetic

Textbook problems. To obtain a comprehensive and representative database of decimal
arithmetic problems in US textbooks, Tian et al. (in press) coded all decimal arithmetic problems
from the same textbook series as in Braithwaite et al. (2017). This study distinguished between
problems that had two decimal operands (e.g., .12x.34) and problems that had a whole number
and a decimal operand (e.g., 5%.6); it also distinguished between problems with two decimal
operands that had equal numbers of decimal digits (e.g., 1.23+4.56) and ones that had two

decimal operands with unequal numbers of decimal digits (e.g., 4.5 — 1.23).
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Across the three textbook series, 98% of items with a whole number operand and a
decimal operand involved multiplication or division. In contrast, addition and subtraction
problems far more frequently involved two decimal operands than a whole number and a decimal
(95% versus 5%). Among problems that had two decimal operands, addition/subtraction items
more often had equal than unequal numbers of decimal digits (71% vs. 29%), whereas operands
on multiplication/division problems equally often involved equal and unequal numbers of
decimal digits (51% vs. 49%).

Problems used in instruction. As with fractions, the distribution of decimal arithmetic
problems that teachers presented in class or as homework paralleled the distribution in the
textbooks (J. Tian et al. manuscript in preparation). The addition and subtraction problems
assigned by teachers far more often involved two decimals than a whole number and a decimal,
whereas with multiplication and division, the difference was in the opposite direction. Moreover,
addition and subtraction problems with two decimal operands more often had equal than unequal
numbers of decimal digits, whereas there was no difference on multiplication and division
problems. These findings again supported the assumption that textbook problem distributions are
a good proxy for the problems children encounter in school.

Relations of textbook input to children’s performance. Based on the textbook input,
Tian et al. (in press) predicted that the textbook distributions of decimal arithmetic problems
would predict children’s decimal arithmetic performance. They tested this prediction against
children’s performance in 1) an experiment published more than 30 years ago by researchers
who had never been affiliated with our lab (Hiebert & Wearne 1985), 2) an unpublished data set
obtained in 2019 from a large-scale web-based learning platform (ASSISTments, Heffernan &

Heffernan 2014), and 3) data from a controlled recent experiment in our lab. The goal was to
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examine the generality of the findings over labs (the Hiebert/Wearne lab versus our own), time
of data collection (before 1985 versus 2013-2019), and data source (web-based platform versus
controlled experiment).

Biased textbook distributions of problems predicted children’s decimal arithmetic
performance in all three data sets. For example, in children’s performance as in the textbooks,
presence of a whole number operand was associated with lower accuracy on addition and
subtraction problems but with higher accuracy on multiplication and division problems. Thus, in
decimal arithmetic as in fraction arithmetic, differences in presentation frequency of various
types of problems in textbooks predict corresponding differences in children’s accuracy.

The Measurement Interpretation of Fractions

Both correlational and causal evidence indicate that textbook problem input is related to
learning of the measurement interpretation of fractions--that is, the interpretation that fractions
are a measure of magnitude that can be placed and ordered on number lines. On the input side,
textbooks emphasize the part-whole interpretation of fractions far more than the measurement
interpretation (Cady et al. 2015, Charalambous et al. 2010, Hansen et al. 2019). On the output
side, children are far more accurate on fractions problems that can be solved via the part-whole
interpretation (e.g., problems on which units corresponding to the numerator and denominator
can be counted) than on problems that require a measurement interpretation (e.g., estimation on a
number line with only the endpoints marked; Charalambous & Pitta-Pantazi 2007, Hannula
2003, Tunc-Pekkan 2015).

These findings are correlational, but results of interventions in which children were
randomly assigned to conditions suggest that causal relations are also present. Interventions that

emphasized the measurement interpretation have yielded greater improvement in children’s
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fraction knowledge than conditions that emphasized the part-whole interpretation (e.g.,
Braithwaite & Siegler 2020, Fuchs et al. 2013, Hamdan & Gunderson 2017, Gunderson et al.
2019, Moss & Case 1999). For example, Barbieri et al. (2020) found that relative to instruction
emphasizing the part-whole interpretation of fraction concepts, instruction emphasizing the
measurement interpretation led to greater improvement in number line estimation and magnitude
comparison among at-risk students. Similar findings have emerged with typical students (Saxe et
al. 2013).
Geometric Shapes

Resnick et al. (2016) analyzed geometric input from preschoolers’ books, games, and
apps. They found that circles appeared in 93% of books, 85% of games, and 95% of apps,
whereas rectangles appeared in 72% of books, 20% of games, and 65% of apps. Canonical
versions of the shapes (e.g., equilateral triangles) were consistently more common than non-
canonical versions. Parallel to these relative input frequencies, preschooler’s shape identification
was considerably more accurate for circles than rectangles (Clements et al. 1999) and for
canonical than non-canonical shapes (Satlow & Newcombe 1998).
Counting

Similar parallels between imbalances in the input to which children are exposed and
children’s performance have been found for counting. Counting competence includes knowing
how to recite the numbers in order and understanding the cardinality principle, which states that
when counting from one, the last item in the count is the number of items in the set. Two studies
of children’s counting books (Powell & Nurnberger-Haag 2015, Ward et al. 2017) indicated that
more than 70% of the books analyzed presented numbers in order, starting with one. In contrast,

the cardinality principle was included in fewer than 10% of the books in both studies. Moreover,
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in a study of parents reading counting books to their preschoolers, parents rarely provide cardinal
labels after the count (Mix et al. 2012). Thus, the protracted development of the cardinality
principle (Geary & vanMarle, 2018) may reflect a lack of input that calls attention to the
principle.

Mix et al. (2012) provided causal evidence for this conclusion. Training randomly chosen
preschoolers in labeling the set size of a display and then counting the objects in it (i.e., saying
“Three crackers, count them, 1, 2, and 3”) led to better understanding of the cardinality principle
than training randomly chosen peers in only labeling the set size or only counting the objects.
Mathematical Equality

Textbooks rarely present equations with operations on both sides of the equal sign. For
example, McNeil et al. (2006) found that the large majority of problems in four middle-school
textbooks presented the operation and operands to the left of the equal sign and a blank for the
answer to its right (e.g., 4+5=_). Only 5% of problems had operations on both sides of the
equation (e.g., 4+5= 2+ ). A similar pattern is present in elementary school textbooks (Powell,
2012).

Lack of experience with problems that depart from the usual format leaves openings for
children to misinterpret the equal sign. For example, as late as fourth grade, most children
answer incorrectly when presented problems with operations on both sides of the equal sign,
such as by answering “12” or “17” to “8+4 =[1+5” (Falkner et al. 1999). These incorrect answers
appear to reflect misinterpreting the equal sign as a signal to “add all numbers to the left of the
equal sign” or “add all numbers in the problem,” rather than as expressing a relation of equality

between the left and right sides of an equation.



26

McNeil et al. (2015) tested whether a modified workbook that included a broader range
of problems than standard workbooks helped second graders form a relational understanding of
the equal sign. The modified workbook had the same total number of problems as the control
workbook, but included items that were absent from typical workbooks, for example, problems
with operations on the right side of the equal sign (e.g., =4+3) and problems that replaced the
equal sign with the words “is the same amount as.” Children who were randomly assigned to use
the modified workbook displayed greater understanding of mathematical equivalence than peers
who used a standard workbook on both an immediate posttest and a delayed posttest 5-6 months
later.

Order of Operations

Biased distributions of problems are not the only mathematically-irrelevant feature of
input that influences mathematics performance. Even typographical features, such as internal
spacing on a page or screen of problems involving both addition and multiplication (e.g.,
2+3x4), influence speed and accuracy in solving problems (Landy & Goldstone 2007a, 2007b,
2010). In particular, narrower spacing between the operation and the surrounding operands
increases the probability of performing that operation first, regardless of the formal rules for
ordering operations. In the above problem, narrower spacing between “2+3” than between “3x4”
increases the likelihood of answering “20,” due to the narrower spacing leading people to add
“2+3” and then multiply “5x4.” One reason for such errors may be the spacing that learners
previously encountered in textbooks. In textbook presentations of arithmetic and algebra,
multiplication problems tend to be written closer together than addition problems (Landy &

Goldstone 2007a, 2010).
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Thus, although mathematics involves abstraction over irrelevant features, this does not
mean that learners abstract over those features. Rather, mathematically irrelevant characteristics
of input influence learning in a wide range of contexts.

CONCLUSIONS
The Role of Textbook Problems

Distributions of textbook problems shape children’s mathematical performance. Across
many areas, including fraction arithmetic, decimal arithmetic, counting, and geometry,
performance on rarely encountered types of problems lags behind that on frequently presented
types of problems.

FARRA demonstrates that presenting fraction arithmetic problems from textbooks to a
computer simulation with standard correct fraction arithmetic procedures, overgeneralized
versions of those procedures, stochastic strategy choice mechanisms, and reinforcement learning
mechanisms produces performance that closely resembles children’s performance. Presenting
FARRA a greater proportion of underrepresented problems improves the model’s performance.
Similarly, presenting greater numbers of rarely presented problems to randomly selected children
produces gains in their understanding of other mathematical concepts. Balancing the distribution
of textbook problems would be far simpler than addressing other sources of poor math
achievement, such as socioeconomic inequality, racism, inconsistent values among U.S. families
on math learning, and inconsistent knowledge of mathematics among U.S. teachers. Thus,
presenting more balanced distributions of problems in mathematics textbooks is a promising way
to improve children’s mathematics learning.

The Importance of Conceptual Knowledge
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A major reason why textbook problem distributions can strongly influence rational
number arithmetic and numerous other areas of mathematics is that many children lack
conceptual understanding of these areas. If children possessed such understanding, it could shield
them from the influence of spurious associations, but they don’t, so it doesn’t. The impact of this
absence can be seen by contrasting children’s performance in whole number and rational number
arithmetic.

Whole number versus rational number arithmetic. Children almost never make errors
such as 3x5=3, but they often make errors such as 3/5x1/5=3/5: Why is it that implausible errors
are rare in some contexts, such as whole number multiplication, but common in others, such as
fraction multiplication?

A major difference between whole number and rational number arithmetic is that in at
least some areas of whole number arithmetic, children employ a goal sketch that reduces use of
flawed strategies. Goal sketches are domain-specific mechanisms for evaluating the plausibility
and potential usefulness of strategies in that domain. They include requirements for legitimate
strategies and principles, as well as estimation processes for evaluating the plausibility of
answers. A goal sketch for fraction multiplication, for example, would include the information
that multiplying two positive fractions below one must result in an answer less than either
multiplicand; any strategy that violated that principle would be rejected. Thus, such a goal sketch
would allow children to reject 3/5 as a potential answer to 3/5x1/5, because that answer would be
larger than one of the operands and equal to the other. Such evaluations could lead children to
turn to the other main fraction multiplication strategy they know, the correct strategy, and
thereafter choose it increasingly, because it produced answers that met the requirements of the

goal sketch and received reinforcement.
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The functions served by goal sketches resemble those of the System 2 reasoning
described by Stanovich & West (2000) and Kahneman (2011), among others. However, the
quick and seemingly effortless evaluations of both familiar and unfamiliar strategies by the
kindergartners in Siegler & Crowley (1994) suggest a process more like System 1 reasoning.
Perhaps when goal sketches are first formed, their application is slow and effortful, but with use
they become automatic.

In this concluding section, we review evidence that young children possess considerable
conceptual understanding of whole-number addition, describe the SCADS (Strategy Choice and
Discovery Simulation) computer simulation and how its goal sketch prevents use of flawed
whole-number arithmetic strategies, compare the empirical data and model for whole number
arithmetic to those for rational number arithmetic, and explore how helping children form goal
sketches for rational number arithmetic could improve their learning.

Children’s understanding of whole number addition. Preschoolers have considerable
understanding of whole number arithmetic (Gilmore et al. 2018). For example, they choose
adaptively among the varied addition strategies they use, in the sense of using each approach
most often on problems on which it yields favorable combinations of accuracy and speed
(Siegler & Shrager 1984). In particular, preschoolers predominantly use retrieval, the fastest
strategy, when they can execute it accurately; they predominantly use slower strategies, such as
counting from one, on problems where they are necessary for accurate performance. Such
adaptive strategy choices, along with the almost total absence of implausible answers such as
3+4 =2 or 3+4= 22, reflects a kind of implicit understanding of basic addition.

Preschoolers’ understanding of whole number addition extends to discovery of new

strategies. Siegler & Jenkins (1989) identified 4- and 5-year-olds who, on a pretest, solved
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problems by counting from 1 but never counted-on from the larger addend, even on problems
such as 2+9 where counting-on could have been advantageous. The children were presented
large numbers of addition problems, with feedback about the answer’s correctness following
each problem. Solving problems led almost all of the preschoolers to discover the counting-on
strategy, though some took more than 200 problems to do so. Most children also discovered
another correct strategy that was intermediate between counting from one and counting-on from
the larger addend. Perhaps most striking, no preschooler ever tried a conceptually-flawed
strategy, such as counting the first addend twice or only counting the second addend.

Beyond this implicit understanding, young children also possess some explicit
understanding of whole number addition. On the trial on which they discovered the counting-on
strategy, some preschoolers in Siegler & Jenkins (1989) explicitly noted its superiority to
counting-from-one because, as one child put it, when you count-on, “You don’t have to count a
very long way.” Moreover, when kindergartners in another study were asked to judge whether a
strategy that an experimenter demonstrated was “very smart,” “kind of smart,” or “not smart,”
they judged counting-on, which they had not used on the pretest, to be much smarter than the
conceptually flawed strategy of counting the first addend twice, which they also had not used
(Siegler & Crowley 1994).

A computer simulation of preschoolers’ whole number addition. The cognitive
processes that generate preschoolers’ adaptive strategy choices and discovery of useful new
whole number addition strategies without use of flawed approaches were modeled in Shrager &
Siegler’s (1998) computer simulation, SCADS. Like FARRA, SCADS generated numerous
changes in performance that closely resembled those of children. The learning mechanisms and

strategy choice procedures in the two simulations were also highly similar.
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What SCADS possessed that FARRA lacked, however, was a goal sketch that guided
strategy discovery toward useful new strategies and away from flawed ones. SCADS generated
between 15 and 21 strategies on different runs. However, many of these strategies were rejected
without being tried, because they violated the requirements of the goal sketch that legitimate
strategies must quantify each addend once and only once. In terms of the metaphor with which
we began this chapter, the goal sketch protected children from the monsters.

The potential value of goal sketches for rational number arithmetic. FARRA does not
include a goal sketch, because there is no evidence that children evaluate the plausibility of
rational number arithmetic strategies or the answers they yield. Indeed, there is considerable
evidence that children do not use goal sketches for rational number arithmetic. If children
evaluated the plausibility of answers and the strategies that generated them, they would not claim
that 19 was the closest answer to 12/13+7/8, that 6+.32=.38, or that 3/5x4/5=12/5.

More frequently presenting underrepresented types of problems improved FARRA’s
performance, and it probably would improve children’s performance as well. However, the
improvement would almost certainly be greater if balanced textbook presentation of problems
were supplemented by goal sketches. For example, a fraction multiplication goal sketch would
include the requirement that multiplying two positive fractions below one, such as 3/5%4/5, must
result in an answer less than either multiplicand. This knowledge would allow children to reject
12/5 as a potential answer, because it is larger than both 3/5 and 4/5. Such evaluations could lead
children to turn to the other main strategy they know, the correct strategy, and choose it
increasingly, because it would produce answers that meet the requirements of the goal sketch and
elicit positive reinforcement. Similarly, a goal sketch for fraction addition would allow children

to reject answers such as 1/2+1/2=2/4, because they violate the requirement that adding positive
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numbers must produce answers that exceed all addends. Children would again likely turn to the
correct strategy, which most also know, and use it increasingly for the same reasons.

This analysis raises the issue of why, after years of extensive experience with rational
number arithmetic, children do not form goal sketches for it. Weak knowledge of the magnitudes
of individual rational numbers, and weak understanding of the meaning of arithmetic operations
with rational numbers, probably interfere with formation of such goal sketches. Both weaknesses
were evident in Braithwaite et al. (2018), in which 6™ and 7" graders were asked to estimate the
positions of individual fractions and sums of fractions on a 0-1 number line and to estimate the
positions of individual whole numbers and sums of whole numbers on a 0-1000 number line. As
expected, estimation accuracy was greater for individual whole numbers than individual
fractions, thus demonstrating greater knowledge of whole number magnitudes. More striking,
however, were the much larger differences in estimation accuracy between fraction and whole
number sums. Estimation of fraction sums was so inaccurate that it would have improved if
children had placed every estimate at the middle of the number line, regardless of the sum being
estimated. This and other findings indicate that helping children create goal sketches for fraction
arithmetic will require improving their understanding of how arithmetic operations work in the
context of fractions, as well as improving children’s understanding of the magnitudes of
individual fractions. (See Braithwaite & Siegler 2020 for an effective intervention based on these
ideas).

There probably is no way to prevent spurious associations in textbooks from influencing
children’s mathematics. Adults at high quality universities and even professional mathematicians
are influenced by them under some circumstances (Obersteiner et al. 2013). However, more

balanced presentation of textbook problems can mitigate the difficulty to an extent, inculcating
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conceptual understanding like that in goal sketches can mitigate the difficulty further, and the

two together can help keep the monsters at bay.
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SUMMARY POINTS

Imbalanced distributions of problems in math textbooks contribute to children’s
difficulty learning mathematics.

Children learn spurious associations from the statistical relations present in textbooks;
these associations lead children to choose inappropriate strategies.

The negative influence of imbalanced problem distributions extends to many areas,
including fraction and decimal arithmetic, counting, geometric shapes, and the
concept of mathematical equality.

Presenting balanced problem distributions improves mathematics learning in many
areas.

In domains where they lack conceptual understanding, children are especially
vulnerable to the negative influences of imbalanced problem distributions.

Children have particularly little understanding of fraction and decimal arithmetic.
The FARRA computer simulation, which is totally devoid of conceptual knowledge,
closely approximates children’s fraction arithmetic performance.

Improving children’s understanding of the difference between legitimate and flawed
strategies can help children avoid irrational errors and reduce the influence of

irrelevant problem features on performance.
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Figure Caption

Figure 1
Francisco Goya (Francisco José de Goya y Lucientes), Plate 43 from 'Los Caprichos': The Sleep
of Reason Produces Monsters (El suerio de la razon produce monstruos), 1799, The

Metropolitan Museum of Art, New York, USA (Gift of M. Knoedler & Co., 1918),

https://www.metmuseum.org/art/collection/search/338473.



https://www.metmuseum.org/art/collection/search/338473
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Table 1A. Percent of US textbook problems classified by arithmetic operation and denominator

equality
Arithmetic Operation
Denominator equality Addition Subtraction ~ Multiplication Division
Equal denominators 12 13 1 1

Unequal denominators 13 12 29 19




Table 1B. Percent of US textbook problems classified by arithmetic operation and operand

43

number type
Arithmetic Operation
Operand number type Addition Subtraction =~ Multiplication Division
Fraction-fraction 25 23 13 8
Whole-fraction 0 2 17 13

Note. Percentages may not sum up to 100% because of rounding.
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Table 2 Frequencies of common answers on 4/5 X 3/5 from children and FARRA

Frequency (% of responses)

Problem Answer Children® FARRAP
12/25¢ 40.0 38.7
12/5 36.7 40.9
4/5 x 3/5
15/20 4.2 5.5
20/15 33 9.6

@ Children denotes data from Siegler & Pyke (2013); ® Abbreviation: FARRA, fraction arithmetic
reflects rules and associations. FARRA denotes simulation data from Braithwaite et al. (2017); °
The correct answer is bolded.
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Figure 1. Francisco Goya (Francisco José de Goya y Lucientes), Plate 43 from 'Los Caprichos':
The Sleep of Reason Produces Monsters (El suerio de la razon produce monstruos), 1799, The
Metropolitan Museum of Art, New York, USA (Gift of M. Knoedler & Co., 1918),

https://www.metmuseum.org/art/collection/search/338473.



https://www.metmuseum.org/art/collection/search/338473

