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ABSTRACT
Most privacy-conscious users utilize HTTPS and an anonymity

network such as Tor to mask source and destination IP addresses.

It has been shown that encrypted and anonymized network traffic

traces can still leak information through a type of attack called

a website fingerprinting (WF) attack. The adversary records the

network traffic and is only able to observe the number of incoming

and outgoing messages, the size of each message, and the time

difference between messages. In previous work, the effectiveness of

website fingerprinting has been shown to have an accuracy of over

90% when using Tor as the anonymity network. Thus, an Internet

Service Provider can successfully identify the websites its users

are visiting. One main concern about website fingerprinting is its

practicality.

The common assumption in most previous work is that a victim

is visiting one website at a time and has access to the complete

network trace of that website. However, this is not realistic. We

propose two new algorithms to deal with situations when the vic-

tim visits one website after another (continuous visits) and visits

another website in the middle of visiting one website (overlapping

visits). We show that our algorithm gives an accuracy of 80% (com-

pared to 63% in a previous work [24]) in finding the split point

which is the start point for the second website in a trace. Using our

proposed “splitting” algorithm, websites can be predicted with an

accuracy of 70%. When two website visits are overlapping, the web-

site fingerprinting accuracy falls dramatically. Using our proposed

“sectioning” algorithm, the accuracy for predicting the website in

overlapping visits improves from 22.80% to 70%. When part of the

network trace is missing (either the beginning or the end), the ac-

curacy when using our sectioning algorithm increases from 20% to

over 60%.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability; •Networks→Network privacy and anonymity.
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1 INTRODUCTION
Anonymous communication’s goal is to hide the relationship and

communication contents among different parties. Once two par-

ties establish an anonymous communication between them, the

contents are encrypted and routing information is hidden, thus

masking the source and destination IP addresses from third par-

ties. Tor [6, 21] is one of the most popular low-latency anonymity-

providing network. It is used by millions of people daily [18]. Tor

protects users’ privacy through a telescoping three-hop circuit and

encrypts the network traffic using onion routing. Although Tor

and many other privacy-enhancing technologies such as HTTPS

proxy hide the communication contents and network layer con-

tents, the network traffic itself may leak information such as packet

size, inter-packet timing information, and direction of the packets

(from server to client or other way around).

A website fingerprinting (WF) attack is one where an attacker

identifies a user’s web browsing information by merely observing

that user’s network traffic. The attacker is not attempting to break

the encryption algorithm or the anonymity protocol. The only

information available to the attacker is the metadata information

such as packet size, the timing information between packets, and

the direction of the packet. The success of this attack is measured by

the number of websites correctly identified. The accuracy has been

shown to be around 90%[16], thus violating any privacy offered by

HTTPS and anonymity services like Tor.

It has been more than 15 years since the first website fingerprint-

ing attack was proposed [11]. A number of studies on this topic

have been released since then [3, 16, 24], showing high accuracy

in predicting websites in both the open and closed world models.

Most previous work rely on certain assumptions. The goal of this
research is to revisit some of these assumptions, namely: 1) the

adversary can record the whole network traffic trace for a web-

site
1
, 2) the victim visits one website at a time; here, we consider

two cases where i) the victim visits two pages one after the other

(continuous visits) and ii) the victim visits a second page before the

first one finishes loading (overlapping visits). We propose two new

algorithms to deal with these cases. The contributions of this paper

are summarized as follows.

• A“splitting” algorithm to identify two continuousnet-
work traces. We propose a new algorithm based on Hidden

1
Note that we used trace, network trace, website, and webpage interchangeably
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Markov Model to split and detect traces with two continuous

pages. We show that our algorithm gives a higher accuracy

in finding the split point in two continuous websites (80%

compared to 63% in previous work). This is also the first

time that the accuracy in directly predicting websites in

continuous traffic traces is tested and shown.

• A “sectioning” algorithm to identify overlapping net-
work traces. We propose a new algorithm to section the

trace into multiple sections and treat each section indepen-

dently to perform the website prediction. The hypothesis is

that if two traces overlap, the beginning of the first trace and

the end of the second trace would be unaffected. Sectioning

then still allows for correct identification of the two web-

sites. When considering overlapping traces, the accuracy of

current techniques for website fingerprinting decreases to

20% − 30%. Our sectioning algorithm improves the accuracy

to around 70%.

• Applying “sectioning” algorithm on partial traces. By
applying “sectioning” on partial traces, the accuracy (62.66%)

is higher compared to previous methods (20.76%) on predict-

ing websites with the beginning 5% of the trace missing.

When predicting websites with the last parts of the trace

missing, the accuracy is comparable. Hence, with sectioning

algorithm, we can reduce the impact of missing packets in a

network trace.

This paper is structured as follows: in Section 2, we give the

related background and terminology of this paper. In Section 3,

we propose a new “splitting” algorithm to find the split point in

two continuous page traces and present the results. We propose a

new “sectioning” algorithm to improve the accuracy in overlapping

traces in Section 4 and in partial traces in Section 5. We conclude

and provide avenues for future work in Section 6.

2 BACKGROUND
• Definitions. We first define some terms used.

– Trace. A trace is a time series of recorded network packets

for a visit to a webpage. Usually, tcpdump is used to record
the network traffic. A trace contains no background noise,

only the network traffic to/from that webpage.

– Continuous Trace. When a trace consists of two pages,

and the second page starts when the first page ends, we

call it a continuous trace. It has the same meaning as when

the two pages are separated with zero-time.

– Split Point. When a trace is composed of two pages, the

first step is to separate them before further detecting. The

point where the second page starts and the first page ends

is the split point.

– Overlapping Trace. When a trace consists of two pages,

and the second page starts before the first page ends, we

call it an overlapping trace. It has the same meaning as

when the two pages are separated with negative-time.

• Threat Model. In website fingerprinting attacks, the adver-

sary records network traffic data of his own visits to a list of

websites first through the Tor network. Then the adversary

can eavesdrop on the link between the victim and the entry

node. Figure 1 depicts where the adversary is. We assume

the attacker to be a passive observer which means it does

not modify transmissions and is not able to decrypt packets.

An example of the adversary is Internet Service Providers

(ISP), and state-level agencies.

Figure 1: Threat Model.

• WF Attack Procedures. Website fingerprinting has been

shown to be a serious threat against privacy mechanisms

for anonymous web browsing. Researchers have proposed

different scenarios for website fingerprinting. The attack

and resulting experiment vary from each other; however,

they all follow similar steps. A website fingerprinting attack

and analysis can be divided into six steps: 1) collect data, 2)

extract features from data, 3) select algorithm, 4) build model

based on 1) to 3), 5) evaluate real network traffic trace, and 6)

evaluate results. Figure 2 shows an illustration of all the steps

of a website fingerprinting attack. The last right-most block

contains the measurements to evaluate the effectiveness of

an attack.

When setting up an experiment for a website fingerprinting

attack, the first step is to perform data collection. A net-

work traffic recording tool such as wireshark or tcpdump

is used. Before running any scripts to automatically collect

data, the configuration of the browser should be set to match

the assumptions, such as disabling all plug-ins to avoid back-

ground noise and clearing the browser cache. The automated

script will then visit websites in a certain order. The time

taken to collect data depends on the number of instances

recorded for each website and the size of the website list.

Features extracted from the recorded network traffic traces

will be used for training. Each network trace is composed

of a list of features. The features can be treated as attributes

in a machine learning context. A classification algorithm is

applied to these features to build the attack model. Different

websites correspond to different classes. Different network

traffic traces are then collected to evaluate the performance

of the model. A 10-fold cross validation is often employed to

reduce the bias in the evaluation process.

• Closed world and Open World. The WF attack experi-

ments can be built based on two different scenarios: closed

world and open world. The closed world model is used when

complete information is available. The assumption in a closed

world model is that an attacker knows the metadata infor-

mation for a list of websites. The website visited by a victim

is in the list known by the attacker. It is a strong assumption

which is used to simplify the threat model, implementation

of the experiment, and evaluation of the success of the at-

tack. Since the closed world scenario is the more basic model,

most research work [1, 3–5, 10–13, 17, 19, 20, 23] include an

analysis of results in this closed world model.
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Figure 2: Steps of launching and evaluating a website fingerprinting attack.

In an open world model, a website being fingerprinted can

be either from the list or not in the list. The attacker keeps

track of a small list of monitored websites. Once a website

fingerprint is obtained, the attacker attempts to determine

if that website is part of the list of monitored websites or

not. More recent research work [4, 5, 8, 12, 14–17, 22–24]

deployed their website fingerprinting experiments under the

open world model and identified whether a website is from

the list of monitored sites.

• Dataset. Based on the foreground dataset of RND-WWW

from [16], our experiments in Section 3 , Section 4, and

Section 5 randomly pick 100 website records which contain

40 instances for each website from the original dataset. Each

instance is a trace containing the timestamped incoming and

outgoing packets’ size in chronological sequence. Incoming

packets are marked with a positive sign, while outgoing

packets are marked with a negative sign.

• HiddenMarkovModel. TheHiddenMarkovModel (HMM)

is a Markov process with unobserved states. It is a statisti-

cal tool to model sequences that can be characterized by a

process from a generated observable sequence [2]. Based on

some training data, the HMM generates the probabilities of

the states in the dataset. The parameters of a HMM are of two

types: transition probabilities and emission probabilities. The

transition probability indicates the probability that a state

changes to another state and the emission probability is the

probability of an observation within a state. The transition

matrix and emission matrix store the transition probability

and emission probability of each state respectively.

• Classification of single-page and two-page traces. An
approach was developed to distinguish traces between one-

page trace and two-page traces in [24]. The authors em-

ployed k-NN binary classification and trained on two classes:

a class of two-page traces (a network trace consisting of two

webpages), and a class of single-page traces (a network trace

consisting of only one webpage). The classification accuracy

is 97%. Based on their results, we assume it is capable to

identify a trace with single page or two pages.

• Related work. The practicality of the WF attack has been

discussed previously. A critical evaluation of WF attacks [12]

pointed out the common assumptions of previous work and

limitation of datasets and single page visits. The CUMUL

algorithm [16] was developed with an Internet scale dataset

and achieved an accuracy of more than 90%. [7] investi-

gated the assumption of the victim and attacker visiting the

webpages under the same conditions such as browsers and

devices. The assumption of single page visits has been ex-

plored in [24, 25]. The algorithm in [24] achieves more than

90% accuracy in distinguishing between one-page trace and

two-pages traces that are positive-time separated. However,

in the following steps of finding the split point, the algorithm

has many limitations. First of all, the accuracy is low in the

two cases we consider. When two pages are zero-time sepa-

rated (continuous visits), the accuracy to find the split point,

that is, where the end of one website trace ends and the sec-

ond website trace begins, is around 63%. When two pages are

negative time separated (overlapping visits), the accuracy to

find the split point falls to 32%. [25] improves the accuracy

to find the split point, however, they can only predict the

first webpage in a two-page visit. Another limitation of [24]

and [25] is that they could not directly predict the websites

in the network traffic trace recorded. They attempted to find

the split point first and used previous WF approaches for

predicting the websites, which leads to a higher cost in time.

In our work, we develop two new algorithms to eliminate

these limitations.

3 ANALYSIS OF CONTINUOUS TRACES

Notation Definition

nwb the number of websites

nunique the number of packets with unique sizes in all

website traces

npAs the number of a packet size p in website A {start}
state

ntotalAs the total number of packets in website A {start} state
sblock the size of each block

pf inal a matrix of the probabilities of each packet

belonging to each class/website

ltrace the length of a trace

Table 1: Notations used in our algorithm.

In this section, we introduce our algorithm based on Hidden

Markov Model to detect two continuous websites with zero-time
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Figure 3: State transition of website A.

Figure 4: Probability of each packet belonging to each web-
site (the sum of three states for each website) obtained from
the HMM model (for clarity, every 20 data point is plotted.
Best viewed in color).

Figure 5: Probability of predictions for the corresponding
website (probability of website1 belonging to section1 and
probability of website0 belonging to section2) whenmoving
the split point between section 1 and section 2 from left to
right. See Figure 4 for the actual predictions.

Figure 6: Example when labeling block 1 and block 3.

separated. We describe the details of the algorithm first, followed by

the experiments and evaluations of this algorithm. The notations

used in the algorithm are introduced in Table 1.

3.1 Algorithm description
Our proposed algorithm can be divided into two steps: 1) Apply

Hidden Markov Model to get the probability matrix, 2) Label each

block based on the probability matrix and pick split point based on

labels.

Step 1: Apply Hidden Markov Model to network traffic trace and

obtain the probability of each class (website) that each packet be-

longs to (probability matrix).

To form states, we split each packet trace into three parts: 1)

start which is first 20 packets in the network traffic trace, 2) middle
which is the collection of packets between start and end, and 3)

end which is last 20 packets in the network traffic trace. We then

build our transition and emission matrices. The dimension of the

transition matrix would be (3 × nwb )
2
.

We use website A as an example. Assume the length of a trace is

ltrace ; this is the number of packets in website A. Figure 3 shows

the state transition within website A. For a packet from website

A, it has
20

ltrace
probability to belong to A’s start state, 1 − 40

ltrace
probability to belong to A’s middle state and

20

ltrace
probability to

belong to A’s end state. If a packet in A is in the start state, then
for the next packet it has a

20/ltrace
1−(40/ltrace )+(20/ltrace )

probability to

stay in its current state and
1−(40/ltrace )

1−(40/ltrace )+(20/ltrace )
probability to

change to themiddle state. From analysis of the dataset, we find that

20

ltrace
= 0.9 or 9%, thus we set

20/ltrace
1−(40/ltrace )+(20/ltrace )

as 10% and

1−(40/ltrace )
1−(40/ltrace )+(20/ltrace )

as 90%. In a similar way, if A is currently

in the middle state, then the next packet could stay in the middle
state with 90% probability or change to the end state with a 10%

probability. When the packet is in the end state, we set that A has an

equal probability of
1.0

nwb+1
to stay in the end state or change to any

other website’s start state. For the emission matrix, the dimension

is (3 × nwb ) × nunique where nunique is the number of unique

length of packets in all website traces, where 3 indicates the three

states (start, middle, and end) for each website. For a packet size P
in website A in the start state, npAs , the total number of packets in

A start state is ntotalAs . The emission probability for P in A’s start
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state would then be

npAs
ntotalAs

. After applying forward and backward

propagation, we obtain the probabilities of each packet belonging to

each class/website as pf inal . For simplicity, we show the prediction

for five websites in Figure 4. The split point happens at packet

number 389 and the network traffic trace is composed of website

1 followed by website 0. The different colors of the lines indicate

different websites. A website’s different states are shown in the

same color. From the figure, we can see that the algorithm predicts

website 1 with a probability higher than any other website until

about the split point where the algorithm predicts website 0 with

the highest probability.

Step 2: Find the split point.

The split point needs to be identified automatically. The main

idea of this step is to traverse each packet in a trace from left to

right as a split point and measure the probability of the website in

two sections, section 1 and section 2, split by the split point. Based

on the example in Figure 4, Figure 5 shows the trend of the ratio in

section 1 and section 2. By moving the split point from left to right,

the probability of predicted website (website 1) in section 1 drops

while the probability of predicted website (website 0) increases in

section 2. The split point 400 occurs at the intersection of the two

lines in Figure 5.

Instead of analyzing each packet, we decide to extract features

from blocks to reduce the processing time. We divide the whole

trace into several blocks with multiple packets; the size of each

block is sblock . Assume the length of a trace is ltrace , then a trace

is split into nblock = ltrace/sblock blocks. We name the block from

left to right as block 1, block 2, ..., block n. And we assume the split

point is at the end of one of the blocks.

First, we label each block to indicate whether the block is before

or after the split point. When labeling blockm, we consider block

1 to blockm to be section 1 and blockm + 1 to block n as section
2. The blockm is labeled based on the ratio rs1 of the number of

packets belonging to website X in section 1 and the ratio rs2 of the
number of packets belonging to website Y in section 2, where X
and Y indicate the website with the highest ratio in section 1 and
section 2 respectively. We set a ratio bottom line tblock for rs1 and
rs2. When labeling the block, we use 0 to represent the block is

before the split point and 1 to represent the block is after the split

point. If rs1 > tblock , which indicates more than tblock section1 is

composed of website X , and label the block as 0. If rs1 < tblock and

rs2 > tblock , label the block as 1. If rs1 < tblock and rs2 < tblock ,
it indicates that this block does not provide valid information, then

this block won’t be labeled and recorded. When labeling every

block, record the end point of each block as a block index into

point_list .
We use the example in Figure 4 to illustrate the algorithm behind

the labeling process. Figure 5 and Figure 6 are based on this example.

The trace contains 1, 800 packets and is divided into 9 blocks; the

size of each block is 200 packets. The split point between section 1

and section 2 moved from 200 to 1600.

We only list the process when labeling block 1 and block 3 as

an example. For a packet, we use the website with the highest

probability as the prediction for the packet. In this example we set

tblock as 95%. When labeling block 1, section 1 contains block 1 and

section 2 is from block 2 to block 9; split point is 200. From Figure 4

we can see that the predicted website in section 1 is website 1 and

from Figure 5, the confidence of this prediction is close to 1, which

means, rs1 is close to 100% thus rs1 > 95%, then we label block 1

as 0, meaning block 1 is before the split point. For labeling block 3,

section 1 is composed of block 1, block 2 and block 3, and section

2 is from block 4 to block 9. For the first 600 packets in section 1,

the probability of website 1 is 67% which is less than 95%, then we

label block 3 as 1 representing block 3 is after the split point. Under

the perfect condition, the split point should be at the point when

rs1 and rs2 meet which is in between 0 and 1 in the label list.

After labeling each block, we pick the split point based on the

sequence of labels. The expected list of labels is {0, 0, ..., 0, 1, 1, ..., 1}.

However, when labeling block n, if none of the highest ratio in

section 1 and section 2 achieve the threshold tblock , the label of
this block will be missed. We propose an algorithm to find the split

point and is able to handle all these situations. The two main cases

are classified by whether 1 is in the label_list .

• label_list contains 1s. If label_list = (0, 0...0, 1, 1...1), that

is the format we expect. 0 represents the block is before the

split point and 1 is the opposite. Then the split point is after

the last block labeled with 0.

If label_list = (1, 1, 1...1, 0, 0.., 0, 1, 1, ..., 1), it shows that

there is some noise at the beginning of the trace as well as

some at the end of the trace. However it does not affect the

process to find the split point since we only focus on the

changes in the trace. We will still assume the split point is

after the block with last 0.

• label_list contains 0s only. The algorithm will check if

enough information is obtained first before making the de-

cision. If blocks are continuously labeled from the first to

last block, then we assume that pattern for the probabilities

of the first website is clear and return the point after the

last labeled block as the split point. This means that the last

block is section 2. Otherwise, the backup algorithm will be

applied.

The pseudo code of the algorithm is outlined in Algorithm 1.

The main idea of the backup algorithm is to find the split point

when the average of the highest ratio of predicted websites in

section 1 and section 2 is higher than any other point. Assume

that point_list = (1 sblock , 2 sblock , ...,n sblock ), for split point
i − sblock , where i = 1, ...,n. The two sections split by this point

i are called section 1 and section 2. We denote the percentage of

packets belonging in section 1 as r1i (that is, these packets are

correctly marked in the correct section) and the percentage of

packets belonging in section 2 as r2i . The average ratio at point

i − sblock is avд(r1i , r2i ) – the point with the highest average ratio

among all points in the point_list is considered as the split point.

The backup algorithm is rarely called in our simulations.

3.2 Results for Finding Split Point
The values of sblock and tblock are selected as 200 and 95%. We used

the dataset foreground RND_WWWand CUMUL features from [16]

and randomly picked 100 distinct websites with 40 instances each

from the dataset. For each website, 20 instances are applied in

training and the other 20 are used for testing. Training dataset is

then composed of 100 websites with 20 instances each. In order
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Algorithm 1 Main Algorithm to Find Split Point

1: procedure get_changepoint(point_list , label_list )
2: if point_list is not empty then
3: if 1 is in label_list then
4: if label_list[0] is 0 then ▷ label_list = (0, 0...0, 1, 1...1)

5: Return point a f ter last 0
6: else ▷ label_list = (1, 1...1, 0, 0...0, 1, 1...1)

7: if label_list[0] is 1 then
8: Return point a f ter last 0
9: else
10: Return backup alдorithm
11: end if
12: end if
13: else ▷ label_list contains 0 only
14: if lenдth(point_list) is 1 then
15: Return backup alдorithm
16: end if
17: if point_list[0] is sblock and point_list = (1 sblock , 2 sblock , ...,n sblock ) then
18: Return point_list[n − 1] ▷ return last point in the point_list
19: else
20: Return point_list[0]
21: end if
22: end if
23: else ▷ point_list is empty

24: Return backup alдorithm
25: end if
26: end procedure

to simulate the process of visiting one website after another, we

picked two websites randomly from the testing set 200 times and

concatenated their network traffic trace to form the test set. Since

each website for the testing set has 20 instances, there are 4, 000

traces in total in the testing dataset.

We removed the packets with size of Maximum Transmission

Unit (MTU) to improve the accuracy. We also consider another

threshold in addition to pf inal , that is, if the highest probability
of a packet belonging to every class is lower than the threshold

tor iдinal , where tor iдinal is set to 0.8 in the experiment, then that

packet will be ignored. A few other thresholds were chosen and it

was found that 0.8 gave the best result. Thus we only consider the

predictions with high probability. We found that by removing MTU

and adding this new threshold value, the accuracy is increased.

We analyze the accuracy of the split point from two metrics:

1) the related deviance of the predicted split point from the real

split point and 2) the accuracy of the split point. The related de-

viance is calculated by abs(predicted_point − real_point)/ltrace .
The lowest average related deviance we obtained when testing on

10 and 100 websites are 0.154 and 0.16 respectively, which means

the performance of the algorithm is stable when increasing the

number of websites. If the predicted split point is before the real

split point, the first website loses partial data at the end, and the

second website receives extra data at the beginning. Figure 7 shows

the decrease in prediction accuracy under a closed world setting.

The test dataset is composed of 12 parts; each part contains 100

websites and 20 instances of each website. The first 6 parts consist

of cutting 30%/20%/10% traces at the beginning or end of each trace,

The second 6 parts are composed of adding 30%/20%/10% traces at

the beginning or end of each trace. It shows the effect on prediction

accuracy for the first and second website in a continuous trace

when the predicted split point is before or after the the real split

point. For two continuous websites, the error on the split point has a

bigger effect on the second website. A 0.16 related deviation means

the average split point is between 0.84 to 1.16 on the x-axis in Fig 7.

In this area, it can detect the first website with a decreased accuracy

of 15%. Since the original accuracy in detecting one website with

website fingerprinting using the k-NN algorithm is about 90% (from

figure 5), the accuracy to predict the first website is thus around

90% − 15% = 75%. However, for the second website, the accuracy

is lower. To calculate the accuracy of the split point, we consider

that the prediction is correct if the block/point prediction is clos-

est to the real split point. The number of points/blocks is decided

by ltrace/sblock , where sblock is selected as 200. For example, if

the length of the continuous traces is 3, 000 with the split point at

packet number 425, and point_list = {200, 400, 600, 800, ..., 2800},

we consider the prediction is correct if the predicted split point is

400. Among 4, 000 test traces, 3, 200 of them are predicted with the

correct split point. The split point accuracy is thus 80%.

3.3 Results for Website Prediction
The ultimate goal of WF attack is to predict visited websites. The

advantage of this algorithm is that it can detect the website directly

after finding the split point. We still use tor iдinal to filter packets

first and assume the packet belongs to website A if A has the high-

est probability among all websites (known from pf inal ). Then we
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Figure 7: Decrease on prediction accuracy of the first and sec-
ond website when the predicted split point is not accurate.

calculate the percentage of each website before and after the split

point. The website with the highest percentage is the predicted

website. We trained on 100 websites and tested on 4, 000 instances.

When considering websites with the top three highest probabilities,

the accuracy for the first website is 70.2% and the accuracy for the

second website is 69.2%.

3.4 Summary
In summary, our “splitting” algorithm has three distinct advantages

over [24]. First, it doesn’t require new training data, only based on

original website traces. Second, it has a higher accuracy of 80% in

detecting split point compared to 63%. Third, [24] didn’t predict

websites for real after finding the split point. From their description,

they will reuse previous WF attack approach on two split sections.

However, in our algorithm, websites can be predicted directly after

finding the split point from the probability matrix and predicted

split point.

4 ANALYSIS OF OVERLAPPING TRACES
4.1 Motivation
This section provides an overview of the design of our experiments

and a description of our website fingerprinting attack when consid-

ering the situations of two overlapping traces (webpages that are

negative-time separated). This means that a victim visits a second

webpage while the first webpage is still loading. It’s not realistic

to assume that a user visits only one webpage at a time. However,

only one previous paper [24] has looked at overlapping website

visits. Figure 8 illustrates two overlapping traces. Trace A belongs

to website A and Trace B is from website B. The size of the overlap

can vary. We focus on predicting both website A and website B.

In previous work, the prediction accuracy of classifying websites

based on features like packet sizes and number of packets is high

at around 90%. Figure 9 shows the accuracy of the k-NN algorithm

when predicting traces with overlapped packets. It can be seen that

the accuracy decreases significantly from 89.89% to 22.80% with

5% overlapped packets and to 19.29% with 10% overlapped packets.

Thus, overlapping traces have a big impact on prediction accuracy.

In fact, visiting a webpage at the same time as another webpage

can be used as a defense to mitigate website fingerprinting attacks

because it generates “noise”. We, thus, propose a new “sectioning”

algorithm that can still accurately perform website fingerprinting

attack on overlapped website visits.

Figure 8: Two website traces A and B overlap.

4.2 Sectioning Algorithm
We now present the design of our proposed “sectioning” algorithm.

Instead of treating a traffic trace as a whole, we split the trace

into a certain number of sections and perform website prediction

on each section. The intuition behind why sectioning will help

improve accuracy is that the overlapped parts will only appear in

some sections of the trace and other sections will not be disturbed.

We also hypothesize that most sections of the trace will not be

disturbed. This allows us to perform a majority voting on all the

sections to decide which website is being visited.

Figure 10 shows the key parts of our sectioning algorithm: parti-

tioning and majority voting.

1) Partitioning an instance inton sections: Partitioning each
instance into sections is the most important part of our algorithm.

Each trace, whether for training set or testing set, will be partitioned

into n sections. If n = 1 section, this means there is one section and

this is what previous work has looked at; this is the base case. Each

Figure 9: Prediction accuracy as more packets overlap in the
two traces.
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Figure 10: Outline of sectioning algorithm.

section will be evenly split by two methods: a) number of packets;

b) time duration of a trace.

1a) sectioning by number of packets: If a trace has 1, 000

packets and will be partitioned into 10 sections, then each section

will contain 100 packets.

1b) sectioning by time duration: If the duration of a trace is

10 seconds, when partitioning it into 10 sections, then interval of

each section will be 1 second. The sections with overlapping traces

will clearly have more packets, but the number of sections stays

the same with regards to the training set.

2) Performmajority voting: As Figure 10 shows, the last step
of our algorithm is to perform majority voting. The purpose of

sectioning is to reduce the interference in prediction caused by

the overlapped packets, that is, any incorrect predictions made

due to overlapped packets will be ignored if the majority of the

trace (or sections) is not affected (overlapped). We already have the

predictions for each section of each trace. To predict the website for

a trace, majority voting is performed on the n sections of that trace

to determine the predicted website. If there is no clear majority,

any of the highest number of predictions is chosen. For example,

like the overlapped trace B in Figure 8, a trace of website B is

partitioned into 5 sections. Suppose first 2 out of these 5 sections

contain overlapped packets from another trace of website A. The
prediction for the first section is website A while the prediction for

the second section is website B. Since the remaining 3 sections are

unaffected, the predictions are website B. In this case, website B
received 4 predictions while website A received 1 prediction. Using

majority voting, this trace will be classified as website B.

4.3 Experiment Setup
Figure 11 shows our sectioning algorithm. The steps are as follows:

1) split dataset into training and testing sets (Figure 11(a)); 2) Insert

certain amount of packets randomly from another website into the

trace of each instance of testing sets – this forms the overlapped

traces (Figure 11(a)); 3) Partition into n sections for both training

and testing sets accordingly (Figure 11(b)); 4) Apply machine learn-

ing classifier (for example, k-NN) to each section ((Figure 11(c));

5) A majority vote will be performed for the predictions from the

different sections (Figure 11(d)); 6) Repeat to do 10-fold cross vali-

dation.

We detail each step next.

1) Dataset: As mentioned before, we randomly chose n = 100

websites and k = 40 instances per website from the RND-WWW

dataset and CUMUL features from [16]. Our first step is to split

instances of each website into training and testing set under a 10-

fold cross validation. 10% of instances are in testing set, the rest are

in the training set. This means that 36 of 40 instances will be treated

as training set data for each website. We repeat each experiment 10

times, each time choosing a random 36 instances for training.

2) Overlapped traces simulation: An overlapping visit means

visiting one website while visiting another website, so that it is

hard to tell which website the packet trace belongs to. As Figure 8

shows, website B has an overlap at the beginning with website A

and website A has an overlap at the end with website B. We attempt

to predict both websites using the sectioning algorithm. Wang’s

work [24] showed that it’s possible to find the split point which is

the end of website A and the start of website B in overlapped traces.

We will outline our improved algorithm in Section 4.5. Figure 12

shows that for our simulation, we insert-merge packets to the begin-

ning of a website trace when predicting website B, and insert-merge

packets to the end of a website trace when predicting website A. To

simulate overlapped traffic traces, we add packets from one traffic

trace (instance) of another website A to the beginning of website B

or vice versa. This is not a prepend method, but instead a merging

is performed. Each instance contains packets’ sizes along with the

time stamp for each packet. We take the last few packets of website

A and reset the timestamp of that first packet to be zero so that

the last few packets of website A are merged into the beginning of

website B. We also simulated different overlapping fractions from

5% to 20%; this means we obtained the last 5% of packets from

website A’s network trace and merged with the beginning of the

trace for website B. Also, we do the same procedure to the end of

the trace for website A.

As an example of inserting A to the beginning of B, all packets

are of the format < time >:< packetsize >. Let’s say the last two

packets of website A are 2045 : 1040 and 2100 : 500 and the first

two packets of website B are 50 : 412 and 70 : 250. Resetting the

timestamp of the first packet from website A to zero, the packets

are then 0 : 1040 and 55 : 500. Merging both set of packets together

produces a new network trace with packets 0 : 1040, 50 : 412,

55 : 500, and 70 : 250.

3) Sectioning: We emphasize that the training sets are the orig-

inal traces. Only the testing datasets are “overlapped”. We cross-

validated the training set to obtain a reasonable model. Every trace,

in both training and testing sets, will be partitioned into n sec-

tions, where n = 1, 4, 5, 8, 10. Each section is then parsed using the

CUMUL features, similar to [16].

4) Run training/testing: After we have each trace split into n
sections, 90% of instances with same section number will be used as

the training set. We test the trained classifier on the remaining 10%

of instances with the same section number. For classifier algorithm,

we use the k-nearest neighbor (k-NN) algorithm. Since each section

is trained and tested independently of other sections, the result is n
predictions for the n sections. The n predictions can be the same
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Figure 11: Overview of the sectioning algorithm.

Figure 12: Simulate overlapping: add packets to the begin-
ning of trace.

website or different websites. Figure 10 shows this procedure; in the

figure, n = 5 sections, thus there are 5 prediction sets accordingly.

5) Perform majority voting: Finally, we perform a majority

voting on predictions obtained from different sections, to get a final

prediction of which website the trace belongs to.

4.4 Results
a) Sectioning by number of packets: Figure 13 and Figure 14

show the accuracy result in correctly predicting websites A and B,

when using sectioning by number of packets. The % of overlapping

packets and the number of sections are also varied in the figures.

Figure 13 shows the prediction accuracy for website A. With the

base case (1 section), the accuracy is comparable with the no overlap

case (89%). Sectioning by number of packets has a slightly decrease

from 87.61% to 77.13% when the number of sections is 4 and 5%

overlap. From Figure 14, it can be seen that even with 5% overlap-

ping packets, the prediction accuracy for website B with 1 section

is 22.80%. When the number of sections increases to 4, the accuracy

also increases to 64.95%. This indicates that sectioning helps in mit-

igating the impact of the overlap. Increasing the number of sections

further from 4 to 10 slightly increases the prediction accuracy and

peaks at 67.92% with 8 sections. As the % of overlap increases from

5% to 20%, the accuracy decreases as expected. When there is 20%

overlapping packets, the accuracy for 1 section decreases further to

15.85%. As the number of sections is increased to 4, the accuracy is

39.06%. With 10 sections, the accuracy is 48.47%. This is expected

as the overlapping part becomes bigger, it affects more sections,

which makes prediction of the whole website harder. As shown

in [9] and later in Section 5, the difference in prediction accuracy

in predicting websites A and B is because the beginning of a trace

is more important than the end when predicting a website.

b) Sectioning by time duration: Figure 15 and Figure 16 show

the accuracy result in correctly predicting websites A and B when

using sectioning by time duration. Figure 15 shows that the accuracy

decreases from 83.35%with 1 section to 75.70%with 5 sections with

Figure 13: Prediction accuracy of website A with varying
number of sections and overlap %, using a) sectioning by
number of packets.

Figure 14: Prediction accuracy of website B with varying
number of sections and overlap %, using b) sectioning by
number of packets.

5% overlap. However, as the % of overlap increases to over 10%,

the accuracy with 5 sections is higher than with 1 section. For

example, when the % of overlap is 20%, the accuracy for 1 section

Session 4B: Privacy AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

336



ASIACCS’19 , July, Auckland, New Zealand W. Cui et al.

Figure 15: Prediction accuracy of website A with varying
number of sections and overlap %, using b) sectioning by
time duration.

Figure 16: Prediction accuracy of website B with varying
number of sections and overlap %, using b) sectioning by
time duration.

decreases to 57.67%, and the accuracy for 10 sections is 71.44%. This

shows that unlike sectioning by number of packets, the sectioning

algorithm improves the accuracy when predicting website A. From

Figure 16, it can be seen that with 5% overlapping packets, the

prediction accuracy with 1 section is 26.09%. When the number

of sections increases to 4, the accuracy also increases to 68.25%.

This indicates that sectioning helps in mitigating the impact of

the overlap. Increasing the number of sections further from 4 to

10 slightly increases the prediction accuracy and peaks at 70.11%

with 10 sections. As the % of overlap increases from 5% to 20%, the

accuracy decreases as expected. When there are 20% overlapping

packets, the accuracy for 1 section decreases further to 17.47%. As

the number of sections is increased to 4, the accuracy is 48.58%.

With 10 sections, the accuracy is 62.59%. This result shows that

sectioning by time duration is slightly better than sectioning by

number of packets, but the shape of the graphs is similar.

Figure 17: Prediction accuracy of the overlapping parts and
non-overlapping parts.

Sectioning by number of packets means the number of packets

is the same for each section while sectioning by time duration

means the time interval is the same but number of packets could

be different for each section. The results show that sectioning by

time duration is better than sectioning by number of packets for

predicting both websites A and B (first and second websites).

4.5 Predicting Overlapping Point
Previous work [24] showed that the accuracy to find the split point

in overlapped trace is 32%. In Section 3, we showed that the split

point of two continuous traces can be accurately found. In this

section, we attempt to improve the prediction accuracy on the start

and end of where the two webpages overlap.

Our method works as follows. To determine if there is an overlap,

we hypothesize that the number of packets during an overlap will

be higher than when there is no overlap, since there will be the

network traffic from two webpages instead of one. We divided the

time into bins, so that we have discrete bins. For each bin, we then

counted the number of packets. If the number of packets in a bin

is higher than a threshold, we consider this as an overlap part. In

all our overlapped traces, we know the ground truth, so we can

calculate the accuracy of our prediction.

We vary the size of the bin from 1 millisecond to 10 seconds.

Figure 17 shows the prediction accuracy for the overlap and non-

overlap part when the bin size was 500 milliseconds. The accuracy

is around 60% when predicting either the overlap or no-overlap

part. Increasing the bin size shifts the graph to the right. We also

considered the size of all the packets in each bin as a predictor and

we obtained a similar result.

4.6 Summary
We proposed a “sectioning” algorithm that can achieve better accu-

racy (around 70%when predicting either the first or second website)

than previous methods (57% when predicting first website and 26%

when predicting second website) when there is some overlap of two

websites. We also showed that the exact point where the overlap

starts and stops can be reasonably predicted. The overlap part can
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thus be effectively ignored and an effective website fingerprinting

attack performed.

5 ANALYSIS OF PARTIAL TRACES
5.1 Motivation
This section shows the impact of the possibility of partial traces

(only part of the website traffic have been captured) on website

fingerprinting attacks. This could happen when a victim visits one

website and close the browser before the download is complete or

the adversary was only able to record part of the trace (either the

beginning or the end).

We assume there is only one website in the traffic trace. However,

the adversary is only able to record a fraction n of the traffic trace.

When n = 100%, then this is the assumption taken from previous

work that an attacker is able to capture entire traces for all websites.

We vary n from 80% to 100% of the traffic trace from either the

beginning or the end. The adversary can observe the first n% of a

website’s traffic trace before some interference occurs, or the last

n% of a website’s traffic trace. Figure 18 shows the result of our

experiments. When the whole trace is recorded, the accuracy is

at 89.9%. When 10% of the packets are missed at the end of the

trace, then the accuracy goes down to 64.1%. However, when 10%

of the packets are missed at the beginning of the trace, then the

accuracy goes down to 15.05%. It can be seen that capturing the

first n% of a website’s trace is more important than the last n%. This
could be due to more outgoing requests from the client to the server

which makes fingerprinting easier and more identifiable. This result

confirms that of [9]. The figure also shows that as the percentage of

the trace available decreases, the accuracy decreases significantly.

Figure 18: Accuracy of website fingerprinting when observ-
ing different percentages of network traffic traces.

5.2 Sectioning Algorithm on Partial Traces
Since we have shown that our sectioning algorithm can still provide

a high prediction accuracy for overlapped traces, we now apply

the same algorithm to partial traces. The hypothesis is the same:

some sections will be missing, but this should not affect the other

sections. We used the sectioning algorithm by time duration as this

has been shown to provide a better prediction accuracy. We also

Figure 19: Prediction accuracy when varying the number of
sections and the % of missing packets from the beginning.

used the same dataset as before. The training datasets consist of the

whole network traces. The testing datasets consist of the remaining

instances with missing packets either at the beginning or at the

end. For each testing dataset, we remove the first n% of packets

either from the beginning or from the end.

5.3 Results
Figure 19 and Figure 20 show the accuracy in correctly predicting

websites based on partial traces, when varying the % of missing

packets and the number of sections. The base case is with 1 section,

which means no sectioning algorithm applied. From Figure 19, it

can be seen that with 5% missing packets from the beginning of a

trace, the prediction accuracy with 1 section is 20.76%. When the

number of sections increases to 4, the accuracy increases to 57.34%.

This indicates that sectioning helps in mitigating the impact of the

missing packets. Increasing the number of sections further from 4

to 10 slightly increases the prediction accuracy and peaks at 62.66%

with 8 sections. As the % of missing packets increases from 5%

to 20%, the accuracy decreases. This is expected since with more

missing packets, it affects more sections, which makes prediction

of the whole website harder. By using our sectioning algorithm, the

accuracy improves significantly from the base case.

Figure 20 shows the accuracy of correctly predicting websites

based on partial traces with packets missing from the end. When

missing 5% and 10% packets from the end of a trace, the prediction

accuracy with 1 section is 79.02% and 58.80% respectively. With 10

section, the accuracy is 64.78% and 53.92% respectively. It is slightly

lower than the base case. However, when the % of missing increases

to 15% and 20%, the accuracy with 10 sections is 42.35% and 30.61%

compared to the base case 35.92% and 19.49%.

5.4 Summary
We show that our “sectioning” algorithm can also be used for partial

traces. It has a better accuracy (62.66%) comparing to previous meth-

ods (20.76%) on predicting websites with missing packets at the

beginning. Our algorithm achieves similar accuracy with packets
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Figure 20: Prediction accuracy when varying the number of
sections and the % of missing packets from the end.

missing at the end. In general, this shows that our proposed sec-

tioning algorithm provides a higher or similar prediction accuracy

as current algorithms.

6 CONCLUSION AND FUTUREWORK
In this paper, our goal is to address the impracticalities of website

fingerprinting attacks and propose solutions to several limitations:

(1) We propose a “splitting” algorithm to identify two continu-

ous network traces with an accuracy of 80% in finding the

split point of the two traces.

(2) We propose a “sectioning” algorithm to improve the accuracy

in website prediction of two overlapping traces from 22.80%

to 67.9% and partial traces from 20.76% to 62.66%.

For the future work, we will test our algorithm in the open world

setting andwill consider the scenario whenmore than two pages are

continuous or overlap. Moreover, we have shown some promising

results in predicting exactly where two webpages overlap; we plan

to investigate this further. We will also run more experiments with

a more diverse dataset.
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