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ABSTRACT

Most privacy-conscious users utilize HTTPS and an anonymity
network such as Tor to mask source and destination IP addresses.
It has been shown that encrypted and anonymized network traffic
traces can still leak information through a type of attack called
a website fingerprinting (WF) attack. The adversary records the
network traffic and is only able to observe the number of incoming
and outgoing messages, the size of each message, and the time
difference between messages. In previous work, the effectiveness of
website fingerprinting has been shown to have an accuracy of over
90% when using Tor as the anonymity network. Thus, an Internet
Service Provider can successfully identify the websites its users
are visiting. One main concern about website fingerprinting is its
practicality.

The common assumption in most previous work is that a victim
is visiting one website at a time and has access to the complete
network trace of that website. However, this is not realistic. We
propose two new algorithms to deal with situations when the vic-
tim visits one website after another (continuous visits) and visits
another website in the middle of visiting one website (overlapping
visits). We show that our algorithm gives an accuracy of 80% (com-
pared to 63% in a previous work [24]) in finding the split point
which is the start point for the second website in a trace. Using our
proposed “splitting” algorithm, websites can be predicted with an
accuracy of 70%. When two website visits are overlapping, the web-
site fingerprinting accuracy falls dramatically. Using our proposed
“sectioning” algorithm, the accuracy for predicting the website in
overlapping visits improves from 22.80% to 70%. When part of the
network trace is missing (either the beginning or the end), the ac-
curacy when using our sectioning algorithm increases from 20% to
over 60%.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and un-
traceability; - Networks — Network privacy and anonymity.
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1 INTRODUCTION

Anonymous communication’s goal is to hide the relationship and
communication contents among different parties. Once two par-
ties establish an anonymous communication between them, the
contents are encrypted and routing information is hidden, thus
masking the source and destination IP addresses from third par-
ties. Tor [6, 21] is one of the most popular low-latency anonymity-
providing network. It is used by millions of people daily [18]. Tor
protects users’ privacy through a telescoping three-hop circuit and
encrypts the network traffic using onion routing. Although Tor
and many other privacy-enhancing technologies such as HTTPS
proxy hide the communication contents and network layer con-
tents, the network traffic itself may leak information such as packet
size, inter-packet timing information, and direction of the packets
(from server to client or other way around).

A website fingerprinting (WF) attack is one where an attacker
identifies a user’s web browsing information by merely observing
that user’s network traffic. The attacker is not attempting to break
the encryption algorithm or the anonymity protocol. The only
information available to the attacker is the metadata information
such as packet size, the timing information between packets, and
the direction of the packet. The success of this attack is measured by
the number of websites correctly identified. The accuracy has been
shown to be around 90%[16], thus violating any privacy offered by
HTTPS and anonymity services like Tor.

It has been more than 15 years since the first website fingerprint-
ing attack was proposed [11]. A number of studies on this topic
have been released since then [3, 16, 24], showing high accuracy
in predicting websites in both the open and closed world models.
Most previous work rely on certain assumptions. The goal of this
research is to revisit some of these assumptions, namely: 1) the
adversary can record the whole network traffic trace for a web-
site 1, 2) the victim visits one website at a time; here, we consider
two cases where i) the victim visits two pages one after the other
(continuous visits) and ii) the victim visits a second page before the
first one finishes loading (overlapping visits). We propose two new
algorithms to deal with these cases. The contributions of this paper
are summarized as follows.

o A “splitting” algorithm to identify two continuous net-
work traces. We propose a new algorithm based on Hidden

INote that we used trace, network trace, website, and webpage interchangeably
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Markov Model to split and detect traces with two continuous
pages. We show that our algorithm gives a higher accuracy
in finding the split point in two continuous websites (80%
compared to 63% in previous work). This is also the first
time that the accuracy in directly predicting websites in
continuous traffic traces is tested and shown.

e A “sectioning” algorithm to identify overlapping net-
work traces. We propose a new algorithm to section the
trace into multiple sections and treat each section indepen-
dently to perform the website prediction. The hypothesis is
that if two traces overlap, the beginning of the first trace and
the end of the second trace would be unaffected. Sectioning
then still allows for correct identification of the two web-
sites. When considering overlapping traces, the accuracy of
current techniques for website fingerprinting decreases to
20% — 30%. Our sectioning algorithm improves the accuracy
to around 70%.

e Applying “sectioning” algorithm on partial traces. By
applying “sectioning” on partial traces, the accuracy (62.66%)
is higher compared to previous methods (20.76%) on predict-
ing websites with the beginning 5% of the trace missing.
When predicting websites with the last parts of the trace
missing, the accuracy is comparable. Hence, with sectioning
algorithm, we can reduce the impact of missing packets in a
network trace.

This paper is structured as follows: in Section 2, we give the
related background and terminology of this paper. In Section 3,
we propose a new “splitting” algorithm to find the split point in
two continuous page traces and present the results. We propose a
new “sectioning” algorithm to improve the accuracy in overlapping
traces in Section 4 and in partial traces in Section 5. We conclude
and provide avenues for future work in Section 6.

2 BACKGROUND

o Definitions. We first define some terms used.

— Trace. A trace is a time series of recorded network packets
for a visit to a webpage. Usually, tcpdump is used to record
the network traffic. A trace contains no background noise,
only the network traffic to/from that webpage.

- Continuous Trace. When a trace consists of two pages,
and the second page starts when the first page ends, we
call it a continuous trace. It has the same meaning as when
the two pages are separated with zero-time.

— Split Point. When a trace is composed of two pages, the
first step is to separate them before further detecting. The
point where the second page starts and the first page ends
is the split point.

— Overlapping Trace. When a trace consists of two pages,
and the second page starts before the first page ends, we
call it an overlapping trace. It has the same meaning as
when the two pages are separated with negative-time.

o Threat Model. In website fingerprinting attacks, the adver-
sary records network traffic data of his own visits to a list of
websites first through the Tor network. Then the adversary
can eavesdrop on the link between the victim and the entry
node. Figure 1 depicts where the adversary is. We assume
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the attacker to be a passive observer which means it does
not modify transmissions and is not able to decrypt packets.
An example of the adversary is Internet Service Providers
(ISP), and state-level agencies.

‘ Tor Network
Adversary

User m\ Server
[ A
‘ | [ 222111 o]
[ 221211 9]
==\ : > d > (2212171 9]
~_ J wii

Figure 1: Threat Model.

WF Attack Procedures. Website fingerprinting has been
shown to be a serious threat against privacy mechanisms
for anonymous web browsing. Researchers have proposed
different scenarios for website fingerprinting. The attack
and resulting experiment vary from each other; however,
they all follow similar steps. A website fingerprinting attack
and analysis can be divided into six steps: 1) collect data, 2)
extract features from data, 3) select algorithm, 4) build model
based on 1) to 3), 5) evaluate real network traffic trace, and 6)
evaluate results. Figure 2 shows an illustration of all the steps
of a website fingerprinting attack. The last right-most block
contains the measurements to evaluate the effectiveness of
an attack.

When setting up an experiment for a website fingerprinting
attack, the first step is to perform data collection. A net-
work traffic recording tool such as wireshark or tcpdump
is used. Before running any scripts to automatically collect
data, the configuration of the browser should be set to match
the assumptions, such as disabling all plug-ins to avoid back-
ground noise and clearing the browser cache. The automated
script will then visit websites in a certain order. The time
taken to collect data depends on the number of instances
recorded for each website and the size of the website list.
Features extracted from the recorded network traffic traces
will be used for training. Each network trace is composed
of a list of features. The features can be treated as attributes
in a machine learning context. A classification algorithm is
applied to these features to build the attack model. Different
websites correspond to different classes. Different network
traffic traces are then collected to evaluate the performance
of the model. A 10-fold cross validation is often employed to
reduce the bias in the evaluation process.

Closed world and Open World. The WF attack experi-
ments can be built based on two different scenarios: closed
world and open world. The closed world model is used when
complete information is available. The assumption in a closed
world model is that an attacker knows the metadata infor-
mation for a list of websites. The website visited by a victim
is in the list known by the attacker. It is a strong assumption
which is used to simplify the threat model, implementation
of the experiment, and evaluation of the success of the at-
tack. Since the closed world scenario is the more basic model,
most research work [1, 3-5, 10-13, 17, 19, 20, 23] include an
analysis of results in this closed world model.
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Figure 2: Steps of launching and evaluating a website fingerprinting attack.

In an open world model, a website being fingerprinted can
be either from the list or not in the list. The attacker keeps
track of a small list of monitored websites. Once a website
fingerprint is obtained, the attacker attempts to determine
if that website is part of the list of monitored websites or
not. More recent research work [4, 5, 8, 12, 14-17, 22-24]
deployed their website fingerprinting experiments under the
open world model and identified whether a website is from
the list of monitored sites.

Dataset. Based on the foreground dataset of RND-WWW
from [16], our experiments in Section 3 , Section 4, and
Section 5 randomly pick 100 website records which contain
40 instances for each website from the original dataset. Each
instance is a trace containing the timestamped incoming and
outgoing packets’ size in chronological sequence. Incoming
packets are marked with a positive sign, while outgoing
packets are marked with a negative sign.

Hidden Markov Model. The Hidden Markov Model (HMM)
is a Markov process with unobserved states. It is a statisti-
cal tool to model sequences that can be characterized by a
process from a generated observable sequence [2]. Based on
some training data, the HMM generates the probabilities of
the states in the dataset. The parameters of a HMM are of two
types: transition probabilities and emission probabilities. The
transition probability indicates the probability that a state
changes to another state and the emission probability is the
probability of an observation within a state. The transition

and achieved an accuracy of more than 90%. [7] investi-
gated the assumption of the victim and attacker visiting the
webpages under the same conditions such as browsers and
devices. The assumption of single page visits has been ex-
plored in [24, 25]. The algorithm in [24] achieves more than
90% accuracy in distinguishing between one-page trace and
two-pages traces that are positive-time separated. However,
in the following steps of finding the split point, the algorithm
has many limitations. First of all, the accuracy is low in the
two cases we consider. When two pages are zero-time sepa-
rated (continuous visits), the accuracy to find the split point,
that is, where the end of one website trace ends and the sec-
ond website trace begins, is around 63%. When two pages are
negative time separated (overlapping visits), the accuracy to
find the split point falls to 32%. [25] improves the accuracy
to find the split point, however, they can only predict the
first webpage in a two-page visit. Another limitation of [24]
and [25] is that they could not directly predict the websites
in the network traffic trace recorded. They attempted to find
the split point first and used previous WF approaches for
predicting the websites, which leads to a higher cost in time.
In our work, we develop two new algorithms to eliminate
these limitations.

3 ANALYSIS OF CONTINUOUS TRACES

matrix and emission matrix store the transition probability Notation Definition

and emission probability of each state respectively. Nawb the number of websites

e Classification of single-page and two-page traces. An Nunique  the number of packets with unique sizes in all
approach was developed to distinguish traces between one- website traces
page trace and two-page traces in [24]. The authors em- Npas the number of a packet size p in website A {start}
ployed k-NN binary classification and trained on two classes: state
a class of two-page traces (a network trace consisting of two Nyotal,,  the total number of packets in website A {start] state
webpages), and a class of single-page traces (a network trace Shlock the size of each block
consisting of only one webpage). The classification accuracy Pfinal a matrix of the probabilities of each packet
is 97%. Based on their results, we assume it is capable to belonging to each class/website
identify a trace with single page or two pages. ltrace the length of a trace

o Related work. The practicality of the WF attack has been
discussed previously. A critical evaluation of WF attacks [12]
pointed out the common assumptions of previous work and
limitation of datasets and single page visits. The CUMUL
algorithm [16] was developed with an Internet scale dataset

Table 1: Notations used in our algorithm.

In this section, we introduce our algorithm based on Hidden
Markov Model to detect two continuous websites with zero-time

330



Session 4B: Privacy

0.9
A

A start

Figure 3: State transition of website A.
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Figure 4: Probability of each packet belonging to each web-
site (the sum of three states for each website) obtained from
the HMM model (for clarity, every 20 data point is plotted.
Best viewed in color).
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Figure 5: Probability of predictions for the corresponding
website (probability of websitel belonging to sectionl and
probability of website0 belonging to section2) when moving
the split point between section 1 and section 2 from left to
right. See Figure 4 for the actual predictions.
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Figure 6: Example when labeling block 1 and block 3.

separated. We describe the details of the algorithm first, followed by
the experiments and evaluations of this algorithm. The notations
used in the algorithm are introduced in Table 1.

3.1 Algorithm description

Our proposed algorithm can be divided into two steps: 1) Apply
Hidden Markov Model to get the probability matrix, 2) Label each
block based on the probability matrix and pick split point based on
labels.

Step 1: Apply Hidden Markov Model to network traffic trace and
obtain the probability of each class (website) that each packet be-
longs to (probability matrix).

To form states, we split each packet trace into three parts: 1)
start which is first 20 packets in the network traffic trace, 2) middle
which is the collection of packets between start and end, and 3)
end which is last 20 packets in the network traffic trace. We then
build our transition and emission matrices. The dimension of the
transition matrix would be (3 X n,,p,)%.

We use website A as an example. Assume the length of a trace is
ltrace; this is the number of packets in website A. Figure 3 shows
the state transition within website A. For a packet from website
A, it has 22— probability to belong to A’s start state, 1 — 22

ltrace 20 ltrace

probability to belong to A’s middle state and ” probability to

belong to A’s end state. If a packet in A is in the start state, then
2O/ltrace
1_(40/ltruce)+(20/ltra
1_(40/ltrace)
1_(40/ltrace)+(20/ltrace)
change to the middle state. From analysis of the dataset, we find that

= 20/lirace
lirace T=(40/ I race)+(20/ I race) as 10% and

as 90%. In a similar way, if A is currently

for the next packet it has a ) probability to

stay in its current state and probability to

= 0.9 or 9%, thus we set

1_<40/ltrace)
1_(4O/ltrace)+(20/1trace)
in the middle state, then the next packet could stay in the middle

state with 90% probability or change to the end state with a 10%
probability. When the packet is in the end state, we set that A has an
equal probability of ni;)“ to stay in the end state or change to any
other website’s start state. For the emission matrix, the dimension
is (3 X nyp) X Nunique Where nynique is the number of unique
length of packets in all website traces, where 3 indicates the three
states (start, middle, and end) for each website. For a packet size P
in website A in the start state, ny,, , the total number of packets in
A start state is ny44 41, - The emission probability for P in A’s start
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propagation, we obtain the probabilities of each packet belonging to

each class/website as pf;pq;. For simplicity, we show the prediction
for five websites in Figure 4. The split point happens at packet
number 389 and the network traffic trace is composed of website
1 followed by website 0. The different colors of the lines indicate
different websites. A website’s different states are shown in the
same color. From the figure, we can see that the algorithm predicts
website 1 with a probability higher than any other website until
about the split point where the algorithm predicts website 0 with
the highest probability.

Step 2: Find the split point.

The split point needs to be identified automatically. The main
idea of this step is to traverse each packet in a trace from left to
right as a split point and measure the probability of the website in
two sections, section 1 and section 2, split by the split point. Based
on the example in Figure 4, Figure 5 shows the trend of the ratio in
section 1 and section 2. By moving the split point from left to right,
the probability of predicted website (website 1) in section 1 drops
while the probability of predicted website (website 0) increases in
section 2. The split point 400 occurs at the intersection of the two
lines in Figure 5.

Instead of analyzing each packet, we decide to extract features
from blocks to reduce the processing time. We divide the whole
trace into several blocks with multiple packets; the size of each
block is spjock. Assume the length of a trace is Iy qce, then a trace
is split into npjoek = lirace/Sphiock blocks. We name the block from
left to right as block 1, block 2, ..., block n. And we assume the split
point is at the end of one of the blocks.

First, we label each block to indicate whether the block is before
or after the split point. When labeling block m, we consider block
1 to block m to be section 1 and block m + 1 to block n as section
2. The block m is labeled based on the ratio rs; of the number of
packets belonging to website X in section 1 and the ratio rsz of the
number of packets belonging to website Y in section 2, where X
and Y indicate the website with the highest ratio in section 1 and
section 2 respectively. We set a ratio bottom line tpj,.x for rg; and
rs2. When labeling the block, we use 0 to represent the block is
before the split point and 1 to represent the block is after the split
point. If r¢1 > tp70ck> Which indicates more than t),.r sectionl is
composed of website X, and label the block as 0. If g1 < tpock and
rs2 > tpiocks label the block as 1. If rg1 < fp70ck and rs2 < tpiocks
it indicates that this block does not provide valid information, then
this block won’t be labeled and recorded. When labeling every
block, record the end point of each block as a block index into
point_list.

We use the example in Figure 4 to illustrate the algorithm behind
the labeling process. Figure 5 and Figure 6 are based on this example.
The trace contains 1, 800 packets and is divided into 9 blocks; the
size of each block is 200 packets. The split point between section 1
and section 2 moved from 200 to 1600.

We only list the process when labeling block 1 and block 3 as
an example. For a packet, we use the website with the highest
probability as the prediction for the packet. In this example we set
thlock @s 95%. When labeling block 1, section 1 contains block 1 and
section 2 is from block 2 to block 9; split point is 200. From Figure 4

state would then be After applying forward and backward
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we can see that the predicted website in section 1 is website 1 and
from Figure 5, the confidence of this prediction is close to 1, which
means, rs1 is close to 100% thus rg1 > 95%, then we label block 1
as 0, meaning block 1 is before the split point. For labeling block 3,
section 1 is composed of block 1, block 2 and block 3, and section
2 is from block 4 to block 9. For the first 600 packets in section 1,
the probability of website 1 is 67% which is less than 95%, then we
label block 3 as 1 representing block 3 is after the split point. Under
the perfect condition, the split point should be at the point when
rs1 and rgo meet which is in between 0 and 1 in the label list.

After labeling each block, we pick the split point based on the
sequence of labels. The expected list of labels is {0, 0, ...,0, 1,1, ..., 1}.
However, when labeling block n, if none of the highest ratio in
section 1 and section 2 achieve the threshold tp;,.k, the label of
this block will be missed. We propose an algorithm to find the split
point and is able to handle all these situations. The two main cases
are classified by whether 1 is in the label_list.

e label_list contains 1s. If label_list = (0,0...0, 1, 1...1), that

is the format we expect. 0 represents the block is before the
split point and 1 is the opposite. Then the split point is after
the last block labeled with 0.
If label_list = (1,1,1...1,0,0..,0,1,1,...,1), it shows that
there is some noise at the beginning of the trace as well as
some at the end of the trace. However it does not affect the
process to find the split point since we only focus on the
changes in the trace. We will still assume the split point is
after the block with last 0.

e label list contains Os only. The algorithm will check if
enough information is obtained first before making the de-
cision. If blocks are continuously labeled from the first to
last block, then we assume that pattern for the probabilities
of the first website is clear and return the point after the
last labeled block as the split point. This means that the last
block is section 2. Otherwise, the backup algorithm will be
applied.

The pseudo code of the algorithm is outlined in Algorithm 1.

The main idea of the backup algorithm is to find the split point
when the average of the highest ratio of predicted websites in
section 1 and section 2 is higher than any other point. Assume
that point_list = (1 Spjocks2 Shlocks - 1 Shlock)> for split point
i — Splock> Where i = 1, ..., n. The two sections split by this point
i are called section 1 and section 2. We denote the percentage of
packets belonging in section 1 as r1; (that is, these packets are
correctly marked in the correct section) and the percentage of
packets belonging in section 2 as r2;. The average ratio at point
i —Splock 1 avg(rl;, r2;) — the point with the highest average ratio
among all points in the point_list is considered as the split point.
The backup algorithm is rarely called in our simulations.

3.2 Results for Finding Split Point

The values of spjocx and tpock are selected as 200 and 95%. We used
the dataset foreground RND_WWW and CUMUL features from [16]
and randomly picked 100 distinct websites with 40 instances each
from the dataset. For each website, 20 instances are applied in
training and the other 20 are used for testing. Training dataset is
then composed of 100 websites with 20 instances each. In order
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Algorithm 1 Main Algorithm to Find Split Point

1: procedure GET_CHANGEPOINT(point_list, label_list)
2 if point_list is not empty then
3 if 1isin label_list then
4 if label_list[0] is 0 then
5 Return point af'ter last 0
6 else
7 if label_list[0]is 1 then
8 Return point after last 0
9 else
10: Return backup algorithm
11: end if
12: end if
13: else
14: if length(point_list) is 1 then
15: Return backup algorithm
16: end if
17: if point_list[0] is spjock and point_list = (1 Spocks 2 Sblocks
18: Return point_list[n — 1]
19: else
20: Return point_list[0]
21: end if
22: end if
23: else
24: Return backup algorithm
25: end if

26: end procedure

> label_list = (0,0...0,1,1...1)

> label_list = (1,1...1,0,0...0,1, 1...1)

> label_list contains 0 only

cees N Splock) then
> return last point in the point_list

> point_list is empty

to simulate the process of visiting one website after another, we
picked two websites randomly from the testing set 200 times and
concatenated their network traffic trace to form the test set. Since
each website for the testing set has 20 instances, there are 4, 000
traces in total in the testing dataset.

We removed the packets with size of Maximum Transmission
Unit (MTU) to improve the accuracy. We also consider another
threshold in addition to pr;,ay. that is, if the highest probability
of a packet belonging to every class is lower than the threshold
toriginal> Where fopigingi is set to 0.8 in the experiment, then that
packet will be ignored. A few other thresholds were chosen and it
was found that 0.8 gave the best result. Thus we only consider the
predictions with high probability. We found that by removing MTU
and adding this new threshold value, the accuracy is increased.

We analyze the accuracy of the split point from two metrics:
1) the related deviance of the predicted split point from the real
split point and 2) the accuracy of the split point. The related de-
viance is calculated by abs(predicted_point — real_point)/lirace-
The lowest average related deviance we obtained when testing on
10 and 100 websites are 0.154 and 0.16 respectively, which means
the performance of the algorithm is stable when increasing the
number of websites. If the predicted split point is before the real
split point, the first website loses partial data at the end, and the
second website receives extra data at the beginning. Figure 7 shows
the decrease in prediction accuracy under a closed world setting.
The test dataset is composed of 12 parts; each part contains 100
websites and 20 instances of each website. The first 6 parts consist
of cutting 30%/20%/10% traces at the beginning or end of each trace,
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The second 6 parts are composed of adding 30%/20%/10% traces at
the beginning or end of each trace. It shows the effect on prediction
accuracy for the first and second website in a continuous trace
when the predicted split point is before or after the the real split
point. For two continuous websites, the error on the split point has a
bigger effect on the second website. A 0.16 related deviation means
the average split point is between 0.84 to 1.16 on the x-axis in Fig 7.
In this area, it can detect the first website with a decreased accuracy
of 15%. Since the original accuracy in detecting one website with
website fingerprinting using the k-NN algorithm is about 90% (from
figure 5), the accuracy to predict the first website is thus around
90% — 15% = 75%. However, for the second website, the accuracy
is lower. To calculate the accuracy of the split point, we consider
that the prediction is correct if the block/point prediction is clos-
est to the real split point. The number of points/blocks is decided
by lirace/Sblocks Where spiock is selected as 200. For example, if
the length of the continuous traces is 3, 000 with the split point at
packet number 425, and point_list = {200, 400, 600, 800, ..., 2800},
we consider the prediction is correct if the predicted split point is
400. Among 4, 000 test traces, 3, 200 of them are predicted with the
correct split point. The split point accuracy is thus 80%.

3.3 Results for Website Prediction

The ultimate goal of WF attack is to predict visited websites. The
advantage of this algorithm is that it can detect the website directly
after finding the split point. We still use t5,;4inq; to filter packets
first and assume the packet belongs to website A if A has the high-
est probability among all websites (known from pg;pq;). Then we
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Figure 7: Decrease on prediction accuracy of the first and sec-
ond website when the predicted split point is not accurate.

calculate the percentage of each website before and after the split
point. The website with the highest percentage is the predicted
website. We trained on 100 websites and tested on 4, 000 instances.
When considering websites with the top three highest probabilities,
the accuracy for the first website is 70.2% and the accuracy for the
second website is 69.2%.

3.4 Summary

In summary, our “splitting” algorithm has three distinct advantages
over [24]. First, it doesn’t require new training data, only based on
original website traces. Second, it has a higher accuracy of 80% in
detecting split point compared to 63%. Third, [24] didn’t predict
websites for real after finding the split point. From their description,
they will reuse previous WF attack approach on two split sections.
However, in our algorithm, websites can be predicted directly after
finding the split point from the probability matrix and predicted
split point.

4 ANALYSIS OF OVERLAPPING TRACES
4.1 Motivation

This section provides an overview of the design of our experiments
and a description of our website fingerprinting attack when consid-
ering the situations of two overlapping traces (webpages that are
negative-time separated). This means that a victim visits a second
webpage while the first webpage is still loading. It’s not realistic
to assume that a user visits only one webpage at a time. However,
only one previous paper [24] has looked at overlapping website
visits. Figure 8 illustrates two overlapping traces. Trace A belongs
to website A and Trace B is from website B. The size of the overlap
can vary. We focus on predicting both website A and website B.
In previous work, the prediction accuracy of classifying websites
based on features like packet sizes and number of packets is high
at around 90%. Figure 9 shows the accuracy of the k-NN algorithm
when predicting traces with overlapped packets. It can be seen that
the accuracy decreases significantly from 89.89% to 22.80% with
5% overlapped packets and to 19.29% with 10% overlapped packets.
Thus, overlapping traces have a big impact on prediction accuracy.
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In fact, visiting a webpage at the same time as another webpage
can be used as a defense to mitigate website fingerprinting attacks
because it generates “noise”. We, thus, propose a new “sectioning”
algorithm that can still accurately perform website fingerprinting
attack on overlapped website visits.

Overlapping Point

Overlapped Part

Figure 8: Two website traces A and B overlap.

4.2 Sectioning Algorithm

We now present the design of our proposed “sectioning” algorithm.
Instead of treating a traffic trace as a whole, we split the trace
into a certain number of sections and perform website prediction
on each section. The intuition behind why sectioning will help
improve accuracy is that the overlapped parts will only appear in
some sections of the trace and other sections will not be disturbed.
We also hypothesize that most sections of the trace will not be
disturbed. This allows us to perform a majority voting on all the
sections to decide which website is being visited.

Figure 10 shows the key parts of our sectioning algorithm: parti-
tioning and majority voting.

1) Partitioning an instance into n sections: Partitioning each
instance into sections is the most important part of our algorithm.
Each trace, whether for training set or testing set, will be partitioned
into n sections. If n = 1 section, this means there is one section and
this is what previous work has looked at; this is the base case. Each
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Figure 9: Prediction accuracy as more packets overlap in the
two traces.
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Figure 10: Outline of sectioning algorithm.

section will be evenly split by two methods: a) number of packets;
b) time duration of a trace.

1a) sectioning by number of packets: If a trace has 1,000
packets and will be partitioned into 10 sections, then each section
will contain 100 packets.

1b) sectioning by time duration: If the duration of a trace is
10 seconds, when partitioning it into 10 sections, then interval of
each section will be 1 second. The sections with overlapping traces
will clearly have more packets, but the number of sections stays
the same with regards to the training set.

2) Perform majority voting: As Figure 10 shows, the last step
of our algorithm is to perform majority voting. The purpose of
sectioning is to reduce the interference in prediction caused by
the overlapped packets, that is, any incorrect predictions made
due to overlapped packets will be ignored if the majority of the
trace (or sections) is not affected (overlapped). We already have the
predictions for each section of each trace. To predict the website for
a trace, majority voting is performed on the n sections of that trace
to determine the predicted website. If there is no clear majority,
any of the highest number of predictions is chosen. For example,
like the overlapped trace B in Figure 8, a trace of website B is
partitioned into 5 sections. Suppose first 2 out of these 5 sections
contain overlapped packets from another trace of website A. The
prediction for the first section is website A while the prediction for
the second section is website B. Since the remaining 3 sections are
unaffected, the predictions are website B. In this case, website B
received 4 predictions while website A received 1 prediction. Using
majority voting, this trace will be classified as website B.

4.3 Experiment Setup

Figure 11 shows our sectioning algorithm. The steps are as follows:
1) split dataset into training and testing sets (Figure 11(a)); 2) Insert
certain amount of packets randomly from another website into the
trace of each instance of testing sets — this forms the overlapped
traces (Figure 11(a)); 3) Partition into n sections for both training
and testing sets accordingly (Figure 11(b)); 4) Apply machine learn-
ing classifier (for example, k-NN) to each section ((Figure 11(c));
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5) A majority vote will be performed for the predictions from the
different sections (Figure 11(d)); 6) Repeat to do 10-fold cross vali-
dation.

We detail each step next.

1) Dataset: As mentioned before, we randomly chose n = 100
websites and k = 40 instances per website from the RND-WWW
dataset and CUMUL features from [16]. Our first step is to split
instances of each website into training and testing set under a 10-
fold cross validation. 10% of instances are in testing set, the rest are
in the training set. This means that 36 of 40 instances will be treated
as training set data for each website. We repeat each experiment 10
times, each time choosing a random 36 instances for training.

2) Overlapped traces simulation: An overlapping visit means
visiting one website while visiting another website, so that it is
hard to tell which website the packet trace belongs to. As Figure 8
shows, website B has an overlap at the beginning with website A
and website A has an overlap at the end with website B. We attempt
to predict both websites using the sectioning algorithm. Wang’s
work [24] showed that it’s possible to find the split point which is
the end of website A and the start of website B in overlapped traces.
We will outline our improved algorithm in Section 4.5. Figure 12
shows that for our simulation, we insert-merge packets to the begin-
ning of a website trace when predicting website B, and insert-merge
packets to the end of a website trace when predicting website A. To
simulate overlapped traffic traces, we add packets from one traffic
trace (instance) of another website A to the beginning of website B
or vice versa. This is not a prepend method, but instead a merging
is performed. Each instance contains packets’ sizes along with the
time stamp for each packet. We take the last few packets of website
A and reset the timestamp of that first packet to be zero so that
the last few packets of website A are merged into the beginning of
website B. We also simulated different overlapping fractions from
5% to 20%; this means we obtained the last 5% of packets from
website A’s network trace and merged with the beginning of the
trace for website B. Also, we do the same procedure to the end of
the trace for website A.

As an example of inserting A to the beginning of B, all packets
are of the format < time >:< packetsize >. Let’s say the last two
packets of website A are 2045 : 1040 and 2100 : 500 and the first
two packets of website B are 50 : 412 and 70 : 250. Resetting the
timestamp of the first packet from website A to zero, the packets
are then 0 : 1040 and 55 : 500. Merging both set of packets together
produces a new network trace with packets 0 : 1040, 50 : 412,
55 : 500, and 70 : 250.

3) Sectioning: We emphasize that the training sets are the orig-
inal traces. Only the testing datasets are “overlapped”. We cross-
validated the training set to obtain a reasonable model. Every trace,
in both training and testing sets, will be partitioned into n sec-
tions, where n = 1,4, 5, 8, 10. Each section is then parsed using the
CUMUL features, similar to [16].

4) Run training/testing: After we have each trace split into n
sections, 90% of instances with same section number will be used as
the training set. We test the trained classifier on the remaining 10%
of instances with the same section number. For classifier algorithm,
we use the k-nearest neighbor (k-NN) algorithm. Since each section
is trained and tested independently of other sections, the result is n
predictions for the n sections. The n predictions can be the same
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Figure 11: Overview of the sectioning algorithm.
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Figure 12: Simulate overlapping: add packets to the begin-
ning of trace.

website or different websites. Figure 10 shows this procedure; in the
figure, n = 5 sections, thus there are 5 prediction sets accordingly.

5) Perform majority voting: Finally, we perform a majority
voting on predictions obtained from different sections, to get a final
prediction of which website the trace belongs to.

4.4 Results

a) Sectioning by number of packets: Figure 13 and Figure 14
show the accuracy result in correctly predicting websites A and B,
when using sectioning by number of packets. The % of overlapping
packets and the number of sections are also varied in the figures.
Figure 13 shows the prediction accuracy for website A. With the
base case (1 section), the accuracy is comparable with the no overlap
case (89%). Sectioning by number of packets has a slightly decrease
from 87.61% to 77.13% when the number of sections is 4 and 5%
overlap. From Figure 14, it can be seen that even with 5% overlap-
ping packets, the prediction accuracy for website B with 1 section
is 22.80%. When the number of sections increases to 4, the accuracy
also increases to 64.95%. This indicates that sectioning helps in mit-
igating the impact of the overlap. Increasing the number of sections
further from 4 to 10 slightly increases the prediction accuracy and
peaks at 67.92% with 8 sections. As the % of overlap increases from
5% to 20%, the accuracy decreases as expected. When there is 20%
overlapping packets, the accuracy for 1 section decreases further to
15.85%. As the number of sections is increased to 4, the accuracy is
39.06%. With 10 sections, the accuracy is 48.47%. This is expected
as the overlapping part becomes bigger, it affects more sections,
which makes prediction of the whole website harder. As shown
in [9] and later in Section 5, the difference in prediction accuracy
in predicting websites A and B is because the beginning of a trace
is more important than the end when predicting a website.

b) Sectioning by time duration: Figure 15 and Figure 16 show
the accuracy result in correctly predicting websites A and B when
using sectioning by time duration. Figure 15 shows that the accuracy
decreases from 83.35% with 1 section to 75.70% with 5 sections with
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Figure 13: Prediction accuracy of website A with varying
number of sections and overlap %, using a) sectioning by
number of packets.

100
80
—_ 1 hmmmm—— O
&) . Slein st A S .
e 60 .
>
U
& | S e -
g 40 ==t
< 5% overlap
—— 10% overlap
20 —e— 15% overlap
-+~ 20% overlap
0

4 6
Number of Sections

8 10

Figure 14: Prediction accuracy of website B with varying
number of sections and overlap %, using b) sectioning by
number of packets.

5% overlap. However, as the % of overlap increases to over 10%,
the accuracy with 5 sections is higher than with 1 section. For
example, when the % of overlap is 20%, the accuracy for 1 section



Session 4B: Privacy

100
80
)
< 60
>
Q
o
g 40
< --+- 5% overlap
—a— 10% overlap
20 —e— 15% overlap
-+~ 20% overlap
0

2 4 6 8 10

Number of Sections
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Figure 16: Prediction accuracy of website B with varying
number of sections and overlap %, using b) sectioning by
time duration.

decreases to 57.67%, and the accuracy for 10 sections is 71.44%. This
shows that unlike sectioning by number of packets, the sectioning
algorithm improves the accuracy when predicting website A. From
Figure 16, it can be seen that with 5% overlapping packets, the
prediction accuracy with 1 section is 26.09%. When the number
of sections increases to 4, the accuracy also increases to 68.25%.
This indicates that sectioning helps in mitigating the impact of
the overlap. Increasing the number of sections further from 4 to
10 slightly increases the prediction accuracy and peaks at 70.11%
with 10 sections. As the % of overlap increases from 5% to 20%, the
accuracy decreases as expected. When there are 20% overlapping
packets, the accuracy for 1 section decreases further to 17.47%. As

the number of sections is increased to 4, the accuracy is 48.58%.

With 10 sections, the accuracy is 62.59%. This result shows that
sectioning by time duration is slightly better than sectioning by
number of packets, but the shape of the graphs is similar.
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Figure 17: Prediction accuracy of the overlapping parts and
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Sectioning by number of packets means the number of packets
is the same for each section while sectioning by time duration
means the time interval is the same but number of packets could
be different for each section. The results show that sectioning by
time duration is better than sectioning by number of packets for
predicting both websites A and B (first and second websites).

4.5 Predicting Overlapping Point

Previous work [24] showed that the accuracy to find the split point
in overlapped trace is 32%. In Section 3, we showed that the split
point of two continuous traces can be accurately found. In this
section, we attempt to improve the prediction accuracy on the start
and end of where the two webpages overlap.

Our method works as follows. To determine if there is an overlap,
we hypothesize that the number of packets during an overlap will
be higher than when there is no overlap, since there will be the
network traffic from two webpages instead of one. We divided the
time into bins, so that we have discrete bins. For each bin, we then
counted the number of packets. If the number of packets in a bin
is higher than a threshold, we consider this as an overlap part. In
all our overlapped traces, we know the ground truth, so we can
calculate the accuracy of our prediction.

We vary the size of the bin from 1 millisecond to 10 seconds.
Figure 17 shows the prediction accuracy for the overlap and non-
overlap part when the bin size was 500 milliseconds. The accuracy
is around 60% when predicting either the overlap or no-overlap
part. Increasing the bin size shifts the graph to the right. We also
considered the size of all the packets in each bin as a predictor and
we obtained a similar result.

4.6 Summary

We proposed a “sectioning” algorithm that can achieve better accu-
racy (around 70% when predicting either the first or second website)
than previous methods (57% when predicting first website and 26%
when predicting second website) when there is some overlap of two
websites. We also showed that the exact point where the overlap
starts and stops can be reasonably predicted. The overlap part can



Session 4B: Privacy

thus be effectively ignored and an effective website fingerprinting
attack performed.

5 ANALYSIS OF PARTIAL TRACES
5.1

This section shows the impact of the possibility of partial traces
(only part of the website traffic have been captured) on website
fingerprinting attacks. This could happen when a victim visits one
website and close the browser before the download is complete or
the adversary was only able to record part of the trace (either the
beginning or the end).

We assume there is only one website in the traffic trace. However,
the adversary is only able to record a fraction n of the traffic trace.
When n = 100%, then this is the assumption taken from previous
work that an attacker is able to capture entire traces for all websites.
We vary n from 80% to 100% of the traffic trace from either the
beginning or the end. The adversary can observe the first n% of a
website’s traffic trace before some interference occurs, or the last
n% of a website’s traffic trace. Figure 18 shows the result of our
experiments. When the whole trace is recorded, the accuracy is
at 89.9%. When 10% of the packets are missed at the end of the
trace, then the accuracy goes down to 64.1%. However, when 10%
of the packets are missed at the beginning of the trace, then the
accuracy goes down to 15.05%. It can be seen that capturing the
first n% of a website’s trace is more important than the last n%. This
could be due to more outgoing requests from the client to the server
which makes fingerprinting easier and more identifiable. This result
confirms that of [9]. The figure also shows that as the percentage of
the trace available decreases, the accuracy decreases significantly.

Motivation
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Figure 18: Accuracy of website fingerprinting when observ-
ing different percentages of network traffic traces.

5.2 Sectioning Algorithm on Partial Traces

Since we have shown that our sectioning algorithm can still provide
a high prediction accuracy for overlapped traces, we now apply
the same algorithm to partial traces. The hypothesis is the same:
some sections will be missing, but this should not affect the other
sections. We used the sectioning algorithm by time duration as this
has been shown to provide a better prediction accuracy. We also
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Figure 19: Prediction accuracy when varying the number of
sections and the % of missing packets from the beginning.

used the same dataset as before. The training datasets consist of the
whole network traces. The testing datasets consist of the remaining
instances with missing packets either at the beginning or at the
end. For each testing dataset, we remove the first n% of packets
either from the beginning or from the end.

5.3 Results

Figure 19 and Figure 20 show the accuracy in correctly predicting
websites based on partial traces, when varying the % of missing
packets and the number of sections. The base case is with 1 section,
which means no sectioning algorithm applied. From Figure 19, it
can be seen that with 5% missing packets from the beginning of a
trace, the prediction accuracy with 1 section is 20.76%. When the
number of sections increases to 4, the accuracy increases to 57.34%.
This indicates that sectioning helps in mitigating the impact of the
missing packets. Increasing the number of sections further from 4
to 10 slightly increases the prediction accuracy and peaks at 62.66%
with 8 sections. As the % of missing packets increases from 5%
to 20%, the accuracy decreases. This is expected since with more
missing packets, it affects more sections, which makes prediction
of the whole website harder. By using our sectioning algorithm, the
accuracy improves significantly from the base case.

Figure 20 shows the accuracy of correctly predicting websites
based on partial traces with packets missing from the end. When
missing 5% and 10% packets from the end of a trace, the prediction
accuracy with 1 section is 79.02% and 58.80% respectively. With 10
section, the accuracy is 64.78% and 53.92% respectively. It is slightly
lower than the base case. However, when the % of missing increases
to 15% and 20%, the accuracy with 10 sections is 42.35% and 30.61%
compared to the base case 35.92% and 19.49%.

5.4 Summary

We show that our “sectioning” algorithm can also be used for partial
traces. It has a better accuracy (62.66%) comparing to previous meth-
ods (20.76%) on predicting websites with missing packets at the
beginning. Our algorithm achieves similar accuracy with packets
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Figure 20: Prediction accuracy when varying the number of
sections and the % of missing packets from the end.

missing at the end. In general, this shows that our proposed sec-
tioning algorithm provides a higher or similar prediction accuracy
as current algorithms.

6 CONCLUSION AND FUTURE WORK

In this paper, our goal is to address the impracticalities of website
fingerprinting attacks and propose solutions to several limitations:
(1) We propose a “splitting” algorithm to identify two continu-
ous network traces with an accuracy of 80% in finding the
split point of the two traces.
(2) We propose a “sectioning” algorithm to improve the accuracy
in website prediction of two overlapping traces from 22.80%
to 67.9% and partial traces from 20.76% to 62.66%.

For the future work, we will test our algorithm in the open world
setting and will consider the scenario when more than two pages are
continuous or overlap. Moreover, we have shown some promising
results in predicting exactly where two webpages overlap; we plan
to investigate this further. We will also run more experiments with
a more diverse dataset.
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