

Inclusion of enclosed hydration effects in the binding free energy estimation of Dopamine D3 receptor complexes

Rajat Kumar Pal^{1,2}, Satishkumar Gadhiya^{3,4}, Steven Ramsey^{2,5},
Pierpaolo Cordone^{2,4}, Lauren Wickstrom⁶, Wayne W. Harding^{2,3,4}, Tom
Kurtzman^{2,3,5} and Emilio Gallicchio^{1,2,3,*}

1 Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, USA

2 PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA

3 PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA

4 Department of Chemistry, Hunter College, 695 Park Avenue, NY 10065, USA

5 Department of Chemistry, Lehman College, 250 Bedford Park Blvd. West, Bronx, NY 10468, USA

6 Department of Science, Borough of Manhattan Community College, 199 Chambers Street, New York, NY 10007, USA

* egallicchio@brooklyn.cuny.edu

Abstract

Confined hydration and conformational flexibility are some of the challenges encountered for the rational design of selective antagonists of G-protein coupled receptors. We present a set of C3-substituted (-)-stepholidine derivatives as potent binders of the dopamine D3 receptor. The compounds are characterized biochemically, as well as by computer modeling using a novel molecular dynamics-based alchemical binding free energy approach which incorporates the effect of the displacement of enclosed water molecules from the binding site. The free energy of displacement of specific hydration sites is obtained using the Hydration Site Analysis method with explicit solvation. This work underscores the critical role of confined hydration and conformational reorganization in the molecular recognition mechanism of dopamine receptors and illustrates the potential of binding free energy models to represent these key phenomena.

Introduction

One critical aspect of molecular recognition is the change in the hydration structure and hydration energetics induced by ligand binding. [1–5] Water molecules trapped, for example, in hydrophobic pockets within the binding site can be energetically disfavored as well as entropically frustrated relative to bulk water. Hence, displacements of these water molecules by the ligand can significantly enhance binding. [6–9] These effects are particularly important when comparing a series of ligands of interest which differ in the way they displace enclosed

water molecules. The rational design of ligands using these principles can 10 lead to improvements of binding potency and receptor selectivity. [10] 11

There have been significant efforts towards the development of 12 methodologies to model the thermodynamic parameters and structural 13 properties of water molecules at the protein surfaces. [11–16] Most of 14 these methods employ an explicit representation of the solvent, which is 15 considered the “gold standard” for modeling macromolecular complexes in 16 part because of the capability of accurate representation of specific 17 hydration environments. It is challenging, however, to access the time 18 scales required to sample the changes in hydration states and capturing 19 the effects of water expulsion from protein binding sites induced by 20 ligand binding. [14, 17–19] We have shown that the influence of confined 21 hydration can be also represented by a customized AGBNP2 [20] implicit 22 solvent model trained on Hydration Site Analysis (HSA) [6, 8] data 23 obtained with explicit solvation. [9] We take advantage of the first-shell 24 hydration component of the AGBNP2 (Analytical Generalized Born Non 25 Polar) model. In AGBNP2, hydration spheres placed on the solute 26 surface represent short-range solute-solvent interactions, such as hydrogen 27 bonding, not accurately described by a dielectric continuum 28 representation. Similarly, we model the thermodynamics of hydration 29 sites within the binding pocket using AGBNP2 first-shell hydration 30 spheres. 31

The primary purpose of this work is to explore the applicability of our 32 hybrid implicit solvent approach to protein-ligand systems. The 33 dopamine D3 receptor is an important medicinal target in which the 34 ligand recognition mechanism is heavily influenced by hydration effects. 35

Due to conformational variability, the complexities of hydration and
36
molecular interaction networks, and the lack of extensive structural
37
information, it has been very challenging, using conventional drug design
38
and modeling approaches, to design selective antagonists against the
39
dopamine D3 family of receptors. We believe that molecular dynamics
40
free energy approaches combined with accurate modeling of hydration
41
could be helpful in the design of more effective and more specific
42
antagonists. [21–24]
43

Dopamine D3 receptors, which are part of the G-protein coupled
44
receptor superfamily, are increasingly important as drug targets for the
45
treatment of a number of pathological conditions such as Parkinson's
46
disease, schizophrenia and drug abuse. [25–27] Dopamine receptors are
47
classified under two families and five sub-types: the D1 family, comprising
48
the D1R and D5R receptors which stimulate the production of cAMP,
49
and the D2 family, comprising the D2R, D3R and D4R receptors which
50
have inhibitory functions in cAMP production and downstream signaling.
51
While both these receptor families have been targeted for the treatment
52
of neurological disorders, it has been challenging to design specific
53
antagonists within the D2 receptor subfamily. Most of the drugs tested
54
act as dual D2/D3 antagonists. [28–31] D2 receptor antagonism has been
55
associated with serious neurological side effects. [32, 33] D3 receptors, on
56
the other hand, which also have high affinity towards dopamine were
57
observed to significantly affect synaptic transmission and can be potential
58
targets in the treatment of neurological disorders, especially related to
59
drug addiction and craving responses. [29, 34, 35]
60

The mechanism of antagonism of D3 receptors has been intensely
61

studied to gain an understanding of how to develop potent and selective antagonists. [22, 28, 30, 36, 37] The crystal structure of the D3 receptor in complex with eticlopride, [28] a dual D2/D3 antagonist, has been very helpful in understanding the intermolecular interactions in the orthosteric binding site (OBS) of the D3 receptor. It also revealed a secondary binding site (SBS) which is believed to be a critical molecular recognition site. A recent study has also suggested the existence of a cryptic pocket in the orthosteric binding site (OBS) of the dopamine D3 receptor. [36] These important discoveries have provided valuable information for the development of D3 selective ligands. [22, 23]

The orthosteric binding site (OBS) of D3 is surrounded by the helices III, V, VI and VII comprising Ser 192^{5.42}, Ser 193^{5.43}, Ser 196^{5.46}, Cys 114^{3.36}, His 349^{6.55}, Phe 345^{6.51}, Phe 346^{6.52} and Val 189^{5.39} residues. The secondary binding site (SBS), also referred as the extracellular extension, is located at the interface of helices I, II, III, VII and the extracellular loops ECL1 and ECL2 (Fig. 1). The OBS is conserved in both D2 and D3 receptors but differ in the residue composition at the SBS. As exemplified by the structure of D3 bound to eticlopride [28] (Fig. 1), the interaction of ligands to the OBS of D3 is characterized by a salt-bridge between the carboxylate group of Asp 110^{3.32} in helix III of D3 and the protonated amine group of eticlopride. This salt-bridge interaction is believed to be pharmacologically crucial in binding of ligands at the OBS of dopamine D3 receptor and to other dopaminergic receptors. [28] Previous studies have highlighted the challenges of designing specific antagonists against the dopamine D3 receptor. [21, 23, 37]

In this study, we focus on the interaction of the D3 receptor with a

Fig 1. Crystal structure of the dopamine D3 receptor with Eticlopride bound at the binding site. [28] This representation shows the approximate position of the orthosteric binding site (OBS) with a blue oval and the secondary binding site (SBS) with a green oval.

series of derivatives of (-)-stepholidine (Table 1), a natural product 88
displaying dual D1 and D2 activity and observed to have antipsychotic 89
activities. [31, 38–40] Motivated by the previous work on the synthesis 90
and activity of the (-)-stepholidine C9 derivatives [23] aimed at achieving 91
a dual D1/D3 activity, we continued our Structure-Activity Relationship 92
(SAR) studies using the tetrahydroprotoberberine (THPBs) scaffold to 93
synthesize a new set of compounds targeting the dopamine receptors. In 94
comparison to the compounds previously assayed which are substituted 95
with alkyl chains at the C9 position of the THPB scaffold, compounds 96
synthesized and studied in this work are substituted at the C3 position 97
(Fig. 2 and Table 1). The motivation of synthesis and substitution at the 98
C3 position is to extend these molecules to access the secondary binding 99
site (SBS) which have the potential to improve receptor selectivity for 100
these compounds. [23] Due to the lack of a crystal structure, the mode of 101
interaction of (-)-stepholidine derivatives with the D3 receptor remains 102
uncertain. [23, 30, 41] 103

Fig 2. Structure of the (-)-stepholidine core with four rings annotated alphabetically as referenced in the text. R1 represents the substitution at the C3 position. The chiral carbon is labeled by a star.

In this work, we report the first assessment of a novel computational 104
strategy by using an implicit solvent model to model the effects of water 105
expulsion in protein-ligand binding. This is done by acquiring the 106
thermodynamic properties of binding site water molecules in dopamine 107

D3 receptor from explicit solvent simulations and estimating the binding 108 free energies of the complexes of (-)-stepholidine analogues' with the D3 109 receptor by incorporating hydration parameters in an implicit solvent 110 model. This allowed us to capture localized enclosed hydration effects 111 which could not be captured by using conventional descriptions of 112 solvation. Although limited to the Dopamine D3 receptor, this work is 113 the first step in attempting to build a model of binding accurate enough 114 to differentiate between sub-families of Dopamine receptors by exploiting 115 potential differences in their hydration properties. 116

Table 1. List of the (-)-stepholidine derivatives considered in this work. All substitution are made at the C3 position of the (-)-stepholidine core as shown in Fig. 2.

(-)-stepholidine C3 derivatives		
	x	R1
1a	H	Et
1b	H	n-Pr
1c	H	n-Bu
1d	H	n-Pen
1e	H	n-Hex
1f	H	2-fluoro ethyl

Methods

Hydration Site Analysis of the binding site of the D3 receptor

The thermodynamic and structural properties of water molecules in the 120 binding site of the receptor were studied using the Hydration Site 121 Analysis (HSA) method. [8, 11] Briefly, HSA is based on the analysis of 122 molecular dynamics trajectories with explicit solvation, whereby 123

molecular dynamics simulations are performed to identify regions with 124 significant water density near the receptor surface. Average 125 thermodynamic quantities such as enthalpy, entropy and free energies are 126 calculated for these sites using the concept of Inhomogeneous Solvation 127 Theory. [6, 42] HSA explicit solvent simulations are performed on a 128 restrained receptor structure. The trajectories are then processed to 129 cluster hydration site locations and analyzed for their thermodynamic 130 estimates as described elsewhere. [6, 8] The total energy, E_{total} for each of 131 these sites are calculated as the sum of the one-half of the mean 132 solute-water E_{sw} interaction energy and one-half of the mean water-water 133 E_{ww} interaction energy. The excess energies of the hydration sites relative 134 to bulk value are used to classify them as either favorable or unfavorable 135 water sites. Unfavorable sites are those that, when displaced by the 136 ligand, are believed to enhance the binding affinity. The locations and 137 average solvation energies for each of the sites identified for the D3 138 receptor are shown in Fig. 3a and Table 2. 139

Proteins can be highly dynamic. Hence, a single structure is often an 140 insufficient representation of the structural variability of the hydration 141 layer of a protein receptor. This is particularly so in the present work, 142 where the ligands we considered could induce different conformations of 143 the receptor when bound. To address conformational variability, in this 144 work, we obtained HSA hydration maps for a series of D3 receptor 145 structures obtained from induced-fit docking calculations with different 146 ligand types, which included the previously reported C9-substituted 147 ligands [23], and the available crystal structure [28] (see Computational 148 Details). The location and energies of the hydration sites were averaged 149

from all receptor conformations to obtain a single hydration map as
150
shown in Fig. 3a.
151

The solvation energies and locations of the explicit hydration sites
152
were then used to position the first-shell hydration spheres of the
153
AGBNP2 (Analytical Generalized Born Non Polar) implicit solvation
154
model [20] and to set their strengths (see below). The strength of the
155
hydration spheres were set according to the HSA scores
156

$$[E_{\text{total}}(i) - E_{\text{bulk}}]p(i) \quad (1)$$

where i is the index of the HSA hydration sites, $p(i)$ is the water
157
occupancy of the site, $E_{\text{total}}(i)$ is the total energy of the site and E_{bulk} is
158
the corresponding reference value obtained from OPC [43] neat water
159
($E_{\text{bulk}} = -12.24$ kcal/mol).
160

Fig 3. Hydration sites and corresponding AGBNP2 spheres at the dopamine D3 receptor binding site.(a) Location of hydration sites (red) within the binding cavity of the Dopamine D3 receptor as mapped by Hydration Site Analysis. (b) Hydration spheres (green) of the AGBNP2 model for the same receptor structure in (a). The positions of the AGBNP2 hydration spheres are functions of the internal coordinates of the receptor.

Parameterization of the AGBNP2 Enclosed Hydration 161 Model 162

Even slight variations in atomic positions are known to cause significant
163
changes in hydration structure. [10, 44, 45] We attempted to capture
164
specific ligand-induced conformational changes, as well as thermal
165
fluctuations of the hydration structure by considering multiple structures
166

of the D3 receptor (see Computational Details). Hydration site maps 167
were obtained individually for each of the three receptor structures using 168
HSA. [8] These hydration maps were then integrated into a single 169
hydration map (see Fig. 3a) by averaging the free energy weights of 170
neighboring hydration sites from the individual maps. The energies and 171
water occupancies of the HSA hydration regions were used to obtain the 172
enclosed hydration corrections for the AGBNP2 first-shell hydration 173
spheres using eq. (1) (see below). 174

The energetically unfavorable hydration sites identified by HSA, and 175
thus good candidates for displacement by the ligand, were found to be 176
distributed throughout the dopamine D3 receptor binding site. These 177
were reproduced as best as possible with AGBNP2 first-shell hydration 178
spheres within the limitations of the available anchoring methods. [9, 20] 179
To ensure translational and rotational invariance of the AGBNP2 implicit 180
solvation function, hydration spheres are located only in terms of 181
molecular internal coordinates, that is by specifying distance and angle 182
geometries in relation to selected atoms of the receptor. The geometries 183
that were employed most often in this work have been for sites attached 184
to polar hydrogen atoms and for sites anchored to mimic the lone pair 185
orbitals of carbonyl and carboxylate groups. When a suitable anchoring 186
geometry could not be found, AGBNP2 hydration spheres have been 187
positioned at the geometrical center of a group of atoms of the receptor, 188
typically backbone C_α , C_β and N atoms (Fig. 4). [9] The resulting 189
AGBNP2 first-shell hydration spheres are shown in Fig. 3b and their 190
parameterization are listed in Table 2. 191

Because of the complexities of enclosed hydration phenomena and their 192

Table 2. Summary of the placement and parameterization of the AGBNP2 enclosed hydration spheres for the dopamine D3 receptor binding site.

Location ^a	HSA site Id ^b	AGBNP2 site Id ^b	AGBNP2 anchoring type ^c	p_s^d	$(E - E_{\text{bulk}})^e$	$(E - E_{\text{bulk}}) \times p_s^f$
OBS	0	0,1	Asp 110 backbone carbonyl	1.00	2.36	2.36
OBS	3,4,8,21	3,4,5	Asp 110 side chain carboxylate	0.86	3.28	2.83
OBS	25,26	9	Center of mass	0.66	1.92	1.27
OBS	14,19,41	12	Center of mass	0.57	5.32	3.05
OBS	1	13	Center of mass	0.87	2.80	2.44
OBS/SBS bound-ary	11	10	Center of mass	0.83	2.32	1.92
OBS/SBS bound-ary	9	18	Ser 182 hydroxyl	0.87	0.21	0.19
SBS	12	11	Center of mass	0.63	0.92	0.58
SBS	34,42	14	Center of mass	0.58	1.31	0.77
SBS	5	15	Center of mass	0.95	0.34	0.33
SBS	15	16	Center of mass	0.68	0.50	0.34
SBS	37	17	Center of mass	0.34	0.08	0.03

^aOBS: Orthosteric binding site; SBS: Secondary binding site. ^bSte Id as shown in Fig. 3 ^cSee reference.

^dAverage water occupancy of the site measured by HSA ^eAverage energy of the site relative to bulk measured by HSA, $E_{\text{bulk}} = -12.24$ kcal/mol. ^fOverall energy score of the HSA sites indicated in column 2 and of the enclosed hydration score of the AGBNP2 hydration spheres indicated in column 3 in kcal/mol.

variations due to the motion of receptor atoms, it has been challenging to 193 formulate an unsupervised and automated protocol to map HSA results 194 to AGBNP2 spheres. Within the general framework outlined above, some 195

Fig 4. Strategy for scoring and placement of AGBNP2 hydration spheres in dopamine D3 receptor binding site.(a) Location of a hydration site identified by HSA using three receptor structures (residues from one receptor structure shown for clarity); the overlapping red, yellow and orange spheres represent a hydration site identified by each receptor structure; the energetic penalties incurred from each HSA map are annotated in kcal/mol, (b) An AGBNP2 hydration sphere (green) is placed and scored by averaging the energetic penalties from the three maps at the location of the HSA site; the AGBNP2 hydration sphere is placed at the geometrical center of the atoms represented in CPK and is anchored to respective atoms during the simulation.

196 manual adjustments were made. One adjustment was made to model
197 strongly unfavorable HSA hydration sites (HSA site Ids - 3,4,8 and 21)
198 identified at hydrogen-bonding distance to the carboxylate group of the
199 critical Asp110^{3,32} residue. Because AGBNP2 attaches eight equinertic
200 solvation spheres to carboxylate groups, [20] we decided to distribute the
201 HSA excess energy of this site among the three out of eight carboxylate
202 hydration spheres of Asp110^{3,32} with non-zero water occupancy.
203
204 Adjustments were also made to treat HSA hydration sites in close
205 proximity to each other. Due to the limitations in mapping accurately
206 the position of AGBNP2 spheres, in these case, we modeled nearby
207 groups of HSA sites with a single AGBNP2 hydration sphere by assigning
208 to it the sum of the energy weights of each HSA site as shown in Table 2.

Binding free energy model

209 The protein-ligand complexes are modeled using the OPLS-AA/AGBNP2
210 effective potential, in which the OPLS-AA [46,47] force field defines the
211 covalent and non-bonded inter-atomic interactions. Solvation effects are
212 modeled implicitly using the Analytic Generalized Born plus non-polar

(AGBNP2) model. [20] According to this model, the hydration free energy 213
 ΔG_h of the receptor-ligand complex is computed as the sum of 214
electrostatic ΔG_{elec} , non-polar, ΔG_{np} , and short-range solute-water 215
interactions, ΔG_{hs} : 216

$$\Delta G_h = \Delta G_{elec} + \Delta G_{np} + \Delta G_{hs} \quad (2)$$

The electrostatic component of the hydration free energy is computed 217
using a modified continuum dielectric Generalized Born model. [48, 49] 218
The non-polar component includes a surface-area dependent term that 219
accounts for the free energy of creating the solute cavity within the 220
solvent, and a Born-radius dependent term that accounts for long range 221
solute-solvent van der Waals interactions. [20] In AGBNP2, short-ranged 222
solute-solvent interactions, such as hydrogen bonding are modeled by 223
means of hydration spheres placed on the solute surface. A geometrical 224
procedure measures the water occupancy of each hydration sphere, which 225
is then used to weigh its contribution to the solute hydration free energy 226
according to the expression: 227

$$\Delta G_{hs} = \sum_s h_s S(w_s) \quad (3)$$

where w_s is the water occupancy factor of the sphere defined as 228

$$w_s = \frac{V_s^{\text{free}}}{V_s} \quad (4)$$

where V_s is the volume of each sphere and V_s^{free} is the volume of the 229
portion of the sphere occupied by water. S is a switching function that 230
smoothly turns off an hydration sphere if its water occupancy is below a 231

given threshold. The h_s parameter measures the hydration strength of
232 the corresponding hydration site. Negative h_s values describe hydration
233 sites contributing favorably to the hydration free energy, whereas positive
234 values are used for sites which contribute unfavorably to the hydration
235 free energy. [9]
236

In this study, almost all hydration sites identified by HSA inside the
237 binding site are energetically unfavorable. The strength of AGBNP2
238 hydration site spheres, thus having positive h_s values are used to define
239 unfavorable water molecules in the binding site of the receptor, which,
240 when displaced by the ligand, contribute favorably to binding. The h_s
241 energy values are obtained from the explicit solvent HSA analysis as
242 described above and are listed in Table 2.
243

Absolute binding free energies of the dopamine D3 receptor bound to
244 (-)-stepholidine C3 analogues were calculated by means of a Single
245 Decoupling (SDM) binding free energy approach [50] employing an
246 alchemical potential energy function of the form:
247

$$U_\lambda(\mathbf{r}) = U_0(\mathbf{r}) + \lambda u(\mathbf{r}) \quad (5)$$

where $\mathbf{r} = (\mathbf{r}_R, \mathbf{r}_L)$ are the atomic coordinates of the receptor-ligand
248 complex, U_0 represents the effective potential energy of the uncoupled
249 complex when receptor and ligand are not interacting (such as if they
250 were at infinite separation), λ is the alchemical progress parameter which
251 linearly couples receptor and ligand through the binding energy function
252 $u(\mathbf{r})$, defined as the change in the effective potential energy of the
253 complex for bringing the receptor and ligand from infinite separation to
254 the conformation \mathbf{r} . Based on eq. (5), the complex is uncoupled at $\lambda = 0$
255

and coupled at $\lambda = 1$. The free energy difference between these two states 256
is defined as the excess free energy of binding, ΔG_b . [51] 257

The binding free energy calculation protocol entails simulating the 258
system at series of λ values spaced between 0 and 1 and collecting 259
binding energy samples at each state. The binding energy values from 260
each λ state are then processed using UWHAM [52] to obtain the excess 261
free energy of binding ΔG_b and corresponding uncertainty. The standard 262
free energy of binding ΔG_b° is obtained by adding the concentration and 263
binding site volume term to the excess free energy (see Computational 264
Details). 265

Average interaction energies ΔE_b for analysis are obtained by 266
averaging the binding energy values of the complexes from the ensemble 267
of conformations at the bound state at $\lambda = 1$. The uncertainties of 268
binding energy values are estimated from the standard error of the mean. 269
The reorganization free energies for binding, defined as 270
 $\Delta G_{\text{reorg}}^\circ = \Delta G_b^\circ - \Delta E_b$, are obtained from the corresponding values of the 271
standard binding free energy and of the binding energy. The uncertainty 272
of the reorganization free energy is obtained by standard error 273
propagation. 274

As an alternative to simulating each alchemical λ state independently, 275
to accelerate the convergence of free energy calculations, in this work we 276
utilize an Hamiltonian replica-exchange approach [53, 54] where λ values 277
are exchanged between molecular dynamics replicas, allowing the mixing 278
of intermolecular degrees of freedom to explore the conformational space 279
efficiently. [53] 280

Computational Details

281

Hydration Site Analysis (HSA) in explicit solvent

282

Three D3 representative receptor structures were used for the Hydration 283
Site Analysis (HSA) in explicit solvent. The receptor structures 284
considered are those corresponding to the complexes of D3 with 285
(-)-stepholidine, C3 butyl (**1c**) and C9 butyl derivatives [23] as obtained 286
from individual induced fit docking (IFD) simulations [55] using the 287
crystal structure receptor configuration of the dopamine D3 receptor 288
(PDB ID - 3PBL) as a starting point. The IFD protocol was performed in 289
five steps: generation of ligand conformations, initial docking with 290
reduced receptor atom van der Waal radii, side chain minimization with 291
Prime [56,57], a second docking step using the new receptor configuration 292
and finally pose scoring. Receptor-ligand configuration with the highest 293
IFD score ranking was selected, except in the case where the highest 294
scored pose did not maintain the well conserved Asp 110^{3.32} salt-bridge. 295
The apo receptor structure from each highest scored pose, was then used 296
for Hydration Site Analysis (HSA). 297

The explicit solvent simulations for Hydration Site Analysis (HSA) 298
were conducted with the AMBER [58] software package with the 299
OPC [43] water model with positional restraints on all heavy atoms with 300
a force constant of 10.0 kcal/mol/Å². Each system was minimized and 301
thermalized for 2.0 ns under NPT conditions of 1 atm and 300K. During 302
the production run, MD simulations were performed for 10.0 ns under 303
NVT conditions and snapshots of the trajectory were collected every 1.0 304
ps. High density spherical regions of 1Å radius were identified using a 305
clustering analysis on the water molecules which lies within 8 Å of the 306

superimposed ligand in D3 binding site. Individual hydration sites were 307
then populated with all water molecules that lies within 1 Å of the 308
corresponding hydration site center. Average solvation energies were 309
calculated for each site by calculating the energies of the water molecules 310
within 1 Å of each hydration site center in all 10,000 frames of the 311
trajectory. For technical reasons, HSA employed a different force field 312
(AMBER ff14SB force field [59]) than that for the binding free energy 313
calculations (OPLS/AA). The purpose of HSA is to obtain 314
semi-quantitative estimates of the energies of enclosed water molecules as 315
well as their locations. On a qualitative level, The large increase of 316
binding affinities when including enclosed hydration effects (observed 317
below) is not expected to depend on the choice of the force field. 318

System preparation for the binding free energy calculations 319

The bound ligand was removed from the co-crystallized structure of 320
Dopamine D3 receptor with eticlopride [28] along with crystallographic 321
waters. Protonation states were adjusted to reflect neutral pH conditions. 322
The receptor structure was prepared using the Protein Preparation 323
Wizard of the Maestro version 2016-3 (Schrodinger Inc.). The prepared 324
protein structure was used to generate the receptor grid for docking using 325
default parameters. Docking was performed with Standard Precision (SP) 326
version of the Glide program (Schrodinger Release 2016-3). [60] Positional 327
constraints were applied to the alkyl nitrogen of the (-)-stepholidine and 328
all the analogues to maintain the salt-bridge interaction with Asp 110^{3.32} 329
of the D3 receptor. The hydroxyl and thiol groups of the receptor, such 330
as of residues Ser 182^{ECL2}, Ser 192^{5.42}, Ser 196^{5.46}, Thr 115^{3.37}, Thr 331

369^{7.39}, Cys 114^{3.36} located near the binding site were allowed to rotate 332
during docking. 333

The (-)-stepholidine C3 analogues were built using the Maestro 334
program (Schrodinger Release 2016-3). Alternative protonation states as 335
well as chiral forms were generated for the 7 ± 2 pH range using the 336
LigPrep facility (Schrodinger Inc.) and ionization penalties were 337
calculated with Epik [61] at pH 7. The ionization free energies were 338
recorded and added to the binding free energy estimates to compute the 339
predicted binding free energies. Only states where the alkyl nitrogen is 340
protonated were selected for docking calculations. We also included in the 341
docking study the two chiral forms of the protonated alkyl nitrogen for 342
each compound as generated by LigPrep (Schrodinger Release 2016-3). 343

Binding poses generated by docking were selected based on their 344
docking scores and presence of an ionic interaction between the 345
protonated alkyl nitrogen and the carboxylate group of Asp110^{3.32}. The 346
derivatives considered here are all stereoisomers with the S configuration 347
at the chiral carbon connecting ring B and ring C of the (-)-stepholidine 348
core (Table 1). The adjacent protonated alkyl nitrogen atom is found 349
always in the S configuration while maintaining the salt-bridge 350
interaction. 351

The starting conformations of complexes from docking underwent 352
energy minimization and thermalization. Hamiltonian Replica-exchange 353
Molecular dynamics simulations were performed starting from the 354
thermalized structures using 28 intermediate lambda states distributed as 355
follows: 0.0, 0.002, 0.005, 0.008, 0.009, 0.01, 0.0105, 0.012, 0.0135, 0.015, 356
0.02, 0.0225, 0.025, 0.03, 0.035, 0.04, 0.07, 0.1, 0.25, 0.35, 0.45, 0.55, 0.65, 357

0.71, 0.78, 0.85, 0.92, and 1.0. The volume of the binding site, V_{site} is 358
defined as the spherical volume in which the center of mass of ligand is 359
within 3.5 Å of the center of mass of the binding site of the D3 receptor, 360
defined as the center of mass of the C_{α} atoms of the residues 110, 111, 361
114, 183, 188, 346, 349 and the C_{β} atoms of residues 342, 349 and the 362
backbone nitrogen atom of residue 111. The binding site volume restraint 363
is implemented as a flat-bottom spherical harmonic potential with force 364
constant of 3 kcal/mol/Å² and tolerance of 3.5 Å which resulted in a free 365
energy penalty $\Delta G_{\text{t}}^{\circ}$ for transferring the ligand from a solution of 366
concentration C° to a volume of size V_{site} , of about 1.32 kcal/mol, 367
calculated from the following expression: 368

$$\Delta G_{\text{t}}^{\circ} = -k_B T \ln C^{\circ} V_{\text{site}} \quad (6)$$

The receptor conformation was loosely restrained to the crystallographic 369
structure using flat-bottom positional restraints with a force constant of 370
25 kcal/mol/Å² and a tolerance of 1.5 Å applied to the backbone C_{α} 371
atoms, except for six residues 180-185 of the ECL2 loop to account for its 372
flexibility. 373

Temperature replica-exchange simulations were carried out to obtain 374
conformational reservoirs of the apo receptor. [62] These utilized 23 375
replicas distributed between 300 and 400K. [62] The conformational 376
ensemble collected at 300K was used as a source of apo-receptor 377
conformations in the replica-exchange simulations. Conformational 378
reservoirs for each ligand were generated similarly using 8 replicas 379
distributed between 300 and 600K. During the simulation, conformations 380
of receptor and ligands were randomly selected from the conformational 381

reservoirs during exchanges at the fully uncoupled state. 382

Single-decoupling binding free energy calculations were performed for 383
approximately 1 ns per replica for a total of 28 ns per complex. Binding 384
energies samples from the last 500 ps were used for the binding free 385
energy estimates. Each cycle of replica lasted 10 ps with 1 fs MD 386
time-step. Binding energies were collected every 10 ps. Most of the 387
calculations were carried out at the XSEDE SuperMIC and Stampede2 388
clusters utilizing CPU's and MIC devices. 389

To improve the convergence of the binding energies near the uncoupled 390
state at $\lambda = 0$, we employ a soft core binding energy function as 391
described elsewhere. [52, 63] The binding energies were analyzed using the 392
UWHAM R-statistical package [52] to yield the binding free energy ΔG_b° . 393
As mentioned, the average interaction energy ΔE_b of each complex was 394
obtained from the value of the average binding energy at the coupled 395
state ($\lambda = 1$). Reorganization free energies $\Delta G_{\text{reorg}}^\circ$ were measured as the 396
difference between the binding free energy and the average binding 397
energy as $\Delta G_{\text{reorg}}^\circ = \Delta G_b^\circ - \Delta E_b$. 398

Synthesis and experimental assays of (-)-stepholidine C3 399 analogues 400

Compounds **1a-1f** were synthesized using the procedure developed as 401
shown in Fig. A and described in S1 File. Commercially available 402
dihydroxy benzaldehyde, **4** was selectively protected with a benzyl group 403
to give compound **5**. Second, the phenolic group of aldehyde **5** was 404
protected with a silyl group and the intermediate was subjected to a 405
Henry condensation reaction to give nitrostyrene **6**. Reduction of nitro 406

compound **6** using LiBH₄ yielded primary amine **7**. Aminolysis of lactone **8** with primary amine **7** was carried out to give amide alcohol **9**, which was acetylated to afford **10**. Ring B of the tetrahydroprotoberberine (THPB) scaffold was formed via Bischler-Napieralski cyclization followed by asymmetric hydrogenation using Noyori's catalyst and formic acid/triethylamine mixture to generate **11** with good yield (88%). Hydrolysis of the acetyl group and subsequent chlorination endowed us the tetracyclic scaffold of THPB in compound **12**. The enantiomeric excess of this common precursor was found to be 90.2% (chiral HPLC) and it was used for further analogue generation. Alkylation of compound **12** followed by debenzylation provided us the C3 analogues **1a-1f**.

All the (-)-stepholidine C3 analogues were biochemically evaluated by primary and secondary radioligand binding assays with the dopamine receptor to obtain the inhibition constants of binding, K_i and reported in Table 3. Both the primary and secondary radioligand binding assays were done at the PDSP facility (<http://pdsp.med.unc.edu/>). In the primary binding assays, compounds were tested at single concentrations (10 μ M) in quadruplicate in 96-well plates. Compounds that showed a minimum of 50% inhibition at 10 μ M were tagged for secondary radioligand binding assays to determine equilibrium binding affinity at specific targets. In the secondary binding assays, selected compounds were tested in triplicate sets (3 sets of 96-well plates) at eleven different concentrations out of which eight are in nanomolar range (0.1, 0.3, 1, 3, 10, 30, 100 and 300 nM) and rest of the three concentration in micromolar range (1, 3, and 10 μ M). Both primary and secondary radioligand binding assays were carried out in a final volume of 125 μ l per well in appropriate binding buffer.

The hot ligand concentration was usually at a concentration close to the 433
 K_d (unless otherwise indicated). Total binding and nonspecific binding 434
were determined in the absence and presence of 10 μ M Chlorpromazine, 435
which was used as a reference compound. In brief, plates were usually 436
incubated at room temperature and in the dark for 90 min. Reactions 437
were stopped by vacuum filtration onto 0.3% polyethyleneimine (PEI) 438
soaked 96-well filter mats using a 96-well Filtermate harvester, followed 439
by three washes with cold wash buffer. Scintillation cocktail was then 440
melted onto the microwave-dried filters on a hot plate and radioactivity 441
was counted in a Microbeta counter. For detailed experimental details, 442
please refer to the PDSP website <http://pdsp.med.unc.edu/> and click on 443
'Binding Assay' or 'Functional Assay' on the menu bar. 444

Results 445

Biochemical evaluation of (-)-stepholidine C3 446 analogues 447

The inhibition constants for binding of the C3 analogues are reported in 448
Table. 3. The C3 analogues showed relatively stronger inhibition of 449
binding at the dopamine D3 receptor compared to that of C9 analogues 450
tested previously. [23] The length of the C3 substitution has generally a 451
small influence on their measured affinities in this set. However, the 452
analogues with the longest C3 pentyl and hexyl substituent (**1d** and **1e**) 453
exhibit a slightly stronger affinity (Table 3) 454

Table 3. Measured inhibition constants of binding (K_i) for the (-)-stepholidine C3 analogues against the dopamine D3 receptor.

Compounds	C3-substituent	$K_i^{a,b}$
1a	Et	40.0
1b	n-Pr	46.0
1c	n-Bu	51.0
1d	n-Pen	33.0
1e	n-Hex	26.0
1f	2-fluroethyl	86.0

^a In nM. Experiments were carried out in triplicate - uncertainties are estimated as 13% of reported K_i ; ^b[³H] N-methylspiperone used as radioligand; chlorpromazine used as a reference compound with $K_i = 11.0$ nM. The biochemical details of the assay are provided in the main text.

Binding Free Energy Calculations

We employed the enclosed hydration model described above to study six derivatives of (-)-stepholidine substituted at the C3 position with and without the enclosed hydration corrections to probe the effects of enclosed hydration on the binding free energy predictions (Table 4).

The (-)-stepholidine C3 analogues are substituted at the third position of ring A of the (-)-stepholidine core. To accommodate the long alkyl chain substituents, the C3 analogues (Fig. 5) are found to dock to the dopamine D3 receptor in a binding pose so that the alkyl chain occupies the secondary binding site (SBS). This has the important consequence that ring D, occupies the OBS so to maintain the salt bridge with Asp 110^{3,32} in contrast to C9 analogues where ring A occupy the OBS [23].

The enclosed hydration model is found to be an essential ingredient to reproduce the observed affinities. Binding free energy estimates of C3 derivatives obtained without enclosed hydration grossly underestimate the magnitudes of the experimental affinities derived from the measured inhibition constants of binding (Table 4, 2nd and 3rd columns). In contrast, binding free energy calculated with the enclosed hydration

Fig 5. Interactions of C3 pentyl analogue with the dopamine D3 receptor. a) The C3 pentyl analogue (3e, purple) of (-)-stepholidine is observed to interact with Ser 192 of the receptor at the orthosteric binding site. In order for the C3 analogues to interact with Ser 192, the C10 hydroxyl group is placed in proximity of Ser 192; b) The 3e C3 analogue in another observed binding pose in which it interacts with Ser 196, rather than Ser 192. In this pose, ring D of the (-)-stepholidine core is bound deeper into the orthosteric binding site and the ligand is twisted causing Tyr 365 in the SBS to rotate and move away from Ser 182 of ECL2. The receptor is represented as a pink ribbon.

model are significantly more favorable and substantially in better 473 quantitative agreement with the experiments than without enclosed 474 hydration (Table 4, 2nd and 6th columns). When employing the enclosed 475 hydration model, the root mean square error (RMSE) is reduced by a 476 factor of 6 and, while variations in the experimental values are slight 477 (Table 4, 2nd column), the level of correlation increased from less than 478 zero to 64%. The values of the calculated binding free energies with 479 enclosed hydration are all within 2 kcal/mol of the experiments. 480

Table 4. Experimental and calculated binding free energies, average binding energies and reorganization free energies of the (-)-stepholidine C3 analogues with and without enclosed hydration corrections.

Compound	$\Delta G_{\text{exp}}^{\circ a,b}$	Without enclosed hydration model			With enclosed hydration model		
		$\Delta G_{\text{calc}}^{\circ b,c}$	$\Delta E_b^{b,c}$	$\Delta G_{\text{reorg}}^{\circ b,c}$	$\Delta G_{\text{calc}}^{\circ b,c}$	$\Delta E_b^{b,c}$	$\Delta G_{\text{reorg}}^{\circ b,c}$
1a	-10.1	-2.2	-36.9	34.7	-8.8	-42.5	33.7
1b	-10.0	-2.3	-38.0	35.7	-10.4	-44.7	34.3
1c	-10.0	-1.8	-40.3	38.5	-11.5	-48.1	36.6
1d	-10.2	-0.3	-43.7	43.4	-10.6	-55.6	45.0
1e	-10.4	-3.9	-39.6	35.7	-12.5	-55.2	42.7
1f	-9.6	-3.1	-32.7	29.6	-8.9	-43.2	34.3
RMSE ^{b,d}		7.9			1.2		
Correlation coefficient (r)		-0.014			0.64		

^a Experimental affinities are calculated using the relation $\Delta G_{\text{exp}}^{\circ} = k_B T \ln K_i$ where K_i is the inhibition constant of binding, k_B is the Boltzmann's constant. ^bIn kcal/mol. ^cApproximate uncertainties for all measurements are implied by the number of significant figures; the actual values of the uncertainties for each measurement are provided in Table A in S1 File. ^dRoot mean square error relative to the experimental binding free energies.

Discussion

481

Though efficient and faster convergence of binding free energy 482
calculations can be achieved using implicit solvent models, these lack the 483
ability to model solvent heterogeneity and confinement in molecular 484
simulations, especially within deep protein binding pockets. In absence of 485
ligand, enclosed water molecules form network of interactions among 486
themselves and with receptor atoms, which are fundamentally different 487
from those present in the bulk and solvent exposed regions of the 488
protein. [8, 11] Water molecules which maintain favorable contacts with 489
the protein or act as bridging waters generally disfavor binding when 490
displaced by the ligand. However, energetically and entropically 491
frustrated water molecules such as those trapped within the hydrophobic 492
regions of the binding site, favor binding when displaced by the ligand. In 493
this work, we have employed for the first time a hybrid computational 494
model involving explicit and implicit solvation to include the 495
thermodynamics of confined water in the calculation of the binding free 496
energies of protein-ligand complexes. We applied the model to calculate 497
the binding free energies for a series of novel compounds as potential 498
ligands of the dopamine D3 receptor, which have been synthesized and 499
assayed for activity as part of this work. In all cases tested, binding free 500
energies were observed to be more favorable in the presence of enclosed 501
hydration effects compared to the conventional implicit solvent model. 502
The enhancement of binding affinities with the enclosed hydration model 503
is in accord with the idea that energetically frustrated enclosed water 504
molecules contributed favorably to binding when displaced by the ligand. 505
In this study, we identify a class of dopamine D3 receptor ligands which 506

are more powerful than those previously synthesized and assayed. [23] 507
The affinities of the (-)-stepholidine C3 analogues, synthesized in this 508
work, justifies the motivation of synthesis to increase interaction at the 509
secondary binding site (SBS) by adding substituents at the C3 position, 510
with the strongest affinity being observed for the longest substitution 511
(1e) in agreement with the computational predictions (Table 3). The 512
modeling approach introduced here has provided key insights for this 513
system. All of the compounds analyzed consistently maintained an ionic 514
interaction between the protonated alkyl nitrogen of the (-)-stepholidine 515
core and the carboxylate group of Asp110^{3,32} of the D3 receptor. 516

The positioning of C3 analogues within the binding site affect not only 517
the pattern of ligand-receptor interactions in the secondary binding site, 518
but crucially, also the interactions within the orthosteric pocket as well as 519
the pattern of displacement of energetically unfavorable water molecules 520
(Fig. 6). These energetic and structural features are ultimately reflected 521
in the differences of binding affinities with and without enclosed 522
hydration effects (Table 4). When not considering enclosed hydration 523
effects, the calculated binding affinities of the C3 analogues are observed 524
to be very overly unfavorable. Inclusion of the enclosed hydration effects 525
in the calculation, made the calculated binding free energies more 526
favorable and improved the agreement with the experimental values 527
(Table 4). 528

In our model, ring D of the (-)-stepholidine C3 analogues is placed into 529
the orthosteric binding pocket where it is observed to interact with Ser 530
192^{5,42} through one hydrogen bond interaction with the hydroxyl group at 531
position C10. In addition, the hydrogen bond interaction of C3 analogues 532

is not stably maintained throughout the simulation, as it is seen to 533
periodically switch to an alternate hydrogen bonding interaction with Ser 534
196^{5,46} slightly deeper into the orthosteric binding site (Fig. 5b). Also, 535
the binding of C3 analogues is observed to displace almost all enclosed 536
water molecules within the orthosteric binding site by placing the 537
(-)-stepholidine core. However, while interacting with Ser 196^{5,46}, the 538
alkoxy substituent chain at the secondary binding site (SBS) displaced 539
fewer enclosed water molecules. These enclosed water sites, however, 540
impose less energetic penalties, totaling to less than 1.5 kcal/mol (sites 11 541
and 14, see Table 2 and Fig. 6), thereby contributing to little difference in 542
the calculated binding affinities between the C3 derivatives. Another 543
interesting observation in this pose is the displacement of Tyr 365^{7,35} of 544
helix VII away from the secondary binding site (Fig. 5b) and the 545
concurrent disruption of the hydrogen bond interaction with Ser 182^{ECL2} 546
which stabilizes the extracellular loop 2 (ECL2) in the SBS. 547

Fig 6. Displacement of enclosed water molecules by the (-)-stepholidine C3 analogues. Representative bound poses of (-)-stepholidine C3 analogues (purple) interacting with Ser 196 at the orthosteric binding site of the dopamine D3 receptor is observed to displace fewer enclosed water molecules, especially at the secondary binding site. AGBNP2 sites 11 and 14 are not displaced in this conformation of the C3 analogues (Table 2).

Conformational changes within the binding site may change the 548
number and pattern of ligand-receptor interactions [64] as well as the 549
hydration structure, which we know to be very sensitive to the placement 550
of receptor atoms. While the use of AGBNP2 hydration spheres to model 551
enclosed hydration is likely of general applicability, the specific 552
parameterization used in this work is limited to the Dopamine D3 553

receptor. All calculations were done in absence of the description of the 554
cellular membrane while limiting large backbone motions. Despite these 555
limitations, our computational protocol was able to correctly predict the 556
affinities of the C3 analogues with reasonable accuracy. 557

All these observations illustrates the complexities associated with 558
binding of the (-)-stepholidine analogues to the dopamine D3 receptor. 559
They also underscore the challenges encountered in the design of effective 560
and selective D3 ligands/antagonists. [21, 23, 25, 35, 37, 65] One major 561
challenge is the effect of the specific remodeling of the receptor binding 562
site induced by ligands. In our study, induced fit docking calculations 563
have not revealed major structural changes for different (-)-stepholidine 564
analogues, although Hydration Site analysis (HSA) revealed more 565
significant changes in the hydration energies and location of the hydration 566
sites. The modeled binding affinities of the C3 analogues in this work 567
may reflect the limitations imposed by the initial receptor structure. 568
Another computational challenge in this work has been the appropriate 569
representation of the enclosed hydration sites by exploiting the available 570
topologies afforded by the current AGBNP2 implicit solvent model. 571

Conclusion 572

In this study, we exploited the energetics of confined water molecules as 573
obtained from explicit solvent simulations, and trained an implicit solvent 574
model to account their effects on protein-ligand binding free energies, 575
using a hybrid approach which proved useful for host-guest binding 576
thermodynamics. [9] 577

Protein binding sites are much more complex than host-guest systems 578

both in terms of structure and conformational variability. This is the first 579 report of the implementation of a hybrid explicit-implicit solvent 580 approach to calculate the binding affinities of protein ligand complexes 581 and its application to a series of complexes of the dopamine D3 receptor. 582 As we have illustrated, it is very challenging to model with high 583 confidence the thermodynamics of enclosed water molecules in protein 584 binding sites. While more research is needed to improve and automate 585 model parameterization and model accuracy, this study confirms that it 586 is both useful and viable to include enclosed hydration effects in binding 587 free energy calculations with implicit solvation as an alternative to 588 explicit modeling, which is more affected by slow equilibration. [66–68] 589

The experimental dissociation constants and the computational 590 modeling work have provided valuable insights for the design of stronger 591 and specific ligands of the dopamine D3 receptor. This study emphasizes 592 the benefits of interdisciplinary approaches by tackling difficult rational 593 drug design problems from different experimental, synthetic and 594 modeling sides. 595

Acknowledgements

This work was supported in part by an Interdisciplinary Research Grant 597 from the City University of New York (CIRG 2313, to E.G., L.W., T.K., 598 and W.W.H.). R.K.P and E.G. acknowledge support from the National 599 Science Foundation (NSF CAREER 1750511). E.G. acknowledges 600 support from the CUNY PSC program (PSC-CUNY 61211-00 49) and 601 Levy-Kosminsky Professorship in Physical Chemistry at Brooklyn 602 College. T.K. and S.R. acknowledge support from NIH SCORE grant 603

SC3-GM095417. Molecular simulations were conducted on the WEB 604
computational grid at Brooklyn College of the City University of New 605
York, SuperMIC cluster at the Louisiana State University High 606
Performance Computing Center and the Stampede II supercomputer 607
cluster at the Texas Advanced Computing Center supported by NSF 608
XSEDE award TG-MCB150001. K_i determinations and receptor binding 609
profiles were generously provided by the National Institute of Mental 610
Health's Psychoactive Drug Screening Program, Contract # 611
HHSN-271-2008-00025-C (NIMH PDSP). The NIMH PDSP is directed by 612
Bryan L. Roth MD, PhD, at the University of North Carolina at Chapel 613
Hill and Project Officer Jamie Driscol at NIMH, Bethesda MD, USA. 614

References

615

1. de Beer S, Vermeulen N, Oostenbrink C. The Role of Water Molecules in Computational Drug Design. *Curr Top Med Chem.* 2010;10(1):55–66. doi:10.2174/156802610790232288. 616
617
618
2. Li Z, Lazaridis T. Water at biomolecular binding interfaces. *Phys Chem Chem Phys.* 2007;9(5):573–581. doi:10.1039/b612449f. 619
620
3. Mancera RL. Molecular modeling of hydration in drug design. *Curr Opin Drug Discov Devel.* 2007;10(3):275–280. 621
622
4. Ball P. Water as an Active Constituent in Cell Biology Water as an Active Constituent in Cell Biology. *Chem Rev.* 2008;108(1):74–108. 623
624
625
5. Ladbury JE. Just add water! The effect of water on the specificity of protein-ligand binding sites and its potential application to drug design. *Chem Biol.* 1996;3(12):973–980. 626
627
628
629
6. Nguyen CN, Cruz A, Gilson MK, Kurtzman T. Thermodynamics of water in an enzyme active site: Grid-based hydration analysis of coagulation factor xa. *J Chem Theory Comput.* 2014;10(7):2769–2780. doi:10.1021/ct401110x. 630
631
632
633
7. Setny P, Baron R, McCammon JA. How can hydrophobic association be enthalpy driven? *J Chem Theory Comput.* 2010;6(9):2866–2871. doi:10.1021/ct1003077. 634
635
636
8. Haider K, Wickstrom L, Ramsey S, Gilson MK, Kurtzman T. Enthalpic Breakdown of Water Structure on Protein Active-Site 637
638

Surfaces. *J Phys Chem B.* 2016;120(34):8743–8756. 639
doi:10.1021/acs.jpcb.6b01094. 640

9. Pal RK, Haider K, Kaur D, Flynn W, Xia J, Levy RM, et al. A 641 combined treatment of hydration and dynamical effects for the 642 modeling of host-guest binding thermodynamics: the SAMPL5 643 blinded challenge. *J Comput Aided Mol Des.* 2017;31(1):29–44. 644
doi:10.1007/s10822-016-9987-z. 645

10. Beuming T, Farid R, Sherman W. High-energy water sites 646 determine peptide binding affinity and specificity of PDZ domains. 647 *Protein Sci.* 2009;18(8):1609–1619. doi:10.1002/pro.177. 648

11. Young T, Abel R, Kim B, Berne BJ, Friesner RA. Motifs for 649 molecular recognition exploiting hydrophobic enclosure in 650 protein-ligand binding. *Proc Natl Acad Sci.* 2007;104(3):808–813. 651
doi:10.1073/pnas.0610202104. 652

12. Huggins DJ. Application of inhomogeneous fluid solvation theory 653 to model the distribution and thermodynamics of water molecules 654 around biomolecules. *Phys Chem Chem Phys.* 655
2012;14(43):15106–15117. doi:10.1039/c2cp42631e. 656

13. Ross GA, Morris GM, Biggin PC. Rapid and Accurate Prediction 657 and Scoring of Water Molecules in Protein Binding Sites. *PLoS 658 One.* 2012;7(3):e32036. doi:10.1371/journal.pone.0032036. 659

14. Ross GA, Bodnarchuk MS, Essex JW. Water Sites, Networks, And 660 Free Energies with Grand Canonical Monte Carlo. *J Am Chem 661 Soc.* 2015;137(47):14930–14943. doi:10.1021/jacs.5b07940. 662

15. Bodnarchuk MS, Viner R, Michel J, Essex JW. Strategies to 663
Calculate Water Binding Free Energies in Protein - Ligand 664
Complexes. *J Chem Inf Model.* 2014;54(6):1623–1633. 665

16. Sindhikara DJ, Hirata F. Analysis of biomolecular solvation sites 666
by 3D-RISM theory. *J Phys Chem B.* 2013;117(22):6718–6723. 667
doi:10.1021/jp4046116. 668

17. Graham SE, Smith RD, Carlson HA. Predicting Displaceable 669
Water Sites Using Mixed-Solvent Molecular Dynamics. *J Chem Inf 670*
Model. 2018;58(2):305–314. doi:10.1021/acs.jcim.7b00268. 671

18. Michel J, Tirado-Rives J, Jorgensen WL. Prediction of the water 672
content in protein binding sites. *J Phys Chem B.* 673
2009;113(40):13337–13346. doi:10.1021/jp9047456. 674

19. Bruce Macdonald HE, Cave-Ayland C, Ross GA, Essex JW. 675
Ligand Binding Free Energies with Adaptive Water Networks: 676
Two-Dimensional Grand Canonical Alchemical Perturbations. *J 677*
Chem Theory Comput. 2018;14(12):6586–6597. 678
doi:10.1021/acs.jctc.8b00614. 679

20. Gallicchio E, Paris K, Levy RM. The AGBNP2 implicit solvation 680
model. *J Chem Theory Comput.* 2009;5(9):2544–2564. 681
doi:10.1021/ct900234u. 682

21. Heidbreder CA, Newman AH. Current perspectives on selective 683
dopamine D3 receptor antagonists as pharmacotherapeutics for 684
addictions and related disorders. *Ann N Y Acad Sci.* 685
2010;1187(1):4–34. doi:10.1111/j.1749-6632.2009.05149.x. 686

22. Gadhia S, Cordone P, Pal RK, Gallicchio E, Wickstrom L, Kurtzman T, et al. New Dopamine D3-Selective Receptor Ligands Containing a 6-Methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol Motif. ACS Med Chem Lett. 2018;9(10):990–995. doi:10.1021/acsmedchemlett.8b00229. 687 688 689 690 691

23. Madapa S, Gadhia S, Kurtzman T, Alberts IL, Ramsey S, Reith M, et al. Synthesis and evaluation of C9 alkoxy analogues of (-)-stepholidine as dopamine receptor ligands. Eur J Med Chem. 2017;125:255–268. doi:10.1016/j.ejmech.2016.09.036. 692 693 694 695

24. Yuan S, Filipek S, Palczewski K, Vogel H. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nat Commun. 2014;5(1):4733. doi:10.1038/ncomms5733. 696 697 698 699

25. Maramai S, Gemma S, Brogi S, Campiani G, Butini S, Stark H, et al. Dopamine D3 Receptor Antagonists as Potential Therapeutics for the Treatment of Neurological Diseases. Front Neurosci. 2016;10(OCT):451. doi:10.3389/fnins.2016.00451. 700 701 702 703

26. Volkow ND, Fowler JS, Wang GJ, Swanson JM, Telang F. Dopamine in drug abuse and addiction: Results of imaging studies and treatment implications. Arch Neurol. 2007;64(11):1575–1579. doi:10.1001/archneur.64.11.1575. 704 705 706 707

27. Brooks DJ. Dopamine agonists: Their role in the treatment of Parkinson's disease. J Neurol Neurosurg Psychiatry. 2000;68(6):685–689. doi:10.1136/jnnp.68.6.685. 708 709 710

28. Chien EYT, Liu W, Zhao Q, Katritch V, Won Han G, Hanson MA, et al. Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist. *Science*. 2010;330(6007):1091–1095. doi:10.1126/science.1197410.

29. Cho DI, Zheng M, Kim KM. Current perspectives on the selective regulation of dopamine D2 and D3 receptors. *Arch Pharm Res*. 2010;33(10):1521–1538. doi:10.1007/s12272-010-1005-8.

30. Li B, Li W, Du P, Yu KQ, Fu W. Molecular insights into the D1R agonist and D2R/D3R antagonist effects of the natural product (-)-stepholidine: Molecular modeling and dynamics Simulations. *J Phys Chem B*. 2012;116(28):8121–8130. doi:10.1021/jp3049235.

31. Mo J, Guo Y, Yang YS, Shen JS, Jin GZ, Zhen X. Recent Developments in Studies of l-Stepholidine and its Analogs: Chemistry, Pharmacology and Clinical Implications. *Curr Med Chem*. 2007;14(28):2996–3002. doi:10.2174/092986707782794050.

32. Knable MB, Heinz A, Raedler T, Weinberger DR. Extrapyramidal side effects with risperidone and haloperidol at comparable D2 receptor occupancy levels. *Psychiatry Res - Neuroimaging*. 1997;75(2):91–101. doi:10.1016/S0925-4927(97)00023-1.

33. Sykes DA, Moore H, Stott L, Holliday N, Javitch JA, Lane JR, et al. Extrapyramidal side effects of antipsychotics are linked to their association kinetics at dopamine D2 receptors. *Nat Commun*. 2017;8(1):763. doi:10.1038/s41467-017-00716-z.

34. Song R, Bi GH, Zhang HY, Yang RF, Gardner EL, Li J, et al. 734
Blockade of D3 receptors by YQA14 inhibits cocaine's rewarding 735
effects and relapse to drug-seeking behavior in rats. 736
Neuropharmacology. 2014;77:398–405. 737
doi:10.1016/j.neuropharm.2013.10.010. 738

35. Keck TM, John WS, Czoty PW, Nader MA, Newman AH. 739
Identifying Medication Targets for Psychostimulant Addiction: 740
Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem. 741
2015;58(14):5361–5380. doi:10.1021/jm501512b. 742

36. Ferruz N, Doerr S, Vanase-Frawley MA, Zou Y, Chen X, Marr ES, 743
et al. Dopamine D3 receptor antagonist reveals a cryptic pocket in 744
aminergic GPCRs. Sci Rep. 2018;8(1):1–10. 745
doi:10.1038/s41598-018-19345-7. 746

37. Newman AH, Beuming T, Banala AK, Donthamsetti P, Pongetti 747
K, Labounty A, et al. Molecular determinants of selectivity and 748
efficacy at the dopamine D3 receptor. J Med Chem. 749
2012;55(15):6689–6699. doi:10.1021/jm300482h. 750

38. Meade JA, Free RB, Miller NR, Chun LS, Doyle TB, Moritz AE, 751
et al. (-)-Stepholidine is a potent pan-dopamine receptor 752
antagonist of both G protein- and β -arrestin-mediated signaling. 753
Psychopharmacology (Berl). 2015;232(5):917–930. 754
doi:10.1007/s00213-014-3726-8. 755

39. Zhang B, Guo F, Ma Y, Song Y, Lin R, Shen FY, et al. Activation 756
of D1R/PKA/mTOR signaling cascade in medial prefrontal cortex 757

underlying the antidepressant effects of l-SPD. *Sci Rep.* 758
2017;7(1):3809. doi:10.1038/s41598-017-03680-2. 759

40. Manuszak M, Harding W, Gadhiya S, Ranaldi R. (-)-Stepholidine 760
reduces cue-induced reinstatement of cocaine seeking and cocaine 761
self-administration in rats. *Drug Alcohol Depend.* 2018;189:49–54. 762
doi:10.1016/j.drugalcdep.2018.04.030. 763

41. Fu W, Shen J, Luo X, Zhu W, Cheng J, Yu K, et al. Dopamine D1 764
receptor agonist and D2 receptor antagonist effects of the natural 765
product (2)-stepholidine: Molecular modeling and dynamics 766
simulations. *Biophys J.* 2007;93(5):1431–1441. 767
doi:10.1529/biophysj.106.088500. 768

42. Lazaridis T. Inhomogeneous Fluid Approach to Solvation 769
Thermodynamics. 1. Theory. *J Phys Chem B.* 770
1998;102(18):3531–3541. doi:10.1021/jp9723574. 771

43. Izadi S, Anandakrishnan R, Onufriev AV. Building water models: 772
A different approach. *J Phys Chem Lett.* 2014;5(21):3863–3871. 773
doi:10.1021/jz501780a. 774

44. Nguyen CN, Kurtzman Young T, Gilson MK. Grid inhomogeneous 775
solvation theory: Hydration structure and thermodynamics of the 776
miniature receptor cucurbit[7]uril. *J Chem Phys.* 777
2012;137(4):973–980. doi:10.1063/1.4733951. 778

45. Oroguchi T, Nakasako M. Changes in hydration structure are 779
necessary for collective motions of a multi-domain protein. *Sci Rep.* 780
2016;6(1):26302. doi:10.1038/srep26302. 781

46. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. 782
Evaluation and reparametrization of the OPLS-AA force field for 783
proteins via comparison with accurate quantum chemical 784
calculations on peptides. *J Phys Chem B.* 2001;105(28):6474–6487. 785
doi:10.1021/jp003919d. 786

47. Jacobson MP, Kaminski GA, Friesner RA, Rapp CS. Force field 787
validation using protein side chain prediction. *J Phys Chem B.* 788
2002;106(44):11673–11680. doi:10.1021/jp021564n. 789

48. Qiu D, Shenkin PS, Hollinger FP, Still WC. The GB/SA 790
continuum model for solvation. A fast analytical method for the 791
calculation of approximate Born radii. *J Phys Chem A.* 792
1997;101(16):3005–3014. doi:10.1021/jp961992r. 793

49. Hawkins GD, Cramer CJ, Truhlar DG. Parametrized models of 794
aqueous free energies of solvation based on pairwise descreening of 795
solute atomic charges from a dielectric medium. *J Phys Chem.* 796
1996;100(51):19824–19839. doi:10.1021/jp961710n. 797

50. Gallicchio E, Lapelosa M, Levy RM. Binding Energy Distribution 798
Analysis Method (BEDAM) for Estimation of Protein-Ligand 799
Binding Affinities. *J Chem Theory Comput.* 2010;6:2961–2977. 800
doi:10.1021/ct1002913. 801

51. Gallicchio E, Levy RM. Recent theoretical and computational 802
advances for modeling protein-ligand binding affinities. *Adv* 803
Protein Chem Struct Biol. 2011;85(1):27–80. 804
doi:10.1016/B978-0-12-386485-7.00002-8. 805

52. Tan Z, Gallicchio E, Lapelosa M, Levy RM. Theory of binless
806
multi-state free energy estimation with applications to
807
protein-ligand binding. *J Chem Phys.* 2012;136(14):144102.
808
doi:10.1063/1.3701175. 809

53. Gallicchio E, Levy RM, Parashar M. Asynchronous replica
810
exchange for molecular simulations. *J Comput Chem.*
811
2008;29(5):788–794. doi:10.1002/jcc.20839. 812

54. Gallicchio E, Xia J, Flynn WF, Zhang B, Samlalsingh S, Mentes A,
813
et al. Asynchronous replica exchange software for grid and
814
heterogeneous computing. *Comput Phys Commun.*
815
2015;196:236–246. doi:10.1016/j.cpc.2015.06.010. 816

55. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel
817
procedure for modeling ligand/receptor induced fit effects. *J Med*
818
Chem. 2006;49(2):534–553. doi:10.1021/jm050540c. 819

56. Jacobson MP, Pincus DL, Rapp CS, Day TJF, Honig B, Shaw DE,
820
et al. A hierarchical approach to all-atom loop prediction. *Proteins.* 821
2004;55:351–367. 822

57. Jacobson MP, Friesner RA, Xiang Z, Honig B. On the role of the
823
crystal environment in determining protein side-chain
824
conformations. *J Mol Biol.* 2002;320(3):597–608.
825
doi:10.1016/S0022-2836(02)00470-9. 826

58. Salomon-Ferrer R, Case DA, Walker RC. An overview of the
827
Amber biomolecular simulation package. *Wiley Interdiscip Rev*
828
Comput Mol Sci. 2013;3(2):198–210. doi:10.1002/wcms.1121. 829

59. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, 830
Simmerling C. ff14SB: Improving the Accuracy of Protein Side 831
Chain and Backbone Parameters from ff99SB. *J Chem Theory 832*
Comput. 2015;11(8):3696–3713. doi:10.1021/acs.jctc.5b00255. 833

60. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz 834
DT, et al. Glide: A New Approach for Rapid, Accurate Docking 835
and Scoring. 1. Method and assessment of Docking Accuracy. *J 836*
Med Chem. 2004;47(7):1739–1749. 837

61. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, 838
Uchimaya M. Epik: A software program for pKa prediction and 839
protonation state generation for drug-like molecules. *J Comput 840*
Aided Mol Des. 2007;21(12):681–691. 841
doi:10.1007/s10822-007-9133-z. 842

62. Gallicchio E, Levy RM. Prediction of SAMPL3 host-guest affinities 843
with the binding energy distribution analysis method (BEDAM). *J 844*
Comput Aided Mol Des. 2012;26(5):505–516. 845
doi:10.1007/s10822-012-9552-3. 846

63. Gallicchio E, Deng N, He P, Wickstrom L, Perryman AL, Santiago 847
DN, et al. Virtual screening of integrase inhibitors by large scale 848
binding free energy calculations: the SAMPL4 challenge. *J Comput 849*
Aided Mol Des. 2014;28:475–490. doi:10.1007/s10822-014-9711-9. 850

64. Provasi D, Artacho MC, Negri A, Mobrecc JC, Filizola M. 851
Ligand-Induced modulation of the Free-Energy landscape of G 852
protein-coupled receptors explored by adaptive biasing techniques. 853

65. Michino M, Boateng CA, Donthamsetti P, Yano H, Bakare OM, Bonifazi A, et al. Toward understanding the structural basis of partial agonism at the dopamine D3 receptor. *J Med Chem.* 2017;60(2):580–593. doi:10.1021/acs.jmedchem.6b01148. 856
857
858
859

66. Deng Y, Roux B. Computations of standard binding free energies with molecular dynamics simulations. *J Phys Chem B.* 2009;113(8):2234–2246. doi:10.1021/jp807701h. 860
861
862

67. Bruce Macdonald HE, Cave-Ayland C, Ross GA, Essex JW. Ligand Binding Free Energies with Adaptive Water Networks: Two-Dimensional Grand Canonical Alchemical Perturbations. *J Chem Theory Comput.* 2018;14(12):6586–6597. 863
864
865
866
867

doi:10.1021/acs.jctc.8b00614.

68. Clark M, Meshkat S, Wiseman JS. Grand Canonical Free-Energy Calculations of Protein-Ligand Binding. *J Chem Inf Model.* 2009;49(4):934–943. doi:10.1021/ci8004397. 868
869
870

Supporting Information

S1 File. Chemistry and Synthesis