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Using a data sample of 772 x 10% BB pairs collected on the T (4S) resonance with the Belle detector

at the KEKB asymmetric energy e*e™ collider, we report the observation of B — ppz*z~ and the first
observation of BY — ppx*z°. We measure a decay branching fraction of (0.83 £ 0.17 £ 0.17) x 107% in
BY = ppnta for M+,- < 1.22 GeV/c? with a significance of 5.5 standard deviations. The contribution
from B — ppK? is excluded. We measure a decay branching fraction of (4.58 4= 1.17 4 0.67) x 107° for
BY — pprta® with M- 0 < 1.3 GeV/c? with a significance of 5.4 standard deviations. We study the
difference of the M ,; distributions in B’ — ppz*z~ and Bt — ppr*tz°.

DOI: 10.1103/PhysRevD.101.052012

Charmless B decays offer a good opportunity to find
sizable CP violation due to interference between the b — s
penguin and b — u tree processes. Such decays can reveal
new physics if measured results deviate from Standard
Model expectations. In the B-factory era, both Belle and
BABAR have discovered large direct CP violation in the
B — K system [1-3]. The LHCb Collaboration reported
evidence of direct CP violation in BT — ppK™ [4]. Here
and throughout the text, the inclusion of the charge-
conjugate mode is implied unless otherwise stated. This
rare baryonic B decay presumably proceeds via the b — s
penguin process with some non-negligible » — u contri-
bution. It is intriguing that the invariant mass of the pp
system peaks near threshold [5], and in the pp rest
frame, K™ is produced preferably in the p direction [6].
Interestingly, this angular asymmetry is opposite to that
observed in Bt — ppn™, which is presumably dominated
by the b — u tree process [6]. Most of the baryonic B
decays presumably proceed predominantly via the b — s
process, except for BT — ppat and B° — ppa° [7]
decays. It is important to measure other b — u baryonic
B decays to provide more information for theoretical
investigation based on a generalized factorization approach
[8]. B® — ppxtx~ has been observed by LHCb [9], but
there is still no observation for B* — ppa*a’.

We report a study of both B® - pprtz~ and Bt —
ppaa° including the B — ppp mass region using the
full T(4S) dataset collected by the Belle detector [10,11]
at the asymmetric energy et (3.5 GeV) e~ (8 GeV)
KEKB collider [12,13]. The data sample used in this study
corresponds to an integrated luminosity of 711 fb~!, which
contains 772 x 10° BB pairs produced on the Y(4S5)

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

resonance. The Belle detector surrounds the interaction
point of KEKB. It is a large-solid-angle magnetic spec-
trometer that consists of a silicon vertex detector, a 50-layer
central drift chamber (CDC), an array of aerogel threshold
Cherenkov counters (ACC), a barrel-like arrangement of
time-of-flight scintillation counters (TOF), and an electro-
magnetic calorimeter (ECL) comprised of CsI(TI) crystals
located inside a superconducting solenoid coil that provides
a 1.5 T magnetic field. An iron flux return located outside
of the coil is instrumented to detect K9 mesons and
identify muons.

For the study of B — ppzm, samples simulated
with the Monte Carlo technique (MC) are used to optimize
the signal selection criteria and estimate the signal
reconstruction efficiency. These samples are generated with
EvtGen [14] and a GEANT-based software package [15] to
model the detector response. We generate the signal MC
sample by a phase space model reweighted with the pp
mass distribution obtained by LHCb [9] on B® — ppatz~.
The background samples include the continuum events
(ete™ — ui, dd, s5, and c¢), generic B decays (b — c),
and rare B decays (b — u,d,s). These simulated back-
ground samples are 6 times larger than the integrated
luminosity of the accumulated Belle data.

We require charged particles to originate within a 2.0 cm
region along the beam and from a 0.3 cm region on the
transverse plane around the interaction region. To identify
charged particles, we utilize the likelihood information
determined for each particle type by the CDC, TOF, and
ACC and apply the same selection criteria listed in Ref. [6]
to select p(p) and 7" (z~). The #° is reconstructed from
two photons with a minimum energy in the laboratory
frame of 0.05 GeV measured by the ECL. To reduce
combinatoric background, the z° energy is required to be
greater than 0.5 GeV, and the reconstructed mass is in the
range 0.111 <M,, <0.151 GeV/c?, which corresponds
to a £3.0 standard deviation (¢) window. We then perform
a mass-constrained fit to the nominal z° mass [16] in order
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to improve the resolution of the reconstructed z° four-
momentum. To reject B — ppD™*) events, we restrict the
invariant 7z mass M, to be less than 1.22 GeV/c? for
B’ - pprtr~ and 1.3 GeV/c? for BY — pprta® based
on studies of the simulated background. We use AE =
Efecon — Eﬁem and My, = \/(E;;eam/cz)z - (P;Fecon/c)z to
identify B decays. Ejecon/Precon and Ej., . are the recon-
structed B energy/momentum and the beam energy mea-
sured in the Y(4S) rest frame, respectively. For further
investigation, we keep candidates with 5.24 < M, <
5.29 GeV/c? and |AE| < 0.2 GeV.

We have further applied a D veto to reject candidate
events with a charged pion, assumed to be a charged kaon,
satisfying |M g, — Mp| < 0.4 GeV/c?. We require only
one B candidate in each event. We choose the candidate
with the smallest value of y? in the B vertex fit. The
fractions of B — ppr*z~ and BT — ppatz’ MC events
with multiple B candidates are 16.4% and 20.3%, respec-
tively. This selection removes 5.6% of the B — ppratn~
and 8.7% of the BT — ppata® signal.

Based on the MC simulation, there are only a few events
from generic or rare B decays in the candidate region
(5.24 < My, < 5.29 GeV/c? and |AE| < 0.2 GeV); thus,
they are ignored. The continuum background is the
dominant component in the candidate region. Variables
describing event topology are used to distinguish spherical
BB events from jetlike continuum events. We use a neural
network package, NeuroBayes [17], to separate the B signal
from the continuum background. There are 28 input
parameters for the neural network training, of which 23
parameters are modified Fox-Wolfram moments of par-
ticles of the signal B candidate, and separately those of
particles in the rest of the event [18,19]. The remaining five
parameters are the separation between the B candidate
vertex and the accompanying B vertex along the longi-
tudinal direction, the angle between the B flight direction
and the beam axis in the Y(4S) rest frame, the angle
between the B momentum and the thrust axis of the event
in the Y(4S) rest frame, the sphericity [20] of the event
calculated in the T'(4S) rest frame, and the B flavor tagging
quality parameter [21].

The output of NeuroBayes, Cpp, ranges from —1 to +1,
where the value is close to +1 for BB-like and close to —1
for continuum-like events. We require the C,;, to be greater
than 0.9 (0.87) for B —» ppatz~ (B — ppata®) with
optimizations based on a figure of merit (FOM) defined as

N

VN, +N,’

where N, is the expected signal yield, assuming the
branching fraction measured by LHCb for B — pprtz~
and the same value for B¥ — ppa*z°, and Ny is the number
of background events from the MC simulations. To extract

FOM = (1)

the B — ppzr yield for events in the candidate region, we
perform an extended unbinned likelihood fit to variables AE
and My,.. These variables are assumed to be uncorrelated.
The fit function used is

-32
e =

' |(Nj> N . .
L= TH Z(Nij(M{)C, AE")), (2)
i=1

where N is the number of total events, i denotes the
event index, j stands for the component index (signal or
background), and P represents the probability density
function (PDF).

To model the signal distributions, we use double
Gaussian functions for AE of B® - ppa*tz~, a Crystal
Ball function [22] and a Gaussian function for AE of
BT — pprta°, and a double Gaussian function for M.
For the background, we use a second-order Chebyshev
polynomial function and an ARGUS function [23] to
describe AE and M, respectively. The signal distributions
in AE and M, are calibrated with B° — ppD°
(D° - K*z~) and B® —» D°z° (D° - K*z~) by compar-
ing the shape difference between the predictions of the MC
and data. These modes have the same multiplicity in the
final state as our signal, much larger statistics, and small
backgrounds. We fix the calibrated signal shapes from MC
simulation and allow the component yields and all other
PDF shape parameters to float. The fit results are shown
in Figs. 1 and 2.

We find the signal yields of B® — ppr*z~ and BT —
pprta’ tobe 73.87[78 and 151 & 39 with fit significances
of 5.5¢ and 5.40, respectively. The significance is defined
as /=2 xIn(Ly/L,)(0), where L, is the likelihood with
zero signal yield and L is the likelihood for the measured
yield. In this calculation, we have used the likelihood
function which is smeared by including the additive
systematic uncertainties that affect the yield. With the
large significance of both modes, we then measure the
signal yields in different M ,, bins with the same fit method.
Table I and Fig. 3 show the yield and statistical significance
in different M, bins for B — ppa*z~; Table II and Fig. 4
show them for B* — pprtz°. For B — ppn*n~, signal
events in the bin 0.46 < M,, < 0.53 GeV/c? are mostly
from B — ppK?, and hence we exclude this range in the
contribution shown in Table I and Fig. 3, and from the
measurement of B(B® — ppztz~). Assuming the Y(4S)
decays to charged and neutral BB pairs equally, we use the
efficiency obtained from the MC simulation and fitted
signal yield to calculate the branching fraction. After
calculating overall efficiencies for B — ppa*z~ and BT —
pprta®, the branching fractions of B — ppatz~ and
BT = pprta’ for M., <122 GeV/c* and M <
1.3 GeV/c? are found to be (0.83 £0.17 +0.17) x 107°
and (4.58 +1.17 4 0.67) x 107%; the signal efficiencies
are 11.5% and 4.3%, respectively.
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FIG. 1. Fit results of B® — pprtz~ projected onto AE
(with 5.27 <M, <5.29GeV/c?) and My, (with —0.03 < AE <
0.03GeV). The dashed line represents the background. The
dotted line represents the signal. The solid line is the sum of
all fit components.

We attempted to find the contribution of BT — ppp™ by
minimizing the x> between the observed data and the
assumed nonresonant BT — pprta® and BT — pppt
decays. To describe the M, distribution, we use the phase
space model for nonresonant B — ppztz° and a Breit-
Wigner function convolved with a Gaussian function for
BT - ppp". We set the Breit-Wigner function with its
mean and width to the nominal values for the p* convolved
with a Gaussian resolution function of 5 MeV/c? width.
The result is shown in Fig. 4.

The fit gives a yield of 86 =41 events with a L of

Ngof

17.0/11 for BT — ppp™. Our current data sample is not
large enough to separate the contributions of BT — ppp™
and nonresonant BY — ppa*a’. The measured B(B* —
pprta®) with Bt — ppp* included is almost a factor of
10 smaller than the predicted B(B* — ppp™) [8].

There are modes sharing the same final-state particles as
our signal, such as B - pA**z or B - pA’z. Examining
the Mp(pr+) and My(,,-) spectra, we find no obvious
contribution from these modes.
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FIG. 2. Fit results of B* — ppata® projected onto AE
(with 5.27 < My, <5.29 GeV/c?) and My, (with —0.03 < AE <
0.03 GeV). The dashed line represents the background. The
dotted line represents the signal. The solid line is the sum of all fit
components.

TABLE I.  Yields, statistical significance, and efficiencies (&)
in different M, bins for B® — pprtn~.

M, (GeV/c?) N c &t (%)
M, < 0.39 27454 - 11.2
0.39-0.46 9.5:39 2.1 115
0.46-0.53 K9 veto
0.53-0.6 —0.1139 e 113
0.6-0.67 19737 0.5 11.9
0.67-0.74 10.8%J 2.0 12.1
0.74-0.81 13.01%2 2.6 123
0.81-0.88 13.91¢] 3.1 11.8
0.88-0.95 16.5169 4.1 10.8
0.95-1.02 0.5126 e 9.6
1.02-1.09 36120 1.2 8.4
1.09-1.16 12438 0.5 6.5
1.16-1.22 2.31%9 1.3 3.5
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We investigate the M ,; distribution of B signals in
three regions: M,; < 2.85 GeV/ c? for the threshold
enhancement region, 2.85 < M ,; < 3.128 GeV/c? for the
charmonium-enhanced region, and 3.128 GeV/c> < M P
for the phase-space-dominant region. We perform a 2D
(AE, My,) likelihood fit to extract the signal yields of the
B — pprr decays in each region.

Tables III and IV show the fitted yields with statistical fit
significances for B — ppa*a~ and BT — ppr*a°, respec-
tively. The charmonium-enhanced region, 2.85 <M ,; <
3.128 GeV/c?, includes other expected resonant modes
such as B — J/wp [16]. We find that B — ppa* 7~ events

TABLEII.  Yields, statistical significance, and efficiencies (e.¢)
in different M, bins for B* — ppa+tal.

M, (GeV/c?) N, c eopp (%)
M,, < 0.39 -0.5133 43
0.39-0.46 3.0188 0.3 4.1
0.46-0.53 7.555%° 0.8 4.9
0.53-0.6 232478 22 47
0.6-0.67 —5.91105 e 4.8
0.67-0.74 25741 1.8 5.0
0.74-0.81 53.91]83 3.7 5.1
0.81-0.88 535133 0.4 48
0.88-0.95 —3.0798 . 43
0.95-1.02 209755 1.7 37
1.02-1.09 5.818 0.8 2.7
1.09-1.16 254193 3.1 2.7
1.16-1.23 6.2173 0.8 2.2
1.23-1.3 —0.3153 e 0.8

cross-hatched region represents the B — ppp™ component, and
the vertical-line-hatched region represents the Bt — ppata®
component.

are equally distributed in the bins below and above
the charmonium-enhanced region, while B* — ppa*a®
events are dominant in the bin below the charmonium-
enhanced region. We also calculated the branching fraction
of B — ppa*n~ in the threshold enhancement region to
be (0.35+0.13 +0.07) x 107, which is consistent with
the observed result from LHCD [9]. Sources of systematic
uncertainties are summarized in Table V. The number of BB
pairs is known to within 1.4%. By using the partially
reconstructed D** — D%z with D° — zt72~K$ events,
the uncertainty due to the charged-track reconstruction

TABLE III. Yields, statistical significance, and efficiencies
(€er) in different M ,; bins for B = ppata (0.6 <M,, <
1.22 GeV/c?).

M5 (GeV/c?) N o Eetr (%)
M, <285 26.17390 4.0 9.8
2.85 <M, <3.128 19.6+102 29 9.9
3128 <M, 29.17162 35 9.4

TABLE IV. Yields, statistical significance, and efficiencies (&)
in different M, bins for BY - ppr*a° (M,, <13 GeV/c?).

M,; (GeV/c?) Ny c eoir (%)
M,, <285 133.573%¢ 5.1 4.8
2.85 <M, <3.128 123593 1.4 4.0
3128 <M, —3.8:1;_'; e 3.4
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TABLE V. Table of systematic uncertainties (%) for B —

pprnta~ and BT — pprtal.

Uncertainties B - pprnta BT — pprta®
Ngi 1.4 1.4
Tracking 1.4 1.1
p/x identification 3.3 24
79 reconstruction e 2.8
Continuum suppression 4.7 4.3
Decay model 14.3 8.6
AE, My, shape 12.4 10.4
Summary 19.9 14.6

efficiency is estimated to be 0.35% per track. We use a
A = pr~ (D't = D%z%, D’ - K~z") sample to calibrate
the MC p (") identification efficiency and assign uncer-
tainties of 3.3% and 2.4% for B® - ppax*z~ and B* —
pprta® decays, respectively. For z° reconstruction, we
determine its uncertainty by using a 7= — 72”7’y data
sample [24]. To estimate the systematic error due to
continuum suppression, we use the B — ppD° and B —
D°z° data/MC samples, where D — K*z~. We choose
the efficiency of the phase space model for B — ppatz~
and the efficiency of the reweighted phase space model for
BT — pprta°, and we estimate the efficiency uncertainty
as a difference of signal efficiencies for B — ppatz~ in
the reweighted phase space model and B — ppr*z® in
the phase space model. The uncertainty associated with the
parameters of the AE and M. PDFs is examined by
repeating the fit with each parameter varied by 1 standard
deviation from its nominal value. The assumption of no
correlation between AE and My, is examined by replacing
the PDF of B signal events with the corresponding 2D
histogram function.

In summary, we report the observation of B® — pprx*z~
and the first observation of B¥* — ppztz® with branching
fractions of (0.83+0.17£0.17) x 107® and (4.58 &
1.17£0.67) x 107  for M, <122 GeV/c*> and
M, 0 < 1.3 GeV/c?, respectively. In contrast to the theo-
retical prediction [8], the measured B for BY — ppa*za®in
the p-enhanced region is an order of magnitude smaller
than the theoretical expectation. Similar deviation from
the theoretical expectation has also been found in BT —
pputv, by LHCb [25] and Belle [26]. We find that the
BT — pprta°’ decay should be dominated by the lower
M, bin, which is not the case in the B = pprata~ decay.
These findings are useful for future theoretical investigation.
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