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We present the first measurements of branching fractions of rare tau-lepton decays, 1~ = 77 v, ¢~
(¢ = e or ), using a data sample corresponding to 562 fb~! collected at a center-of-mass energy of
10.58 GeV with the Belle detector at the KEKB asymmetric-energy e e~ collider. The 7= — z7v,ete™
decay is observed for the first time with 7.0c significance. The partial branching fraction determined

by the structure-dependent mechanisms mediated by either a vector or an axial-vector current for the
mass region M,,, > 1.05 GeV/c? is measured to be B(z~ — a7 vete”)[M - p-p- > 1.05 GeV/c?] =
(590 +£0.53 £ 0.85 +0.11) x 1075, where the first uncertainty is statistical, the second is systematic,
and the third is due to model dependence. In the full phase space, due to the different detection efficiencies
for the structure-dependent mechanisms mediated by axial-vector and vector currents, the branching
fraction varies from B,(t~ = n7vete”) = (1.46 £ 0.13 £0.21) x 1075 to By (™ = 7 vete”) =
(3.01 £0.27 £0.43) x 107>, respectively. An upper limit is set on the branching fraction of the 7~ —
A vt p decay, B(tT — a v utpT) < 1.14 x 1075, at the 90% confidence level.

DOI: 10.1103/PhysRevD.100.071101

I. INTRODUCTION

The hadronic final states of the tau-lepton decays
provide a clean laboratory to study the dynamics of strong
interactions in the energy region below the tau mass.
The world’s largest sample of tau leptons, collected
with the Belle detector, allows measurement of rare tau
decay branching fractions to a new level of sensitivity. We
present the first measurements of branching fractions of
rare tau-lepton decays 1~ — 7 v, 76" (£ = e or p) [1],
whose theoretical predictions are calculated as B(z~ —
nvete”)€[1.4,28] x 107 and B(t~ —» nvutpu) €
[0.03,1.0] x 1073 [2].

These decays are interesting because they involve the
y*W*z vertex with two gauge bosons off their mass shells.
The relevant amplitudes for the decays ™ — n v, ¢~
can be written as a sum of five contributions, as shown in
Fig. 1 [3]. The diagrams (a), (b), and (c) are structure
independent while the diagrams (d) and (e) are structure
dependent. In all amplitudes, the lepton pair is produced by
a virtual photon. In the case of a real photon [4], the yWx

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

vertex plays an important role in determining the radiative
corrections to the 7= — 7~ v, decay [5] and in the evalu-
ation of the contributions of the hadronic light-by-light
scattering to the muon anomalous magnetic moment [6].
The measured branching fractions of the decay modes of
interest can be used to validate the Resonance Chiral
Theory [7], a semiphenomenological approach to describe
strong interactions at energies below the tau mass. In
addition, rare decays of 7 often serve as a probe of physics
beyond the Standard Model [8]. Another important impact
of a precise measurement of B(z~ — 7z~ v,£7¢7) is useful
input for a reliable background estimation in searches for
various lepton flavor and lepton number violating decays.

FIG. 1. Feynman diagrams for the dominant amplitudes for
7= = 7 v, £ ¢" [2]. The dot indicates known (fully data-driven)
hadronization effects. The solid square (triangle) represents the
structure-dependent contribution mediated by the vector (axial-
vector) current.
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II. DATA SET AND SIMULATIONS

In this paper, we report branching fraction measure-
ments for the rare decays 7~ —» nv,eTe” and 77 —
7 v uTu~ with data recorded at a center-of-mass (CM)
energy of /s = 10.58 GeV by the Belle experiment at
the KEKB asymmetric-energy e™e™ collider [9]. The data
used in this analysis correspond to an integrated lumi-
nosity of 562 fb~!. The Belle detector is a general
purpose large-solid-angle spectrometer consisting of a
silicon vertex detector, a central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC), a
barrel-like arrangement of time-of-flight scintillation
counters (TOF), and an electromagnetic calorimeter
(ECL) located inside a superconducting solenoid coil
that provides a 1.5 T magnetic field. Outside the coil, an
iron flux-return yoke is instrumented to detect K9 mesons
and to identify muons (KLM). A detailed description of
the Belle detector can be found elsewhere [10]. In this
analysis, we use the data set collected with an inner
configuration that comprises a 1.5 cm radius beampipe, a
four-layer silicon detector and a small-cell inner drift
chamber.

To optimize the event selection criteria and to determine
the detection efficiency for the signal events, Monte Carlo
(MC) samples are employed. The MC samples are gen-
erated using EVTGEN [11] for hadronic processes, KKMC
[12] for fermion pairs, and AAFH [13] for two-photon
production of fermion pairs. The 7 lepton decays are carried
out by TAUOLA [14]. The final-state radiation of charged
particles is simulated by PHOTOS [15]. For the signal
modes 77 = 7 v,£¢~, we employ formulas given in
Ref. [2] and implement them into the TAUOLA generator.
For the 7= — 7 7z’v, mode, the largest background
for the 7~ - 7z v,ete” signal, we use the pion form
factor measured by the Belle collaboration [16]. For the
7¥ decay, in addition to 7° — yy, the z° Dalitz decay, 7° —
yete™ (1.17%), is implemented via the Pythia package
[17]. The response of the detector is simulated by a
GEANT3-based program [18]. The optimization of selec-
tion criteria using MC samples is implemented by maxi-
mizing S/v/S + B, where S (B) is the number of signal
(background) events.

III. EVENT SELECTION AND RECONSTRUCTION

The selection proceeds in two stages, aimed at sup-
pressing background processes while retaining a high
efficiency for the decay mode of interest. At the first stage,
we select ete™ — 777 events and substantially reject
background from the other processes that occur at
Y (4S). The second stage proceeds to select one 7 decaying
into the n~v,#T¢~ final state, where a vertex fit is
performed to the £+~ pair, and the other 7 decaying into
one-prong modes.

A. Selection of z*7~ events

Events with four tracks and zero net charge are selected.
The distance of closest approach of each charged particle to
the interaction point (IP) must be less than 5 cm along the
beam direction (the z axis) and less than 1 cm in the
transverse plane (the x-y plane). Each charged particle must
have transverse momentum larger than 0.1 GeV/c; and at
least one particle must have transverse momentum larger
than 0.5 GeV/c. The total energy deposited in the ECL
must be less than 10 GeV. A vertex fit is performed using all
charged particles to determine the position of the primary
vertex of the event, which is required to be near the
interaction point within 0.5 cm in the x-y plane and
2.5 cm along the z axis. The mean position of the
interaction point itself is monitored using generic
multitrack events in the same data taking period with an
accuracy of 10 ym. Photons, reconstructed from the
clusters in the ECL not associated with tracks, are selected
with energy thresholds of 50 MeV in the barrel region
(32° < 6, < 130°) and 100 MeV in the end cap region to
eliminate beam-background photons.

In order to reduce the remaining background from
radiative Bhabha events, continuum ete™ — g (where
q = u, d, s, ¢) production, and two-photon processes, we
require the following conditions. In the CM frame, the sum
of the magnitudes of charged particle momenta must be less
than 10 GeV/c, and its sum with photon energies must
exceed 3 GeV. Opening angles for every pair of tracks must
be less than 175°. A tau-pair event is accompanied by
missing four-momentum due to neutrinos, defined as
Pmiss = Pinit — Zi Puk,i — Zi Py.is where Pinit is the four-
momentum of the colliding e™e™ beams, and  _; py; and
> iPyi are the sums of the four-momenta of charged
particles (assumed to be pions) and photons, respectively.
Only events satisfying 1 GeV/c? < M, <7 GeV/c?
and 30° < 0,,;s < 150° criteria are selected, where M,
and 6, are the mass and polar angle of the missing four-
momentum in the CM frame.

We use the thrust variable to reduce e™e~ — gg back-
grounds and to provide two disjoint hemispheres for each
event. The thrust 7' is defined as the maximum value of
Sipi-nr|/>2; 1Pl with respect to the thrust axis 7,
where p; is the CM momentum of the ith particle, either
charged or neutral. We require the thrust 7' to be in
the range [0.85, 0.99]. Events are then divided into two
hemispheres, in the CM frame, by the plane perpendicular
to the thrust axis. We require three charged particles in the
signal hemisphere and one charged particle in the other.

B. Selection of 7~ —» 77 v,e*e” events

To select = — n7v,e e events, we require one charged
pion, one electron, and one positron in the signal hemi-
sphere. In order to identify a pion, pion (£,) and kaon (L)
likelihoods are constructed from the ACC response, the
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specific ionization (dE/dx) in the CDC, and the flight-time
measurement in the TOF. A likelihood ratio P/, =
Lx/(L,+ Lg) is formed and we require that the pion
track satisfies Py, < 0.6. To select electrons, a likelihood
ratio is required to satisfy P, = L,/(L, + Lx) > 0.5,
where the electron (£,) and nonelectron (Ly) likelihood
functions include information on the dE/dx in the CDC,
the ratio of the energy of the cluster in the ECL to the
momentum of the track, the transverse shape of the ECL
shower, the matching of the track with the ECL cluster, and
the signal amplitude in the ACC. A pion candidate is
required to have P, < 0.2 and a momentum larger than
0.2 GeV/c in both the CM and lab frame. To recover from
bremsstrahlung, four-momenta of photon candidates with a
direction within 0.05 radians of the electron track and with
an energy lower than that of the electron in the CM frame
are added to the four-momentum of the electron track.
In the signal hemisphere, after recovery, at most one photon
is allowed and its energy must be below 300 MeV.
To reduce e"e™ — gg backgrounds, we use the variable

2, .4 2 4
_ ZEbeamEﬂee —my-C - Mﬂee - C

x pry
2|PT| ’ |pﬂ€€| -c?

; (1)

where Epeam = +/s/2 is the beam energy, and E .., Prees
and M ,,, are the energy, momentum, and invariant mass of
the zee system in the CM frame. In the case of tau-lepton
events, the variable x is equal to cosé,_,,., the cosine of
the angle between the momentum of the 7z and that of the
mee system, assuming a massless tau neutrino. Therefore,
the absolute value of x is required not to exceed 1.

The main background to 7~ — 77 v,e"e™ is from 77 —
7~ 7y, decays, which have the largest branching fraction
among all tau-lepton decay modes. The mode 7~ — 7~ 7%,
has a similar final state if one of the photons from z° — yy
converts into the e*e™ pair in the detector or if the z°
decays into its Dalitz mode (z° — ye*e™). To suppress
background due to external photon conversion, the trans-
verse position of the e*e™ vertex (R,,) with respect to IP
must be less than 1.2 cm, and the longitudinal position of
the e™e™ vertex must be in the range [—-1 c¢m, 1.5 cm]. In
addition, we veto z° Dalitz decays using the photon that
survives the aforementioned requirement and require the
invariant mass of the e*e~y system, M,,,, to fall outside
of the range 110 MeV/c* < M,,, < 165 MeV/c* [£3.8
standard deviation (o)].

Even after these requirements, the dominant background
is still from 7= — 7~ 7%, and its reliable estimation is
essential for the signal extraction. The M, range from O to
1 GeV/c? is chosen as a control region to validate the
MC, where there is a large background from the 7~ —
p~(—»n~2%v, contribution, while we use the higher
mass region, 1.05 GeV/c?> < M,,, < 1.8 GeV/c?, as the
signal region. According to MC simulation the signal

1000 — [-o-DATA
| (Hlp(—me'ey)
L (Il (>myv
~ 800 |[Jother-tt
‘\>-’ r | non-tt
(qDJ | |MM5-lepton
" 600|— |[_]MC signal
=3 i -1
% C L =562 fb
T 400 DATA/MC
0 - [/ ndf 37.95/33
w - | Prob 0.2539
L 16" ossisone
200

0 01 02 03 04 05 06 07 08 09 1
M(ree) [GeV/c?]

FIG. 2. Distribution of we®e™ invariant mass (M,,,) in the
control region for the 7~ — 7~ v,ete™ candidates. Circles with
statistical error bars represent the experimental data. The histo-
grams show the expectations from simulation for the 7= —
m~v.ete” signal (white) and various background components
(other colors, as explained in the legend). The MC samples are
corrected for known efficiency differences between data and
simulation, and are normalized to the luminosity of the data
sample.

region we choose is efficient for the events with
the structure-dependent mechanism [see Figs. 1(d) and
1(e)], while the structure-independent signal events [see
Figs. 1(a)-1(c)] are located mostly in the region with
M,,, < 1.05 GeV/c?. As a result, this study is sensitive
only to the structure-dependent contributions to the branch-
ing fraction of the 7~ — n~v,eTe™ decay. The signal region
is blinded until we finalize the selection conditions and
the corrections to the simulated samples. Several correc-
tions, such as the efficiencies of the particle identification,
tracking, and 7° reconstruction are applied to the MC
samples.

Figure 2 shows the M, distribution in the control
region, where yields from data and the expected back-
ground estimated from MC simulation agree; 10243 events
are observed in the control region with a background
expectation of 10083 4 504 events, where the uncertainty
includes all systematic uncertainties discussed in Sec. IV A.
The MC result shows that this control region is accurately
described by only background events within 1o; i.e., we do
not observe a notable contribution from the structure-
independent signal events in the control region.

C. Selection of 7= - 7z~ v u*u~ events

To select 7~ — 7 v,u"pu~ events, we require one
charged pion and two oppositely charged muons in the
signal hemisphere. The sum of energies of all photons in
the signal hemisphere is required to be less than 300 MeV
and less than six photons should be reconstructed in both
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hemispheres. This requirement is more stringent than in
Sec. III B, since photon emission is negligible in this mode.
The pion candidate is required to satisfy Pg,, < 0.6 (not
kaon) and P, < 0.8 (not electron). To select muon candi-
dates, we employ a likelihood ratio P, = L, /(L, + L, +
L), where L,, L,, and L are likelihood functions. The
likelihood for a muon, Eﬂ, is calculated from two variables:
the difference between the penetration lengths determined
from the momentum of the particle and measured by the
KLM, and the y? of the KLM hits with respect to the track
extrapolated from the CDC to the KLM. A stringent
condition P, > 0.97 is imposed upon muon candidates
to suppress background events from t~ — 7 xtx U,
and the transverse momenta of the muons are required
to exceed 720 MeV/c to ensure that they reach the KLM
detector. Furthermore, muon candidates are required to
have Pk, < 0.8 to suppress the 7~ — K~z 7", mode.
To suppress background from hadronic processes, the
event is required to have a thrust value larger than 0.9.
In addition, the pseudomass [19] of the muu system,
defined as

m* = [2 . Ezrﬂﬂ(Ebeam - E,,W)/C4 + M%ﬂ”

-2 ‘pzr/m| ’ (Ebeam - Eﬂﬂﬂ)/c3]%’ (2)

is required to be less than 1.8 GeV/c?, where
Eruy> Pryy» and My, are the energy, momentum, and
invariant mass of the muu system, respectively. A loose
requirement on the invariant mass of the u*pu~ system,
M(utu)<0.85GeV/c?, is applied to further reduce this
background.

The remaining background to this decay mode is
dominated by the decay 7~ — n~ 7" 7~ (2°)v,, where two
charged pions are misidentified as muons. This misidenti-
fication happens mainly due to pion decays in flight.
Therefore, many of these misidentified tracks do not
originate in the IP. We define the signal region as R,, <
0.15 cm and the control region as R,, > 0.20 cm, where
R,, is the radial position of the reconstructed y*u~ vertex
with respect to the IP.

Figure 3 shows the R,, distribution for the control region
after applying all the selection criteria, where the MC
events are normalized to the luminosity and a small
correction for the muon misidentification is applied.
A total of 505 events are observed in the control region
with a background expectation of 477 + 23 events, where
the uncertainty includes all uncertainties discussed in
Sec. IVB. The background is dominated by 7z~ —
a~ata (z°)v, decays. The data are well reproduced by
the expected background from MC within 16. The MC
shows that the signal (z~ — z~v,u" u~) contribution in this
control region is small (about 2.3%) even assuming the
maximum value of the theoretical predictions for the
branching fraction of the signal mode [2].
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DATA/MC
%2/ ndf 14.04/17
Prob 0.6644
PO 0.9912 +0.0662

Events/0.4 cm
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FIG. 3. Distribution of transverse position of the p*pu~ vertex
(R,y) in the control region for the 7~ — 7~y u*u~ candidates.
Circles with statistical error bars represent the experimental data.
The histograms show the expectations from MC simulation for
the 7~ = n v u u~ signal (white) and various background
components (other colors, as explained in the legend). See the
text for more details.

IV. RESULTS

The branching fractions of = — z7v,£" ¢~ decays are
calculated according to the formula

Nops — N
B(t— > n v, f¢) = oy Thke (3)

- k]
2:0, L€y

where ¢, = (0.919 &+ 0.003) nb [20] is the cross section of
7t production at /s = 10.58 GeV, L the luminosity of
experimental data, e, the detection efficiency of signal
events, N, the number of observed events from exper-
imental data and Ny, the number of background events.

A. Measurement of the 7~ - 7" v e*e”
branching fraction

The M,,, distribution of the selected sample is shown in
Fig. 4. After applying all selection criteria, 1365 events are
observed in the signal region with a background expect-
ation of 954 + 45 events. The uncertainty of background
expectation takes into account all possible sources dis-
cussed later. The main background comes from the 7~ —
7~ v, decay, in which the z° decays either to two photons
(about 24% of the total background), or to eTe~y (about
56% of the total background). Both cases are caused by one
unreconstructed photon, which is common in both the
signal and the control region. The MC prediction is
checked by the data in the control region.

A clear excess of data events over the background
expectation is observed. The background-only hypothesis
is rejected with a 7.0¢ significance. Once we select signal
events in the limited M,,, mass region, two types of
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FIG. 4. Distribution of ze*e™ invariant mass (M,,,) for the
77 = mvete” candidates in the signal region. Circles with
statistical error bars represent the experimental data. The white
histogram is the expected signal using the theoretical model in
Ref. [2].

branching fractions are evaluated, the partial branching
fraction in the limited mass region M,,, > 1.05 GeV/c?,
and the branching fraction in the full M, mass region.
The detection efficiency in the M ,,, > 1.05 GeV/c? region
is (6.75 + 0.13)%, where the dominant error is due to the
model dependence of vector and axial-vector components.
Taking this number into account, the corresponding
partial branching fraction for the M,,, > 1.05GeV/c? is
obtained to be B(t~—n"v.ete™)[M,-,+,->1.05GeV/c?]=
(5.90+0.534-0.8540.11)x 107, where the first uncertainty
is statistical, the second is systematic, and the third is due to
the model dependence. The extension of this branching
fraction to the full M ,,, mass region depends on the assumed
relative contribution of vector and axial-vector current of
the structure-dependent terms. The detection efficiency of
the ©~ — n v,ete” events in this case varies between
two extreme cases, (1.32 £ 0.05)% assuming vector current
only and (2.73 £0.10)% assuming axial-vector current
only. Taking these numbers into account, we obtain
Byt~ = mvete”) = (1.46 £0.13 £ 0.21) x 107> with
an assumption of pure axial-vector current and By (r~ —
nvete”) = (3.01 £0.27 £ 0.43) x 1075 with pure vec-
tor current, where the first uncertainty is statistical and the
second is systematic.

The systematic uncertainty of the measured branching
fraction takes into account all sources and is estimated
to be 14.4% in total. The uncertainty due to the track
reconstruction efficiency is estimated to be 4.7% using
partially reconstructed D* — Dz with D° — 7~z K}
events. The uncertainty due to particle identification
is estimated to be 11.1%, including contributions
from the K/z separation and lepton identification.
The former is investigated with a control sample of

D** — D} D% — K~n" decays; the latter is studied
with the yy - £7¢~ and J/w — £7¢~ processes. The
uncertainty on the luminosity is obtained to be 1.4% using
Bhabha events where final-state electrons are required to
be detected in the barrel region. Since the luminosity is used
for the estimation of the number of tau-lepton pairs and the
number of background events, its contribution to the uncer-
tainty AB/B is 4.7%. The uncertainty associated with the
trigger efficiency is investigated by a dedicated trigger-
simulation program and found to be 1.2%. The uncertainty
due to the 7° reconstruction is investigated with a control
sample of 7= — 77 7%,, 7° — eTe "y events and estimated
to be 1.9%. The uncertainty arising from the limited size of
MC samples for the study of background contamination
and efficiency of signal events is estimated to be 3.7% via
its binomial variation. The uncertainties of the branching
fractions of the background modes are also taken into
account and found to be 4.4%. Finally, the uncertainty of
the 7z production cross section at Y(4S), 0.3%, is also
included.

B. Upper limit of the - -z~ v u*p~
branching fraction

The R, distribution of the selected samples is shown in
Fig. 5. After applying all selection criteria, 2578 events are
observed in the signal region with a background expect-
ation of 2244 + 109 events. The main backgrounds are
from the t= — 7z~ 2"z~ v, decay (81.9% of the total back-
ground) and 7~ — 7~ 7" 7 7%, decay (8.3% of the total
background). The total systematic uncertainty of the back-
ground expectation is estimated to be 4.9% including
contributions from tracking (1.4%), particle identification
(3.7%), luminosity (1.4%), trigger (0.3%), MC sizes (1.7%),

250 [~ -o- DATA
- | Y
B [ By
200 [~ [Jother-tt
LE) B [ non-tt
ln -
S 150 [ | 5-Iept.on
S N [ ]MC signal
*@ -
c C
o 100 —
T C
50 C

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

FIG. 5. Distribution of transverse position of the p™pu~ vertex
(R,y) for the 7= — 7w pu* u~ candidates. Circles with statistical
error bars represent the experimental data. The white histogram is
the expected signal assuming B = 1.0 x 107.
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accuracies of branching fractions of background modes
(1.0%), 7 cross section (0.3%), and # — u misidentification
calibration (1.5%). The n — p misidentification is deter-
mined by a control sample of ¥ — 772~z "1, events. As a
result, the excess (signal yield) is 334 & 51 £ 109 with a
significance of 2.8c, where the first (second) uncertainty is
statistical (systematic). We determine the upper limit for the
branching fraction of this decay.

The detection efficiency of the 7~ — z~ v utu~ events is
(4.14 £ 0.16)%. Taking into account the systematic uncer-
tainty of the background expectation and the statistical
uncertainty of the observed data events, an upper limit at
90% confidence level (CL) is set on this decay mode to
be B(t™ = mvutpu™) < 1.14 x 1075,

V. CONCLUSION

Using 562 tb~! of data collected with the Belle detector
at the KEKB asymmetric-energy et e~ collider, the 7= —
nvete” decay is observed for the first time with
7.00 significance to reject the background-only
hypothesis. The partial branching fraction for the mass
region M,,, > 1.05 GeV/c? is measured to be B(r~—
nvete”) M,y - >1.05GeV/c?]|=(5.90+0.53+0.85+
0.11)x 107, where the first uncertainty is statistical, the
second is systematic, and the third is due to the model
dependence. The extension of the branching fraction to the
full phase space depends on the assumed model and ranges
from B,(z~ —» 77vete”) = (1.46 £0.13 £ 0.21) x 107>
to By(tm =z vete”) = (3.01 £0.27 £0.43) x 107,
where the former corresponds to a model with pure axial-
vector current and the latter with pure vector current. This is
the smallest decay rate of tau lepton determined to date.
An upper limit is set on the branching fraction of 7~ —
vty to be B(rT = avputuT) < 1,14 x 1075, at
90% CL. The obtained results are consistent with the
theoretical predictions [2] and can help to constrain relevant
form factors.
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