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Abstract: From April to July 2018, a data sample at the peak energy of the   resonance was collected with the
Belle II detector at the SuperKEKB electron-positron collider. This is the first data sample of the Belle II experiment.
Using  Bhabha  and  digamma  events,  we  measure  the  integrated  luminosity  of  the  data  sample  to  be
( ,  where  the first  uncertainty is  statistical  and the second is  systematic.  This  work provides  a
basis for future luminosity measurements at Belle II.
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1    Introduction

Integrated  luminosity  (L)  is  a  basic  quantity  in  high

energy physics experiments. It reflects the size of the data
sample, which is crucial to most of the physics studies in
collider-based experiments.  It  is  also the bridge between
the number of produced events (N) and the cross section
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(σ) of any physics process:
N = L ·σ. (1)

According to this relationship, with the integrated lumin-
osity  one  can  calculate  the  number  of  produced  events
from a known cross section or measure the cross section
from a determined number of  produced events.  The pre-
cise measurement of integrated luminosity is thus funda-
mental  to  estimating  experimental  yields  accurately  and
testing theoretical models precisely.

e+e−
This  paper  presents  a  measurement  of  the  integrated

luminosity  of  the  first   collision data  sample  collec-
ted with the Belle II detector [1]. The Belle II experiment
runs  at  the  SuperKEKB  accelerator  at  the  High  Energy
Accelerator  Research  Organization  (KEK)  in  Tsukuba,
Japan.  Belle  II  [2]  is  a  next-generation B-factory experi-
ment  [3].  It  is  the  successor  to  the  Belle  experiment  [4]
and plans to record a dataset of 50 ab−1, which is about 50
times the Belle dataset.  With these data, Belle II aims to
search for  physics  beyond  the  Standard  Model  and   fur-
ther study CP violation in the flavor sector, and precisely
measure  all  parameters  of  the  Cabibbo-Kobayashi-
Maskawa  "unitarity  triangle"  [2].  The  experiment  will
also  study  properties  of  the  strong  interaction  in  hadron
physics.

Υ (4S)
5.55×1033 cm−2s−1

Operation  of  the  SuperKEKB  accelerator  and  the
Belle II  detector can be divided into three phases:  Phase
1, from February to June 2016; Phase 2, from April to Ju-
ly  2018;  and  Phase  3,  from  March  2019  onwards.  The
data sample  under  study  in  this  work  was  recorded  dur-
ing  Phase  2.  During  this  phase,  the  beams  of  electrons
and positrons collided at the center-of-mass (CM) energy
of the   resonance, with a peak instantaneous lumin-
osity of  , and the data sample was col-
lected with a nearly complete Belle II detector. (The full
vertex detector was not yet installed; see the next section
for  the  detector  description.)  In  the  earlier  Phase  1,  the
beams were circulated but not collided in the accelerator's
storage rings for beam-line conditioning, accelerator per-
formance  tuning,  and  beam  background  studies  [5].  In
current and future Phase 3 running, copious data samples
of beam-collision  events  are  recorded  for  the   compre-
hensive  physics  program  of  Belle  II.  The  luminosity
measurement of the collision data in Phase 2 is necessary
for physics measurements with this data,  and is  valuable
preparation for future measurements in Phase 3.

e+e−

e+e− → e+e−

e+e−→ γγ

In   collision experiments, the integrated luminos-
ity is mainly measured according to Eq. (1) with the fol-
lowing two  well-known  quantum  electrodynamics   pro-
cesses: Bhabha scattering       (nγ) and digamma
production    (nγ)  [6– 11].  Here,  nγ  in the   Bh-
abha process involves both the initial-state and final-state
radiation photons, while nγ  in the digamma process only
refers  to  the  initial-state  radiation  photons.  These  two
processes have large production rates, accurate theoretic-

al predictions for the cross sections, and simple event to-
pologies that can be simulated precisely and selected with
essentially  no  background  contamination.  These  three
features reduce  the  statistical  and  systematic   uncertain-
ties, making the Bhabha and digamma processes ideal for
integrated  luminosity  measurements.  In  this  work,  we
perform  two  independent  measurements  with  these  two
processes;  the  separate  measurements  cross-check  our
methodology.

2    The Belle II detector

e+e−

Υ(nS)
n = 1,2 · · ·6

Υ (1S) Υ (6S)
Υ (4S)

8×1035 cm−2s−1

The  Belle  II  detector  records  the  signals  of  the  final
state particles produced in   collisions to study the de-
cays of B mesons, charmed particles, τ leptons, and 
( ) resonances as well as the production of new
states of matter. It operates at the SuperKEKB accelerat-
or, which is the upgraded version of the KEKB accelerat-
or,  a  3-km-circumference  asymmetric-energy  electron-
positron collider with two storage rings: one for the elec-
tron beam, and the other for the positron beam. The two
beams  in  SuperKEKB  collide  at  a  crossing  angle  of  83
mrad, larger than the crossing angle of 22 mrad in KEKB.
Similar to KEKB, SuperKEKB is designed to work in the
energy region from   to   and to operate mainly
at the  . The instantaneous luminosity goal of Super-
KEKB is  , which is about 40 times high-
er than that of KEKB. Notably, due to the asymmetric en-
ergies  and  acollinear  orbits  of  the  electron  and  positron
beams,  the  coordinate  system  of  the  laboratory  frame  is
significantly different from that of the CM frame. In par-
ticular, in the laboratory frame the z axis is along the bi-
sector  of  the  angle  between  the  direction  of  the  electron
beam  and  the  reverse  direction  of  the  positron  beam,
while in the CM frame the z axis is along the direction of
the  electron  beam.  Specifically,  the  z  axis  in  the  CM
frame  points  at  the  same  direction  as  the  unit  vector
(0.1505, 0, 0.9886) in the laboratory frame.

C2H6

The  Belle  II  detector  surrounds  the  interaction  point
(IP),  which  is  within  a  1-cm  radius  beam  pipe.  It  has  a
cylindrical structure aligned centrally to the z axis in the
laboratory  frame  and  consists  of  several  nested  sub-de-
tectors and a superconducting solenoidal magnet. Six lay-
ers of vertex detectors (VXD), including two inner layers
of silicon pixel detectors surrounded by four layers of sil-
icon strip  detectors,  are  designed  to  accurately   recon-
struct  the  decay  vertices  of  B  mesons  and  other  short-
lived  particles.  During  Phase  2,  only  a  small  fraction  of
the  VXD sensors  were  installed  for  diagnostic  purposes,
and the remainder of the VXD volume was instrumented
with specialized radiation detectors for beam background
measurements [12]. A small-cell, helium-based (50% He,
50%  ) central  drift  chamber  (CDC)  is  used  to   pre-
cisely  measure  the  trajectories,  momenta,  and  ionization
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energy losses  of  charged  particles.  A  particle   identifica-
tion  system,  including  an  imaging  time-of-propagation
(TOP)  detector  in  the  barrel  region  and  an  aerogel  ring
imaging Cherenkov  detector  in  the  forward  endcap   re-
gion, is used to identify charged particles. An electromag-
netic calorimeter (ECL), composed of 8736 CsI(Tl) crys-
tals arranged in a barrel and two endcaps, detects photons
and provides discrimination of electrons from hadrons —
in particular,  pions.  The  closely-packed  crystals  are   de-
signed  with  a  tower  structure  pointing  to  the  IP,  but  are
tilted by    in θ and ϕ  from the radial  line to the IP to
avoid  the  possibility  that  a  photon  (or  electron)  could
travel along an inter-crystal gap without showering. A su-
perconducting solenoid magnet provides a 1.5 T magnet-
ic  field  for  the  measurement  of  the  momenta  of  charged
particles.  The    and  muon  detector  is  a  "sandwich"  of
alternating layers of 4.7-cm-thick iron plates and 4.4-cm-
thick active detector elements. The latter consists of scin-
tillator  strips  read  out  by  silicon  photomultipliers  in  the
endcap  and  innermost  barrel  layers,  and  glass-electrode
resistive  plate  chambers  in  the  outer  barrel  layers.  This
detector is used for the identification of high momentum
muons and the detection of   mesons. The Belle II  de-
tector is described in detail elsewhere [1].

In  Bhabha  and  digamma  events,  the  final-state
particles  are  electrons,  positrons,  and  photons;  thus  the
sub-detectors  most  vital  for  the  measurements  are  the
VXD,  CDC,  and  ECL.  Since  the  VXD  acceptance  was
quite limited and the CDC tracking efficiency was relat-
ively  low  in  Phase  2,  luminosity  measurements  using
ECL  information  alone  are  presented  in  this  paper.  To
avoid  the  uninstrumented  gaps  between  the  ECL  barrel
and  endcap  regions  where  the  material  model  in  the
Monte Carlo (MC) simulation was not well-defined, only
information  from  the  ECL  barrel  region  is  used  in  the
measurements.

3    Monte Carlo simulation

Υ (4S)

35◦−145◦

σee σγγ

σee = 17.37 σγγ = 1.833

To determine  detection  efficiencies,  five  million  Bh-
abha events and one million digamma events were simu-
lated  at  the  peak  energy  of  the    resonance  with  a
CM  beam  energy  spread  of  5  MeV  [13]  using  the
BABAYAGA@NLO  [14-17]  generator.  The  MC
samples  were  generated  in  the  polar  angle  range

  in  the  CM frame,  somewhat  broader  than  the
acceptance  of  the  ECL  barrel  region,  to  avoid  spurious
edge  effects.  Along  with  the  generation  of  the  samples,
the  theoretical  cross  sections  of  Bhabha  and  digamma
processes  (   and  )  were  evaluated  using  the  same
generator with the same input parameters. The cross sec-
tions were calculated to be   nb and 
nb with a claimed precision of 0.1% [14-17].

Υ (4S) µ+µ−

e+e−e+e−

fb−1 B+B− B0B̄0

fb−1

cc̄ ss̄ uū dd̄

fb−1 τ+τ−

To  estimate  background  levels,  the  following  MC
samples  were  also  produced  at  the  peak  energy  of  the

  resonance:  one  million    events  with  the
BABAYAGA@NLO  generator;  one  million  two-photon
events in the   final state with the AAFH [18–20]
generator;  50- -equivalent  of    and    events
decayed with EVTGEN 1.3 [21] for exclusive modes and
PYTHIA  8.2  [22]  for  inclusive  modes;  50- -equival-
ent  of  ,  ,  ,  and    events  produced  with  KKMC
4.15  [23,  24] and  decayed  with  EVTGEN  1.3  and   PY-
THIA 8.2; and 50- -equivalent of   events also pro-
duced  with  KKMC  4.15  but  decayed  with  TAUOLA
[25].

e+e−

In  order  to  simulate  the  interaction  of  final-state
particles  with  the  detector,  the  generated  MC  samples
were used as input for a GEANT4-based MC simulation
program  [26],  which  includes  the  geometric  description
and  response  of  the  detector.  In  the  simulation,  beam
backgrounds, such as those arising from the Touschek ef-
fect and beam-gas interactions, were overlaid on the 
collision events. The beam backgrounds were first simu-
lated with dedicated accelerator-design software [27], and
then processed by GEANT4 to handle the interactions of
the primary beam-background particles  with the acceler-
ator and detector material [28]. Notably, a complete sim-
ulation of  the  material  in  the  VXD region,  including the
cables,  electronics,  and  support  structure,  was  not  yet
available at this early stage of the experiment. The unsim-
ulated material  is  conservatively  estimated to  be  20% of
the simulated material, and its impact on the measured lu-
minosities is discussed in Section 6.

Both  the  data  and  MC  samples  were  reconstructed
and analyzed  with  the  Belle  II  analysis  software   frame-
work, basf2 [29].

4    Event selection

37.8◦ 120.5◦

To  determine  the  integrated  luminosity  of  the  data
sample, we first select the signals, namely Bhabha and di-
gamma events.  For this  purpose,  we require that  candid-
ate events  have  at  least  two  ECL  clusters,  and  we   sub-
sequently identify  the  two clusters  with  the  largest  ener-
gies in the CM frame. Because the ECL energies for the
electrons and positrons of Bhabha events, and the photons
of  digamma  events,  tend  to  be  distributed  near  half  the
CM energy,  the  higher  energy  of  the  two clusters  in  the
CM frame is  required to  be less  than 5.82 GeV, and the
lower  energy of  the  pair  is  required  to  be  greater  than  2
GeV. To  guarantee  that  the  two  clusters  are  well   recon-
structed within the ECL barrel region, their polar angles,
i.e.  those  of  the  position  vectors  of  the  cluster  centers
(similar  definition  applies  to  their  azimuthal  angles),  in
the  laboratory  frame  are  required  to  be  in  the  range

– . Since the final-state particles in Bhabha and
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digamma events are back to back, the acollinearity of the
two clusters  in  polar  angle,  namely  the  absolute   differ-
ence between   and the sum of the two polar angles in
the CM frame, is required to be less than  .  Because of
the  deflection of  electrons  and positrons  in  the  magnetic
field,  the  acollinearity  of  the  two  clusters  in  azimuthal
angle,  namely  the  absolute  difference  between    and
the absolute difference of the two azimuthal angles in the
CM frame, which peaks around  , is required to be in the
range  –  for  Bhabha events.  Since photons are not
affected by  the  magnetic  field,  the  acollinearity  in   azi-
muthal angle in the CM frame is required to be less than

 to select  digamma events.  Because the requirements
on  azimuthal  acollinearity  do  not  fully  separate  Bhabha
and digamma events, we refer to the measurements made
from each selection as the Bhabha-dominant or digamma-
dominant, respectively.  In  summary,  the  selection criter-
ia are as follows. The common requirements for the two
measurements are

< Emax2
cm < Emax1

cm <● 2 GeV   5.82 GeV,
37.8◦ < θmax1

lab θmax2
lab < 120.5◦●  ,  , and

|θmax1
cm + θmax2

cm −180◦| < 5◦●  .
Bhabha-dominant events are further selected with

2.5◦ < ||ϕmax1
cm −ϕmax2

cm | −180◦| < 13◦●  ,
and digamma-dominant events are further selected with

||ϕmax1
cm −ϕmax2

cm | −180◦| < 2.5◦●  .
Here, E, θ, and ϕ denote the energy, polar angle, and azi-
muthal angle of a cluster. The subscript cm (lab) denotes
the  CM  (laboratory)  frame,  and  the  superscript  max1
(max2)  identifies  the  cluster  with  the  largest  (second-
largest) energy.

Emax1
cm

Emax2
cm θmax1

lab θmax2
lab |θmax1

cm + θmax2
cm −180◦|

||ϕmax1
cm −ϕmax2

cm | −180◦|

The  criteria  presented  above  are  chosen  on  the  basis
of  the  distributions  in Figs.  1  and  2,  which  demonstrate
the close agreement of the distributions between the data
and  MC  samples  for  Bhabha-dominant  and  digamma-
dominant  measurements,  respectively.  Each  plot  in  the
figures shows one quantity in the selection criteria and is
drawn with  the  requirements  on  all  other  quantities   ap-
plied.  For  example,  the  top-left  plot  in Fig.  1  shows  the

 distribution for events that satisfy the requirements
on  ,  ,  ,  ,  and

.  In  the  figures,  the  luminosities  of
the MC samples are first normalized to a common refer-
ence  luminosity  and  then  normalized  as  a  whole  to  the
number of events in the data sample in each plot.

Emax1
cm Emax2

cm

Emax1
cm Emax2

cm

||ϕmax1
cm −ϕmax2

cm | −180◦|

In the figures, one sees that the data and MC samples
agree  quite  well  except  in  the  following  cases.  In  the

  and    plots,  data  and  MC disagree  around  the
peaks  due  to  the  imperfect  ECL calibration  at  this  early
stage  of  the  experiment.  However,  this  has  a  negligible
impact on  our  measurements,  because  the  selection   re-
quirements on   and   are far from the peaks. In
addition,  we  note  that  the  peak  around  4°  in  the

 plots is mainly associated with Bh-

abha  events  with  hard  final  state  radiation  where  the
photon, which is not deflected in the magnetic field, has a
higher energy than the electron or positron from which it
is radiated.  Due  to  the  gamma-conversion  effect,   di-
gamma events also contribute to this peak, but at a level
one order of magnitude smaller.

5    Determination of the luminosity

Nobs
data

ϵee ϵγγ

ϵbkg

In both of the Bhabha-dominant and digamma-domin-
ant measurements,  with their respective selection criteria
applied, we obtain the number of candidate events ( )
observed in  the  data  sample,  and  the  detection   efficien-
cies  of  Bhabha  and  digamma events  (   and  )  estim-
ated  using  their  respective  MC  samples,  as  listed  in
Table 1. Similarly, all the residual efficiencies of the indi-
vidual categories of backgrounds ( ) are estimated with
their corresponding MC samples.

σbkg
Rbkg

Combining the selection efficiencies with the theoret-
ical cross sections of the signal processes as well as those
of  the  background  processes  ( )  [2], the  total   back-
ground levels ( ) are calculated as

Rbkg =

∑
bkg

σbkgϵbkg

(σeeϵee+σγγϵγγ)
. (2)

uū τ+τ− dd̄

The  results  are  0.07% and  0.28% in  the  Bhabha-domin-
ant  and  digamma-dominant  measurements,  respectively.
Detailed background analysis shows that the background
mainly arises from  ,  , and   events in both meas-
urements.

Nobs
data ϵee ϵγγ σee σγγ RbkgInserting the values of  ,  ,  ,  ,  , and 

into the formula

L =
Nobs
data

(σeeϵee+σγγϵγγ)(1+Rbkg)
, (3)

the  integrated  luminosities  are  determined  to  be

Table 1.    Measured integrated luminosities and the quantities used to
calculate  them.  The second and third  columns list  the  quantities  in
the Bhabha-dominant  and  digamma-dominant  measurements,   re-
spectively. The uncertainties are statistical only.

Quantity Bhabha digamma

Nobs
data 3134488±1770 454650±674

ϵee (%) 35.93±0.02 0.255±0.002

ϵγγ  (%) 3.56±0.02 47.74±0.05

σee /nb 17.37 17.37

σγγ/nb 1.833 1.833

Rbkg (%) 0.07 0.28

pb−1L / 496.7±0.3 493.1±0.7
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496.7±0.3 pb−1 493.1±0.7 pb−1

ϵee ϵγγ

O

( )    and  ( )    in  the  Bhabha-
dominant and digamma-dominant measurements, respect-
ively.  Here,  the  uncertainties  are  statistical  only.  In  the
two  formulae  above,  the  efficiencies    and    impli-
citly include  an  energy-sum-based  ECL  trigger   effi-
ciency  of  100%  with  a  negligible  uncertainty  of
(0.01%).  This  is  evaluated  using  a  radiative  Bhabha

data  sample  as  the  ratio  of  the  events  triggered  by  both
ECL and CDC to all those triggered by CDC.

6    Systematic uncertainties

Table 2 summarizes the sources and values of the sys-

tematic uncertainties of the integrated luminosities meas-
ured above. The systematic uncertainties are evaluated as
follows.

The theoretical  cross  sections  of  Bhabha  and   di-
gamma  processes  are  evaluated  with  the
BABAYAGA@NLO generator with a precision of 0.1%
[16, 17], which is taken as the relative systematic uncer-
tainty in each measurement.

The  CM  energy  is  an  essential  input  to  the
BABAYAGA@NLO generator  for  the  evaluation  of  the
signal  cross  sections  and  the  generation  of  the  signal
events.  To  check  the  impact  of  its  uncertainty  on  the
measured  integrated  luminosities,  the  two  measurements
are repeated with the CM energy increased/decreased by

γγ

µ+µ− e+e−e+e− B+B− B0 B̄0 cc̄ ss̄ uū dd̄ τ+τ−

Fig.  1.      (color  online)  Comparisons  of  the  distributions  of  Bhabha-dominant  signal  candidates  between  the  data  and  MC samples.
Each plot in the figure shows one quantity in the selection criteria and is drawn with the requirements on all other quantities applied.
In  the  legend,  "Data"  represents  the  data  sample,  while  "ee",  " ",  "Bkg",  and  "Tot"  denote  the  Bhabha,  digamma,  background
( ,  ,  ,  ,  ,  ,  ,  , and  ), and total MC samples, respectively. The vertical arrows indicate the regions of
the selected events.
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Υ (4S)
20.5±2.5

0.1%, which is roughly half the width of the   reson-
ance ( ) MeV [30] and is a conservative value for
the  energy  uncertainty  according  to  an  analysis  of  the
yield  of B mesons.  For  each  measurement,  the  larger  of
the  changes  in  the  integrated  luminosity  is  taken  as  the
associated  uncertainty.  The  results  are  about  0.2%  for
both measurements.  Additionally,  since  the  rates  of  Bh-
abha  and  digamma processes  vary  comparatively  slowly
with energy, the impact of the uncertainty of the CM en-
ergy  spread  on  the  measured  integrated  luminosities  is
negligible.

The  polar  angle  range  of  electrons  and  positrons  for
Bhabha events or photons for digamma events in the CM
frame  is  another  important  input  to  the  BABAYAGA@

θcm 35◦ 145◦

θcm

θcm
5◦ 175◦

NLO generator. The nominal signal MC samples are gen-
erated in the   range  – . To check the impact of
different   ranges on the measured integrated luminos-
ities, the two measurements are repeated with Bhabha and
digamma  events  generated  in  the  wider    range
– .  For  the  Bhabha-dominant  measurements,  the

results  are  consistent  within  the  statistical  uncertainties.
For  the  digamma-dominant  measurements,  the  result
changes by about 0.4%, which is taken as the relative sys-
tematic uncertainty.

The  actual  position  of  the  IP  may  deviate  from  the
nominal position (0, 0, 0) as assumed in the MC simula-
tion. In a preliminary study with charged tracks, the aver-
age position and the width of the IP distribution over the

γγ

µ+µ− e+e−e+e− B+B− B0 B̄0 cc̄ ss̄ uū dd̄ τ+τ−

Fig. 2.      (color online) Comparisons of the distributions of digamma-dominant signal candidates between the data and MC samples.
Each plot in the figure shows one quantity in the selection criteria and is drawn with the requirements on all other quantities applied.
In  the  legend,  "Data"  represents  the  data  sample,  while  "ee",  " ",  "Bkg",  and  "Tot"  denote  the  Bhabha,  digamma,  background
( ,  ,  ,  ,  ,  ,  ,  , and  ), and total MC samples, respectively. The vertical arrows indicate the regions of
the selected events.
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−0.4 +0.4 +0.3

whole  data  sample  are  determined  to  be  (−0.4,  0.4,  0.3)
mm.  To  investigate  the  impact  of  the  deviation  on  the
measured integrated luminosities, we repeat our measure-
ments using a shifted position of the IP in the MC simula-
tion.  The  shift  used  is  ( ,  ,  )  mm  from  the
nominal position.  For  the  Bhabha-dominant  and   di-
gamma-dominant  measurements,  the  results  change  by
about  0.2%  and  0.1%,  respectively.  In  addition,  the  IP
spread  is  calculated  to  be  about  (14  μm,  0.56  μm,  0.35
mm) with the optics parameters set for the x and z dimen-
sions  and  observed  for  the y  dimension  during  Phase  2.
We  perform  a  study  with  the  IP  spread,  finding  the  IP
spread only  has  a  negligible  impact  on  the  measured  in-
tegrated luminosities because its x and y components are
small  and  its  symmetry  around  the  average  position
makes the  effects  in  positive  and  negative  directions  es-
sentially cancel.

+0.5
−0.5

θlab

The  location  of  the  ECL  detector  has  an  uncertainty
of 0.5 mm in the z direction. In effect, this uncertainty is
equivalent  to  an  uncertainty  in  the  position  of  the  IP,
though  they  are  from  different  sources.  To  examine  the
impact of  the  uncertainty  on the  measured integrated  lu-
minosities, the two measurements are each repeated with
two  new sets  of  signal  MC samples:  one  produced  with
the  position  of  the  IP  changed  from  (0,  0,  0)  to  (0,  0,

)  mm,  another  produced  with  the  position  of  the  IP
changed to (0, 0,  ) mm. For both measurements, the
larger change of the integrated luminosity is about 0.2%,
which is taken as the associated relative systematic uncer-
tainty. Besides the uncertainty in the z direction, there is
an uncertainty due to the rotation of the ECL sub-detect-
or relative to the coordinate system. However,  MC stud-
ies show that the impact of a rotation of 1 mrad in   on
the measured luminosities is negligible.

The relative  systematic  uncertainties  due  to  the   lim-
ited  sizes  of  the  signal  MC samples  are  evaluated  to  be
about 0.1% for both measurements.

θcm ϕcm

To examine  the  impact  of  beam background  overlay
on  the  measured  integrated  luminosities,  MC  samples
without beam background overlay are produced and used
to  perform  the  two  measurements.  The  differences
between the  results  obtained  with  and  without  the  back-
ground overlay are taken as the systematic uncertainties.
The uncertainties are about 0.1% for both measurements.
In addition, both MC samples with and without the back-
ground  overlay  demonstrate  very  good  agreement  with
the data sample in the distributions of the number of ECL
clusters  after  event  selection.  This  indicates  that  beam
backgrounds have only a negligible impact on the signal
candidates,  which  have  very  clear  signatures:  two  high
energy clusters in the ECL barrel region and the back-to-
back feature in the   and   projections.

We estimate  the  uncertainty  due  to  ECL  cluster   re-
construction  efficiencies  using  radiative  Bhabha  events.

We find that the average relative difference between data
and MC simulation  in  the  efficiencies  for  the  clusters  in
our  selected  events  is  about  0.1%.  Since  we  have  two
clusters in both measurements, we take 0.2% as the asso-
ciated uncertainty.

The systematic  uncertainties  related  to  the   distribu-
tion  shapes  of  the  energies,  polar  angles,  and  azimuthal
angles of the ECL clusters are estimated by replacing the
nominal requirements with alternatively more and less re-
strictive  requirements.  For  each  distribution  shape,  the
larger of the changes in integrated luminosity is taken as
the associated uncertainty. The requirements on the ener-
gies, polar angles, and acollinearity in polar angle in both
the measurements are changed to

< Emax2
cm < Emax1

cm <● (1.5) 2.5 GeV   5.62 (6.02) GeV,
35.0◦ 39.4◦ < θmax1

lab θmax2
lab <118.4◦ 124.6◦● ( )    ,     ( ), and

|θmax1
cm + θmax2

cm −180◦| < 2.5◦ 7.5◦●     ( );
the requirement on the acollinearity in azimuthal angle in
the Bhabha-dominant measurement is changed to

1.5◦ 3.5◦ < ||ϕmax1
cm −ϕmax2

cm | −180◦| < 12◦ 14◦● ( )       ( );
and  the  requirement  on  the  acollinearity  in  azimuthal
angle in the digamma-dominant measurement is changed to

||ϕmax1
cm −ϕmax2

cm | −180◦| <1.5◦ 3.5◦●     ( ).
Here, the  values  inside  and  outside  the  parentheses   cor-
respond to the looser and tighter alternative requirements,
respectively. The  estimated  systematic  uncertainties   ob-
tained by changing requirements on these parameters are
listed in Table 2.

Table 2.     Systematic uncertainties of the measured integrated lumin-
osities.  The second,  third,  and fourth  columns list  the  uncertainties
from  the  Bhabha-dominant,  digamma-dominant,  and  combined
measurements, respectively.

Source ee (%) γγ  (%) γγee +   (%)

Cross section ±0.1 ±0.1 ±0.1

CM energy ±0.2 ±0.2 ±0.2

θcm range ±0.0 ±0.4 ±0.1

IP position ±0.2 ±0.1 ±0.1

ECL location ±0.2 ±0.2 ±0.2

MC statistics ±0.1 ±0.1 ±0.1

Beam backgrounds ±0.1 ±0.1 ±0.1

Cluster reconstruction ±0.2 ±0.2 ±0.2

Ecm distributions ±0.1 ±0.1 ±0.1

θlab distributions ±0.1 ±0.2 ±0.1

θcm distributions ±0.3 ±0.3 ±0.3

ϕcm distributions ±0.1 ±0.3 –

Material effects −0.1 +0.7 +0.1

Overlapping clusters ±0.1 ±0.1 ±0.1

Colliding backgrounds ±0.1 ±0.3 ±0.1

Quadrature sum ±0.6 +1.1
−0.8 ±0.6
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−0.1 +0.7

A photon, electron or positron may interact while tra-
versing the material in the VXD region. As mentioned in
Section 3, the material is not fully included in the simula-
tion model, and hence the material effects differ between
the data and MC samples. To check the impact of the dif-
ference on the measured integrated luminosities,  the two
measurements are repeated with a new set of Bhabha and
digamma MC  samples  produced  with  the  vertex   detect-
ors removed from the simulation and reconstruction pro-
grams.  Corresponding  to  the  change  of  signal  MC
samples, the  integrated  luminosity  obtained  in  the   Bh-
abha-dominant  measurement  increases  by  about  0.42%,
while that  obtained  in  the  digamma-dominant   measure-
ment decreases by about 3.5%. As described in Section 3,
the  unsimulated  material  is  estimated  to  be  20%  of  the
simulated  material,  and  therefore  we  take  −20%  instead
of 100%  of  the  resulting  changes  as  the  associated   sys-
tematic uncertainties. The relative uncertainties are estim-
ated  to  be  %  and  %  for  the  Bhabha-dominant
and  digamma-dominant  measurements,  respectively.
Here, the uncertainties are signed and show the reduction
in the  difference  between  the  Bhabha-dominant  and   di-
gamma-dominant measurements.

A photon, electron or positron may also interact with
material  while  traversing  the  CDC  outer  wall  and  the
TOP detector,  resulting in two nearby ECL clusters.  Be-
cause  we  preferentially  select  events  that  do  not  contain
nearby clusters, imperfect modeling of this process could
lead to  a  systematic  uncertainty.  We evaluate  the  uncer-
tainty by repeating the two measurements with the selec-
tion  criteria  supplemented  by  requirements  dedicated  to
select events with pairs of nearby clusters. With the extra
requirements applied, the change of the result is less than
0.1%  for  both  measurements,  which  is  conservatively
taken as the relative systematic uncertainty.

Besides the  signal  events,  a  small  fraction  of   back-
ground events survive the event selection. We take 100%
of the total background levels as the associated systemat-
ic  uncertainties,  which  are  about  0.1%  and  0.3%  in  the
Bhabha-dominant and digamma-dominant measurements,
respectively.

+1.1
−0.8

496.7±0.3±3.0 pb−1

493.1±0.7+5.4−4.0 pb−1

1.007±0.002±0.008

Assuming that  the  individual  uncertainties  are   inde-
pendent and adding them in quadrature yields total relat-
ive systematic uncertainties of 0.6% and  % for the Bh-
abha-dominant  and  digamma-dominant  measurements,
respectively. Including  these  total  systematic   uncertain-
ties, the integrated luminosities are ( ) 
and ( )   for the Bhabha-dominant and di-
gamma-dominant measurements,  respectively.  The   sys-
tematic  uncertainties  dominate  in  both  measurements.
Accounting for the correlations between the uncertainties
for  the  Bhabha-  and  digamma-dominant  measurements,
the  ratio  of  the  two  luminosities  is  determined  to  be

,  indicating  agreement  between  the

two results.

||ϕmax1
cm −ϕmax2

cm |−180◦|=
2.5◦

||ϕmax1
cm −ϕmax2

cm | −180◦| < 13◦

As can be seen from Section 4, the signal candidates
in the  Bhabha-dominant  and  digamma-dominant   meas-
urements are separated by the border 

. To  get  the  combined  result  of  the  two   measure-
ments, we repeat a measurement with the merged require-
ment  .  In  this  measurement,
systematic  uncertainties  are  estimated  with  the  same
methods used in the two separate measurements, and the
results are listed in the fourth column of Table 2.

σeeϵee
σγγϵγγ

≈ 6.7

ϕcm
||ϕmax1

cm −ϕmax2
cm | −180◦| < 13◦

496.3±0.3±3.0
pb−1

Because most of the uncertainty sources are the same
for  the  two  separate  measurements  and  Bhabha  events
dominate the signal candidates in the combined measure-
ment ( ), almost all  of the systematic uncertain-
ties are equal to their counterparts in the Bhabha-domin-
ant measurement at the order of 0.1%. The uncertainty as-
sociated  with    distributions  is  negligible,  since

  is a  relatively  loose   require-
ment. The uncertainty related to material effects is estim-
ated  to  be  +0.1%,  mainly  because  of  the  cancellation  of
the corresponding uncertainties in the two separate meas-
urements with  the  associated  numbers  of  signal   candid-
ates  as  weights.  With  the  systematic  uncertainties,  the
combined  result  is  calculated  to  be  ( )

,  which  is  nearly  the  same  as  in  the  Bhabha-domin-
ant measurement. We take the combined result as the fi-
nal result in this work.

7    Conclusions

496.3±0.3±3.0 pb−1

The integrated luminosity of the first data sample col-
lected  with  the  Belle  II  detector  at  SuperKEKB  during
Phase 2 is measured using ECL information with Bhabha
and digamma events. The result obtained in the Bhabha-
dominant measurement is consistent with that obtained in
the digamma-dominant measurement. Combining the two
measurements, we determine the integrated luminosity to
be  ( )  ,  where  the  first  uncertainty  is
statistical and the second is systematic.

The  result  will  be  used  in  the  early  studies  with  the
Phase  2  data  at  Belle  II,  particularly  in  the  searches  for
new physics in the dark sector, in which Belle II expects
to achieve good sensitivities owing to the dedicated trig-
gers  for  single  photon  and  low  multiplicity  events  [31].
Using ECL information alone, this work builds a founda-
tion  for  future  luminosity  measurements  in  the  Belle  II
experiment, in which we will incorporate the information
obtained by other sub-detectors, particularly the CDC, to
select signal events.
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