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Controllability of Bandlimited Graph Processes
Over Random Time Varying Graphs

Fernando Gama, Elvin Isufi, Alejandro Ribeiro and Geert Leus

Abstract—Controllability of complex networks arises in many
technological problems involving social, financial, road, commu-
nication, and smart grid networks. In many practical situations,
the underlying topology might change randomly with time, due
to link failures such as changing friendships, road blocks or
sensor malfunctions. Thus, it leads to poorly controlled dynamics
if randomness is not properly accounted for. We consider the
problem of controlling the network state when the topology varies
randomly with time. Our problem concerns target states that are
bandlimited over the graph; these are states that have nonzero
frequency content only on a specific graph frequency band. We
thus leverage graph signal processing and exploit the bandlimited
model to drive the network state from a fixed set of control nodes.
When controlling the state from a few nodes, we observe that
spurious, out-of-band frequency content is created. Therefore, we
focus on controlling the network state over the desired frequency
band, and then use a graph filter to get rid of the unwanted
frequency content. To account for the topological randomness,
we develop the concept of controllability in the mean, which
consists of driving the expected network state towards the target
state. A detailed mean squared error analysis is performed to
quantify the statistical deviation between the final controlled
state on a particular graph realization and the actual target state.
Finally, we propose different control strategies and evaluate their
effectiveness on synthetic network models and social networks.

Index Terms—Graph signal processing, random graphs, net-
work controllability, graph signals, graph process, linear systems
on graphs

I. INTRODUCTION

The controllability of complex networks plays a fundamen-
tal role in our understanding of natural and technological
systems. Relevant examples involve the control of social,
biological, financial, road, communication, and smart grid
networks. Different works have highlighted the importance
of the network structure when controlling a system evolving
on top of that network [2]–[4]. Other works controlled said
system from a few control or driving nodes [5]–[7]. As an
illustrative example, consider the Zachary’s Karate club social
network in Figure 1 [8]. The network state may be an opinion
profile (e.g., members thoughts on a topic) and controlling,
or driving, the network amounts to shaping those opinions
towards a desired or target state. The social relationships
between members affect the ability to control the opinion
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profile and the objective is to sway all members opinions from
a few influencing members (the driving nodes).

While providing seminal contributions on network control-
lability, the works in [2]–[7] ignore the coupling between
the underlying topology and the target state (a.k.a. the graph
signal). Recent evidence from graph signal processing (GSP)
[9]–[11] has shown that this coupling can bring substantial
benefits in graph signal sampling [12], interpolation [13], [14],
adaptive reconstruction [15], and observability of diffusion
processes [16]. A common point that unifies [10]–[16] is the
so-called graph Fourier transform (GFT). The GFT expands
the network state onto an orthonormal basis related to the
underlying topology —formed by the eigenvectors of a matrix
that represents the network, such as the adjacency or the
Laplacian matrix— akin to how the discrete Fourier transform
expands a time signal on the complex exponential orthonormal
basis. The GFT basis vectors can be linked to different
variability modes across the graph through the concept of total
variation [10], [17]; hence, named the graph oscillating modes.

A particular class of graph signals is that of bandlimited
graph signals, i.e., signals that can be expressed by only a few
graph oscillating modes. The number of active modes forms
the graph signal bandwidth. Likewise for time signals, purely
bandlimited graph signals rarely exist. But the bandlimitedness
prior poses a powerful and parsimonious model to develop
practical tools. This prior is exploited in GSP for sampling
[10], [11], [18], where signals arising in economic [19],
handwritten digits [12], [14] or brain functional imaging [20],
are approximately bandlimited. In the Zachary’s Karate club
example, a bandlimited network state corresponds to opinions
polarized into a few clusters of like-minded members [12].
Therefore, controlling the system to a bandlimited state implies
imposing a similar opinion profile to members that influence
each other; this influence is captured by the edge weight.

Network control towards a bandlimited graph signal is
considered in [21]. The control signal is fed to a few driving
nodes and is percolated through the graph until the target
state is reached. The authors determined the trade-off between
the control time and the number of driving nodes, provided
conditions to reach any bandlimited state, and designed the
control signals.

The work in [22] studied the challenge of controlling the
network towards a bandlimited state with control signals of
limited energy. The main result is the trade-off between the
number of driving nodes and the control signal energy. But
conditions to drive the network to any bandlimited state were
not derived in this limited energy setting.

Along these lines, and in parallel with the shorter version
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Figure 1. Zachary’s Karate club network. The nodes represent club
members and the edges capture social relationships between the
members.

of this paper [1], the work in [23] used GSP to formulate the
linear quadratic controller as an autoregressive moving average
(ARMA) graph filter [24]. This ARMA formulation is used to
control independently each graph mode to the desired state.
But these control strategies require all nodes to act as driving
nodes.

Altogether, the above works concern network control over
time-invariant topologies. But in practice the network structure
may change randomly over time due to link losses, or nodes
that disappear with a given probability. This might be the
case of: i) members that are not present a given day in
the Zachary’s Karate club; ii) communication links that are
random in sensor networks; iii) power lines and buses that go
down in smart grids due to local failures. In these situations,
the graph structure is random and can be characterized by
an expected graph with a variance around this expectation.
Network controllability becomes, therefore, challenging since
some connections cannot be exploited; hence, the derivations
obtained in the deterministic setting may lead to a completely
different state.

Motivated by the above observations, we study the possibil-
ities to perform open loop control over random time varying
networks. By exploring GSP tools as in [21]–[23], we propose
a framework that accounts for the graph randomness in the
analysis. Our main contributions are:

1) We study the problem of controlling dynamics over deter-
ministic networks from a few driving nodes (Section III).
We provide conditions on network controllability that
relate the minimum number of driving nodes to the
target control bandwidth and the control time. This result
encompasses the three strategies proposed in [21].

2) We formulate the problem of controlling dynamics over
random time varying networks from a few driving nodes.
(Section IV). We develop the concept of controllability
in the mean to drive the expected state towards a graph
signal with a target bandwidth content on the expected
graph. We also extend the conditions on network control-
lability from the deterministic to the stochastic setting.

3) We perform a mean squared error analysis to quantify the
statistical deviation of the controlled state from the target
state on a particular graph realization (Section IV-B). This
analysis illustrates the role of the random graph model,
the target state bandwidth, and the control signal.

4) We propose two control strategies to drive the expected
state to the desired bandlimited state with the minimum
mean squared error (Section V).

5) We corroborate the developed framework and study its
performance on synthetic (Erdős-Rényi and geometric
graphs) and real-world social networks (Facebook sub-
graph and Zachary’s Karate club) (Section VI).

To the best of our knowledge, this is the first contribution
that approaches network controllability over random time
varying topologies. We remark that while this work relies on
the bandlimited prior to select the driving nodes, the reader
might find of interest other parsimonious models [18], [25],
[26] for such a task.

The remaining part of the paper proceeds as follows:
Section II sets down the preliminary concepts and Section III
contains our formulation of network controllability on de-
terministic graphs. Section IV formulates the controllability
on random graphs. Section V develops the control strategies,
while Section VI presents the numerical experiments. Finally,
Section VII provides the concluding remarks. The proofs are
collected in the appendix.
Notation. Normal letters a (or A) denote scalars, bold lower-
case letters a vectors, and bold uppercase letters A matrices.
The ith entry of a vector is [a]i while the (i, j)th entry of a
matrix is [A]i,j . Superscripts T and H denote the transpose and
the Hermitian, respectively. The N × 1 null vector is 0N , the
N×1 vector of all ones is 1N and the N×N identity matrix is
IN . The diagonal operator denoted as diag(·) is defined such
that a = diag(A) with [a]i = [A]i,i, and A = diag(a) is
a diagonal matrix with vector a on the main diagonal. The
expectation operator is denoted as E[·], the trace operator as
tr(·), the rank of A as rank(A), the Kronecker product as ⊗,
and the element-wise Hadamard product as ◦. The lp vector
and matrix norm is denoted as ‖ · ‖p. The ceiling operator
is denoted as d·e and the minimum and maximum operators
as min{·} and max{·}, respectively. If not otherwise stated,
calligraphic letters A indicate sets and the set cardinality is
denoted as |A|.

II. DIFFUSION PROCESSES ON GRAPHS

In this work, we consider controlling a diffusion process on
random time varying graphs towards a desired state. To achieve
this, we model diffusion processes through graph signal pro-
cessing. We introduce the basics of GSP in Section II-A, define
the random time varying graph model in Section II-B, and
discuss diffusion processes in Section II-C.

A. Graph signal processing

Let G = (V, E ,W) denote a graph with V = {v1, . . . , vN}
the set of N vertices, E ⊆ V×V the set of edges, andW : E →
R+ a function that assigns positive weights to the edges. The
graph serves as a mathematical representation of the network
and its structure is captured by the graph shift operator (GSO)
matrix S ∈ RN×N . The (i, j)th element of S, [S]i,j , is nonzero
only if i = j or if (vj , vi) ∈ E ; so that S respects the sparsity
of G. Standard choices for S are the weighted graph adjacency
matrix W [17], [27], the graph Laplacian matrix L [10], or
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their respective generalizations [28, Chapter 8]. We consider
S admits an eigendecomposition S = VΛVH, where V =
[v1, . . . ,vN ] ∈ CN×N collects the orthonormal eigenvectors
and Λ = diag(λ1, . . . , λN ) ∈ CN×N contains the associated
eigenvalues. This holds for all undirected graphs on which the
graph Laplacian can be defined and also for the adjacency
matrix of some directed graphs [17], [19].

A graph signal is a mapping from the vertex set to the field
of real numbers, i.e., xi : vi → R, for vi ∈ V . An example of
a graph signal is the opinion of members in Zachary’s Karate
club. We collect all node signals in the vector x ∈ RN with
[x]i = xi being the value of node i [10].

The graph Fourier transform (GFT) is the projection of the
graph signal x on the eigenbasis V and is denoted by x̃ =
VHx [9], [10]. The elements [x̃]k = x̃k denote the graph
Fourier coefficients of x, whereas the eigenvectors vk form the
basis of graph oscillating modes. Likewise, the inverse GFT
is x = Vx̃, i.e., it writes x as a linear combination of the
graph oscillating modes weighed by the Fourier coefficients.

A graph signal is bandlimited if it has only a few nonzero
Fourier coefficients. Without loss of generality, assume the
first K elements of x̃ are nonzero; so, we can write x̃ =
[x̃T
K ,0

T
N−K ]T where x̃K ∈ CK and K ≤ N . Then, x is

written in the compact form

x = VK x̃K (1)

where VK ∈ CN×K is the respective column-trimmed eigen-
vector matrix. The GFT x̃K of x̃ writes as x̃K = VH

Kx.
This representation connects the signal bandwidth with the
sampling and reconstruction strategies as shown in [12], [14],
[15], [29], [30]. We will also exploit bandlimitedness in
Section IV to control the network from a few driving nodes.

B. Random time varying graphs

We consider the following random graph model.

Definition 1 (RES(p) graph model [31]). Given an underlying
graph G = (V, E), a random edge sampling (RES) graph
realization Gt=(V, Et) of G consists of the same set of nodes
V and assumes the edge (vi, vj) ∈ E is sampled at time t (i.e.,
(vi, vj) ∈ Et) with a probability 0 < p ≤ 1. The edges are
sampled independently over both the graph and the temporal
dimension and are mutually independent from the graph signal
if the latter has a stochastic nature.

In other words, the RES(p) model states that the realization
Gt = (V, Et) is drawn from the underlying graph G = (V, E),
where the instantaneous edge set Et ⊆ E is generated via an
independent Bernoulli process with probability p. Let us from
now on denote with W and D = diag(W1N ) the adjacency
and degree matrix of G, respectively. If the graph is undirected,
we will also consider the unnormalized graph Laplacian matrix
L = D −W. To ease the exposition, denote with Wt, Dt,
and Lt the respective matrices of the instantaneous graph Gt
and with W̄ = E[Wt], D̄ = E[Dt], and L̄ = E[Lt] those of
the expected graph Ḡ. Under the RES(p) model, it holds that
W̄ = pW, D̄ = pD, and L̄ = pL.

We assume the following.

Assumption 1. The GSO of the underlying graph G has an
upper bounded spectral norm ‖S‖2 ≤ % for some % <∞.

This assumption is generally met in practice and implies the
graphs of interest have finite dimension and edge weights.

We also remark that more complex models than the RES(p)
can be found in literature. In particular, many of these results
can be readily extended to the model in which each edge
(vi, vj) is sampled independently with a different probability
pij . But for clarity of exposition, we will focus only on the
RES(p) model.

C. Diffusion on graphs from a GSP perspective

The continuous-time diffusion of a signal x0 on a graph
G with Laplacian matrix L is described by the differential
equation [32], [33]

dx(s)

ds
= −Lx(s), x(0) = x0. (2)

This equation can be discretized as [34]

xt = Axt−1, A = I− εL, t ∈ N (3)

which is stable if 0 < ε ≤ 1/‖L‖2. Alternatively, a diffusion
process on a graph can be interpreted as the discrete-time shift
of x0 through the graph edges [27], [35]

xt = Axt−1, A = W, t ∈ N. (4)

Model (3) is used when the process is defined over a
continuous space that has been discretized, usually in the
form of a mesh, as for heat diffusion processes [33]. Model
(4) is employed when the underlying support is naturally a
graph, as for sensor network communications [35]. In essence,
these are two examples of processes that describe the network
state evolution by xt = Axt−1 and relate this state to the
underlying time-invariant topology (the transition matrix A
depends on the shift operator). In this paper, we consider the
more general case of random time varying topologies, i.e.
xt = At−1xt−1, and we abstract the relationship between
the transition matrix and the underlying topology as follows.

Assumption 2. Let At be the time varying transition matrix
of a diffusion process over a random time varying graph Gt ∈
RES(p). Then, E[At] and S share the same eigenvectors.

That is, we consider diffusions on random graphs such that
the eigenvectors of the expected transition matrix and the
underlying GSO coincide. The following lemma shows this
is the case for the diffusion models (3) and (4) on RES(p)
graph realizations.

Lemma 1. Let G be a graph satisfying Assumption 1 and let
Gt be a RES(p) realization of it. For the diffusion models

(i) S = L and At = I− εLt [cf. (3)],
(ii) S = W and At = Wt [cf. (4)],

Assumption 2 and ‖At‖2 ≤ % hold.

Other models that satisfy these conditions are the wave equa-
tion on graphs and graph-based ARMA models, see [16].
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III. CONTROLLABILITY ON DETERMINISTIC GRAPHS

Consider the N -state linear system

xt = Axt−1 + But−1 (5)

where xt ∈ RN denotes the state value on all nodes at time t,
ut ∈ RM is the control signal injected on M ≤ N nodes,
and A ∈ RN×N and B ∈ RN×M are the transition and
control input matrix, respectively. The relationship between the
network state xt and the underlying topology is captured in
(5) through the transition matrix A; it shares the eigenvectors
with S and this is the case for models (3) and (4).

System (5) is controllable if and only if the controllability
matrix

Ω = [B,AB, . . . ,AT−1B] (6)

has full rank N [36, Section 6.2.1]. While full rank of Ω
guarantees the convergence of xt to any target signal x∗, we
focus on controlling the network state towards a bandlimited
graph signal x∗ = VK x̃∗K . Here, x̃∗K ∈ CK determines
the desired frequency response over the K frequencies of
interest; the target bandwidth. We thus define the bandwidth
controllability as follows.

Definition 2 (Bandwidth controllability). An N -state system
on a graph is bandwidth controllable from M ≤ N nodes if,
for any initial state x0 and some final time T , there exists a
sequence of control signals {ut ∈ RM , t = 0, 1, . . . , T − 1}
acting on a fixed set of M nodes that drive the network state
to a value x∗ with any frequency content x̃∗K = VH

Kx∗ over
the K ≤ N target bandwidth.

Lead by the promising results of bandlimited graph signal
reconstruction from samples on a few nodes [12], [14], [15],
[29], [30], we aim to control xt through a fixed, time-invariant,
set of nodes S of cardinality |S| = M ≤ N . Let then B = CT

denote a binary matrix that selects these nodes. More formally,
C belongs to the combinatorial set

CM,N =
{
C ∈ {0, 1}M×N : C1N = 1M ,C

T1M ≤ 1N
}
(7)

that selects M out of N different nodes and the ordering
relation ≤ among vectors stands for the elementwise partial
ordering [39, Example 2.23]. Observe that CCT = IM and
CTC = diag(c) with c ∈ {0, 1}N , such that [c]i = 1 if and
only if node vi belongs to S.

With this in place, we write the linear system on graphs (5)
in the GFT domain as

x̃t = VHAVx̃t−1 + VHCTut−1

, Ãx̃t−1 + VHCTut−1
(8)

where Ã = VHAV is a diagonal matrix containing the
eigenvalues of A [cf. Assumption 2]. For convenience, we
write Ã = diag(a) ∈ CN×N with a ∈ CN the vector
containing the eigenvalues of Ã, known also as the spectral
response of A. Then, by splitting (8) into the K frequencies
of interest we have[

x̃t,K
x̃t,N−K

]
=

[
diag(aK)x̃t−1,K

diag(aN−K)x̃t−1,N−K

]
+

[
VH
KCTut−1

VH
N−KCTut−1

]
(9)

where x̃t = [x̃T
t,K , x̃

T
t,N−K ]T, a = [aT

K ,a
T
N−K ]T and V =

[VK ,VN−K ].
For a system that is bandwidth controllable [cf. Def. 2],

recursion (9) can drive the network state xt to any signal
xT that has a desired frequency response x̃∗K over the target
bandwidth K. Thus, we can focus on the K frequencies of
interest, determine the driving nodes through matrix C, and
design the control signals {ut} such that the system

x̃t,K = ÃK x̃t−1,K + VH
KCTut−1. (10)

reaches x̃∗K at time T , i.e. x̃T,K = x̃∗K . But we observe
that focusing on these K frequencies leads to a non-zero
value also on the N −K remaining frequencies. One way to
suppress this undesired content is to force x̃t,N−K = 0N−K .
This requires the design of a sampling matrix C that satisfies
VH
N−KCT = 0(N−K)×M [cf. (9)]. The latter might be

infeasible or might severely constraint the selection of driving
nodes. Therefore, to avoid the out-of-band frequency content,
we use a frequency-selective graph filter H = VKVH

K to force
bandlimitedness on the final network state x∗ = HxT . This
filter can be implemented locally through a polynomial in the
shift operator S with degree at most N [37].

Hereinafter, the design variables are the sampling matrix C
and the control signals ut ∈ RM for t = 0, . . . , T − 1. And,
since the initial state x0 is considered known we fix, without
loss of generality, x0 = 0N as the common practice in control
literature [22], [36, Section 2.3.2], [38, Section 2.1]. With this
set down, we claim our first contribution, which we will also
exploit for controllability on random graphs in Section IV.

Proposition 1. Consider the linear system (10) describing a
process over a deterministic graph G. A necessary condition to
control the system in a finite time T towards a target frequency
content x̃∗K over the K frequencies of interest is to select
M ≥ dK/T e driving nodes.

Proposition 1 provides a necessary condition on the mini-
mum number of nodes to control system (10) in T instants. It
shows the trade-off between the cardinality of the sampling set
M , the signal bandwidth K, and the control time T . Thus, for
T ≥ K there is the potential to control the network by acting
on a single node. But this is not sufficient since the system
controllability is affected by the network topology [2]–[4], i.e.
the influence of the driving nodes on the frequency content,
see also [12], [19], [21]. Hence, the driving nodes should be
carefully picked to guarantee the controllability of (10). In
what follows, we show the relation of Proposition 1 with [21]
and [22].

a) Relation with [21]. Proposition 1 encompasses under a
single condition the three graph signal reconstruction strategies
of [21]. In fact, M ≥ K and T = 1 covers the multiple
node-single time seeding strategy; M = 1 and T ≥ K is a
necessary condition to control the signal for the single node-
multiple time seeding strategy; and M ≥ dK/T e covers the
more involved multiple node-multiple time seeding approach.
This is expected, since graph signal reconstruction through
percolation is a particular case of system (5).
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b) Relation with [22]. Differently from our approach,
[22] focuses on designing the control signal u =
[uT
T−1, . . . ,u

T
1 ,u

T
0 ]T ∈ RMT×1 as a trade-off between spar-

sity in the vertex domain and signal energy. This problem
writes as

minimize
u

‖u‖22 + γ‖u‖0
subject to xt+1 = Axt + But , t = 0, . . . , T − 1

x0 = 0N , xT = x∗

(11)

where the constant γ trades the control signal energy ‖u‖22
with sparsity ‖u‖0. Problem (11) yields a sparse control signal
u across time, but the driving nodes are not necessarily fixed.
In this regard, Proposition 1 imposes a minimum dimension
on u such that controllability is possible from a fixed set S
of driving nodes.

IV. CONTROLLABILITY ON RANDOM GRAPHS

When the network topology is time varying, system (5)
should change to reflect the time dependency in the transition
matrix. When the time variation is random, the controllability
of the network state should follow a statistical approach.
We propose a statistical framework in this section, where in
Section IV-A we develop the concept of controllability in the
mean and in Section IV-B we perform the mean squared error
analysis.

A. Mean controllability

The dynamics of a time varying system on random graphs
are given by

xt = At−1xt−1 + CTut−1 (12)

where under the RES(p) model in Definition 1, {At} is a set
of i.i.d. random matrices with E[At] = Ā. The deterministic
design variables are contained in the second term of (12),
CTut−1. The state xt depends on the random system matrices
{Aτ}t−1τ=0, which are independent from At and from the
deterministic design variables C and {uτ}t−1τ=0. Note also that
Ā and S share the same eigenvectors, i.e. Ā = Vdiag(ā)VH;
thus, it captures in statistics the relation between the under-
lying topology and state xt. We can then write the mean
evolution of (12) as

µt = Āµt−1 + CTut−1 (13)

where µt = E[xt]. System (13) is a deterministic and time-
invariant system analogous to (5). We develop the following
controllability concept.

Definition 3 (Bandwidth controllability in the mean). An N -
state system on a random graph of the form in (12) with mean
evolution in (13) is bandwidth controllable in the mean from
M ≤ N nodes if, for any initial state x0 and some final
time T , there exists a sequence of control signals {ut, t =
0, . . . , T − 1} acting on a fixed set of M nodes that drive the
mean network state to a value x∗ with any frequency content
x∗K = VH

Kx∗ over the K ≤ N target bandwidth.

Our goal is to control the mean system to a desired
bandlimited graph signal x∗ = VK x̃∗K in a finite time T

from a few nodes. We do so by designing the input signals
{ut, t = 0, . . . , T − 1} and the node driving set S (through
matrix C). In analogy to Section III, we focus on the K
frequencies of interest of the mean system [cf. (10)]

µ̃t,K = ǍKµ̃t−1,K + VH
KCTut−1 (14)

and drive it to the desired frequency content x̃∗K [cf. Def. 3],
with ǍK = ˜̄AK = diag(āK) ∈ CK×K containing the
eigenvalues of Ā which determine the spectral response of
the system evolution on the expected graph. Then, we apply
a (deterministic) linear filter H = VKVH

K to keep only
those K desired frequencies such that the mean network state
µ∗ = E[HxT ] = HµT = x∗ results in a bandlimited graph
signal.

Similarly to Proposition 1, we claim the following.

Proposition 2. Consider the linear system (12) describing
a process over a sequence of RES(p) graphs Gt with in-
band mean evolution (14). A necessary condition to control
the mean system in finite time T towards a target frequency
content x̃∗K over the K frequencies of interest is to select
M ≥ dK/T e driving nodes.

Like Proposition 1, Proposition 2 establishes a necessary
condition to control a linear system, now, on random time
varying graphs. As such, the same trade-off between the
number of driving nodes M , the signal bandwidth K, and
the control time T applies here. The next corollary extends
this result to a sufficient condition under some restrictions on
the eigenvector basis.

Corollary 1. Under the hypothesis of Proposition 2, if there
exists a set of driving nodes S built by M nodes such that
the corresponding M rows of VK are linearly independent
vectors, then M ≥ K is a sufficient condition to control system
(12) in the mean.

An algorithm for finding such M nodes is readily available in
[12, Algorithm 1].

B. Mean squared error analysis

In Section IV-A, we discussed that system (12) can be con-
trolled in the mean. Therefore, it is paramount also to quantify
the mean squared error (MSE) of the controlled state to gain
statistical insight into how close the filtered final state on a
specific graph realization HxT is to the actual desired signal
x∗. Towards this end, define Φb,a = AbAb−1 · · ·Aa+1Aa as
the state transition matrix between time instants b ≥ a. The
following theorem determines the MSE.

Theorem 1. Let Assumptions 1 and 2 hold and let xt be a
graph process defined over a sequence of RES(p) graphs Gt
described by linear system (12). Given also a set of driving
nodes S characterized by selection matrix C and a set of
control signals {ut}T−1t=0 with initial state x0 = 0N . The
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MSE between the filtered signal HxT on a particular graph
realization and the actual desired signal is

MSE(T ) = E
[
‖HxT − x∗‖22

]
= α− 2

T−1∑
τ=0

βT
τCTuτ +

T−1∑
τ=0

T−1∑
τ ′=0

uT
τC Γτ,τ ′ CTuτ ′

(15)

which is a quadratic form on CTuτ with coefficients α =
‖x∗‖22 ∈ R, βτ = (ĀT−τ−1)THTx∗ ∈ RN×1 and Γτ,τ ′ =
E[ΦT−1,τ+1H

THΦT−1,τ ′+1] ∈ RN×N .

Given C and {ut}, the MSE in (15) holds for any system
described by (12), irrespective of their controllability. The
MSE in (15) is a quadratic function in the design variables
CTuτ and the corresponding coefficients α, βτ , and Γτ,τ ′

depend on known quantities: the graph filter H; the desired
state x∗ = VK x̃∗K ; and the statistics (first and second order
moments) of the underlying support through Ā and Γτ,τ ′ . This
result highlights also the impact the driving nodes have on
the overall performance and shows their connection with the
underlying support and the target bandwidth. More precisely,
the coefficient α provides the MSE floor if there is no control
signal (i.e., given by the energy of the target state); βτ takes
into account the similarity between the target signal and the
controlled signal evolution over the mean graph; and Γτ,τ ′

accounts for the variability of the random graph. Finally,
we note that the computation of Γτ,τ ′ in (15) might be
cumbersome for some transition matrices At. We thus provide
in the appendix two practical results that address this issue:
first, we provide a general upper bound; second, we show
how to exactly compute Γτ,τ ′ for undirected graphs for the
diffusion models in Lemma 1.

V. CONTROL STRATEGIES

In this section, we propose two control strategies (i.e., find
C and {ut}) for graph processes over random time varying
graphs, where, depending on the scenario, one can be preferred
over the other. In Section V-A we propose an unbiased control
strategy, while in Section V-B we introduce a control strategy
that leverages the bias-variance trade-off to minimize the MSE.

A. Unbiased controller

The mean state in (14) for t = T can be expanded as

µ̃T,K =

T−1∑
τ=0

ǍT−τ−1
K VH

KCTuτ (16)

where ǍK = ˜̄AK = diag(āK) ∈ CK×K and µ̃0,K = 0K . For
an unbiased controller, it must hold at final time T µ̃T,K =
x̃∗K . Combining (16) and µ̃T,K = x̃∗K , we obtain

Ω̃u =
[
IK , ǍK , · · · , ǍT−1

K

] (
IT ⊗VH

KCT
)
u = x̃∗K (17)

with in-band controllability matrix Ω̃ ∈ CK×TM and input
vector is u = [uT

T−1,u
T
T−2, . . . ,u

T
1 ,u

T
0 ]TRMT×1. For Ω̃

being of full rank K (i.e. a controllable system), system (17)
has infinite solutions on u. Also often exists more than one
set of nodes that guarantees controllability. We then select the

Algorithm 1 Constrained Greedy Approach.

Input: M : number of samples, T : time horizon
x̃∗K : desired frequency response
VK : frequency basis vectors of active frequencies
ǍK : GFT of transition matrix
MSE(·): function to compute MSE . See (15)

Output: C: selected nodes, {ut}: control signals

1: procedure GREEDY(M , T , x̃∗K , VK , ǍK , MSE(·))
2: Set S = ∅ . Selected nodes
3: Set R = V . Remaining nodes
4: Set bestMSE←∞
5: for m = 1 : M do
6: Set bestNode← ∅
7: for n = 1 : N −m+ 1 do
8: Select rn ∈ R . Choose a remaining node
9: Compute matrix C for S ∪ {rn}

10: Compute matrix Ω̃ . See (17)
11: if rank(Ω̃) = min{K,T min{K,m}} then
12: Solve Ω̃u = x̃∗K for u
13: Compute MSE(T ) . See (15)
14: if MSE(T ) < bestMSE then
15: Set bestNode← rn
16: Set bestMSE← MSE(T )
17: end if
18: end if
19: end for
20: Set S ← S ∪ {bestNode}
21: Set R ← R\{bestNode}
22: end for
23: end procedure

set of nodes and design the control signals to minimize the
MSE(T ), while guaranteeing the solution is unbiased.

Let C∗M,N = {C ∈ CM,N : rank(Ω̃) = K} be the set
of selection matrices that satisfy controllability. The optimal
unbiased control strategy can be posed as

min
C∈C∗M,N ,u∈RTM

MSE(T ) (18)

s. t. Ω̃u = x̃∗K

Ω̃ =
[
IK , ǍK , · · · , ǍT−1

K

] (
IT ⊗VH

KCT
)

where MSE(T ) is given in (15). Oftentimes, we are interested
in controlling the system with minimum energy [7], [22]. In
such cases, the minimum energy control signal is [39, Section
6.2]

u∗ = Ω̃
H
[
Ω̃Ω̃

H
]−1

x̃∗K . (19)

Then, within the minimum energy framework, we select the
nodes that minimize the MSE(T ) as follows

min
C∈C∗M,N

MSE(T ) (20)

s. t. u∗ = Ω̃
H
[
Ω̃Ω̃

H
]−1

x̃∗K ,

Ω̃ =
[
IK , ǍK , · · · , ǍT−1

K

] (
IT ⊗VH

KCT
)
.
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(a) Sweeping time horizon T (b) Sweeping number of selected nodes M

Figure 2. Baseline for time-invariant networks on geometric graphs. (a) Parameter sweeping simulation as a function of time horizon T .
(b) Parameter sweeping simulation as a function of number of selected samples M . The biased controller has a performance similar to the
Min. Energy and performs slightly better than Percolation. The unbiased controller lags behind in terms of MSE. The error bars indicate the
estimated standard deviation from the 500 graph realizations.

Problem (20) is non-convex due to the binary nature of the
optimization variable C. A heuristic solution is to follow a
constrained greedy approach as described in Algorithm 1. The
objective is to greedily select the nodes that improve the MSE
while satisfying controllability. Specifically, for each candidate
driving node, we check rank(Ω̃) increases until we reach
controllability as indicated in line 11 [cf. Proposition 2]. Since
we are looking for the minimum energy controller, then line 12
entails computing u∗ = (Ω̃

H
Ω̃)−1Ω̃

H
x̃∗K if rank(Ω̃) = Tm,

and (19) if rank(Ω̃) = K. While this constrained greedy
approach has no theoretical guarantees [40], our numerical
results in Section VI show that Algorithm 1 exhibits a perfor-
mance close to the optimal solution.

B. Biased controller

When the requirement for an unbiased controller is not
strict, we can leverage the bias-variance trade-off to further
reduce the mean squared error of the controlled state. Given a
fixed sampling set C, the MSE(T ) (15) is a quadratic function
on the control signals {ut, t = 0, 1, . . . , T −1}. Therefore, we
express ut as a function of C as follows.

First, the derivative of MSE(T ) in (15) w.r.t. ut is

∂MSE(T )

∂ut
= −2Cβt + 2

T−1∑
τ=0

CΓt,τC
Tuτ (21)

for t = 0, . . . , T − 1 with βt and Γt,τ given in (15). By
defining β = [βT

T−1, . . . ,β
T
0 ]T ∈ RNT ,

Γ =


ΓT−1,T−1 ΓT−1,T−2 · · · ΓT−1,0
ΓT−2,T−1 ΓT−2,T−2 · · · ΓT−2,0

...
...

. . .
...

Γ0,T−1 Γ0,T−2 · · · Γ0,0

 ∈ RNT×NT

(22)
and by setting (21) to zero, we can write

ΓCu = (IT ⊗C) Γ
(
IT ⊗CT

)
u = (IT ⊗C)β = βC (23)

with ΓC ∈ RMT×MT and βC ∈ RMT×1. By construction ΓC
has rank MT since C ∈ CM,N . Then, for a sampling matrix

C such that rank(ΓC) ≥ MT , ΓC is nonsingular and leads
to the (parameterized) minimum MSE(T ) control signals

u∗C = Γ−1C βC . (24)

From this relation between the control signal and the sam-
pling matrix, we consider a two-stage optimization approach
[39, Section 4.1.3] to find C that minimizes the MSE(T ). This
optimization problem writes as

min
C∈C∗M,N

α− 2 βT
Cu∗C + (u∗C)TΓCu∗C (25)

s. t. u∗C = Γ−1C βC

ΓC = (IT ⊗C)Γ(IT ⊗CT)

βC = (IT ⊗C)β.

To deal with the non-convexity of (25), similarly to (20), we
rely on a constrained greedy approach analogous to Algo-
rithm 1. Specifically, we replace line 10 by the computation
of ΓC and βC , line 11 by rank(ΓC) ≥ mT , and line 12 by
(24).

VI. NUMERICAL EXPERIMENTS

We evaluate the proposed control strategies on different
scenarios to analyze the different trade-off when controlling
the network. We compare the unbiased minimal energy con-
troller (20) and the biased controller (25) with the Percolation
control strategy of [21] and with the Min. Energy approach
of [22]. Next, we consider synthetic network models, namely
Erdős-Rényi (ER) graphs [41] and geometric graphs, while
in Section VI-B we test the methods on real-world social
networks, namely on the Zachary’s Karate Club [8] and on
a Facebook subnet [42].

A. Synthetic network models

The ER graph forms the edges between any two nodes
randomly and independently with probability pER and has an
average degree of pERN . The geometric graph draws nodes
uniformly at random in the [0, 1]2 plane and computes the
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(a) Geometric (b) Erdős-Rényi

Figure 3. Impact of graph connectivity measured by the average graph degree. (a) Geometric graph: note that when the average degree
increases, the connectivity is higher, and as such there are more communication paths through which the signal can flow, and thus is less
affected by link losses. (b) ER graph: the increase in connectivity does not lead to noticeable changes in the MSE since these graphs already
have a large average degree (around 30). The error bars indicate 3× the estimated standard deviation from the 500 graph realizations. We
note that the y-axis limit has been set to MSE = 1 and that the Percolation method yields MSE > 1 and therefore is not shown in (a).

(a) Geometric (b) Erdős-Rényi

Figure 4. Impact of the link loss. (a) Geometric graph. (b) ER graph. When pRES increases, fewer links are lost and thus the network is
easier to control, leading to a lower MSE. The error bars indicate 3× the estimated standard deviation from the 500 graph realizations. We
note that the y-axis limit has been set to MSE = 1 and that the Percolation method yields MSE > 1 and therefore is not shown in (a).

Euclidean distance dij between any pair of nodes. We assigned
a Gaussian kernel edge weights wij =W(vi, vj) = e−d

2
ij and

kept only the kNN nearest neighbors per node; the parameter
kNN controls the average degree. For both models, we consid-
ered realizations that result in connected graphs. To account for
the randomness in the generative models and in the edge loss,
we averaged the performance over 500 different underlying
graphs where for each of them we accounted also for 5000
RES realizations.

Unless otherwise specified, we set N = 100, pER = 0.5,
kNN = 5, and the RES link loss probability to pRES = 0.95.
The control time is T = 8, the number of driving nodes is
M = 8, and the initial state is x0 = 0N . The target state
x∗ has a bandwidth of K = 10 with GFT coefficients x̃∗K
decaying linearly as [x̃∗K ]k = 1−(k−1)/K for k = 1, . . . ,K.
We measured the controllability performance between the ban-
dlimited controlled state and target one through the normalized
MSE: MSE(T ) = E[‖HxT − x∗‖2]/‖x∗‖2.

Time-invariant network. To set a baseline, we first com-
pared the biased (25) and the unbiased (20) controllers with

the Percolation [21] and Min. Energy [22] strategies on a
fixed time-invariant network. This is the same control scenario
that is considered in [21], [22] and is equivalent to setting
pRES = 1. We report the results for geometric graphs in
Figure 2. Figure 2a is a parametric simulation as a function of
time horizon T and Figure 2b is a parametric simulation as a
function of the number of samples. In general, we observe
that the biased estimator has a performance similar to the
Min. Energy and slightly better than Percolation. The unbiased
controller lags behind in terms of MSE.

Graph connectivity. In the first random time varying ex-
periment, we studied the impact of the graph connectivity on
the controllability performance. We accounted for the graph
connectivity by changing the average degrees, i.e., pERN for
the ER graph and kNN in the geometric graph. Figure 3 shows
the MSE as the connectivity increases. From Figure 3a, we
observe that the control on geometric networks improves with
the average degree. This is intuitively satisfying since larger
degrees lead to a higher connectivity between nodes; hence,
it renders them more robust to the RES model. Contrarily,
for the ER model in Figure 3b this behavior is not as much
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(a) Geometric (b) Erdős-Rényi

Figure 5. Impact of the control time. (a) Geometric graph. (b) ER graph. For the proposed strategies, an increase in control time yields a
slightly lower MSE since there is more time to correct for the network evolution. The error bars indicate 3× the estimated standard deviation
from the 500 graph realizations. We note that the y-axis limit has been set to MSE = 1 and that the Percolation method yields MSE > 1
and therefore is not shown in (a).

emphasized. We attribute this phenomenon to the large average
degree of the ER graphs (above 30) and to the relatively high
value of pRES. That is, the loss of a few edges does not impact
the overall ability to control the network.

Link loss. In the second experiment, we analyzed the impact
of pRES for a fixed average degree. From Figure 4, we note
that as pRES increases (fewer links are lost) the MSE reduces
and leads to an easier to control network. This is because a
higher pRES yields realizations with fewer edge losses, thus
more similar to the underlying (mean) graph.

Control time. In the third and last experiment, we analyzed
the impact of the control time horizon T . From Figure 5,
we observe that the proposed strategies are not significantly
affected by changes in T as they only improve slightly.

From this set of experiments, we make three key observa-
tions. First, the proposed strategies offer the best performance.
Second, the biased controller achieves the lowest MSE. This is
expected since it levers the bias-variance trade-off to minimize
the overall MSE at expenses of a bias in the controlled
state. Third, not accounting for the graph randomness affects
seriously the performance, even for pRES = 0.999. In fact, the
deterministic alternatives of Percolation and Min. Energy have
a worse performance by orders of magnitude compared with
the proposed techniques. This contrast is particularly evident
when comparing with the simulations for a time-invariant
network in Figure 2. This could be explained by the fact
that losing a link has a huge impact in the topology of the
graph and severely affects the eigenbasis, thereby, changing
the subspace of signals that are bandlimited on a given graph.

B. Real world graphs

We consider the formation of opinion profiles on two social
networks, namely the Zachary’s Karate Club [8] in Figure 1 of
N = 34 nodes and a Facebook subnetwork [42] of N = 234
nodes.

We set the control time to T = 8, the number of selected
nodes to M = round(0.08N), pRES = 0.95, and x0 = 0N .
For simplicity of presentation, we focus only on the biased

controller strategy which has consistently yielded the best
performance. Likewise, we do not compare it with the methods
in [21], [22] given their poor performance on random time
varying graphs. We again averaged the performance over 5000
different RES realizations.

Bandwidth and spectrum of the desired state. In this
experiment, we analyzed the impact that the desired state band-
width and its GFT have on the controllability performance. We
considered four different GFTs for the desired state, namely:
(i) a step low-pass [x̃∗K ]k = 1 for k = 1, . . . ,K; (ii) a step
high-pass, where the active frequencies correspond to the K
eigenvectors with highest total variation; (iii) a linear decay
response given by [x̃∗K ]k = 1− (k− 1)/K for k = 1, . . . ,K;
and (iv) an exponential decay response with [x̃∗K ]k = e1−k

for k = 1, . . . ,K. For a fair comparison, we normalized all
desired states to unit energy and analyzed different values of
K; a fraction of N between 0.15 and 0.27.

The results are depicted in Figure 6. First, we observe that
controlling the system to a higher bandwidth state is harder
since the set of graph frequencies to guarantee controllability
increases. Second, we observe that the high-pass response is
harder to achieve and responses that decay to zero (like the
linear decay and the exponential decay) yield lower MSE.
This is because high-pass responses are translated in the vertex
domain as states having dissimilar values in adjacent nodes.
They render the control of network dynamics to such states
more challenging. Hence, we conclude that it is easier to drive
the network state to a signal that varies smoothly on the nodes
compared with a signal that has highly different values in
connecting vertices; e.g., it is easier to convince someone to
vote a conservative candidate, if she is surrounded by members
that have the same political inclination.

Sampling heuristics. In the last experiment, we focused on
the impact of the control nodes. We compared the proposed
constrained greedy selecting heuristic in Algorithm 1 with
the optimal combinatorial solution and a uniformly random
sampling scheme. We fixed K = 10 and considered the linear
decay desired state x̃∗K such that [x̃∗K ]k = 1− (k − 1)/K for
k = 1, . . . ,K. The obtained results are shown in Figure 7.
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(a) Zachary’s Karate Club (b) Facebook

Figure 6. Impact of the bandwidth and the control signal shape. (a) Zachary’s Karate Club social network. (b) Subnet of Facebook social
network. An increased bandwidth (K) leads to a higher MSE, since these signals are harder to control for a fixed M and T . Higher graph
frequency content signals are also harder to control.

(a) Zachary’s Karate Club (b) Facebook

Figure 7. Impact of the number of selected nodes and sampling strategy. More control nodes lead to a smaller MSE satisfying our intuition
since the degrees of freedom increase. The proposed greedy heuristic is close to the optimal combinatorial solution and represents a substantial
improvement compared the random node selection.

We observe that the MSE decreases as more control nodes are
selected. We also observe that the greedy heuristic yields a
performance similar to the optimal solution and represents a
considerable improvement over random selection.

VII. CONCLUSIONS

In this paper, we studied the problem of controlling network
states. We considered a random time varying network to be
driven to a desired bandlimited state. To cope with the random-
ness in the underlying support, we introduced the concept of
controllability in the mean, where we postulated to control the
system as if it were running on the expected graph. We then
carried out a detailed mean squared error analysis to quantify
the deviation of the target signal, when the control is designed
for the expected graph but ran on any given random network
realization. We used this analysis to propose two different
control strategies and evaluated their performance on both
synthetic graph models and real-world social networks. We
concluded that it is of paramount importance to take into ac-
count the random nature of the underlying topology. We leave
as future work the analysis of more complex random network
models, other parsimonious graph signal models, and other

control strategies that involve spectral or energetic constraints.
Another direction worth investigating is the proposal of other
heuristic solutions to the respective optimization problems.

APPENDIX A
PROOF OF LEMMA 1.

Proof. For model (i), S = L and the system transition matrix
is At = I − εLt for 0 < ε ≤ 1/‖L‖2. First, we prove
that ‖Lt‖2 ≤ ‖L‖2 ≤ %. Note that Gt ⊆ G for every t
and, therefore, from the Laplacian interlacing property [43]
this condition always holds. The proof of Assumption 2 is
straightforward, i.e., from E[At] = I − εE[Lt] = I − εpL,
which means that E[At] and L share the same eigenvectors.
For the last condition, note that ‖At‖2 = ‖I−εLt‖2 ≤ 1 since
ε ≤ 1/‖L‖2 ≤ 1/‖Lt‖2. Therefore, ‖At‖2 is upper bounded
by some finite %.

For model (ii), S = W and the system transition matrix is
At = Wt. To prove that ‖Wt‖2 ≤ ‖W‖2, recall that for con-
nected graphs, the largest eigenvalue is positive and real [44,
Theorem 0.2]. Then, since W is considered to be normal and
Assumption 1 holds, ‖W‖2 = λmax(W) ≤ max deg(G) ≤
% < ∞. Likewise, since Gt ⊆ G, then max deg(Gt) ≤
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max deg(G) < ∞ and therefore ‖Wt‖2 ≤ % < ∞ for all
t. The proofs of the last two conditions are straightforward
since E[At] = pW and ‖At‖2 = ‖Wt‖2 ≤ % < ∞. This
completes the proof.

APPENDIX B
PROOF OF PROPOSITION 1 AND COROLLARY 1

Proof of Proposition 1. Recall that S is the set of the selected
M nodes and that CTC = diag(c), where c ∈ {0, 1}N with
[c]i = 1 if vi ∈ S and [c]i = 0, otherwise. System (10) is
equivalent to

x̃t,K = ÃK x̃t−1,K + VH
Kdiag(c)ût−1 (26)

where ût ∈ RN×1 denotes the zero-extended control signal
such that [ût]i = [ut]i if vi ∈ S and [ût]i = 0, otherwise.
Then, system (26) is controllable iff the K × TN matrix

Ω̃ = [VH
Kdiag(c), ÃKVH

Kdiag(c), . . . , ÃT−1
K VH

Kdiag(c)]

= [IK , ÃK , . . . , Ã
T−1
K ](IT ⊗VH

Kdiag(c)) (27)

is full rank. Observe that

rank(Ω̃) ≤ min{K, rank(IT ⊗VH
Kdiag(c))}

≤ min{K,T min{K,M}}
(28)

holds from rank(AB) ≤ min{rank(A), rank(B)}. Therefore,
to ensure the full rank K of Ω̃, M ≥ dK/T e must hold, for
some T ≥ 1. This concludes the proof.

Proof of Corollary 1. Recall that, for two matrices X ∈
RM×N and Y ∈ RN×K [45, Section 0.4.6]

if rank(Y) = N ⇒ rank(XY) = rank(X). (29)

The mean system (14) is controllable, iff

Ω̃ = [IK , ÃK , . . . , Ã
T−1
K ]

(
IT ⊗VH

Kdiag(c)
)

(30)

has rank K with ÃK = diag(āK).
The first term in (30) has rank

X = [IK , ÃK , . . . , Ã
T−1
K ] ∈ RK×TK

rank(X) = K
(31)

while the second term has rank

Y = (IT ⊗VH
Kdiag(c)) ∈ RTK×TN

rank(Y) = T rank(VH
Kdiag(c))

(32)

since Y consists of the Kronecker product of VH
Kdiag(c) with

an identity matrix. Note that VH
Kdiag(c) selects indeed rows

of VK .
Now, if M ≥ K and the node set S are such that the

selected M rows of VK form a set of K linearly indepen-
dent vectors, then rank(VH

Kdiag(c)) = K. This implies that
rank(Y) = TK and in virtue of (29), we obtain

rank(Ω̃) = rank(XY) = rank(X) = K (33)

yielding that the mean system (14) is controllable.

APPENDIX C
PROOF OF THEOREM 1

Proof. The MSE can be rewritten as

MSE(T ) = E [‖HxT − x∗‖2]

= E
[
xT
THTHxT

]
− 2(x∗)THE[xT ] + ‖x∗‖22 .

(34)

where each term is computed next.
First, to compute E[xT ] and E[xT

THTHxt], note that xT
can be written as

xT =

T−1∑
τ=0

ΦT−1,τ+1Buτ (35)

where Φb,a = AbAb−1 · · ·Aa+1Aa is the state transition
matrix in the interval [a, b] for b > a. Since under the RES(p)
model At are i.i.d. matrices, E[Φb,a] = Āb−a+1. Thus, the
expectation of (35) is

µT = E[xT ] =

T−1∑
τ=0

ĀT−τ−1CTuτ . (36)

For the second order moment E[xT
THTHxT ], denote by

Q = HTH and by substituting (35) we have

E
[
xT
THTHxT

]
= E

[
xT
TQxT

]
=

T−1∑
τ=0

T−1∑
τ ′=0

uT
τC E

[
ΦT
T−1,τ+1QΦT−1,τ ′+1

]
CTuτ .

(37)

Define Γτ,τ ′ = E[Φt−1,τ+1QΦt−1,τ ′+1] ∈ RN×N [cf. (15)],
so that (37) can be compactly written as

E
[
xT
THTHxT

]
=

T−1∑
τ=0

T−1∑
τ ′=0

uT
τC Γτ,τ ′ CTuτ . (38)

Finally, by substituting (38) in the first term of the MSE
(34) and (36) in the second term, we obtain the claimed
expressions. This completes the proof.

APPENDIX D
SPECIAL CASES: USEFUL COMPUTATIONS OF THE

QUADRATIC TERM Γτ,τ ′ IN THEOREM 1

Computation of the quadratic term Γτ,τ ′ in Theorem 1 can
turn out to be quite cumbersome for arbitrary graph shift
operators St or transition matrices At. In what follows, we
offer two corollaries of Theorem 1 that address this issue. In
particular, Corollary 2 gives an upper bound on the MSE that
does not entail computation of second-order moments, while
in Corollary 3 we show that, for the usually found case of
undirected graphs, diffusion models in Lemma 1 admit an
exact computation. Proofs follow after the statement of the
corollaries.

Corollary 2. Under the same conditions of Theorem 1 and
from Lemma 1, the MSE (15) can be upper bounded by

MSE(T ) ≤‖x∗‖22 − 2

T−1∑
τ=0

(x∗)THĀT−τ−1CTuτ

+

T−1∑
τ=0

T−1∑
τ ′=0

%2(T−τ
′+1)〈uτ ′ ,uτ 〉. (39)
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The result of Corollary 2 can be interpreted as the worst
case scenario to account for the variability in the topology. In
fact, (39) shows only first order dependence from the RES(p)
model, but it does not show dependence from the second order
moment. For the models in Lemma 1, we can consider for
model (i) % = 1 (Ā = I − εpL), while for model (ii) % =
max deg(G) (Ā = pW). Further insight then on the role of
the graph variability is given by Corollary 3, which shows the
explicit dependence on the link activation probability p.

Corollary 3. Under the same conditions of Theorem 1 and
additionally given that G is an undirected graph, for the
diffusion models in Lemma 1, the following holds:

Γτ,τ ′ = (Āτ ′−τ )TQT−τ ′−1

Qa = E
[
AT
T−aQa−1AT−a

]
, a = 1, . . . , T − τ ′ − 1

(40)

for τ ≤ τ ′, Q0 = HTH, and Āτ ′−τ = (E[At])
τ ′−τ .

For model (i) in Lemma 1 (Ā = I− εpL), Qa is

Qa = ε2p2WTQa−1W

+ ε2p(1− p)
·
(
WT ◦Qa−1 ◦W − diag(WT ◦Qa−1 ◦W)

)
+ ε2p(1− p)diag(WTdiag(Qa−1)W)

+ 2εp(I− εpD)diag(Qa−1W)

+
(
(I− εpD)2 + ε2p(1− p)WTW

)
◦ diag(Qa−1). (41)

For model (ii) in Lemma 1 (Ā = pW), Qa is

Qa = p2WTQa−1W

+ p(1− p)
(
WT ◦Qa−1 ◦W − diag(WT ◦Qa−1 ◦W)

)
+ p(1− p) diag(WTdiag(Qa−1)W). (42)

Proof of Corollary 2. From the first term in (34), we have

E
[
xT
THTHxT

]
= E

[
tr
[
HxTxT

THT
]]
. (43)

The trace argument in (43) can be expanded as

HxTxT
THT=

T−1∑
τ=0

T−1∑
τ ′=0

HΦT−1,τ+1C
Tuτu

T
τ ′CΦT

T−1,τ ′+1H
T.

(44)
From Lemma 1, we have ‖At‖2 ≤ %; so that, by the
submultiplicativity of the spectral norm, we can write

‖Φb,a‖2 =‖AbAb−1 · · ·Aa‖2≤‖Ab‖2 · · · ‖Aa‖2 ≤ %
b−a+1.

(45)
Also, observe that for any square matrix X and positive
semidefinite matrix Y, it holds that tr[XY] ≤ ‖X‖2tr[Y] [46].

Given that the filter H does not amplify any frequency (i.e.
‖H‖2 = 1), then plugging back (44) and (45) into (43) yields

E

[
T−1∑
τ=0

T−1∑
τ ′=0

tr
[
HΦT−1,τ+1C

Tuτu
T
τ ′CΦT

T−1,τ ′+1H
T
]]

=

T−1∑
τ=0

T−1∑
τ ′=0

E
[
tr
[(

ΦT
T−1,τ ′+1H

THΦT−1,τ+1

)(
CTuτu

T
τ ′C

)]]
≤
T−1∑
τ=0

T−1∑
τ ′=0

E
[
‖ΦT

T−1,τ ′+1‖2‖ΦT−1,τ+1‖2
]

tr
[
CTuτu

T
τ ′C

]
≤
T−1∑
τ=0

T−1∑
τ ′=0

%2(t−τ
′+1)tr

[
CCTuτu

T
τ ′
]

=

T−1∑
τ=0

T−1∑
τ ′=0

%2(t−τ
′+1)〈uτ ′ ,uτ 〉. (46)

Using (46) to bound (43) and replacing it in (15) yields (39).

Proof of Corollary 3. Consider τ ≤ τ ′. From (15), we have

Γτ,τ ′ = E
[
(AT−1 · · ·Aτ+1)

T
Q (AT−1 · · ·Aτ ′+1)

]
= E

[
AT
τ+1A

T
τ+2 · · ·AT

T−1QAT−1 · · ·Aτ ′+2Aτ ′+1

]
.

(47)

Then, since for two random matrices X,Y it holds that
E[X] = E[E[X|Y]] [47, Theorem 34.4], (47) becomes

Γτ,τ ′ (48)

= E
[
E
[
AT
τ+1 ···AT

T−1QAT−1 ···Aτ ′+1|AT−2, ...,Aτ+1

]]
= E

[
AT
τ+1 ··· E

[
AT
T−1QAT−1|AT−2, ...,Aτ+1

]
···Aτ ′+1

]
which under the RES(p) model (i.e., matrices Aa are i.i.d.)
can be written as

Γτ,τ ′ = E
[
AT
τ+1 · · ·E

[
AT
T−1QAT−1

]
· · ·Aτ ′+1

]
(49)

= (Āτ ′−τ )TE
[
AT
τ ′+1E

[
· · ·E

[
AT
T−1QAT−1

]
· · ·
]
Aτ ′+1

]
.

Further, for a ≥ 1 and assuming for now (to be proven
later on) that Qa−1 is symmetric and positive semidefinite,
we proceed to compute the (i, j) entry of matrix Qa =
E[AT

T−aQa−1AT−a]. Towards this end, denote simply by
[Qa−1]ij = qij and [AT−a]ij = aij for i, j = 1, . . . , N .

For i 6= j and since AT−a is symmetric, the (i, j) element
of Qa becomes

E
[
[AT

T−aQa−1AT−a]ij
]

=

N∑
k=1

N∑
`=1

E[akia`j ]qk` (50)

=

N∑
k = 1; k 6= j

N∑
` = 1; ` 6= i

E[aki]E[a`j ]qk` + E[ajiaij ]qji

where we have used the independence of the distinct elements
in AT−a. The second term of (50) groups the element (i, j)



IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED) 13

together with (j, i) due to symmetry of AT−a. Analogously,
for the diagonal elements i = j, we get

E
[
[AT

T−aQa−1AT−a]ii
]

=

N∑
k=1

N∑
`=1

E[akia`i]qk`

=

N∑
k=1

N∑
` = 1; ` 6= k

E[aki]E[a`i]qk` +

n∑
k=1

E[a2ki]qkk.

(51)

With this in place, let us fist consider the simpler model
(ii) in Lemma 1, where St = Wt and At = Wt. For
this case, we have [At]ij = Bwij , where B is a Bernoulli
random variable of parameter p and wij = [W]ij . Then, by
substituting E[aij ] = pwij and E[a2ij ] = (p2 + p(1 − p))w2

ij

in (50), we get

p2
N∑

k = 1; k 6= j

N∑
` = 1; ` 6= j

wkiw`jqk` +
(
p2 + p(1− p)

)
w2
jiqji

= p2
N∑
k=1

N∑
`=1

wkiw`jqk` + p(1− p)w2
jiqji (52)

which can be written in the compact form

E
[
[AT

T−aQa−1AT−a]ij
]

(53)

= p2[WTQa−1W]ij + p(1− p)[WT ◦Qa−1 ◦W]ij .

Likewise, for i = j (51) becomes

p2
N∑
k=1

N∑
` = 1; ` 6= k

wkiw`iqk` +
(
p2 + p(1− p)

) N∑
k=1

w2
kiqkk

= p2
N∑
k=1

N∑
`=1

wkiw`iqk` + p(1− p)
N∑
k=1

w2
kiqkk

(54)
which can also be written compactly as

E
[
[AT

T−aQa−1AT−a]ii
]

(55)

= p2[WTQa−1W]ii + p(1− p)[WTdiag(Qa−1)W]ii.

By combining (53) and (55) yields (42). Finally, note that if
Qa−1 is symmetric and positive semidefinite, then so is Qa.
To complete the proof, observe that Q0 = HTH is symmetric
and positive semidefinite, thus (42) holds for all a ≥ 1.

For model (i) in Lemma 1, we proceed in an analogous way.
In this case, St = Lt and At = I− εLt = (I− εDt) + εWt,
where Dt = diag(Wt1) is the degree matrix. This means
that [At]ij = aij = εBwij if i 6= j and [At]ii = aii = 1 −
ε
∑N
k=1Bkwik with Bk being i.i.d. Bernoulli random variables

with probability p.
Then, for i 6= j, from (50) we have

E
[
[AT

T−aQa−1AT−a]ij
]

= (56)

=

N∑
k = 1; k 6= j, i

N∑
` = 1; ` 6= i; j

E[aki]E[a`j ]qk`

+ E[ajiaij ]qji + E[aii]E[ajj ]qij

= ε2p2
N∑

k = 1; k 6= j, i

N∑
` = 1; ` 6= i, j

wkiw`jqk`

+ ε2(p2 + p(1− p))w2
jiqji + (1− εpdi)qij .

Now, recalling that wii = 0 (i.e., no self-loops), (56) becomes

E
[
[AT

T−aQa−1AT−a]ij
]

= ε2p2
N∑
k=1

N∑
`=1

wkiw`jqk`

+ ε2p(1− p)w2
jiqji + (1− εpdi)qij ,

(57)

which can be further written in the compact form

E
[
[AT

T−aQa−1AT−a]ij
]

= ε2p2[WTQa−1W]ij (58)

+ ε2p(1− p)[WT ◦Qa−1 ◦W]ij + [(I− εpD)Qa−1]ij

For i = j, we start with (51)

E
[
[AT

T−aQa−1AT−a]ii
]

(59)

=

N∑
k = 1; k 6= i

N∑
` = 1, ` 6= k, i

E[aki]E[a`i]qk`

+

N∑
k = 1; k 6= i

E[a2ki]qkk + 2E[aii]

N∑
` = 1; ` 6= i

E[a`i]qi` + E[a2ii]qii.

Then, recalling that wii = 0, we replace the first and second
order moments for each aij and obtain

E
[
[AT

T−aQT−aAT−a]ii
]

= ε2p2
N∑
k=1

N∑
` = 1; ` 6= k

wkiw`iqk`

+ ε2(p2 + p(1− p))
N∑
k=1

w2
kiqkk + 2(1− εpdi)εp

N∑
`=1

w`iqi`

+ qii

(
1− 2εpdi + ε2p2

N∑
k=1

N∑
`=1

wikwi` (60)

+ ε2p(1− p)
N∑
k=1

w2
ik

)
.

Finally, this can be rewritten as

E
[
[AT

T−aQa−1AT−a]ii
]

(61)

= ε2p2[WTQa−1W]ii + ε2p(1− p)[WTdiag(Qa−1)W]ii

+ 2εp[(I− εpD)diag(Qa−1W)]ii

+
[(

(I− εpD)2 + ε2p(1− p)WTW
)
◦ diag(Qa−1)

]
ii

(62)

completing the proof.
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