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Quantifying landscape connectivity is fundamental to better understand and predict 
how populations respond to environmental change. Currently, popular methods to 
quantify landscape connectivity emphasize how landscape features provide resistance 
to movement. While many tools are available to quantify landscape resistance, these 
do not discern between two fundamentally different sources of resistance: movement 
behavior and mortality. To address this issue, we developed the samc R package that 
quantifies landscape connectivity using absorbing Markov chain theory. Within this 
mathematical framework, movements are represented as transient states in the Markov 
chain, while mortality is represented by transitions to absorbing states. Not only does 
this framework explicitly account for these different issues, it provides a probabilistic 
approach that can incorporate both short-term and long-term dynamics, as well as 
species distribution and abundance. The package includes functions to quantify life 
expectancy, long-term visitation rates, and various spatially and temporally explicit 
measures of mortality and movement at the local and landscape scales. These functions 
in samc have been optimized to find computationally practical solutions in landscapes 
comprised of > 2 × 106 cells. Here, we illustrate the workflow of the samc package with 
publicly available movement and mortality data on the endangered Florida panther 
Puma concolor coryi. This analysis showed that movement and mortality are generally 
correlated except for locations near roads (areas of high mortality risk) that are within 
the dispersal range of source locations. This pattern would have been undetectable 
with current methods that quantify movement resistance. Overall, the samc package 
provides a means for implementing spatial absorbing Markov chains that can distin-
guish between movement behavior and mortality resulting in more reliable landscape 
connectivity measures.
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Introduction

Understanding landscape connectivity, or the degree to which 
the landscape alters movements among resources (Taylor et al. 
1993), is essential for ecology, evolution and conservation 
(Slatkin 1993, Hanski 1999, Fletcher and Fortin 2018), and 
it lies at the heart of the emerging sub-discipline of move-
ment ecology (Nathan et al. 2008). Nonetheless, accurately 
predicting and mapping landscape connectivity remains chal-
lenging (Fletcher et al. 2011, Sawyer et al. 2011).

Currently, most methods for mapping connectivity rely 
on a spatially explicit perspective of matrix or landscape resis-
tance. The rationale is that aspects of the matrix (e.g. land-
use, topography) can alter movement routes of individuals 
dispersing across landscapes, such that incorporating ‘matrix 
resistance’ (or conversely, ‘matrix permeability’) may be cru-
cial for interpreting connectivity (Zeller et al. 2012). Yet resis-
tance can emerge for two fundamentally different reasons: 
1) organisms may be less likely to move through a location 
(Elliot et al. 2014); or 2) organisms may suffer mortality at a 
location (Nowakowski et al. 2015). Because the demographic 
effects of mortality when moving through the landscape are 
likely greater than those resulting from changes in movement 
routes, isolating these issues may help guide more effective 
conservation actions (Vasudev et al. 2015).

Recently, we introduced a framework for connectivity 
by advancing random walk theory with absorbing Markov 
chains that honor the idea that the matrix can influence both 
movement behavior and mortality risk (Fletcher et al. 2019). 
This framework provides probabilistic accounting of both 
movement behavior and mortality risk of dispersers across 
landscapes, provides both short- and long-term predictions 
of connectivity, it can directly incorporate population dis-
tribution and abundance into predictions of connectivity, 
and it can quantify demographic parameters related to suc-
cessful dispersal and connectivity. This framework, what we 
term the ‘spatial absorbing Markov chain’ (SAMC), differs 
from other connectivity mapping approaches (Calabrese and 
Fagan 2004, Rudnick et al. 2012, Fletcher et al. 2016) in sev-
eral ways. Unlike individual-based modeling of connectivity 
(Bocedi et al. 2014), the SAMC is an analytical framework like 
least-cost analysis (Etherington 2016), randomized shortest 
paths (Saerens et al. 2009), and circuit theory (McRae et al. 
2008). Overall, it is most similar to circuit theory: SAMC 
and circuit theory are both rooted in Markov chain theory. 
Yet, the SAMC describes the general case that accounts for 
time-specific movement and mortality while circuit theory 
can be thought of a special case with no explicit absorbing 
states. Fletcher et al. (2019) evaluated this modeling frame-
work relative to least-cost and circuit theory approaches, 
finding that the SAMC outperformed other approaches for 
predicting observed movements of an insect herbivore across 
15 experimental landscapes undergoing habitat destruction 
by accounting explicitly for mortality risk.

Here we introduce the samc package for modeling 
connectivity within the SAMC framework using the R 

programming language. First, we begin by providing a brief 
overview of the SAMC framework and how it is implemented 
in the samc package, including the methods and features 
of the package. Second, we illustrate the workflow of using 
the SAMC framework for quantifying connectivity with the 
samc package by providing an example for the endangered 
Florida panther Puma concolor coryi.

Methods and features

Using absorbing Markov chain theory (Kemeny and Snell 
1976, Ross 2010, Fletcher et al. 2019) to model connectiv-
ity, the samc package can distinguish between movement 
behavior and mortality risk (‘absorption’) on the likelihood 
of movement across landscapes. It is also a temporally and 
spatially explicit probabilistic framework, which provides a 
means to calculate several relevant metrics of connectivity 
across landscapes. This framework assumes that landscapes 
are considered as discrete representations of the environment 
via the use of raster maps. It also treats time as a discrete 
variable, which matches the typical discretization of empiri-
cal movement data. Next, we briefly summarize key aspects 
of the SAMC framework described in Fletcher et al. (2019) 
and how they relate to the samc package.

The spatial absorbing Markov chain

For organisms dispersing across complex landscapes, for each 
time step an individual can either survive and stay at the same 
location (i.e. site fidelity), survive and move to a nearby site, 
or suffer mortality. The SAMC framework honors this simple 
idea by considering ‘transient’ states of fidelity and move-
ment, and an ‘absorbing’, permanent state of mortality.

To capture this idea and apply it to the problem of predict-
ing and mapping connectivity, there are two general aspects 
of the SAMC framework. The first aspect is the quantifica-
tion of a probability matrix, P, that contains both transition 
probabilities between transient states (i.e. landscape cells) 
and an absorbing state representing death. For a landscape 
divided into C cells, matrix P can be written as:

Q R

0 1






	 (1)

where Q is a sparse, C × C transition matrix reflecting transi-
tions between transient states, R is a C × 1 vector contain-
ing transition probabilities from the transient states to the 
absorbing state, and 0 is a 1 × C vector of zeros. The elements 
pij describe the probability of transitioning from state i to j 
in one time step. The i-th element of R pi,C+1 describes the 
probability of death in one time step for an individual located 
in cell i. Note that pC+1,C+1 = 1, since a dead individual must 
remain dead. Q reflects the permeability of the landscape 
to movement; we assume that movement transitions occur 
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locally over short time steps (e.g. via a 4- or 8-neighbor rule), 
although the framework is flexible and this assumption could 
be relaxed. Overall, P results in a biased random walk model 
for movement driven by spatial heterogeneity. In the samc 
package, there are several ways of parameterizing P through 
the use of the samc() function. In its simplest form, the 
samc package requires two maps (either as matrices or as 
rasters) as inputs: one that describes resistance or cost to 
movement and a second that describes mortality risk. When 
fidelity is of interest, a map of potential site fidelity could be 
used. The second component of the SAMC is the derivation 
and quantification of connectivity-related metrics based on 
the P matrix (Table 1). These metrics can be broadly classified 
in two ways: 1) short-term versus long-term metrics; and 2) 
metrics that quantify movement or demography.

Short-term metrics can be derived from P in two general 
ways. First, time-specific predictions are possible, which can 
be helpful for interpreting problems of changes in distribu-
tion, such as range expansion and spread of species, across 
complex landscapes (Hudgins et al. 2017). For instance, the 
probability of being in location j after t steps if starting at 
location i is the (i, j)-th element of Qt. Using the dis-
tribution() function, Qt can be calculated, as well as 
a variant that accounts for the initial distribution or abun-
dance of individuals, Ψ (i.e. a C × 1 vector that describes the 
probability of occurrence of an individual or the abundance 
of individuals at time t = 0). Second, cumulative predic-
tions across given time periods can be made, such as asking 
whether a location might be colonized over the next year. 
Cumulative predictions include quantifying: the probabil-
ity of ever visiting location j if an individual starts at loca-
tion i within t or fewer steps, �D jt  and the probability of 
experiencing mortality at location j within t or fewer steps 
if starting in location i, �Bt . These metrics can be calculated 
with the dispersal() and mortality() functions, 
respectively, when passing the amount of time being con-
sidered into the time parameter of the function (i.e. the 
number of time steps).

Long-term metrics can also be calculated, which are direct 
extensions of the time-specific metrics above. Summing Qt 
over all t gives the ‘fundamental matrix’, F:

F = I Q 1−( )− 	 (2)

where I is the identity matrix. fij is the expected number of 
times an individual that starts in location i uses location j 
before it dies. Therefore, F provides a time-focused descrip-
tion of long-term visitation rates across complex landscapes, 
which can be calculated with the visitation() function.

Time-specific predictions of �D  can be scaled to long-term 
predictions of movement and dispersal. The probability that 
location j is ever visited when starting from location i is the 
(i, j)-th element of matrix:

D F I F= −( ) ( )−diag 1 	 (3)

where diag(F) is a matrix with diagonal elements from F and 
zeros otherwise (Kemeny and Snell 1976). The unconditional 
probability of ever visiting location j, taking into account the 
probability of each initial species distribution, is given by 
the j-th element of ΨTD. Consequently, D provides a long-
term approximation of the probability of movement between 
locations and can be calculated with the dispersal() 
function.

Time-specific predictions of �B  can also be scaled to long-
term predictions of mortality likelihood across landscapes. 
The probability of suffering mortality in location j if starting 
in location i is the (i, j)-th element of B:

B FR= � 	 (4)

where �R  is a C × C matrix with diagonal elements equal to the 
mortality probabilities ( �R Rjjj =  for all j) and off-diagonal 

Table 1. Connectivity metrics derived from SAMC and fit with the samc package.

Function Metric Description

dispersal() �D jt
Probability of an individual visiting a location, if starting at any other location, before or at time t

YYT
jt

�D
Probability of an individual visiting a location, before or at time t, accounting for initial location

D Probability of an individual visiting a location
ΨTD Probability of an individual visiting a location, accounting for initial location

distribution() Qt Probability of an individual being at a location at time t
ΨTQt Probability of an individual being at a location at time t, accounting for initial location

mortality() �Bt
Probability of an individual experiencing mortality at a location before or at time t

YYT
t
�B

Probability of an individual experiencing mortality at a location, before or at time t, accounting for 
initial location

B Probability of an individual experiencing mortality at a location
ΨTB Probability of an individual experiencing mortality at a location, accounting for initial location

survival() z Expected life expectancy of an individual
ΨTz Overall life expectancy accounting for initial location

visitation() F Expected number of times an individual will visit a location
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elements equal to 0. The i-th element of ΨTB represents the 
unconditional probability of suffering mortality in location i, 
taking into account the probability of each initial species dis-
tribution, which can be calculated with the mortality() 
function.

Finally, the life expectancy of individuals starting at differ-
ent locations can be derived from F as a demographic metric 
to describe survival across landscapes. This metric was ini-
tially introduced by Acevedo  et  al. (2015) for patch-based 
networks (see also Sefair et al. 2017). The life expectancy if 
starting from location i is defined as the i-th element of vector

z = I Q 1= F 11−( ) ×− 	 (5)

where 1 is a C × 1 vector of ones. Species initial distribution 
or abundance can also be incorporated (Table 1). z and its 
variants can be calculated with the survival() function.

Features of the samc package

The samc package makes extensive use of the S4 object 
system in R to create an efficient framework that enforces 
correct usage and minimizes accidental misuse. It currently 
requires the gdistance package (van Etten 2012) for con-
structing transition matrices, the raster package (Hijmans 
2017) for processing raster GIS data, and the Matrix (Bates 
and Maechler 2017) package for sparse matrix manipulation 
and calculations. It also requires the Rcpp (Eddelbuettel and 
Balamuta 2017) and RcppEigen (Bates and Eddelbuettel 
2013) packages, along with C++ development tools, when 
building manually from source. It contains functions for 
calculating all metrics described in Fletcher et al. (2019), as 
well as utility functions for setting up the framework, check-
ing input data, and mapping results. Finally, it contains the 
example data used in Fletcher et al. (2019).

To calculate the connectivity metrics, the user starts by 
creating a samc-class object using the samc() func-
tion. This object contains the probability matrix and other 
pieces of data used to perform error checking and ensure cor-
rect usage of the framework. Actual details about the internal 
components of this object are not provided here because they 
are expected to change in the future as new features and opti-
mizations are added, and it is generally expected that users 
will not be directly accessing or modifying these components.

All the metrics described in Fletcher  et  al. (2019) are 
implemented into a set of analytical functions provided by 
the package. For conciseness, related equations are grouped 
together under the same function name (Table 1). The pack-
age uses parameter matching to select the correct underly-
ing calculation. For example, passing a value for the time 
parameter of a function will result in the calculation of a 
short-term metric (e.g. for the mortality() function, 
using the time parameter results in calculating �Bt ).

Additional details about the various components of the 
package are provided in the ‘Overview’ vignette included in 

the package and online documentation. This includes how 
to use the built-in example data, important requirements for 
creating the samc-class object, and details about how 
to use the analytical functions to calculate different metrics.

Performance

Two major issues that can affect performance (time to perform 
an analysis) in connectivity modeling are the number of sites 
or locations from which dispersers may occur and the number 
of cells (or pixels) in the landscape being considered. For the 
first issue, many of the SAMC metrics only slightly reduce in 
performance when more sites are considered because calcula-
tions are not done iteratively (unlike some approaches such as 
circuit theoryrandomized shortest paths; Saerens et al. 2009, 
Panzacchi et al. 2016). In terms of the number of cells, there 
are performance concerns when working with maps with 
large raster grids, because such maps result in large transition 
matrices. The size of the matrices increases quadratically as 
the number of cells in an analysis increase. While the transi-
tion matrix can be stored efficiently in a sparse format, many 
of the metrics in Fletcher et al. (2019) perform calculations 
that involve large dense matrices that can become impractical 
for modern consumer computers at scales sometimes used by 
ecologists. However, these dense matrices represent pairwise 
data for every pair of cells in the landscape, most of which 
will typically be superfluous information for practical appli-
cations. Instead, ecologists will generally only be interested in 
information about specific regions or cells of the landscape. 
By focusing on calculating these more useful partial solutions, 
we have managed to find computationally practical solutions 
for every metric for landscapes with > 1 000 000 cells (e.g. a 
1000 × 1000 raster), and up to 3–4 M cells for some metrics 
(e.g. mortality probability accounting for initial locations, 
ΨTB). With the special exception of ΨTD, these metrics 
can be computed in a manner of seconds or minutes on an 
average modern consumer desktop. We also emphasize that 
because of the probabilistic, absorbing nature of the model, 
expected values for metrics decline with distance from source 
locations (Fletcher et al. 2019), such that landscapes with > 
4 M cells could be tiled into smaller areas or users could buf-
fer around source locations based on maximum known dis-
persal distances (i.e. modeling only within specified distances 
of source locations) without loss of information in mapping. 
Most of these metrics appear to be similar or more computa-
tionally efficient than the related randomized shortest paths 
analysis in R (Saerens et al. 2009, Panzacchi et al. 2016) for 
> 2 × 106 cells, but metrics are still less efficient than using 
circuit theory and least-cost metrics using the gdistance 
package (van Etten 2012). For smaller landscapes, or for users 
with access to exceptional hardware resources, the full metrics 
can still be calculated. The optimized functions are enabled 
by default to ensure that users do not accidentally run the 
more demanding calculations that can cause issues for com-
puters with limited resources. This default behavior can be 
disabled by explicitly enabling the override option when cre-
ating a samc-class object.
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Additional details about the different performance aspects 
of the package are included in the ‘Performance’ vignette and 
online documentation. This includes a more thorough break-
down of performance into the separate issues of computation 
time and memory requirements. It also goes into more detail 
and illustrates the effect of landscape size. Finally, it includes 
crude benchmarks illustrating the relative performance of 
each the various metrics, which will be kept up-to date as 
future optimizations are implemented.

Workflow: an example with Florida panthers

We illustrate the workflow of the samc package (Fig. 1) with 
data on Florida panthers, an endangered carnivore that is 
confined to south Florida. This case study is useful because 
large carnivores are often the target of connectivity conser-
vation (Carroll  et  al. 2001, Dixon  et  al. 2006), decades of 
data have been collected on panther movement, dispersal and 
mortality, and connectivity models have been applied to this 
species previously (Maehr et al. 2002, Kautz et al. 2006, van 
de Kerk et al. 2019). Furthermore, a key criterion for delist-
ing this species is dispersal and population establishment of 
panthers north of the Caloosahatchee River (Fig. 2).

Step 1: data preparation
At a minimum, the package requires absorption (or mortal-
ity) and landscape resistance data on movement behavior. 
Additionally, fidelity and occupancy (or abundance) data can 
also be used. As in other applications that interpret ‘resis-
tance’ for landscape connectivity, parameterizing the transi-
tion matrix that is used to interpret movement behavior in the 
SAMC (Q) can come from behavioral experiments, teleme-
try, habitat use or expert opinion (Zeller et al. 2012). In these 
ways, parameterizing Q of the SAMC is similar to that of 
parameterizing least-cost and circuit theory approaches.

We parameterize resistance for Florida panthers based on 
the analysis in Kautz et al. (2006), using land-cover data and 
resistance coding illustrated in Fletcher and Fortin (2018). 
In this example, data from telemetered Florida panthers 
were used to estimate habitat preferences based on resource 
selection functions, which were converted to a rank-based 
measure of resistance to movement (Fig. 2a). We consider 
a raster-based, land-cover map, aggregated to a 500 m reso-
lution (reflecting the approximate grain of telemetry error; 
post-aggregation, 274 664 cells on the map).

Information on mortality risk is less common but can be 
included in the SAMC as simply a constant low rate, or it 

Figure 1. Workflow diagram illustrating the relationship between data inputs, outputs and functions of the samc package.
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could be spatially variable across the landscape. Mortality 
rates, R, can be approximated using several approaches, such 
as using field experiments (Fletcher et al. 2019), habitat-spe-
cific survival estimates (Low  et  al. 2010), or mortality risk 
data (e.g. roadkill data; Santos et al. 2013, Grilo et al. 2018). 
For instance, if annual survival rates are available, such rates 
could be scaled to reflect expected mortality rate per time 
step (where a ‘time step’ reflects the average time expected for 
movement between adjacent cells). In addition, if the mean 
dispersal distance for a species is known, R could be tuned to 

derive dispersal distance estimates from the SAMC to equal 
known dispersal distances, as we show below. The SAMC 
assumes non-zero mortality risk, because if mortality risk is 
0, it would predict that all locations are eventually reached by 
mobile organisms.

To parameterize spatial variation mortality risk for Florida 
panthers, we focus on mortality risk from roads, which is a 
major cause of mortality in panthers (Schwab and Zandbergen 
2011, van de Kerk et al. 2019). Data on mortality locations 
have been collected over the past several decades (1972–2018) 

Figure 2. Connectivity and predicted movement by the Florida panther using the spatial absorbing Markov chain approach. (a) Resistance 
map based on resource selection functions created by telemetered panthers (Kautz et al. 2006) and data on mortality (including with respect 
to major roads in southern Florida). (b) Tuning mortality rates using a homogeneous grid of constant mortality to determine predicted 
movement distances and relating predictions to known dispersal distances. (c) Mapping predicted movement (D). (d) Mapping predicted 
mortality risk (B). In (a, c, d) black lines show the Caloosahatchee River, dark grey source areas considered by Kautz et al. 2006 (Florida 
Panther Wildlife Refuge and the northern portion of Big Cypress Preserve).
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(<https://geodata.myfwc.com/datasets/florida-panther-
mortality>) (Fig. 2a). Using these locations, we determined 
the proportion of mortality locations within 500 m (the map 
resolution) of major roads relative to what would be expected 
based on available habitat. Mortality locations (n = 488) were 
3.7× more likely to be within 500 m of roads than > 500 m 
based on these data. We use this information to adjust relative 
expected mortality rates near roads. We then tune absolute 
rates of mortality risk based on known dispersal distances in 
Florida panthers, where the mean dispersal distance has been 
estimated for females as 20.3 km (Maehr  et  al. 2002). We 
focus on mapping potential dispersal by females, as males are 
known to be wide ranging, but females are key to breeding 
range expansion north of the Caloosahatchee River. To do so, 
we first consider different baseline rates of mortality across a 
homogeneous 400 × 400 cell (160 K) grid with the cell reso-
lution considered in mapping (500 m; Fig. 2b). The samc 
package can be used to calculate the probability of visiting 
locations as a function of distance with the dispersal() 
function (D, Eq. 3) to generate potential dispersal kernels 
based on known mortality risk (Fig. 2b). We quantified prob-
abilities from the source location to locations as a function of 
distance to derive expected mean movement distances based 
on the parameters of an exponential dispersal kernel. In this 
case, baseline mortality risk would be 6.5 × 10−6 per cell to 
generate mean movement distances of approximately 20 km 
(Fig. 2b). We then increased this base mortality probability 
3.7× near roads, given mortality locations to create a mortal-
ity risk map for the SAMC.

Information on species distribution and abundance can 
also be included as a map, which is necessary for some (but 
not all) metrics. In most cases, we expect that such infor-
mation will be passed into the model to capture source-
destination locations (e.g. protected areas) (Cushman et  al. 
2009), local populations (Larkin et al. 2004), or individual 
dispersers (Fletcher et al. 2014). This information can either 
reflect the probability that an individual occurs at a location, 
in which output generally reflects probabilities of individual 
movement or mortality, or it can reflect the number of indi-
viduals, in which output generally reflects the number of 
individuals moving or suffering mortality. Including infor-
mation on distribution and abundance facilitates computa-
tion efficiency. If such information is not included, users are 
implicitly assuming that individuals start from all locations, 
akin to some graph theory applications to resistance model-
ing (Carroll et al. 2012) and loosely similar to factorial least-
cost analysis (Elliot et al. 2014).

For the Florida panther, we set the Florida Panther 
National Wildlife Refuge and the northern portion of the Big 
Cypress Reserve as source locations (as in Kautz et al. 2006; 
Fig. 1) for individual dispersers by creating a raster map 
where the centroids of these two locations are set to 1 and all 
other locations on the raster are set to 0 (protected area data 
come from: <www.fnai.org/conservationlands.cfm>).

All sets of data must be stored either as matrices or raster 
maps. Mixing matrices and rasters is not supported due to 

underlying differences in the way they store data and poten-
tial issues that can arise when users are not aware of these 
differences. Every set of data must have the same dimensions 
(number of rows and columns), and NA data is supported as 
long as it occurs in the same locations in every set of data. 
If the data sets are stored as rasters, then they must have the 
same geographic coordinate extents and coordinate reference 
system (CRS). The check()function is provided to sim-
plify the process of checking that all these conditions are met.

Step 2: samc-class object creation
The resistance, absorption and (optional) fidelity data are used 
to create an samc-class object via the samc() func-
tion. If the data sets are in a raster format, then the latlon 
parameter is mandatory. A transition function must always 
be provided for constructing the transition matrix. Typically, 
transition functions use the mean of resistance values between 
pairs of cells (tr_fun = function(x) 1/mean(x)), 
but other alternative functions can be considered.

For the Florida panther example, we take the resistance 
(cost_panther) and mortality (mort_panther) ras-
ter maps (Fig. 2a) to create the samc object using:

Pmatrix <- samc(resistance = cost_panther,  
absorption = mort_panther, tr_fun =  
function(x) 1/mean(x), latlon = TRUE))

See Supplementary material Appendix 1 for all relevant code 
for this example.

Step 3: analysis
Once the samc-class object has been created, it can be 
used to calculate the various metrics described in Fletcher et al. 
(2019) using the functions listed in Table 1. Each function 
supports a variety of inputs, including occupancy/abundance 
data, start locations, end locations and time steps. Depending 
on the inputs used, the functions can return a single value, a 
vector of values, or a matrix. The various input options and 
interpretation of results are explained in detail in the help 
documentation for each function.

For Florida panthers, we use the dispersal() func-
tion to calculate the probability of movement across the land-
scape, given these source locations (by providing a raster map 
of source locations identified as 1 and 0 otherwise) and the 
mortality() function to map the probability of mortal-
ity, given these source (source) locations. We also calcu-
lated life expectancy of dispersers from each of these locations 
with the survival() function. For each, we pass the ini-
tial distribution map of source locations as:

D_panther <- dispersal(samc = Pmatrix, 
occ = source)
B_panther <- mortality(samc = Pmatrix, 
occ = source)
Z_panther <- survival(samc = Pmatrix, 
occ = source)
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In the above function calls for dispersal and mortality, if 
time = 100 was added, the function would calculate �D  
and �B  for 100 time steps, which in the case for panthers 
would capture a maximum possible distance of 50 km given 
the cell resolution. The absolute amount of time that this 
value reflects will vary based on application, but it is useful 
to think about it as the number of local transition steps con-
sidered. Given the biased random walk nature of the model, 
users may want the time considered to be much larger than 
the number of cells in the longest linear dimension for a 
given extent or Euclidean distance of interest.

In this example (274 664 cell map), on a desktop with 
32 GB RAM and an Intel Core i7-3770 CPU @3.40 GHz 
processer, dispersal() function took 2.1 h to run, 
whereas the mortality() and survival() functions 
to < 4 s. If interest is in quantifying movement probabilities 
between pairs of patches with the dispersal() function 
(Fletcher  et  al. 2019), users can provide source and desti-
nation locations with the origin and dest parameters, 
which substantially increases computational efficiency. For 
instance, in the panther example, calculating Dij between the 
two source locations took < 4 s.

Step 4: visualization and interpretation
Vector results returned by analyses correspond to cells in the 
landscape data and can be visualized accordingly. The map() 
function is provided to simplify this process; it ensures that 
the values in the vector results are mapped to the landscape in 
the correct order, and properly handles results based on data-
sets with NA values. The result is a raster that can be plotted 
directly using plot() without any additional processing.

For Florida panthers, we mapped both D and B with the 
map() function. Mapping dispersal from two source areas 
provides a means to understand the probability of dispersers 
visiting any location on the landscape (Fig. 2c; plotted on 
the log(odds) scale), illustrating that dispersal is expected to 
decrease with distance from the source locations. We note 
that using the dispersal() function for each source 
location separately can isolate roles of source habitats on 
potential connectivity. We also map the expected probability 
of mortality of individuals dispersing from these two source 
areas (Fig. 2d; plotted on the log(odds) scale). Expected mor-
tality locations are generally similar to movement locations, 
except that mortality risk spikes near roads that are within the 
dispersal range from the source locations. Finally, we found 
that life expectancy (number of expected time steps before 
mortality, z) was estimated to be 2% greater for individuals 
dispersing from Big Cypress Reserve (z = 13 734 steps) than 
from Florida Panther National Wildlife Refuge (z = 13 465 
steps). Other types of interpretation and visualization are 
possible, such as demarcation of potential corridors (Pinto 
and Keitt 2009), using models to parameterize network (or 
patch-based graph) links in connectivity models (Saura and 
Rubio 2010), and identifying the extent to which protected 
areas may contribute dispersers to larger metapopulations 
(Runge et al. 2006); see Fletcher et al. (2019) for discussion.

We note that at least three sources of uncertainty occur in 
predictions and interpretation of this framework: 1) uncer-
tainty in the model framework (e.g. assumption of biased 
random walks); 2) uncertainty in inputs (e.g. resistance, mor-
tality uncertainty as a function of land use); and 3) uncer-
tainty in the metrics themselves (e.g. the variance of D). The 
first source can be evaluated by comparing the SAMC to 
other modeling frameworks (Fletchet et al. 2019), the second 
can be addressed when resistance and mortality inputs have 
estimates of precision (e.g. SEs), whereas the third requires 
new model derivations (e.g. see Ross 2010 for an example for 
estimating the variance in life expectancy with an absorbing 
Markov chain).

Future extensions

We expect improved performance with continued develop-
ment. At least one metric (ΨTD) is an ideal candidate for 
parallel computing (dividing the calculation into smaller tasks 
that can be executed simultaneously across multiple cores of a 
computer processor). Additionally, several metrics would ben-
efit substantially from caching matrix decompositions (at the 
expense of memory). New convenience features would focus on 
expanding the input options to the current metrics. Examples 
include alternative methods for specifying locations more eas-
ily, calculating multiple time steps for short-term metrics using 
a vector input of time steps, and automating the calculation of 
metrics for pairwise start and end locations. Finally, fundamen-
tally new features that could be implemented include support-
ing multiple absorption layers (which can represent different 
sources of mortality such as natural mortality, parasitism or 
predation), quantifying uncertainty in metrics, and alternatives 
to matrix/raster data for generating the transition matrix (e.g. 
patch-based networks, resource selection functions and related 
statistical models).

Conclusions

The spatial absorbing Markov chain framework delivers sev-
eral advances in connectivity modeling (Fletcher et al. 2019) 
by providing a probabilistic approach for modeling and map-
ping movement, mortality and visitation rates of dispersers 
over short and long time scales. The samc package provides 
a means for implementing those advances. We expect that the 
samc package will catalyze addressing new questions in con-
nectivity science and serve as a helpful tool for more reliable 
connectivity conservation.

Data availability statement

Data are available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.0k6djh9wk> (Marx et al. 2019).

Software availability

The samc package is distributed under the GNU Public 
License (GPL) ver. 3 or later. It is available directly from 
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the Comprehensive R Archive Network (CRAN) <https://
CRAN.R-project.org/package=samc> and can be installed 
using install.packages(‘samc’). The package 
source and documentation are hosted on GitHub <https://
andrewmarx.github.io/samc>.

To cite samc or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 0’:

Marx, A. J., Wang, C., Sefair, J. A., Acevedo, M. A. and 
Fletcher, Jr., R. J. 2019. samc: an R package for connectivity 
modeling with spatial absorbing Markov chains. – Ecography 
42: 000–000 (ver. 0).
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