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Ecography Quantifying landscape connectivity is fundamental to better understand and predict
43:518-527, 2020 how populations respond to environmental change. Currently, popular methods to
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to movement. While many tools are available to quantify landscape resistance, these
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mathematical framework, movements are represented as transient states in the Markov
chain, while mortality is represented by transitions to absorbing states. Not only does
this framework explicitly account for these different issues, it provides a probabilistic
approach that can incorporate both short-term and long-term dynamics, as well as
species distribution and abundance. The package includes functions to quantify life
expectancy, long-term visitation rates, and various spatially and temporally explicit
measures of mortality and movement at the local and landscape scales. These functions
in samc have been optimized to find computationally practical solutions in landscapes
comprised of > 2 X 10° cells. Here, we illustrate the workflow of the samc package with
publicly available movement and mortality data on the endangered Florida panther
Puma concolor coryi. This analysis showed that movement and mortality are generally
correlated except for locations near roads (areas of high mortality risk) that are within
the dispersal range of source locations. This pattern would have been undetectable
with current methods that quantify movement resistance. Overall, the samc package
provides a means for implementing spatial absorbing Markov chains that can distin-
guish between movement behavior and mortality resulting in more reliable landscape
connectivity measures.
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Introduction

Understanding landscape connectivity, or the degree to which
the landscape alters movements among resources (Taylor et al.
1993), is essential for ecology, evolution and conservation
(Slatkin 1993, Hanski 1999, Fletcher and Fortin 2018), and
it lies at the heart of the emerging sub-discipline of move-
ment ecology (Nathan et al. 2008). Nonetheless, accurately
predicting and mapping landscape connectivity remains chal-
lenging (Fletcher et al. 2011, Sawyer et al. 2011).

Currently, most methods for mapping connectivity rely
on a spatially explicit perspective of matrix or landscape resis-
tance. The rationale is that aspects of the matrix (e.g. land-
use, topography) can alter movement routes of individuals
dispersing across landscapes, such that incorporating ‘matrix
resistance’ (or conversely, ‘matrix permeability’) may be cru-
cial for interpreting connectivity (Zeller et al. 2012). Yet resis-
tance can emerge for two fundamentally different reasons:
1) organisms may be less likely to move through a location
(Elliot et al. 2014); or 2) organisms may suffer mortality at a
location (Nowakowski et al. 2015). Because the demographic
effects of mortality when moving through the landscape are
likely greater than those resulting from changes in movement
routes, isolating these issues may help guide more effective
conservation actions (Vasudev et al. 2015).

Recently, we introduced a framework for connectivity
by advancing random walk theory with absorbing Markov
chains that honor the idea that the matrix can influence both
movement behavior and mortality risk (Fletcher et al. 2019).
This framework provides probabilistic accounting of both
movement behavior and mortality risk of dispersers across
landscapes, provides both short- and long-term predictions
of connectivity, it can directly incorporate population dis-
tribution and abundance into predictions of connectivity,
and it can quantify demographic parameters related to suc-
cessful dispersal and connectivity. This framework, what we
term the ‘spatial absorbing Markov chain’ (SAMC), differs
from other connectivity mapping approaches (Calabrese and
Fagan 2004, Rudnick et al. 2012, Fletcher et al. 2016) in sev-
eral ways. Unlike individual-based modeling of connectivity
(Bocedietal.2014), the SAMC is an analytical framework like
least-cost analysis (Etherington 2016), randomized shortest
paths (Sacrens et al. 2009), and circuit theory (McRae et al.
2008). Overall, it is most similar to circuit theory: SAMC
and circuit theory are both rooted in Markov chain theory.
Yet, the SAMC describes the general case that accounts for
time-specific movement and mortality while circuit theory
can be thought of a special case with no explicit absorbing
states. Fletcher et al. (2019) evaluated this modeling frame-
work relative to least-cost and circuit theory approaches,
finding that the SAMC outperformed other approaches for
predicting observed movements of an insect herbivore across
15 experimental landscapes undergoing habitat destruction
by accounting explicitly for mortality risk.

Here we introduce the samc package for modeling
connectivity within the SAMC framework using the R

programming language. First, we begin by providing a brief
overview of the SAMC framework and how it is implemented
in the samc package, including the methods and features
of the package. Second, we illustrate the workflow of using
the SAMC framework for quantifying connectivity with the
samc package by providing an example for the endangered
Florida panther Puma concolor coryi.

Methods and features

Using absorbing Markov chain theory (Kemeny and Snell
1976, Ross 2010, Fletcher et al. 2019) to model connectiv-
ity, the samc package can distinguish between movement
behavior and mortality risk (‘absorption’) on the likelihood
of movement across landscapes. It is also a temporally and
spatially explicit probabilistic framework, which provides a
means to calculate several relevant metrics of connectivity
across landscapes. This framework assumes that landscapes
are considered as discrete representations of the environment
via the use of raster maps. It also treats time as a discrete
variable, which matches the typical discretization of empiri-
cal movement data. Next, we briefly summarize key aspects
of the SAMC framework described in Fletcher et al. (2019)
and how they relate to the samc package.

The spatial absorbing Markov chain

For organisms dispersing across complex landscapes, for each
time step an individual can either survive and stay at the same
location (i.e. site fidelity), survive and move to a nearby site,
or suffer mortality. The SAMC framework honors this simple
idea by considering ‘transient’ states of fidelity and move-
ment, and an ‘absorbing’, permanent state of mortality.

To capture this idea and apply it to the problem of predict-
ing and mapping connectivity, there are two general aspects
of the SAMC framework. The first aspect is the quantifica-
tion of a probability matrix, P, that contains both transition
probabilities between transient states (i.e. landscape cells)
and an absorbing state representing death. For a landscape
divided into C cells, matrix P can be written as:

Q R

o 1 (1)
where Q is a sparse, CX C transition matrix reflecting transi-
tions between transient states, R is a CX 1 vector contain-
ing transition probabilities from the transient states to the
absorbing state, and 0 is a 1 X Cvector of zeros. The elements
p;; describe the probability of transitioning from state 7 to j
in one time step. The i-th element of R p, ., describes the
probability of death in one time step for an individual located
in cell 7. Note that p, .,,=1, since a dead individual must

remain dead. Q reflects the permeability of the landscape
to movement; we assume that movement transitions occur

519



locally over short time steps (e.g. via a 4- or 8-neighbor rule),
although the framework is flexible and this assumption could
be relaxed. Overall, P results in a biased random walk model
for movement driven by spatial heterogeneity. In the samc
package, there are several ways of parameterizing P through
the use of the samc () function. In its simplest form, the
samc package requires two maps (either as matrices or as
rasters) as inputs: one that describes resistance or cost to
movement and a second that describes mortality risk. When
fidelity is of interest, a map of potential site fidelity could be
used. The second component of the SAMC is the derivation
and quantification of connectivity-related metrics based on
the P matrix (Table 1). These metrics can be broadly classified
in two ways: 1) short-term versus long-term metrics; and 2)
metrics that quantify movement or demography.

Short-term metrics can be derived from P in two general
ways. First, time-specific predictions are possible, which can
be helpful for interpreting problems of changes in distribu-
tion, such as range expansion and spread of species, across
complex landscapes (Hudgins et al. 2017). For instance, the
probability of being in location j after ¢ steps if starting at
location 7 is the (i, j)-th element of Q. Using the dis-
tribution () function, Q° can be calculated, as well as
a variant that accounts for the initial distribution or abun-
dance of individuals, ¥ (i.e. a CX 1 vector that describes the
probability of occurrence of an individual or the abundance
of individuals at time t=0). Second, cumulative predic-
tions across given time periods can be made, such as asking
whether a location might be colonized over the next year.
Cumulative predictions include quantifying: the probabil-
ity of ever visiting location j if an individual starts at loca-
tion 7 within # or fewer steps, D, and the probability of
experiencing mortality at location j within # or fewer steps
if starting in location 7, B, . These metrics can be calculated
with the dispersal () and mortality () functions,
respectively, when passing the amount of time being con-
sidered into the time parameter of the function (i.e. the
number of time steps).

Long-term metrics can also be calculated, which are direct
extensions of the time-specific metrics above. Summing Q’
over all # gives the fundamental matrix’, F:

F=(1-Q)" (2)

where I is the identity matrix. f; is the expected number of
times an individual that starts in location 7 uses location j
before it dies. Therefore, F provides a time-focused descrip-
tion of long-term visitation rates across complex landscapes,
which can be calculated with the visitation () function.

Time-specific predictions of D can be scaled to long-term
predictions of movement and dispersal. The probability that
location j is ever visited when starting from location 7 is the
(i, j)-th element of matrix:

D = (F-1I)diag(F)™ 3)

where diag(F) is a matrix with diagonal elements from F and
zeros otherwise (Kemeny and Snell 1976). The unconditional
probability of ever visiting location j, taking into account the
probability of each initial species distribution, is given by
the j-th element of W'D. Consequently, D provides a long-
term approximation of the probability of movement between
locations and can be calculated with the dispersal ()
function. _

Time-specific predictions of B can also be scaled to long-
term predictions of mortality likelihood across landscapes.
The probability of suffering mortality in location j if starting
in location 7 is the (7, j)-th element of B:

B=FR (4)

where R isa Cx C matrix with diagonal elements equal to the
mortality probabilities (R; = R; for all j) and off-diagonal

Table 1. Connectivity metrics derived from SAMC and fit with the samc package.

Function Metric Description
dispersal () b Probability of an individual visiting a location, if starting at any other location, before or at time ¢
jt
—_r Probability of an individual visiting a location, before or at time t, accounting for initial location
jt
D Probability of an individual visiting a location
¥Y'D Probability of an individual visiting a location, accounting for initial location
distribution () Q Probability of an individual being at a location at time t
v'Q! Probability of an individual being at a location at time t, accounting for initial location
mortality () B Probability of an individual experiencing mortality at a location before or at time ¢
t
v Probability of an individual experiencing mortality at a location, before or at time t, accounting for
t initial location
B Probability of an individual experiencing mortality at a location
¥'B Probability of an individual experiencing mortality at a location, accounting for initial location
survival () z Expected life expectancy of an individual
Yz Overall life expectancy accounting for initial location
visitation () F Expected number of times an individual will visit a location
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elements equal to 0. The 7-th element of W’B represents the
unconditional probability of suffering mortality in location 7,
taking into account the probability of each initial species dis-
tribution, which can be calculated with the mortality ()
function.

Finally, the life expectancy of individuals starting at differ-
ent locations can be derived from F as a demographic metric
to describe survival across landscapes. This metric was ini-
tially introduced by Acevedo et al. (2015) for patch-based
networks (see also Sefair et al. 2017). The life expectancy if
starting from location 7 is defined as the i-th element of vector

2=(1-Q) '1=Fx1 5)

where 1 is a CX 1 vector of ones. Species initial distribution
or abundance can also be incorporated (Table 1). z and its
variants can be calculated with the survival () function.

Features of the samc package

The samc package makes extensive use of the S4 object
system in R to create an efficient framework that enforces
correct usage and minimizes accidental misuse. It currently
requires the gdistance package (van Etten 2012) for con-
structing transition matrices, the raster package (Hijmans
2017) for processing raster GIS data, and the Matrix (Bates
and Maechler 2017) package for sparse matrix manipulation
and calculations. It also requires the Repp (Eddelbuettel and
Balamuta 2017) and RcppEigen (Bates and Eddelbuettel
2013) packages, along with C++ development tools, when
building manually from source. It contains functions for
calculating all metrics described in Fletcher et al. (2019), as
well as utility functions for setting up the framework, check-
ing input data, and mapping results. Finally, it contains the
example data used in Fletcher et al. (2019).

To calculate the connectivity metrics, the user starts by
creating a samc-class object using the samc () func-
tion. This object contains the probability matrix and other
pieces of data used to perform error checking and ensure cor-
rect usage of the framework. Actual details about the internal
components of this object are not provided here because they
are expected to change in the future as new features and opti-
mizations are added, and it is generally expected that users
will not be directly accessing or modifying these components.

All the metrics described in Fletcher et al. (2019) are
implemented into a set of analytical functions provided by
the package. For conciseness, related equations are grouped
together under the same function name (Table 1). The pack-
age uses parameter matching to select the correct underly-
ing calculation. For example, passing a value for the time
parameter of a function will result in the calculation of a
short-term metric (e.g. for the mortality () function,
using the time parameter results in calculating B, ).

Additional details about the various components of the
package are provided in the ‘Overview’ vignette included in

the package and online documentation. This includes how
to use the built-in example data, important requirements for
creating the samc-class object, and details about how
to use the analytical functions to calculate different metrics.

Performance

Two major issues that can affect performance (time to perform
an analysis) in connectivity modeling are the number of sites
or locations from which dispersers may occur and the number
of cells (or pixels) in the landscape being considered. For the
first issue, many of the SAMC metrics only slightly reduce in
performance when more sites are considered because calcula-
tions are not done iteratively (unlike some approaches such as
circuit theoryrandomized shortest paths; Saerens et al. 2009,
Panzacchi et al. 2016). In terms of the number of cells, there
are performance concerns when working with maps with
large raster grids, because such maps result in large transition
matrices. The size of the matrices increases quadratically as
the number of cells in an analysis increase. While the transi-
tion matrix can be stored efficiently in a sparse format, many
of the metrics in Fletcher et al. (2019) perform calculations
that involve large dense matrices that can become impractical
for modern consumer computers at scales sometimes used by
ecologists. However, these dense matrices represent pairwise
data for every pair of cells in the landscape, most of which
will typically be superfluous information for practical appli-
cations. Instead, ecologists will generally only be interested in
information about specific regions or cells of the landscape.
By focusing on calculating these more useful partial solutions,
we have managed to find computationally practical solutions
for every metric for landscapes with > 1 000 000 cells (e.g. a
1000 %X 1000 raster), and up to 3—4 M cells for some metrics
(e.g. mortality probability accounting for initial locations,
WB). With the special exception of W'D, these metrics
can be computed in a manner of seconds or minutes on an
average modern consumer desktop. We also emphasize that
because of the probabilistic, absorbing nature of the model,
expected values for metrics decline with distance from source
locations (Fletcher et al. 2019), such that landscapes with >
4 M cells could be tiled into smaller areas or users could buf-
fer around source locations based on maximum known dis-
persal distances (i.e. modeling only within specified distances
of source locations) without loss of information in mapping.
Most of these metrics appear to be similar or more computa-
tionally efficient than the related randomized shortest paths
analysis in R (Saerens et al. 2009, Panzacchi et al. 2016) for
> 2% 10° cells, but metrics are still less efficient than using
circuit theory and least-cost metrics using the gdistance
package (van Etten 2012). For smaller landscapes, or for users
with access to exceptional hardware resources, the full metrics
can still be calculated. The optimized functions are enabled
by default to ensure that users do not accidentally run the
more demanding calculations that can cause issues for com-
puters with limited resources. This default behavior can be
disabled by explicitly enabling the override option when cre-
ating a samc-class object.
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Additional details about the different performance aspects
of the package are included in the ‘Performance’ vignette and
online documentation. This includes a more thorough break-
down of performance into the separate issues of computation
time and memory requirements. It also goes into more detail
and illustrates the effect of landscape size. Finally, it includes
crude benchmarks illustrating the relative performance of
each the various metrics, which will be kept up-to date as
future optimizations are implemented.

Workflow: an example with Florida panthers

We illustrate the workflow of the samc package (Fig. 1) with
data on Florida panthers, an endangered carnivore that is
confined to south Florida. This case study is useful because
large carnivores are often the target of connectivity conser-
vation (Carroll et al. 2001, Dixon et al. 2006), decades of
data have been collected on panther movement, dispersal and
mortality, and connectivity models have been applied to this
species previously (Maehr et al. 2002, Kautz et al. 2006, van
de Kerk et al. 2019). Furthermore, a key criterion for delist-
ing this species is dispersal and population establishment of
panthers north of the Caloosahatchee River (Fig. 2).

Map Data
(RasterLayer or matrix)

Resistance
(Required)

Step 1: data preparation

At a minimum, the package requires absorption (or mortal-
ity) and landscape resistance data on movement behavior.
Additionally, fidelity and occupancy (or abundance) data can
also be used. As in other applications that interpret ‘resis-
tance’ for landscape connectivity, parameterizing the transi-
tion matrix that is used to interpret movement behavior in the
SAMC (Q) can come from behavioral experiments, teleme-
try, habitat use or expert opinion (Zeller et al. 2012). In these
ways, parameterizing Q of the SAMC is similar to that of
parameterizing least-cost and circuit theory approaches.

We parameterize resistance for Florida panthers based on
the analysis in Kautz et al. (2006), using land-cover data and
resistance coding illustrated in Fletcher and Fortin (2018).
In this example, data from telemetered Florida panthers
were used to estimate habitat preferences based on resource
selection functions, which were converted to a rank-based
measure of resistance to movement (Fig. 2a). We consider
a raster-based, land-cover map, aggregated to a 500 m reso-
lution (reflecting the approximate grain of telemetry error;
post-aggregation, 274 664 cells on the map).

Information on mortality risk is less common but can be
included in the SAMC as simply a constant low rate, or it

Initialization

Absorption
(Required)

samc()

Fidelity
(Optional)

samc-class object

A

)

Analysis

L/

dispersal()

( Map Verification W

distribution()

check() mortality()
survival()
visitation()
v
Results

it

\ 2
—_—
Map Results

RasterLayer

Figure 1. Workflow diagram illustrating the relationship between data inputs, outputs and functions of the samc package.
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(b) tuning mortality
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Figure 2. Connectivity and predicted movement by the Florida panther using the spatial absorbing Markov chain approach. (a) Resistance
map based on resource selection functions created by telemetered panthers (Kautz et al. 2006) and data on mortality (including with respect
to major roads in southern Florida). (b) Tuning mortality rates using a homogeneous grid of constant mortality to determine predicted
movement distances and relating predictions to known dispersal distances. (c) Mapping predicted movement (D). (d) Mapping predicted

mortality risk (B). In (a, ¢, d) black lines show the Caloosahatchee

River, dark grey source areas considered by Kautz et al. 2006 (Florida

Panther Wildlife Refuge and the northern portion of Big Cypress Preserve).

could be spatially variable across the landscape. Mortality
rates, R, can be approximated using several approaches, such
as using field experiments (Fletcher et al. 2019), habitat-spe-
cific survival estimates (Low et al. 2010), or mortality risk
dara (e.g. roadkill data; Santos et al. 2013, Grilo et al. 2018).
For instance, if annual survival rates are available, such rates
could be scaled to reflect expected mortality rate per time
step (where a ‘time step’ reflects the average time expected for
movement between adjacent cells). In addition, if the mean
dispersal distance for a species is known, R could be tuned to

derive dispersal distance estimates from the SAMC to equal
known dispersal distances, as we show below. The SAMC
assumes non-zero mortality risk, because if mortality risk is
0, it would predict that all locations are eventually reached by
mobile organisms.

To parameterize spatial variation mortality risk for Florida
panthers, we focus on mortality risk from roads, which is a
major cause of mortality in panthers (Schwab and Zandbergen
2011, van de Kerk et al. 2019). Data on mortality locations
have been collected over the past several decades (1972-2018)
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(<https://geodata.myfwc.com/datasets/florida-panther-
mortality>) (Fig. 2a). Using these locations, we determined
the proportion of mortality locations within 500 m (the map
resolution) of major roads relative to what would be expected
based on available habitat. Mortality locations (n=488) were
3.7% more likely to be within 500 m of roads than > 500 m
based on these data. We use this information to adjust relative
expected mortality rates near roads. We then tune absolute
rates of mortality risk based on known dispersal distances in
Florida panthers, where the mean dispersal distance has been
estimated for females as 20.3km (Maehr et al. 2002). We
focus on mapping potential dispersal by females, as males are
known to be wide ranging, but females are key to breeding
range expansion north of the Caloosahatchee River. To do so,
we first consider different baseline rates of mortality across a
homogeneous 400 X400 cell (160K) grid with the cell reso-
lution considered in mapping (500 m; Fig. 2b). The samc
package can be used to calculate the probability of visiting
locations as a function of distance with the dispersal ()
function (D, Eq. 3) to generate potential dispersal kernels
based on known mortality risk (Fig. 2b). We quantified prob-
abilities from the source location to locations as a function of
distance to derive expected mean movement distances based
on the parameters of an exponential dispersal kernel. In this
case, baseline mortality risk would be 6.5Xx107¢ per cell to
generate mean movement distances of approximately 20 km
(Fig. 2b). We then increased this base mortality probability
3.7X near roads, given mortality locations to create a mortal-
ity risk map for the SAMC.

Information on species distribution and abundance can
also be included as a map, which is necessary for some (but
not all) metrics. In most cases, we expect that such infor-
mation will be passed into the model to capture source-
destination locations (e.g. protected areas) (Cushman et al.
2009), local populations (Larkin et al. 2004), or individual
dispersers (Fletcher et al. 2014). This information can either
reflect the probability that an individual occurs at a location,
in which output generally reflects probabilities of individual
movement or mortality, or it can reflect the number of indi-
viduals, in which output generally reflects the number of
individuals moving or suffering mortality. Including infor-
mation on distribution and abundance facilitates computa-
tion efficiency. If such information is not included, users are
implicitly assuming that individuals start from all locations,
akin to some graph theory applications to resistance model-
ing (Carroll et al. 2012) and loosely similar to factorial least-
cost analysis (Elliot et al. 2014).

For the Florida panther, we set the Florida Panther
National Wildlife Refuge and the northern portion of the Big
Cypress Reserve as source locations (as in Kautz et al. 2006;
Fig. 1) for individual dispersers by creating a raster map
where the centroids of these two locations are set to 1 and all
other locations on the raster are set to 0 (protected area data
come from: <www.fnai.org/conservationlands.cfm>).

All sets of data must be stored either as matrices or raster
maps. Mixing matrices and rasters is not supported due to
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underlying differences in the way they store data and poten-
tial issues that can arise when users are not aware of these
differences. Every set of data must have the same dimensions
(number of rows and columns), and NA data is supported as
long as it occurs in the same locations in every set of data.
If the data sets are stored as rasters, then they must have the
same geographic coordinate extents and coordinate reference
system (CRS). The check () function is provided to sim-
plify the process of checking that all these conditions are met.

Step 2: samc-class object creation
The resistance, absorption and (optional) fidelity data are used
to create an samc-class object via the samc () func-
tion. If the data sets are in a raster format, then the 1atlon
parameter is mandatory. A transition function must always
be provided for constructing the transition matrix. Typically,
transition functions use the mean of resistance values between
pairs of cells (tr fun=function (x) 1/mean(x)),
but other alternative functions can be considered.

For the Florida panther example, we take the resistance
(cost panther) and mortality (mort panther) ras-
ter maps (Fig. 2a) to create the samc object using:

Pmatrix <- samc(resistance=cost panther,
absorption=mort panther, tr fun=
function (x) 1/mean (x), latlon=TRUE))

See Supplementary material Appendix 1 for all relevant code
for this example.

Step 3: analysis

Once the samc-class object has been created, it can be
used to calculate the various metrics described in Fletcher et al.
(2019) using the functions listed in Table 1. Each function
supports a variety of inputs, including occupancy/abundance
data, start locations, end locations and time steps. Depending
on the inputs used, the functions can return a single value, a
vector of values, or a matrix. The various input options and
interpretation of results are explained in detail in the help
documentation for each function.

For Florida panthers, we use the dispersal () func-
tion to calculate the probability of movement across the land-
scape, given these source locations (by providing a raster map
of source locations identified as 1 and 0 otherwise) and the
mortality () function to map the probability of mortal-
ity, given these source (source) locations. We also calcu-
lated life expectancy of dispersers from each of these locations
with the survival () function. For each, we pass the ini-
tial distribution map of source locations as:

D panther <-
occ=source)
B panther <-
occ=source)
Z panther <-
occ=source)

dispersal (samc=Pmatrix,
mortality (samc=Pmatrix,

survival (samc=Pmatrix,



In the above function calls for dispersal and mortality, if
time=100 was added, the function would calculate D
and B for 100 time steps, which in the case for panthers
would capture a maximum possible distance of 50km given
the cell resolution. The absolute amount of time that this
value reflects will vary based on application, but it is useful
to think about it as the number of local transition steps con-
sidered. Given the biased random walk nature of the model,
users may want the time considered to be much larger than
the number of cells in the longest linear dimension for a
given extent or Euclidean distance of interest.

In this example (274 664 cell map), on a desktop with
32GB RAM and an Intel Core i7-3770 CPU @3.40 GHz
processer, dispersal () function took 2.1h to run,
whereas the mortality () and survival () functions
to < 4s. If interest is in quantifying movement probabilities
between pairs of patches with the dispersal () function
(Fletcher et al. 2019), users can provide source and desti-
nation locations with the origin and dest parameters,
which substantially increases computational efficiency. For
instance, in the panther example, calculating D P between the
two source locations took < 4s.

Step 4: visualization and interpretation
Vector results returned by analyses correspond to cells in the
landscape data and can be visualized accordingly. The map ()
function is provided to simplify this process; it ensures that
the values in the vector results are mapped to the landscape in
the correct order, and properly handles results based on data-
sets with NA values. The result is a raster that can be plotted
directly using plot () without any additional processing.
For Florida panthers, we mapped both D and B with the
map () function. Mapping dispersal from two source areas
provides a means to understand the probability of dispersers
visiting any location on the landscape (Fig. 2¢; plotted on
the log(odds) scale), illustrating that dispersal is expected to
decrease with distance from the source locations. We note
that using the dispersal () function for each source
location separately can isolate roles of source habitats on
potential connectivity. We also map the expected probability
of mortality of individuals dispersing from these two source
areas (Fig. 2d; plotted on the log(odds) scale). Expected mor-
tality locations are generally similar to movement locations,
except that mortality risk spikes near roads that are within the
dispersal range from the source locations. Finally, we found
that life expectancy (number of expected time steps before
mortality, z) was estimated to be 2% greater for individuals
dispersing from Big Cypress Reserve (z=13 734 steps) than
from Florida Panther National Wildlife Refuge (z=13 465
steps). Other types of interpretation and visualization are
possible, such as demarcation of potential corridors (Pinto
and Keitt 2009), using models to parameterize network (or
patch-based graph) links in connectivity models (Saura and
Rubio 2010), and identifying the extent to which protected
areas may contribute dispersers to larger metapopulations
(Runge et al. 20006); see Fletcher et al. (2019) for discussion.

We note that at least three sources of uncertainty occur in
predictions and interpretation of this framework: 1) uncer-
tainty in the model framework (e.g. assumption of biased
random walks); 2) uncertainty in inputs (e.g. resistance, mor-
tality uncertainty as a function of land use); and 3) uncer-
tainty in the metrics themselves (e.g. the variance of D). The
first source can be evaluated by comparing the SAMC to
other modeling frameworks (Fletchet et al. 2019), the second
can be addressed when resistance and mortality inputs have
estimates of precision (e.g. SEs), whereas the third requires
new model derivations (e.g. see Ross 2010 for an example for

estimating the variance in life expectancy with an absorbing
Markov chain).

Future extensions

We expect improved performance with continued develop-
ment. At least one metric (W’D) is an ideal candidate for
parallel computing (dividing the calculation into smaller tasks
that can be executed simultaneously across multiple cores of a
computer processor). Additionally, several metrics would ben-
efit substantially from caching matrix decompositions (at the
expense of memory). New convenience features would focus on
expanding the input options to the current metrics. Examples
include alternative methods for specifying locations more eas-
ily, calculating multiple time steps for short-term metrics using
a vector input of time steps, and automating the calculation of
metrics for pairwise start and end locations. Finally, fundamen-
tally new features that could be implemented include support-
ing multiple absorption layers (which can represent different
sources of mortality such as natural mortality, parasitism or
predation), quantifying uncertainty in metrics, and alternatives
to matrix/raster data for generating the transition matrix (e.g.
patch-based networks, resource selection functions and related
statistical models).

Conclusions

The spatial absorbing Markov chain framework delivers sev-
eral advances in connectivity modeling (Fletcher et al. 2019)
by providing a probabilistic approach for modeling and map-
ping movement, mortality and visitation rates of dispersers
over short and long time scales. The samc package provides
a means for implementing those advances. We expect that the
samc package will catalyze addressing new questions in con-
nectivity science and serve as a helpful tool for more reliable
connectivity conservation.

Data availability statement

Data are available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.0k6djh9wk> (Marx et al. 2019).

Software availability

The samc package is distributed under the GNU Public
License (GPL) ver. 3 or later. It is available directly from
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the Comprehensive R Archive Network (CRAN) <hetps://
CRAN.R-project.org/package=samc> and can be installed
using install.packages (‘samc’). The package
source and documentation are hosted on GitHub <hetps://
andrewmarx.github.io/samc>.

To cite samc or acknowledge its use, cite this Software
note as follows, substituting the version of the application
that you used for ‘version 0’:

Marx, A. J., Wang, C., Sefair, J. A., Acevedo, M. A. and
Fletcher, Jr., R. J. 2019. samc: an R package for connectivity
modeling with spatial absorbing Markov chains. — Ecography
42: 000-000 (ver. 0).
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