International Journal of Modern Physics [
Vaol. 28, No. 14 {2019) 1944016 (6 pages)
© World Scientific Publishing Company
DOL: 10,1142 /5021827181 9440164

World Sclentific

warw.worldzcieniific.com

Spacetime equilibrium at negative temperature
and the attraction of gravity*

Ted Jacchson® ! and Manus Vissert T

tMaryland Center for Fundamental Physics,
University of Mamyland, College Park, MD 207482, TVSA

Hnatitute for Theoretical Physics, University of Amsterdam,
1090 QL Amsterdam, The Nethevlands

Yncobzoniumd, edn

Y. r.viszer Gy nl

Received 13 June 2019
Accepted 22 August 2019
Published 11 October 2019

We derive the Einstein equation from the condition that every small cansal diamond
is a variation of a flat empty diamond with the same free conformal energy, as would
bo expocted for a near-equilibrinum state, The attractivencss of gravity hinges on the
nagativity of the absolute temperature of these diamonds, a property wa infer from the
poneralized entropy,
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The discovery of the Unruh effect! revealed that the distinction between vacuum
fluctnations and thermal fluctuations is not as great as previously thought.? Indeed,
the simplest and most general statement of this relation is that, for all ohservables
localized in a Rindler wedge, the Minkowski vacuum of a relativistic quantum field
iz a thermal state with respect to the Lorentz hoost Hamiltonian. Since every point
in any spacetime has an approximately Minkowskian neighhorhood, one is led to the
idea that spacetime can be viewed as a medinm, everywhere near local thermody-
namic equilibrinum, somewhat like a flnid with local temperature, density, pressure,
ete.?

The entanglement entropy of a quantum field vacuum across a Rindler hori-
zon is UV-divergent, and scales with the horizon area 4.1 % In quantum grav-
ity, the UV divergent area law for entropy is presumably replaced by the finite
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Bekenstein-Hawking area law, Sgy — A/4AG,® thus establishing a link hetween
gravitation and thermodynamics of the vacuum. In the context of black hole ther-
modynamics, Bekenstein introduced the “generalized entropy”, Sgen := SgH + S,
where 5, is the ordinary matter entropy outside the horizon, and he argned that
Sgen should satisfy the “generalized second law” {GSL) of thermodynamics, thanks
to the Einstein equation. All evidence suggests that he was right, and that the GSL
holds not only globally for black holes, but also locally for Rindler horizons.*?

In Ref. 11, reversing the logic, the Finstein equation was derived from the equi-
librinm assumption that the generalized entropy of small cansal diamonds is station-
ary at fixed spatial volume. Sorely lacking, however, was a prior rationale for holding
fixed the volume. In this essay (see also RHef. 12) we reformulate the derivation of
Ref. 11, replacing the stationarity of entropy at fixed volume by the stationarity
of a free energy. The volume appears in the free energy, playing the role of the
gravitational energy. That the volume should play this role can be derived from
general relativity, and is related!? to the observation of York!? that the Hamil-
tonian of general relativity in the extrinsic curvature time gauge is proportional
to the spatial volume of constant mean curvature slices. Here, however, since we
aim to derive the Einstein equation, we cannot use results from general relativity,
Instead, we infer from diffeomorphism invariance the need for a volume term in the
free energy. Ultimately, perhaps a microscopic interpretation of the volume as some
kind of energy can be found, in the same way that the area represents entanglement
entropy.

Our key postulate is that any small cansal diamond in any spacetime is “close”
to being fat (Minkowski), in the sense that, to first-order in metric and matter
variations, it is the variation of a flat reference cansal diamond with the same free
energy in the canonical ensemble. To qualify as “small” for this purpose, a diamond
should be much smaller than both the shortest local curvature scale and the scale
of any quantum field excitations present. Since all metrics are flat to first-order
around any point, a small diamond can be regarded as a slight deformation of a flat
diamond, i.e. the intersection of the future of one point with the past of another
in Minkowski spacetime. Such diamonds admit a conformal isometry generated
by a conformal Killing vector {1415 satisfving Ccgap ¢ gap, which is mull at the
past and future null boundaries of the diamond, so those boundaries are conformal
Killing horizons. The horizon surface gravity & (defined through V.¢* = —2x6,'%)
is constant on the edge of the diamond by spherical symmetry, as well as along each
generator of the null boundaries, as for the horizon of a stationary black hole. We
normalize the conformal Killing vector below such that & =1,

We define the Helmholtz-like free (conformal) energy of flat diamonds as

F = H¢ —TSyv, (1)

where H; is the Hamiltonian generating evolution along the flow of the conformal
Killing field £, T is the temperature of the diamond, and Sy is the entanglement
entropy of the diamond associated with the UV degrees of freedom. One might have
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thought that a true Killing vector is needed for gravitational thermal equilibrium,
however we find that for causal diamonds a conformal Killing vector suffices. We
assume there exists a UV-cutofl in quantum spacetime which renders the entangle-

17-19

ment entropy finite, and proportional to the area,

SU\.' = 'I’jlfi, (2]

where 77 is a universal positive constant of dimension [length|?~?. As to the tem-
perature, one might think it should be the Unruh temperature associated with the
conformal Killing horizon, Ty = fi/2m, since, for conformal matter on a background
flat diamond, the variation of the matter Hamiltonian away from the conformal
vacunm is equal to Ty times the variation of the matter entropy, dH" = TudS™.
(This is the conformal generalization of the Unruh effect.'?) When inserted into the
variation (at fixed T') of the free energy (1) this yields

6F > TydS™ — TéSuvy. (3)

The two terms on the right should combine to form —T8S550,, but this happens
only if
k

T=-Ty=—5 (4)

Thus, quantum field thermodynamics in a fired diamond background is quite differ-
ent from the self-gravitating case. In the former, the temperature of the vacunm is
positive, whereas in grevitational thermodynamics, as we see here, the temperature
of a causal diamond is negative.

The conformal Killing energy Hy has contributions from the metric and from
matter fields. We work in the semiclassical regime, Le. we consider guantwm matter
fields on a classical background spacetime. For the stationarity of free energy, we
only need to know the variation of the conformal Killing energy, denoted by: 6H; =
S(HE) +5Hg. The variations we consider are arbitrary variations of the dynamical
fields away from the Hat diamond to nearby states. The variation of the expectation
value of the matter Hamiltonian is given by an integral over the maximal slice ¥
(which is a spherical ball) of the reference diamond,*

BHE) = [ ST wv. 5)

We take the reference configuration to be one with vanishing stress tensor; in effect,
ST = {Tab}. Note that since we have not converted the matter stress-energy
into an equivalent entanglement entropy, nonconformal invariant matter presents
no extra complications in our derivation, unlike in Hef 11 where an extension of
the first law of entanglement entropy was required.

The gravitational contribution JHE' to the Hamiltonian wvariation can be
inferred, without assuming the Einstein—Hilbert action, from the requirement of

AFor a traceless and divergence-free stress tensor the integral would be independent of the slice.

1944016-3



T. Jacobzon and M. Visser

diffeomorphism invariance. Consider a variation induced by a diffeomorphism,
denoted by d. In that case S{HE“} 13 zero, since the background value is taken
to vanish., Stationarity of the free conformal energy (1) at fixed temperature then
implies: 0HF = TndA, where we used (2). In Sec. 3.3.2 of Ref. 12 we showed that
the diffeo-induced area variation is equal to: 64 = kéV, where 6V is the variation
of the volume of the maximal slice in the original diamond and & is the trace of
the extrinsic curvature of the edge, as embedded in the maximal slice. The minimal
choiece for 5Hf consistent with diffeomorphism invariance is thus given just by the
volume variation. Hence, we postulate that the gravitational Hamiltonian variation
is equal to

SHE = TnksV. (6)
The variation of the free energy (1) at fixed temperature is therefore,
8F = §(H™) — Tn(3A — kiV'). (7)

Note that the definitions (2)—(6) of the terms in the free energy (variation) apply
in principle to flat diamonds of any size.
Next, we evaluate §F for small diamonds. For such diamonds, to leading order

in £ Lexcitation, the matter contribution to the Hamiltonian variation is'’!?

0y ot
Cod? -1

where {33 5 is the area of a unit (d — 2)-sphere, d is the spacetime dimension and
{Tap)uu" is constant to leading-order on the maximal slice.” Meanwhile, to lowest-

order in £f Loyrvature, we have

BLHE) (Tusyuul, (®)

L gfd
ﬁ(;ahﬂa Hb, (9}
where the Einstein curvature tensor (&), is evaluated at the center of ¥. This purely
geometric result was obtained in Hef. 11 nsing a Riemann normal coordinate expan-

A — kY = —

sion. Finally, inserting (8] and (9) into the expression (7) for the free energy varia-
tion yields

Qg_ofd
dz—1
Note that the same fraction appears in the combination of variations (9) as in the
matter Hamiltonian variation (8), which is crucial for the agreement of the entropy
area~density n with the Bekenstein-Hawking value to follow from the Einstein
equation (11).

oF = uu®({Tan) + TGas)- (10)

BThe fraction on the right-hand side of (8] originates from the integral of the norm of the conformal
Killing vector over de volume of the ball: IE |£]dV. This integral is known as the “thermodynamic
volume” in the case where £ is a true Killing vector.20
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The requirement 4F = 0 for all time-like unit normals u* and at every point in
spacetime now implies the equation

Cap = —J—nmb}. (11)

Recall that we previously inferred the diamond temperature T = —h /27, Thus,
FEq. (11) is the semiclassical Finstein equation provided we make the identification
7 = 1/4RE (where 7 is Newton's constant), which agrees with the Bekenstein—
Hawking entropy area-density. Note that the emergent gravity is attractive since
the temperature is negative, and would have heen repulsive had the temperature
heen positive! A cosmological constant is of course permitted as a piece of the stress
tensor equal to a constant times the metric.

The negative temperature is a surprising feature of our derivation. That it must
be negative is already evident from classical Finstein gravity, since the addition
of energy to a diamond results in the decrease of its Bekenstein-Hawking entropy
at fixed volume.!*1? Negative temperature typically requires of a system that (i)
the energy spectrum is bounded from above, and (ii) the Hilbert space is finite-
dimensional., As argued by Klemm and Vanzo?' for the de Sitter static patch,
causal diamonds indeed satisfy these properties: (i) there is an upper bound on the
energy, equal to the mass of the largest black hole that fits inside a diamond given
ita bounding area, and {ii} the holographic principle implies that the entropy of a
cansal diamond is bounded by the Bekenstein-Hawking entropy associated to the
area of the edge. Thus, despite the positive value of the Unruh temperature, we
must conclude that the temperature of a self-gravitating cansal diamond is negative.
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