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Abstract

The static patch of de Sitter spacetime and the Rindler wedge of Minkowski spacetime
are causal diamonds admitting a true Killing field, and they behave as thermodynamic
equilibrium states under gravitational perturbations. We explore the extension of this
gravitational thermodynamics to all causal diamonds in maximally symmetric space-
times. Although such diamonds generally admit only a conformal Killing vector, that
seems in all respects to be sufficient. We establish a Smarr formula for such diamonds
and a “first law" for variations to nearby solutions. The latter relates the variations of the
bounding area, spatial volume of the maximal slice, cosmological constant, and matter
Hamiltonian. The total Hamiltonian is the generator of evolution along the conformal
Killing vector that preserves the diamond. To interpret the first law as a thermodynamic
relation, it appears necessary to attribute a negative temperature to the diamond, as has
been previously suggested for the special case of the static patch of de Sitter spacetime.
With quantum corrections included, for small diamonds we recover the “entanglement
equilibrium” result that the generalized entropy is stationary at the maximally symmet-
ric vacuum at fixed volume, and we reformulate this as the stationarity of free conformal
energy with the volume not fixed.
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1 Introduction

Horizon thermodynamics was first discovered in the context of black holes [1–3], but the
principles are far more universal than that. The case of cosmological horizons was quickly
understood [4,5] and, rather less quickly insofar as entropy is concerned, that of acceleration
horizons as well [6–11]. Most recently, in the setting of AdS/CFT duality, the gravitational
thermodynamics of “entanglement wedges" has been discovered [12, 13]. An entanglement
wedge is the domain of dependence of a partial Cauchy surface of the bulk, whose boundary
consists of a subregion R of a conformal boundary Cauchy slice together with the minimal area
bulk surface that meets the conformal boundary at ∂R. The area A of the minimal surface
corresponds to the CFT entanglement entropy of the subregion R to leading order in New-
ton’s constant, via the Ryu-Takayanagi formula, which is nothing but the Bekenstein-Hawking

2

https://scipost.org
https://scipost.org/SciPostPhys.7.6.079


SciPost Phys. 7, 079 (2019)

entropy A/4ħhG [14,15]. In particular, a link has been established between fundamental prop-
erties of CFT entanglement entropy and the bulk Einstein equation, drawing a connection
between the behavior of quantum information and gravitational dynamics in this holographic
setting [16–19].

In the examples just described, the thermodynamic system extends to a boundary of space-
time. Quasilocal relations analogous to the laws of thermodynamics have been found for var-
ious sorts of ‘apparent’ horizons, but of course these find application only when such horizons
are present [20]. If the lesson from all we have learned is that something fundamentally sta-
tistical underlies gravitational dynamics, then that something should be at play everywhere
in spacetime. This viewpoint was the motivation for introducing the notion of “local causal
horizon," with which it was possible to derive the Einstein equation from the Clausius rela-
tion applied to the area-entropy changes of all such horizons in spacetime [8]. Essential to
that argument was the fact that the near vicinity of any spacetime point looks like part of a
slightly deformed Minkowski spacetime, so that one can identify an approximate local boost
Killing field with respect to which the relevant notion of energy can be defined. While that
derivation was reasonably plausible on physical grounds, the “system" under consideration
was not sharply defined. It was taken to be a very small, near horizon subsystem, but no pre-
cise definition was given, and possible effects of entanglement with neighboring regions were
not addressed.

To localize and isolate it, the thermodynamic system was defined in [21] as the space-
time inside a causal diamond, i.e. the domain of dependence of a spatial ball.1 For such a
system, rather than describing a time dependent physical process, one can just consider vari-
ations, comparing the equilibrium state to nearby states. A link was established between the
semiclassical Einstein equation, and the stationarity of the total entanglement entropy of the
diamond with respect to variations of the geometry and quantum fields away from the vacuum
state at fixed volume, taking the diamond much smaller than the local curvature length scale
of the background spacetime.

A classical ingredient of this argument is a “first law of causal diamonds," which relates
variations, away from flat spacetime, of the area, volume, and matter energy-momentum ten-
sor inside. This relation is similar to the first law of black hole mechanics, and was derived
in an Appendix of [21] using the same methods as employed by Wald for black holes [26]. A
diamond in Minkowski spacetime plays the role of equilibrium state in this first law. Unlike
a black hole, however, a causal diamond is only conformally stationary. That is, it does not
admit a timelike Killing vector, but it admits a timelike conformal Killing vector, for which the
null boundary is a conformal Killing horizon [27,28], with a well-defined surface gravity.2 Re-
markably, this is sufficient to derive the first law, but an additional contribution arises, namely,
the gravitational Hamiltonian, which is proportional to the spatial volume of the ball.

In the present paper we generalize the first law of causal diamonds to (Anti-)de Sitter
spacetime – i.e. it applies to any maximally symmetric space – and we include variations of the
cosmological constant and matter stress-energy, both using a fluid description as done for black
holes by Iyer [30]. Treated this way, the matter can contribute to a first order variation away
from a maximally symmetric spacetime.3 Motivation for varying the cosmological constant is
discussed in Sec. 3.3.3. The first law we obtain for Einstein gravity minimally coupled to fluid

1The thermal behavior of conformal quantum fields – without gravity – inside a causal diamond in flat space
was studied earlier, for example in Refs. [12,22–25].

2It was shown in [29] that the surface gravity κ of a conformal Killing horizon has a conformal invariant
definition (see Appendix C for an explanation, and for a proof of the zeroth law). This fact can be viewed as a
hint that conformal Killing horizons have thermodynamic properties, since κ is identical to the surface gravity of
a conformally related true Killing horizon (for which ħhκ/2π is the Hawking temperature).

3Matter described by a typical field theory action could not contribute, since the matter fields would vanish in
the maximally symmetric background spacetime, and the action is at least quadratic in the fields.
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matter takes the form
δHζ = −

κ

8πG
δA , (1.1)

where ζ is the conformal Killing vector of the unperturbed, maximally symmetric diamond
(computed explicitly in Appendix A), Hζ is the total Hamiltonian for gravity and matter along
the flow of ζ, and κ is the surface gravity (defined as positive) with respect to ζ. Much as for
black holes, if we multiply and divide by Planck’s constant ħh, the quantity on the right hand
side of (1.1) takes the form −THδSBH, where TH = ħhκ/2π is the Hawking temperature and
SBH = A/4ħhG is the Bekenstein-Hawking entropy. Unlike for black holes, however, there is
a minus sign in front, indicating that the temperature is negative. This minus sign is familiar
from the limiting case in which the diamond consists of the entire static patch of de Sitter
(dS) spacetime, bounded by the de Sitter horizon [5]. It was argued in the dS case that the
temperature of the static patch is therefore negative [31], and further arguments in favor of
this interpretation were given recently in [32].

The left hand side of (1.1) consists of minimally coupled matter, cosmological constant,
and gravitational terms, i.e. δHζ = δHm̃

ζ
+ δHΛ

ζ
+ δHg

ζ
. The contribution of the fluid matter

with arbitrary equation of state is

δHm̃
ζ =

∫

Σ

δ(Ta
b)m̃ζaub dV , (1.2)

where (Ta
b)m̃ = g bc T m̃

ac is the Hilbert stress-energy tensor with one index raised by the inverse
metric and Σ is the maximal slice of the unperturbed diamond, with future pointing unit
normal vector ua and proper volume element dV . The cosmological constant can be thought
of as a perfect fluid with stress-energy tensor TΛ

ab = −Λ/(8πG)gab. Since it is maximally
symmetric, it may be nonzero in the background. Its Hamiltonian variation is given by

δHΛ
ζ =

Vζ
8πG

δΛ , with Vζ :=

∫

Σ

|ζ|dV, (1.3)

where |ζ| :=
p

−ζ · ζ is the norm of the conformal Killing vector. The quantity Vζ is called the
“thermodynamic volume" [33–35], and is well known in the context of the first law for black
holes, when extended to include variations of Λ. Finally, the gravitational term takes the form

δHg
ζ
= −

κk
8πG

δV, (1.4)

where k is the trace of the (outward) extrinsic curvature of ∂Σ as embedded in Σ, and V is
the proper volume of the ball-shaped spacelike region Σ. This term arises because ζ fails to
be a true Killing vector. In the special case of the static patch of dS space, ζ is a true Killing
vector, and indeed (1.4) vanishes, since we have k = 0. That this gravitational Hamiltonian
variation is proportional to the maximal volume variation suggests a connection with the York
time Hamiltonian [36], which generates evolution along a constant mean curvature foliation
and is proportional to the proper volume of slices of this foliation (see Sec. 3.3.4). In fact,
we show in Appendix B that slices of the constant mean curvature foliation of a maximally
symmetric diamond coincide with slices of constant conformal Killing time.

Moreover, we extend the first law of causal diamonds to the semiclassical regime, i.e. by
considering quantum matter fields on a fixed classical background. For any type of quantum
matter in a small diamond we show that the semiclassical first law can be written in terms of
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Bekenstein’s generalized entropy4

−
κk

8πG
δV +

Vζ
8πG

δΛ= TδSgen , (1.5)

where the temperature is minus the Hawking temperature, i.e. T = −ħhκ/2π, and the gen-
eralized entropy is defined as the sum of the Bekenstein-Hawking entropy and the matter
entanglement entropy, i.e. Sgen := SBH + Sm̃. At fixed volume V and cosmological constant
Λ this implies that the generalized entropy is stationary in a maximally symmetric vacuum.
This coincides with the entanglement equilibrium condition of [21], which was shown in that
paper to be equivalent to the semiclassical Einstein equation. We also argue in Sec. 4.4 that
the entanglement equilibrium condition is equivalent to the stationarity of a free energy at
fixed cosmological constant, but without fixing the volume. We thus find that the semiclassical
Einstein equation is also equivalent to the stationarity of free energy.

The present paper complements other investigations of causal diamonds in flat space [39–
41]. In particular, the first law of causal diamonds was generalized to higher derivative gravity
in [42], in which case the Bekenstein-Hawking entropy should be replaced by the Wald entropy
and the proper volume by the “generalized volume” W . That first law is also valid in any
maximally symmetric space, but for (A)dS space the derivation was based on certain identities
which we prove below, in particular (2.8) and (2.13). Further, in [43] the second order area
variation of a small geodesic ball was computed in the absence of matter and compared with
the gravitational energy. This is a step towards an extension of the first law of causal diamonds
to second order variations. Ref. [44] derives a Clausius relation for the reversible part of the
entropy change between time slices of causal diamonds in flat space, and compares that to
the first law for causal diamonds in higher curvature gravity. Finally, in [45] the four laws of
thermodynamics were established for the causal complement of a diamond in flat space, in
particular a physical process version of the first law was derived. This differs from our first
law, in the sense that the latter is an equilibrium state version.

This paper is organized as follows. In Sec. 2 we describe our setup of causal diamonds
in maximally symmetric spaces in more detail. The Smarr formula and first law for causal
diamonds are derived in Sec. 3 using Wald’s Noether charge formalism. In Sec. 4 we give
a thermodynamic interpretation to the first law, and we derive the entanglement equilibrium
condition from the semiclassical first law. In Sec. 3.3 we comment on various aspects of the
first law, and in Sec. 5 we describe a number of limiting cases of the first law for maximally
symmetric causal diamonds: de Sitter static patch, flat space, Rindler space, AdS-Rindler space
and the Wheeler-DeWitt patch of AdS. We end with a summary of results and a discussion of
possible future research directions in Sec. 6. The appendices are devoted to establishing sev-
eral properties of conformal Killing fields in (A)dS and in flat space, and of bifurcate conformal
Killing horizons in general.

2 Causal diamonds in maximally symmetric spaces

In this section we discuss causal diamonds and their conformal Killing vectors in maximally
symmetric spaces. It suffices to write the equations for the case of positive curvature, i.e. de
Sitter space, since the negative curvature (Anti-de Sitter) and flat cases can be obtained from
these by sending the curvature length scale L to i L, or to infinity, respectively. The line element

4For conformal matter this expression for the first law actually holds for any sized diamond, whereas for non-
conformal matter the derivation depends on an assumption (4.13) about the modular Hamiltonian variation for
small diamonds which was conjectured in [21] and tested in [37,38].
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1

(0) Causal diamond

⇣
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Figure 1: A causal diamond in a maximally symmetric spacetime for a ball-shaped spacelike
region Σ. The past and future vertices of the diamond are denoted by p and p′, respectively,
and H is the null boundary. The dashed arrows are the flow lines of the conformal Killing
vector ζ, whose flow sends the boundary of the diamond into itself, and vanishes at ∂Σ, p
and p′.

for a static patch of de Sitter space in d spacetime dimensions is

ds2 = −[1− (r/L)2]d t2 + [1− (r/L)2]−1dr2 + r2dΩ2
d−2 , (2.1)

where we use units with c = 1. In terms of retarded and advanced time coordinates,

u = t − r∗ and v = t + r∗ , (2.2)

with r∗ the “tortoise coordinate" defined by

dr∗ =
dr

1− (r/L)2
, r = L tanh(r∗/L) , (2.3)

the line element (2.1) takes the form

ds2 = −[1− (r/L)2] dudv + r2dΩ2
d−2

= sech2(r∗/L)
�

−dudv + L2 sinh2(r∗/L) dΩ2
d−2

�

.
(2.4)

Note that r∗ = r + O(r3), so in particular r = 0 = r∗ at the origin. For dS the cosmological
horizon, r = L, corresponds to r∗ = ∞. For AdS, we have r = L tan(r∗/L), so r = ∞
corresponds to r∗ = Lπ/2. In the flat space limit, L→∞, the tortoise and radial coordinates
coincide.

A spherical causal diamond in a maximally symmetric space can be defined as the domain
of dependence of a spherical spacelike region Σ with vanishing extrinsic curvature. Equiva-
lently, it can be described as the intersection of the future of some point p, with the past of
another point p′ (see Fig. 1). All such diamonds are equivalent, once the geodesic proper time
between the vertices p to p′ has been fixed. The intersection of the future light cone of p and
the past light cone of p′ is called the edge of the diamond. The edge is the boundary ∂Σ of
a (d − 1)-dimensional ball-shaped region Σ. The symmetries of such diamonds are rotations
about the pp′ line, reflection across Σ, and a conformal isometry to be discussed shortly.

Fixing a causal diamond, we place the origin of the above coordinate system at the center,
and choose the t coordinate so that Σ lies in the t = 0 surface. The geodesic joining the
vertices is then the line r = 0, and the diamond is the intersection of the two regions u> −R∗
and v < R∗, for some R∗. The vertices are located at the points p = {u = v = −R∗} and
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p′ = {u = v = R∗}, and the edge of the diamond is the (d − 2)-sphere ∂Σ = {v = −u = R∗},
with coordinate radius r∗ = R∗ and area radius r = R = L tanh(R∗/L).

The unique conformal isometry that preserves the causal diamond is generated by the
conformal Killing vector

ζ=
L

sinh(R∗/L)

�

�

cosh(R∗/L)− cosh(u/L)
�

∂u +
�

cosh(R∗/L)− cosh(v/L)
�

∂v

�

. (2.5)

A derivation of this fact is given in Appendix A. The flow generated by ζ sends the boundary of
the diamond into itself, and leaves fixed the vertices and the edge. In the interior ζ is the sum
of two future null vectors, so it is timelike and future directed. It is the null tangent to the past
and future null boundaries, H = {v = R∗, u = −R∗}, so those boundaries are conformal Killing
horizons. The intersection of these null boundaries, i.e. the edge ∂Σ, is therefore referred to
as the bifurcation surface of H.5

In terms of the t and r coordinates introduced above, the conformal Killing vector reads

ζ=
L2

R

�

�

1−
p

1− (R/L)2
p

1− (r/L)2
cosh(t/L)

�

∂t −
r
L

Æ

(1− (R/L)2) (1− (r/L)2) sinh(t/L)∂r

�

.

(2.6)
Note that if the boundary of the diamond coincides with the cosmological horizon, i.e. if R = L,
then ζ = L∂t . That is, the conformal Killing symmetry becomes the usual time translation of
the entire static patch of dS, which is a causal diamond with infinite time duration but finite
spatial width. In Appendix D we use the two-time embedding formalism of dS and AdS to
derive an expression for ζ in terms of the generators of the conformal group.6 We show that
ζ can be written as a linear combination of a time translation of the surrounding static patch
and a conformal transformation (which is a special conformal transformation in the case of
flat space) – see equation (D.8).

The surface gravity κ of any conformal Killing vector with a bifurcation surface B can be
defined exactly as for a true Killing vector: If we contract the conformal Killing equation,
∇(aζb) = αgab with mamb, for ma any tangent vector to B, the left hand side vanishes, since
ζa = 0 on B. Thus we learn that (as for the particular example of ζa under study) α= 0 on B.
It follows that ∂aζ

b is a generator of Lorentz transformations in the two-dimensional normal
plane at each point of B. Like for true Killing vectors, we may therefore define the surface
gravity κ at B (or rather its absolute value) by 2κ2 = (∂aζ

b)(∂bζ
a). Other definitions for κ,

which are equivalent for a true Killing vector, are not equivalent for a conformal Killing vector.
The definition that is invariant under conformal rescalings of the metric [29], ∇aζ

2 = −2κζa,
is also constant along the generators of the conformal Killing horizon, and coincides with the
definition just given at B. We establish these general properties in Appendix C, along with
the zeroth law, i.e. the fact that κ is constant on H. The normalization of ζa in (2.5) or (2.6)
has been chosen so that κ = 1 at the future horizon (v = R∗) and κ = −1 at the past horizon
(u = −R∗). In the rest of the paper we take κ to be positive and keep it explicit, to indicate
where it appears if a different normalization is chosen.7

5The conformal Killing vector also acts outside the diamond, and remains null on the continuation of the null
boundaries of the diamond. In total there are four conformal Killing horizons {u = ±R∗, v = ±R∗}, which divide
the maximally symmetric spacetime up into six regions (see [45] for an analysis of the flow of the conformal Killing
field in Minkowski spacetime).

6Note that maximally symmetric spaces are conformally flat, so they admit the O(2, d) group of conformal
isometries.

7If the conformal Killing vector were normalized such that ζ2 = −1 at t = r = 0, then the surface gravity would
be κ= (R/L2)(1−

p

1− (R/L)2)−1. This is the choice usually made in the case of the static patch of de Sitter space,
where R = L and κdS = 1/L. In the flat space limit (L →∞) this surface gravity becomes κflat = 2/R, and for an
infinite diamond in AdS (R/L →∞, the “Wheeler-DeWitt patch”) it reduces to κWdW = 1/L, where L is the AdS
radius.
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The Lie derivative of the metric with respect to a conformal Killing vector in general has
the form

Lζgab =∇aζb +∇bζa = 2αgab , α= (∇cζ
c)/d . (2.7)

In addition, ζ has some special properties that will be important for us. Under the reflection
symmetry of the diamond, ζ → −ζ, so α → −α. It follows that α vanishes on Σ, so ζ acts
“instantaneously" as a true Killing vector on Σ:

Lζgab

�

�

Σ
= 0 . (2.8)

It also follows that ∇aα is normal to Σ, so we have

∇c

�

Lζgab

� �

�

Σ
= −2α̇uc gab , α̇= uc∇cα , (2.9)

where uc is the future pointing unit normal to Σ, given by uc∂c =
�

1− (r/L)2
�−1/2

∂t . Compu-
tation of α using the expression (2.6) easily yields

α= −
L
R

Æ

(1− (R/L)2) (1− (r/L)2) sinh(t/L) , (2.10)

α̇
�

�

t=0 = −
1
R

Æ

1− (R/L)2 =
−1

L sinh(R∗/L)
. (2.11)

Notice that α̇ is constant on Σ. This property will be crucial for the existence of a geometric
form of the first law of causal diamonds. Further, since

k :=
d − 2

R

Æ

1− (R/L)2 (2.12)

is the trace of the extrinsic curvature of the surface ∂Σ as embedded in Σ, we may write

α̇
�

�

Σ
= −

κk
d − 2

, (2.13)

allowing for a normalization of ζ with surface gravity κ rather than unity.
While we established (2.13) by explicit computation, it can also be derived by examining

derivatives along the horizon at ∂Σ, and using the properties that (i) the trace of the extrinsic
curvature of Σ vanishes, and (ii) α̇ is constant on Σ. However, we have not found an underlying
geometric reason for the constancy of α̇ on Σ. It probably requires maximal symmetry of the
spacetime, since we checked that α̇ is not constant for the case of a causal diamond in time
cross hyperbolic space, R×Hd−1, which also admits a diamond preserving conformal Killing
vector. In Appendix B the constancy of α̇ on Σ is established in a different way.

3 Mechanics of causal diamonds in (A)dS

In this section we first derive a Smarr formula for causal diamonds in (A)dS, by equating the
Noether charge to the integral of the Noether current. This method of obtaining the Smarr
formula is quite general, and it illustrates the origin of the “thermodynamic volume" term.
As an aside, we also show how a finite Smarr formula for AdS black holes can be obtained
by subtracting the (divergent) empty AdS Smarr formula from the black hole one. We then
move on to our main objective, which is to derive the first law of causal diamonds in (A)dS.
First we employ the usual dimensional scaling argument to deduce from the Smarr formula a
first law for variations between maximally symmetric diamonds. Next we employ the Noether
current method, used by Wald for the case of black holes [26, 46], as was done for varia-
tions of Minkowski space diamonds in Appendix D of [21]. Here we extend that derivation to
(Anti-)de Sitter space, and include fluid matter (allowing in particular for a variable cosmo-
logical constant) as in [30], obtaining a first law that applies to arbitrary variations to nearby
solutions.

8

https://scipost.org
https://scipost.org/SciPostPhys.7.6.079


SciPost Phys. 7, 079 (2019)

3.1 Smarr formula for causal diamonds

We start with deriving a Smarr-like formula for causal diamonds in (A)dS space. We will obtain
this relation using a slightly unusual but very general method: equating the Noether current
associated with diffeomorphism symmetry to the exterior derivative of the Noether charge and
integrating over the ball Σ. Liberati and Pacilio [47] used the same Noether method to derive
a Smarr formula for Lovelock black holes. Throughout this section we will employ Wald’s
Noether charge formalism [26]. See e.g. [46,48] for further details about this formalism.

To every Lagrangian d-form depending on the dynamical fields φ there is an associated
symplectic potential (d − 1)-form θ , defined through

δL = E δφ + dθ (φ,δφ) , (3.1)

where E is the equation of motion d-form, and tensor indices are suppressed. For a variation
δφ = Lχφ induced by the flow of a vector field χ, there is an associated Noether current
(d − 1)-form,

jχ := θ (φ,Lχφ)−χ · L . (3.2)

When L is diffeomorphism covariant, the variation δχ L produced by δφ = Lχφ is equal to
Lχ L, which implies that the Noether current is closed for all χ when the equation of motion
E = 0 holds, and so is an exact form,

jχ = dQχ . (3.3)

The (d − 2)-form Qχ is constructed from the dynamical fields together with χ and its first
derivative, and is called the Noether charge form.

The Smarr formula comes from the integral version of the identity (3.3),
∮

∂R
Qχ =

∫

R
jχ , (3.4)

where R is a (d − 1)-dimensional submanifold with boundary ∂R. For a black hole with
bifurcate Killing horizon, χ can be taken as the horizon generating Killing vector, and R can
be taken as a hypersurface extending from the bifurcation surface to spatial infinity. Since
Lχφ = 0 when χ is a Killing symmetry of all the dynamical fields, the first term of (3.2)
vanishes. For vacuum Einstein gravity, without a cosmological constant, the second term of
(3.2) vanishes on shell, so (3.4) reduces to the statement that the Noether charge of the horizon
is equal to that of the sphere at spatial infinity, both orientations being taken outward (toward
larger radius). This yields the Smarr formula [49],

d − 3
d − 2

M −ΩHJ =
κ

8πG
A, (3.5)

where M is the mass, J is the angular momentum, and ΩH is the angular velocity of the
horizon, and A is the horizon area.

For a maximally symmetric causal diamond in Einstein gravity, with or without a cosmo-
logical constant, we can instead choose the region R to be the ball Σ, and choose the vector
field χ to be the conformal Killing vector ζ of the diamond. The left hand side of (3.4) is then
just a single integral,8

∮

∂Σ

Qζ = −
κ

8πG
A. (3.6)

8The orientation is chosen to be outward, toward larger radius, according to Stokes’ theorem. The minus sign is
unfamiliar, because in the black hole case the orientation of the Noether charge integral on the horizon is typically
chosen, as in [26], so as to be towards spatial infinity.

9

https://scipost.org
https://scipost.org/SciPostPhys.7.6.079


SciPost Phys. 7, 079 (2019)

On the other hand, the contribution from the integral of the Noether current on the right hand
side of (3.4) no longer vanishes: since ζ is not a Killing vector, the symplectic potential term
in the Noether current (3.2) is nonzero and, if the cosmological constant is nonvanishing,
the Lagrangian no longer vanishes on shell so the second term in the Noether current is also
nonzero. To evaluate the contribution from the first term in the Noether current, we note that
the symplectic potential for Einstein gravity is given by [46,50]

θ (g,δg) =
1

16πG
εa(gab g ce − gae g bc)∇eδgbc , (3.7)

where εa = εaa2···ad
is the volume form with the first index displayed and the remaining (d−1)

indices suppressed. Setting δgbc = Lζgbc = 2αgbc , evaluating on Σ, and using (2.9), we
obtain

θ (g,Lζg)|Σ =
(d − 1)α̇

8πG
u · ε, (3.8)

and together with (2.13) this yields
∫

Σ

θ (g,Lζg) = −
d − 1
d − 2

κk
8πG

V, (3.9)

where V =
∫

Σ
u · ε is the proper volume of the ball. To evaluate the contribution from the

second term in the Noether current, we note that the off-shell Lagrangian is

L =
R− 2Λ
16πG

ε . (3.10)

On shell we have R− 2Λ= 4Λ/(d − 2), so the on-shell Lagrangian is

Lon−shell =
Λ

(d − 2)4πG
ε, (3.11)

and the second term in the integral of the Noether current is thus

−
∫

Σ

ζ · L = −
Λ

(d − 2)4πG
Vζ, (3.12)

where

Vζ :=

∫

Σ

ζ · ε . (3.13)

Since ζ is orthogonal to Σ, Vζ is just the proper volume of Σ weighted locally by the norm
of the conformal Killing vector, given in (1.3). For the case of a black hole in asymptotically
Anti-de Sitter spacetime, a quantity close to Vζ was first identified in [33] as the variable
thermodynamically conjugate to Λ. (See subsection 3.1.1 for a discussion of that case.) For a
true Killing vector it is commonly called the thermodynamic volume [34, 35], and we will use
that term also in the conformal Killing case. For the conformal Killing vector (2.6) in dS space
Vζ is easily found to be given by

Vζ =
κL2

R

�

V flat
R −

Æ

1− (R/L)2 VR

�

, (3.14)

where V flat
R = Rd−1Ωd−2/(d − 1) is the volume of a sphere of radius R in Euclidean space and

VR is the proper volume of a ball of radius R in dS space. It follows from the definition (3.13)
that Vζ is positive in both dS and AdS space, although that is not obvious from the expression
in (3.14). In the flat space limit R/L→ 0 it becomes V flat

ζ
= κRV flat

R /(d + 1).
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Combining the two terms (3.9) and (3.12), the integral of the Noether current is thus given
by

∫

Σ

jζ = −
(d − 1)κk V + 2ΛVζ

(d − 2)8πG
, (3.15)

so (3.4) yields the Smarr formula,

(d − 2)κA= (d − 1)κk V + 2VζΛ . (3.16)

At the cosmological horizon of de Sitter space the extrinsic curvature trace k vanishes, hence
the Smarr formula reduces to a relation between the horizon area and the cosmological con-
stant. In flat space the cosmological constant is zero, so that the formula turns into the trivial
connection between the area and the volume. For generic sizes of the causal diamond, and
for a positive cosmological constant, equation (3.16) can be checked explicitly by using the
formulas (2.12) and (3.14) for k and Vζ, respectively, and the expression for the cosmological
constant of dS space: Λ= +(d − 1)(d − 2)/2L2.

3.1.1 Smarr formula for AdS black holes

As an aside from the main topic of our paper, in this subsection we discuss briefly how the
Smarr formula for asymptotically AdS black holes [33] can be derived using (3.4). In that
setting χ is replaced by the horizon generating Killing field ξ, and the domain of integration Σ

is from the black hole horizon to infinity. This does not yet yield a meaningful Smarr formula,
since both

∮

∞Qξ and
∫

Σ
jξ diverge. However, these divergences are the same as those that

arise for pure AdS, so by subtracting the pure AdS Smarr formula from the AdS black hole
Smarr formula, one obtains a finite relation:

∮

∞
(Qξ −QAdS

ξ )−
∮

H
Qξ =

∫

Σ

jξ −
∫

Σ′
jAdS
ξ , (3.17)

where the Noether charge integrals are both outward oriented. The domain of integration Σ

in the black hole integral on the right extends from the horizon to infinity, while in the pure
AdS integral the domain Σ′ extends across the entire spacetime.

The first integral on the left hand side of (3.17) is proportional to the (AdS background
subtracted) Komar mass and angular momentum, and for Einstein gravity the horizon integral
is proportional to the surface gravity times the horizon area. Using (3.11) and θ (g,Lξg) = 0
for Killing vectors, we find that the Noether current is −Λξ · ε/((d − 2)4πG). Thus the Smarr
formula for AdS black holes is [33]

d − 3
d − 2

M −ΩHJ =
κA

8πG
−

2V̄ξΛ

(d − 2)8πG
, (3.18)

where

V̄ξ :=

∫

Σ

ξ · ε−
∫

Σ′
ξAdS · εAdS (3.19)

is the background subtracted thermodynamic volume.9 The relative sign between the area
term and cosmological constant term is the same as in the Smarr formula for causal diamonds
(3.16). For AdS-Schwarzschild, however, the quantity V̄ξ is negative (it is minus the ‘flat’ vol-
ume excluded by the black hole, i.e. V̄ξ = −V flat

rH
), whereas for causal diamonds Vζ :=

∫

Σ
|ζ|dV

is positive.
9 In the literature V̄ξ is usually denoted by Θ. Moreover, the background subtracted thermodynamic vol-

ume is expressed in [33] in terms of surface integrals of the Killing potential (d − 2)-form ωξ, defined through
ξ · ε = dωξ, which can be solved at least locally for ωξ because ξ · ε is closed for Killing vectors. Thus,
V̄ξ =

∮

∞(ωξ −ωAdS
ξ

)−
∮

Hωξ, where the orientation is outward (toward larger radius) at both∞ and H. This
agrees with the expression (22) in [33], up to a minus sign in the definition of ωξ.
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3.2 First law of causal diamonds

From the Smarr formula one can derive a variational identity analogous to the first law for
black holes using a simple scaling argument (see e.g. [33]). In fact, Smarr [49] originally
derived the relation (3.5) for stationary black holes from the first law of black hole mechanics
by using Euler’s theorem for homogeneous functions, applied to the black hole mass considered
as a function of the horizon area, angular momentum, and charge. In the context of causal
diamonds, the area is a function of the volume and the cosmological constant alone, A(V,Λ),
since V and Λ determine a unique diamond up to isometries. It follows from dimensional
analysis that λd−2A(V,Λ) = A(λd−1V,λ−2Λ), where λ is a dimensionless scaling parameter.
For a function with this property Euler’s theorem implies

(d − 2)A= (d − 1)
�

∂ A
∂ V

�

Λ
V − 2

�

∂ A
∂Λ

�

V
Λ . (3.20)

Comparing this with the Smarr formula (3.16) we find that
�

∂ A
∂ V

�

Λ
= k ,

�

∂ A
∂Λ

�

V
= −

Vζ
κ

, (3.21)

which yields the first law for causal diamonds in (A)dS,

κδA= κkδV − VζδΛ . (3.22)

Notice that an increase of the cosmological constant at fixed volume leads to a decrease of
the area. This is because the spatial curvature is increased inside the ball. The fact that the
coefficient of δV is the extrinsic curvature k can be understood by considering a variation of
the radius of a ball in a fixed, maximally symmetric space. If the proper radius increase is δ`,
the volume increase is δV = Aδ`, while the area increase is δA= kAδ`, hence δA= kδV .

The first law (3.21) involves only variations of the parameters that characterize the maxi-
mally symmetric causal diamond, and matter fields are not included in this approach because
there are no maximally symmetric solutions with matter (except the cosmological constant).
The first law can be extended to allow for variations away from maximal symmetry, thereby
permitting variations of the matter stress tensor, as has been done both for black holes [2] and
for de Sitter space [5]. We next derive such an extended first law by varying the identity (3.4),
as was done for vacuum black holes in [26], but including matter stress-tensor variations as
in Refs. [30,51]. The variations we consider are arbitrary variations of the dynamical fields φ
to nearby solutions, while keeping the manifold, the vector field ζa and the surface Σ of the
unperturbed diamond fixed.

The variation of the Noether current (3.2) is given on shell by

δ jχ =ω(φ,δφ,Lχφ) + d(χ · θ (φ,δφ)), (3.23)

where ω(φ,δ1φ,δ2φ) := δ1θ (φ,δ2φ)−δ2θ (φ,δ1φ) is the symplectic current (d − 1)-form.
The variation of the integral identity (3.4) thus yields

∫

Σ

ω(φ,δφ,Lχφ) =
∮

∂Σ

�

δQχ −χ · θ (φ,δφ)
�

. (3.24)

This relation holds provided the background equations for all the fields and the linearized
constraint equations associated with the diffeomorphism generated by χ are satisfied on the
hypersurface Σ.10 The left hand side of (3.24) is the symplectic form on the (covariant) phase

10The fact that (3.24) invokes only the (linearized) initial value constraint equations (as opposed to linearized
dynamical field equations), is explained in the Appendix of [52] and Appendix B of [17].
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space of solutions which, by Hamilton’s equations,11 is equal to the variation of the Hamilto-
nian,

δHχ =

∫

Σ

ω(φ,δφ,Lχφ) . (3.25)

Equation (3.24) thus yields the on-shell identity relating the Hamiltonian variation to the
Noether charge variation and the symplectic potential,

δHχ =

∮

∂Σ

�

δQχ −χ · θ (φ,δφ)
�

. (3.26)

If χ is a true Killing vector of the background metric and matter fields, then (3.25) implies
δHχ = 0, so the variational identity reduces to a relation between the boundary integrals.
This is how the first law of black hole mechanics arises [26,46]: taking Σ to be a hypersurface
bounded by the black hole horizon and spatial infinity, the identity relates the variation of the
horizon Noether charge to the variations of total energy and angular momentum.

A special case for the first law of causal diamonds is the first law of a static patch of dS
space [5], which in vacuum is just the statement that the variation of the area of the de Sitter
horizon vanishes. The first law derived by Gibbons and Hawking allowed for variations in
the Killing energy of matter, but matter contributions do not appear in δHχ if the matter is
described by fields that appear quadratically in the Lagrangian and vanish in the de Sitter
background. However, for matter described by a diffeomorphism invariant fluid theory first
order variations of the matter stress tensor can arise, and because the fields are potentials
which do not share the background Killing symmetry enjoyed by the stress tensor, a volume
contribution containing the matter Killing energy appears in the variational relation [2,30]. In
the derivation of the first law for causal diamonds below we also allow for variations of fluid
matter fields.

We consider the case where the gravitational theory is general relativity, the matter sector
consists of minimally coupled fluids with arbitrary equation of state, the background metric is
pure dS, and the vector field χ is the conformal Killing vector ζ of a causal diamond.12 One
of the fluids describes the cosmological constant, with equation of state p = −ρ = −Λ/(8πG).
Since ζ is zero at the edge ∂Σ of the diamond, the second term on the right hand side in (3.26)
vanishes. The surface integral of δQζ in this case is

∮

∂Σ

δQζ = −
κ

8πG
δA , (3.27)

where κ is the surface gravity and A is the area of the bifurcation surface ∂Σ.13 With this
result, the identity (3.26) takes the form

δHζ = −
κ

8πG
δA . (3.28)

For the present field content the variation of the total Hamiltonian splits into a (nonvanishing)
term associated to the background metric and one associated to the matter fields

δHζ = δHg
ζ
+δHm

ζ . (3.29)

11The variation of a Hamiltonian H for a general dynamical system is related to the symplectic form ω on phase
space and the flow vector field XH of the background solution via Hamilton’s equations, dH(v) =ω(v, XH), where
v is any tangent vector on phase space. In the present case v corresponds to δφ, XH to Lχφ, and dH(v) is written
as δH [53].

12Many steps in the derivation below remain valid for other conformally flat solutions. First of all, causal di-
amonds in conformally flat spacetimes still allow for a unique conformal Killing field whose flow preserves the
diamond. Moreover, the diamonds still have a reflection symmetry around Σ, so that Lζgab = 0 on Σ. However, α̇
might not be constant in other spacetimes, so all the equations up to (3.34) hold, but not (3.35), since the relation
(2.13) for α̇ might be specific to maximally symmetric spacetimes.

13The minus sign appears for the same reason as in (3.6), which is explained in footnote 8.
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In the following we will first evaluate the gravitational term and then the matter term. The
result will be that the gravitational term is proportional to minus the variation of the volume
of Σ, the matter term contains a term proportional to the thermodynamic volume times the
variation of the cosmological constant as well as the variation of the canonical Killing energy
for the other fluids.

We evaluate δHg through its relation to the symplectic form (3.25). For general relativity
the symplectic current takes the form [50,54]

ω(g,δ1 g,δ2 g) =
1

16πG
εaPabcde f

�

δ2 gbc∇dδ1 ge f −δ1 gbc∇dδ2 ge f

�

, (3.30)

with

Pabcde f = gae g b f g cd −
1
2

gad g be g c f −
1
2

gab g cd g e f −
1
2

g bc gae g f d +
1
2

g bc gad g e f . (3.31)

Note that in (3.25) the symplectic current is evaluated on the Lie derivative of the fields along
ζ. If ζ were a Killing vector, the metric contribution δHg

ζ
would hence vanish, as it does when

deriving the first law of black hole mechanics [26]. However, since for a diamond ζ is only a
conformal Killing vector, δHg

ζ
makes a nonzero contribution to the first law. When δ1 g = δg

and δ2 g = Lζg, the first term in (3.30) is zero at Σ, since Lζg|Σ = 0 (2.8). Using (2.9) the
second term yields

ω(g,δg,Lζg)
�

�

Σ
= −

(d − 2)α̇
16πG

εa

�

habuc − hbcua
�

δgbc , (3.32)

where hab := gab + uaub is the induced metric on Σ and ua is the unit normal to Σ. Only the
pullback of ω to Σ is relevant in the integral in (3.25). Using

εa

�

�

Σ
= −ua(u · ε), (3.33)

this pullback can be simplified as

ω(g,δg,Lζg)
�

�

Σ
=

(d − 2)α̇
16πG

(u · ε)hbcδhbc =
(d − 2)α̇

8πG
δ(u · ε) , (3.34)

where pullback of all forms to Σ is implicit. The metric contribution to δHζ is therefore equal
to

δHg
ζ
=

d − 2
8πG

∫

Σ

α̇δ(u · ε) = −
κk

8πG
δV , (3.35)

where V =
∫

Σ
u · ε is the proper volume of Σ, and in the last equality we used (2.13) and the

fact that α̇ is constant over Σ. The constancy of α̇ is hence crucial for arriving at an intrinsic
geometric quantity, the variation of the proper volume.

Combining (3.28), (3.29) and (3.35), we find the extended first law for causal diamonds,
which includes a variation of the matter Hamiltonian,

δHm
ζ =

κ

8πG
(−δA+ kδV ) . (3.36)

Next, we compute the matter Hamiltonian variation explicitly through its relation with the
symplectic form.

The precise on-shell relation between the symplectic current ωm and the Noether current
jmχ for matter fields is [30]

ωm(φ,δφ,Lχφ) = δ jmχ +
1
2
χ · ε T abδgab − d(χ · θm(φ,δφ)) . (3.37)
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Here, T ab is the Hilbert stress-energy tensor defined through the matter Lagrangian.14 Com-
pared to the equivalent identity (3.23) for all the dynamical fields, we see that in the identity
above for the matter sector the term involving the stress-energy tensor is new. This term arises
from the metric variation of the matter Lagrangian. A similar identity exists for the pure metric
sector, with the extra term being −(1/16πG)χ ·εGabδgab, so that (3.23) holds when the pure
metric and matter sectors are combined and the metric equation of motion is imposed.

Further, the Noether current for matter fields is on shell given by [30]

jmχ = dQm
χ − Ta

bχaεb . (3.38)

The stress-energy term appears on the right hand side because only the full Noether current
jχ = jgχ + jmχ is an exact form on shell. Inserting (3.38) into the variational identity (3.37) and
using Hamilton’s equations (3.25), we find that the matter Hamiltonian variation is

δHm
χ =

∮

∂Σ

�

δQm
χ −χ · θ

m(φ,δφ)
�

+

∫

Σ

�

−δ(Ta
bχaεb) +

1
2
χ · ε T abδgab

�

. (3.39)

This equality is true for an arbitrary smooth vector field χ on spacetime, and holds provided
the field equations and the linearized equations of motion are satisfied for the matter fields,
i.e. Em = δEm = 0.

We now specialize to the conformal Killing vector ζ that preserves a diamond in (A)dS
(the analysis below is actually valid in any conformally flat spacetime). Since ζ = 0 at ∂Σ,
the second term in the boundary integral in (3.39) vanishes. In addition, the Noether charge
variation also does not contribute at the bifurcation surface ∂Σ. This is because for a generic
diffeomorphism invariant Lagrangian the Noether charge (d − 2)-form can be expressed as
Qζ = Wc(φ)ζc + X cd(φ)∇[cζd] [46].15 The first term vanishes at ∂Σ, and the second term in-
volves a form X cd , which is purely constructed from derivatives of the Lagrangian with respect
to the Riemann tensor (and its covariant derivatives). For minimally coupled matter fields, this
form does not receive contributions from the matter sector, so Qm

ζ
= 0 at ∂Σ for the present

field content (and also δQm
ζ

vanishes at ∂Σ).
The matter Hamiltonian variation on the maximal slice Σ in a diamond is therefore given

by

δHm
ζ =

∫

Σ

�

−δ(Ta
bζaεb) +

1
2
ζ · ε T abδgab

�

, (3.40)

which can be rewritten, using δεb = 1
2εb g cdδgcd , as a sum of stress tensor and metric variation

terms,

δHm
ζ =

∫

Σ

�

−δTa
b +

1
2
(δa

bT cd − Ta
b g cd)δgcd

�

ζaεb . (3.41)

Notice that the trace part drops out of the second term.16 In a maximally symmetric back-
ground the tracefree part of the stress tensor must vanish, hence the matter Hamiltonian vari-
ation takes the form

δHm
ζ = −

∫

Σ

δTa
bζaεb , (3.42)

14In particular, the variation of the matter Lagrangian d-form with respect to the matter fields ψ and the metric
gab is given by: δLm = Emδψ+ ε 1

2 T abδgab + dθm(φ,δφ), where Em = 0 are the matter equations of motion, T ab

is the stress-energy tensor, and θm is the symplectic potential associated to Lm [30].
15Here we have fixed the ambiguity in the definition of the Noether charge, coming from the freedom to shift the

symplectic potential θ by an exact form dY (φ,δφ), such that Y (φ,Lζφ) = 0. If one were to allow for a nonzero
Y form, then the first law would not be modified, since the Noether charge variation (together with symplectic
potential) associated to matter fields in (3.39) cancels anyway in the variational identity (3.26) against an identical
term on right hand side. The cancellation of

∮

∂Σ
[δQm

χ
− χ · θm(φ,δφ)] in the first law was pointed out by Iyer

in [30].
16We should have been able to anticipate this feature, but have not yet found a way to do so.
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which receives contributions from all types of matter.17

Since the cosmological constant can be obtained from a field or fields covariantly coupled
to the metric, its variation falls within the class of “matter" variations to which the first law
(3.36) applies, and so may be included in (3.42). To separate out this contribution, we split
the matter stress tensor as

Tab = T m̃
ab + TΛ

ab , (3.43)

where T m̃
ab is the stress-energy tensor of matter other than the cosmological constant, and

TΛ
ab = −(Λ/8πG)gab is the “vacuum" energy-momentum tensor corresponding to the cosmo-

logical constant. The contribution of the Λ term to the variation of the Hamiltonian is thus

δHΛ
ζ =

VζδΛ

8πG
, (3.44)

where Vζ is the thermodynamic volume defined in (3.13). Note that Vζ is not varied, since the
metric variation was already separated out in (3.41).

In conclusion, by inserting δHm
ζ

= δHm̃
ζ
+ δHΛ

ζ
and (3.44) into (3.36), we arrive at the

final form of the first law of causal diamonds,

δHm̃
ζ =

1
8πG

�

−κδA+ κkδV − VζδΛ
�

. (3.45)

We remind the reader of what all these symbols represent: Hm̃
ζ

is the conformal Killing energy
of matter other than the cosmological constant Λ, κ is the surface gravity, A is the area of the
edge ∂Σ, k is the trace of the (outward) extrinsic curvature of ∂Σ as embedded in the maximal
slice Σ, V is the proper volume of the maximal slice, and Vζ is the proper volume weighted
locally by the norm of the conformal Killing vector ζ.

The derivation above also goes through for causal diamonds in AdS. Note that the form
of the first law is the same for (A)dS as for Minkowski space, except that all the quantities
should now be evaluated in (A)dS. Hence, we have established a variational identity in general
relativity which holds for spherical regions of any size in maximally symmetric spacetimes.

3.3 Further remarks on the first law

Below we collect several comments on aspects of the first law of causal diamonds.

3.3.1 Role of maximal volume

When we evaluated the variation of the gravitational Hamiltonian δHg
ζ

in (3.35), we chose
to carry out the integral over the maximal slice of the unperturbed diamond. Because the
symplectic current is conserved, the value would have been the same had we chosen any other
slice bounded by ∂Σ, although it would not have been given in the same way by the volume
variation. The slice Σ therefore has a somewhat preferred status. Furthermore, although we
described this as the variation of the volume of “the slice that was the maximal slice in the
unperturbed diamond," we could just as well describe it as the variation of the volume of the
maximal slice itself. This is because the volume change due to the variation of the location of
the maximal slice itself vanishes, precisely because that slice is maximal to begin with. This is
satisfying, since it allows the first law to be stated in a manifestly “gauge-invariant" fashion —
i.e. independently of how the spacetime interior of the varied diamond is identified with that
of the original diamond — and the second and higher order variations of the maximal slice
are unambiguously defined.

17Using (3.33), the integrand becomes δTa
bζaub u · ε, and the unfamiliar minus sign in (3.42) disappears.
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3.3.2 Fixed volume and fixed area variations

For variations that fix the volume, (3.36) becomes a relation between the area variation at
fixed volume and the variation of the matter Hamiltonian,

κ

8πG
δA
�

�

V = −δHm
ζ . (3.46)

That is, the presence of positive conformal Killing energy matter produces an area deficit at
fixed volume. Similarly, for variations in which the area is fixed we obtain the relation

κk
8πG

δV
�

�

A = δHm
ζ . (3.47)

Hence, the presence of positive conformal Killing energy matter produces a volume excess at
fixed area.

Importantly, the combination of variations δA− kδV that appears in the first law (3.36) is
equivalent to the area variation at fixed volume, i.e.

δA− kδV ∼ δA
�

�

V , (3.48)

where the equivalence means modulo diffeo-induced variations. This is because (i) it is always
possible to compose any variation with a variation δξ induced by a diffeomorphism ξ, such
that the volume V is unchanged under the complete variation; and (ii) for all diffeo-induced
variations the combination δξA− kδξV vanishes (as shown below). The combination of vari-
ations δA− kδV is thus equal to the area change that would remain if one were to compose a
generic variation with a diffeo-variation restoring the volume to its original value.

Further, the matter Hamiltonian variation δHm
ζ
= δHm̃

ζ
+δHΛ

ζ
in the first law (3.36) is also

unaffected by composing the variation with a diffeo-induced variation: since Λ is constant in
the background, δξΛ := LξΛ = 0, and since matter (other than the Λ contribution) can be
present only after the field variation away from maximal symmetry, δ̂Hm̃

ζ
is non-vanishing only

at the next variational order. Thus, both sides of the first law vanish for variations that are
induced by diffeomorphisms. Hence, we are free to add to the first law (3.36) a diffeo-induced
variation that restores the volume V to its original value, so that the first law takes the form
(3.46). Similarly, one can also freely add a diffeo-induced variation that restores the area A
to its original value, such that to the first law becomes (3.47). This means that the first law
at fixed volume (3.46) and the first law at fixed area (3.47) are equivalent to the one (3.36)
without holding the volume and area fixed.

Finally, we prove statement (ii) above. That is, if R is a codimension-one submanifold with
vanishing mean extrinsic curvature, and if the boundary ∂R has mean extrinsic curvature
(normal to ∂R) that vanishes in the direction normal to R and is constant in the direction
tangent to R, then under an infinitesimal diffeo-variation the variations of the area A of ∂R
and the volume V of R are related by18

δξA− kδξV = 0 , (3.49)

18If the assumptions are relaxed, then the diffeo-variation of the volume is

δξV =

∫

R
Kσauau · ε+

∫

∂R

�

1
kn
δτµ+

ku

kn
σauaµ

�

.

Here, σ and τ are the components of ξ normal and tangent to R, respectively, µ is the volume form on the
codimension-two surface ∂R, and ku and kn are the mean curvatures in the two normal directions to ∂ R. Under
the assumptions K = 0 = ku and kn is constant, we recover (3.49) with k := kn. A similar expression for the volume
variation is given by equation (4.32) in [55]. We thank Antony Speranza for clarifying the required assumptions
for the validity of (3.49).
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where k is the mean curvature of ∂R in R. To see this, consider the diffeomorphism as
an active transformation of the spacetime points. Under the stated assumptions, the normal
component of the diffeomorphism will do nothing to V and A, while the piece tangential to
R will deform each surface element dA by δξdA = k dAδξs = kδξdV , where δξs is the
normal deformation distance. If k is constant on ∂R, then when integrated over ∂R this
yields δξA = kδξV . The maximal slice Σ of a maximally symmetric diamond possesses the
assumed properties, so the result applies in particular to that surface.

3.3.3 Varying the cosmological constant

In a thermodynamic interpretation, causal diamonds in maximally symmetric spacetimes are
all “equilibrium states" from which variations can be made. The diamonds differ only in size,
and in the cosmological constant of the background. It is natural to allow also Λ to vary, since
it is evidently an equilibrium state variable, and there are circumstances under which it might
vary. For instance, there may be mechanisms by which it can decay. Also, in the context of the
AdS/CFT correspondence, the negative cosmological constant is controlled by the number of
stacked D-branes, which could in principle change [33]. Another reason to consider variable
Λ arises in formulating the principle of vacuum entanglement equilbrium for non-conformal
matter fields, see Sec. 4.2.2 and Ref. [21]. Consistency with the Bianchi identity made it
necessary to allow for an initially undetermined local cosmological constant in small causal
diamonds, which ended up being related to the part of the entanglement entropy variation not
captured by the energy-momentum tensor. It is thus of interest to include variations of Λ in
the first law. Ref. [56] provides an extensive review of black hole thermodynamics extended
to include variable Λ, a.k.a. “black hole chemistry".

There are many ways to accommodate a cosmological constant variation in the first law. In
the literature this has been done for the first law for black holes and for holographic entangle-
ment entropy by employing various methods, see e.g. [33,56–60]. In Sec. 3.2 we treated the
cosmological constant as a perfect fluid, and made use of Iyer’s generalized derivation of the
first law to allow for matter fields which are non-stationary yet have a stationary stress-energy
tensor [30]. In this approach the cosmological constant term in the first law comes from the
variation of the stress-energy tensor of the fluid. Yet another way of introducing a cosmological
constant is to promote it to a dynamical scalar field, and to add it to the Lagrangian together
with a (d−1)-form field B as: Λ(dB−ε)/(8πG) [61]. The B field equation implies that Λ is con-
stant, while theΛ field equation implies dB = ε. The addition to the symplectic potential due to
this Lagrangian is θ (φ,δφ) = ΛδB/(8πG), where φ = (Λ, B). Moreover, the additional term
in the symplectic current is given on shell byω(φ,δφ,Lζφ) = [δΛζ ·ε+d(δΛζ ·B)]/(8πG).
When integrated over Σ this gives precisely VζδΛ/(8πG), as in (3.44), since ζ vanishes at the
edge ∂Σ.

3.3.4 Gravitational field Hamiltonian and York time

We have seen that the gravitational contribution to the variation of the Hamiltonian Hζ gen-
erating evolution along the conformal Killing flow of the background maximally symmetric
diamond is proportional to the volume variation. This “volume as Hamiltonian” is reminis-
cent of a “York time" Hamiltonian for general relativity [36], which generates evolution along
a foliation by spacelike hypersurfaces with constant mean curvature K (i.e. along a “CMC"
foliation), using K as the time parameter, and with an arbitrary shift vector field. (Mean cur-
vature can be defined as K :=∇aua, where ua is the future pointing unit normal to a spacelike
hypersurface.) Such a Hamiltonian is proportional to the spatial volume of the CMC slices.

The similarity is not accidental. It arises from the fact that (i) the conformal Killing vector
ζa is orthogonal to Σ, which is a CMC surface, and (ii) ζa∇aK is constant on Σ. Actually,
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Figure 2: The (x , s) coordinate chart of a maximally symmetric causal diamond. The co-
ordinate s ∈ (−∞,∞) is the conformal Killing time, defined as the function that vanishes
on the maximal slice Σ and satisfies ζ · ds = 1. The coordinate x ∈ [0,∞) is spherically
symmetric and satisfies ζ · d x = 0 and |d x | = |ds|. Constant s and x lines are plotted at
equal coordinate intervals of 0.5. See Appendix B for a demonstration that ds and d x are
everywhere orthogonal, and for the line element in these coordinates.

these two properties hold on all leaves of the CMC foliation: as shown in Appendix B, surfaces
of constant conformal Killing parameter s — defined by ζa∇as = 1 with the initial condition
s = 0 on Σ — coincide with surfaces of constant K everywhere in the diamond, and ζa is
everywhere orthogonal to these surfaces (see Fig. 2 for an illustration). More specifically, K
and s are related by

K = (d − 1)α̇|s=0 sinh s , (3.50)

where α = ∇aζ
a/d and α̇ = ua∇aα. In particular, K vanishes at the extremal surface s = 0,

and its first derivative with respect to s at s = 0 is given by

dK
ds

�

�

�

s=0
= (d − 1)α̇|s=0 = −

d − 1
d − 2

κk , (3.51)

where (2.13) is used in the last equality.19 Equation (3.51) establishes that York time and
conformal Killing time are proportional, to first order about the maximal slice, for a maximally
symmetric diamond. This indicates, as we will now argue, that the variation δHg

ζ
agrees, up

to the constant (3.51), with the York time Hamiltonian variation δHY.
In the context of the first law, the perturbed spacetime is not the maximally symmetric

one. When the metric is varied, the definition of York time varies, so the surface on which we
should be computing the volume varies, as does the rate of time flow. Nevertheless, since the
t = 0 surface has vanishing K , the volume variation induced by varying the surface vanishes.
Also, the field variation is already first order, so the change of flow rate of K makes a higher
order contribution to δHY. It follows that

δHg
ζ
=

dK
ds

�

�

�

s=0
δHY , with δHY =

d − 2
d − 1

δV
8πG

. (3.52)

Therefore, the gravitational Hamiltonian variation (3.35) is indeed equal to a constant times
the York time Hamiltonian variation. The York time Hamiltonian variation would be equal to
the negative of the proper volume variation, i.e. δHY = −δV , if one used the time variable
tY = − d−2

d−1
K

8πG instead of K . This is precisely the time variable that York originally introduced
for general relativity in d = 4 [36]. In the literature the minus sign in the time variable is often
omitted, in which case the Hamiltonian is equal to the volume (see e.g. [62]).

19Note that K decreases as s increases, and is hence negative to the future of the slice Σ (and positive to the past
of Σ).
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4 Thermodynamics of causal diamonds in (A)dS

As is well known black holes admit a true thermodynamic interpretation. In this section we
will explore to what extent the same is true for causal diamonds in (A)dS. We will also relate
the first law of causal diamonds to the entanglement equilibrium proposal in [21].

4.1 Negative temperature

Like the first law of black hole mechanics, and its generalizations mentioned in the introduc-
tion, the first law of causal diamonds (3.28),

δHζ = −
κ

8πG
δA, (4.1)

admits a thermodynamic interpretation. What is unusual, however, is the minus sign on the
right hand side. The κδA term is usually identified with a THδSBH term, where SBH = A/4ħhG
is the Bekenstein-Hawking entropy and TH = κħh/2π is the Hawking temperature. However,
in the present context this identification calls for a negative temperature20

T = −TH, (4.2)

because an increase of conformal Killing energy in the diamond is associated with a decrease
of horizon entropy.21 This negative temperature interpretation has previously been suggested
by Klemm and Vanzo [31] in the special case of the static patch of de Sitter space, and was
recently advocated in the context of multiple Killing horizons in [32], where the cosmological
event horizon was also assigned a negative (Gibbsian) temperature.22 Negative temperature
typically requires of a system that i) its energy spectrum is bounded above and ii) the Hilbert
space is finite-dimensional. Klemm and Vanzo have argued that these requirements are indeed
satisfied for the de Sitter space static patch.23 Their arguments can actually be applied to all
causal diamonds: i) the mass inside is bounded above by the mass of the largest black hole that
fits inside a diamond with a given boundary area and ii) the entropy associated to the horizon
is finite due to the holographic principle or covariant entropy bound [71, 72]. It therefore
seems feasible that causal diamonds have a negative temperature in quantum gravity.

Using the negative temperature (4.2), the first law (4.1) can be written as

δHζ = TδSBH, (4.3)

20The conceptual possibility of negative absolute temperature was discussed for the first time by Afanassjewa in
1925 [63]. In 1951 Purcell and Pound [64] prepared and measured a nuclear spin system at negative temperature
in an external magnetic field. Subsequently, the thermodynamic and statistical mechanical implications of negative
temperature were studied in detail by Ramsey [65]. We thank Jos Uffink for bringing the work of Afanassjewa to
our attention [66]. See [67] for a recent review of negative temperature.

21It was suggested in Ref. [68] that in global de Sitter space this minus sign (which was there attached to the
entropy rather than to the temperature) results from imposing the first law with the energy inside the horizon,
rather than the energy outside the horizon which is the negative of the former. The sensibility of this proposal is
debatable, since the opposite sign of the energy results from the fact that the Killing vector is past-oriented outside
the horizon. Moreover, in flat spacetime or AdS the energy outside the horizon is not the negative of that inside,
and yet we still encounter the same minus sign.

22The arguments in [32] appealed to the fact that the surface gravity of the cosmological horizon is negative.
Although not stated in [32] (nor elsewhere in the literature that we are aware of), this holds only on the past
cosmological horizon (if we take the Killing vector to be future pointing on the past and future horizons). The
surface gravity of the future cosmological horizon is positive. (The surface gravity is positive (negative) if the Killing
vector is stretched (shrunk) with respect to affine parameter along the Killing flow on the Killing horizon.) A varied
diamond can be viewed as the result of a physical process in which a perturbation has passed through the past
horizon, and entered what would otherwise have been a maximally symmetric diamond. The surface gravity of
the past horizon should thus be expected to play the role of temperature in the first law.

23The proposal that the Hilbert space of an observer’s patch in asymptotic de Sitter space is finite-dimensional
is due to Banks and Fischler [69,70].
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which is a standard thermodynamic relation between energy, temperature and entropy. As a
special case, we find that the static patch of de Sitter space has a negative temperature (see
Sec. 5.1). This is in apparent conflict with the positive Gibbons-Hawking temperature for dS
space, computed using quantum field theory on a fixed background [5]. In Sec. 4.2 below we
shall propose a resolution to this apparent conflict involving the quantum corrections to the
first law, but first we want to further discuss the thermodynamic interpretation of the leading
order classical quantities in this relation.

Instead of writing the cosmological constant term (3.44) in δHζ as an energy variation, we
can also take it to the right hand side of the first law and write it as the thermodynamic volume
times the variation of the pressure, i.e. Vζδp. This is because the cosmological constant can
be interpreted both as an energy density, ρ = Λ/8πG, and as a pressure p = −Λ/8πG. In this
way (4.3) can be expressed as

δHg+m̃
ζ

= TδSBH + Vζδp , (4.4)

where g labels the gravitational contribution (1.4) to the Hamiltonian variation, and m̃ labels
the matter contribution (1.2) other than the cosmological constant. This form of the first
law suggests that Hg+m̃

ζ
is an enthalpy, rather than an energy, just like the ADM mass for

black holes [33]. The matter Hamiltonian vanishes in the background, so the enthalpy of
causal diamonds in Minkowski and (A)dS space is Hg

ζ
, which is defined above only through its

variation. We leave it to future work to evaluate Hg
ζ

itself.

Through a Legendre transformation, U = Hg+m̃
ζ
− p Vζ, the first law can be written in the

standard form
δU = TδSBH − pδVζ , (4.5)

where U plays the role of the internal energy associated to causal diamonds. Using the equa-
tion of state p = −ρ, the contribution of the Λ term to U may be expressed as ρ Vζ, which
is the redshifted vacuum energy associated to the cosmological constant. (See Sec. 5.1 for a
similar discussion for the special case of the de Sitter static patch.)

4.2 Quantum corrections

The first law can be extended into the semiclassical regime by considering quantum matter
fields (instead of classical fields) on a classical background spacetime. The “quantum cor-
rected” first law of causal diamonds reads

δ〈Hm̃
ζ 〉+δHg+Λ

ζ
= TδSBH , (4.6)

which can be derived (along the lines of Sec. 3.2) from the semiclassical Einstein equation,
where the stress-energy tensor is replaced by its quantum expectation value but the metric is
kept classical. Our aim in this section is to show how this first law can be written in terms
of the variation of Bekenstein’s generalized entropy [1] — defined in (4.11) — which at the
same time explains why the negative temperature T is consistent with the positive Gibbons-
Hawking temperature TH. We will first restrict the discussion to conformal matter and then
generalize it to any quantum matter.

4.2.1 Conformal matter

In the particular case of the vacuum state of a conformal quantum field theory, the matter
Hamiltonian Hm̃

ζ
associated to a spherical region Σ in flat space or (A)dS is equal to the so-

called modular Hamiltonian K , i.e.

Hm̃
ζ :=

∫

Σ

(Ta
b)m̃ζaubdV = K , (4.7)
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where K is the operator implicitly defined via the reduced density matrix of the vacuum re-
stricted to the region Σ, ρvac = e−K/TH/Z .24 For infinitesimal variations of the reduced density
matrix, the variation of the expectation value of the modular Hamiltonian is equal to the vari-
ation of the matter entropy Sm̃, by

δ〈K〉= THδSm̃, (4.8)

with the positive sign for the temperature TH. If the variation is to a global pure state δSm̃ is
purely entanglement entropy, which is why this is known as the “first law of entanglement”.

Initially it appears that this opposite sign for the temperature indicates an inconsistency:
if δ〈Hm̃

ζ
〉 were added to the rest of the conformal energy variation δHζ, and at the same time

δSm̃ were added to δSBH in the classical first law (4.3), then — because of the mismatch in the
signs of the temperatures — the first law would no longer be valid for any temperature. How-
ever, in gravitational thermodynamics, it would be incorrect to add both the energy term and
the entropy term. The derivation of the gravitational first law follows from diffeomorphism
invariance and the gravitational field equation, and the matter entropy does not enter in the
derivation [26, 30]. On the other hand, this first law must be consistent with the thermody-
namic first law, so it must also be possible to take into account the matter entropy.

The way this works is perhaps easiest to understand in the setting of a stationary, asymp-
totically flat black hole surrounded by a fluid [2,30]. The gravitational first law indicates that
a matter Killing energy variation δHm̃

ξ
increases the variation of the total ADM mass M ,

δM = δHm̃
ξ + κδA/8πG, (4.9)

where ξ is the time translation Killing vector, and variation of angular momentum of the black
hole is suppressed for simplicity.25 On the other hand, the energy variation of a thermal fluid
can be expressed in terms of its entropy and particle number density variations, δdSm̃ and
δdN , and redshifted comoving temperature and chemical potential, T̄ and µ̄, together with a
possible angular momentum variation that is also suppressed. If that is done, the entropy of
the fluid registers explicitly in the thermodynamical first law,

δM =

∫

Σ

(T̄δdSm̃ + µ̄δdN) + κδA/8πG, (4.10)

while the energy of the fluid registers only implicitly in the δM term, to which it contributes via
the constraints. It is quite peculiar to gravitational thermodynamics that the first law has si-
multaneously these two different meanings, one gravitational and one thermodynamical [73],
and that the fluid does not contribute explicitly to both the entropy and energy variations,
unlike in ordinary thermodynamics.

It thus seems that the correct procedure is to add only the matter energy variation δ〈Hm̃
ζ
〉

to the classical first law, as we anticipated in (4.6), where the classical matter Hamilonian

24It is well known that the reduced density matrix of the vacuum in Rindler space is thermal with respect to
the Lorentz boost Hamiltonian [23]. The thermal behavior of conformal quantum fields in a global vacuum state
inside maximally symmetric causal diamonds can be derived from the Weyl equivalence between these diamonds
and Rindler space. In Appendix B we show explicitly that all maximally symmetric diamonds are Weyl equivalent
to conformal Killing time cross hyperbolic space, R ×Hd−1, and therefore to each other. It is also known that a
diamond in flat space is Weyl equivalent to Rindler space, see Appendix E. Therefore, the reduced density matrix
of the conformal vacuum on a diamond in (A)dS and flat space is thermal. For the special case of diamonds in flat
space this was discussed before in [12,22–25].

25Equation (4.9) is equivalent to the first law as given in Ref. [2,30], although that is not immediately apparent
since we write the fluid term as the variation of its contribution to the Killing Hamiltonian. The equivalence can
be established using (3.39) for this variation. The Σ integral in (3.39) is the same as the fluid contribution in
Eqn. (50) of [30], and it can be shown that the ∂Σ boundary term vanishes for the case of a prefect fluid (using
the variational formulation given by Schutz and reviewed in [30]).
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variation δHm̃ is replaced by its expectation value. If desired, one can use (4.7) and (4.8) to
express δ〈Hm̃

ζ
〉 in terms of the matter entropy variation. Thanks to the opposite sign of the

temperature in (4.8), this can then be combined with δSBH in (4.6) to form the variation of
the generalized entropy,

Sgen := SBH + Sm̃ , (4.11)

in terms of which the quantum corrected first law of causal diamonds becomes

δHg+Λ

ζ
= TδSgen . (4.12)

In fact, this appears to be a more satisfactory formulation of the first law because, unlike
the matter entropy and Bekenstein-Hawking entropy separately, the generalized entropy is
plausibly invariant under a change of the UV cutoff (see the appendix of [74] for a discussion
of this idea).

In this way, we see that the opposite sign of the temperature in (4.3) and (4.8) is precisely
what is needed in order for the Bekenstein-Hawking entropy and matter entropy to combine as
Sgen. At least for conformal fields, this resolves the apparent conflict alluded to before between
the negative temperature in the first law for causal diamonds and the positive temperature in
the first law of entanglement. The negative and positive temperature seem compatible with
each other, since the first law of entanglement (4.8) and the quantum corrected first law of
causal diamonds (4.12) are valid simultaneously.

4.2.2 Non-conformal matter

We now show how the generalized entropy variation can be obtained in the first law for generic
quantum fields. For non-conformal fields the matter Hamiltonian is not equal to the modular
Hamiltonian, and hence the term δ〈Hm̃

ζ
〉 cannot be directly related to the entanglement en-

tropy variation. However, in [21] it was postulated that, for causal diamonds that are small
compared to the local curvature scale, the length scale of the quantum state, and any length
scale in the quantum field theory defined by a relevant deformation of a conformal field theory,
this term is in fact related to the variation of the expectation value of the modular Hamiltonian
via

δ〈Hm̃
ζ 〉= δ〈K〉 − VζδX . (4.13)

Here X is a spacetime scalar that can depend on the size of the diamond but is invariant under
Lorentz boosts that leave the center of the diamond fixed. The thermodynamic volume Vζ has
been factored out for later convenience.26 The modular Hamiltonian K is here defined for the
vacuum of a quantum field theory restricted to a ball-shaped region, and the variation denotes
a perturbation of the vacuum state. The assumption (4.13) was checked in [37, 38], and it
was found in particular that δX may depend on the radius R of the ball, and can dominate at
small R (depending on the conformal dimension of the operator that deforms the CFT).

With the postulate (4.13) and the first law of entanglement (4.8), the quantum first law
(4.6) can be written in terms of the generalized entropy variation as

δHg+λ
ζ
− VζδX = TδSgen . (4.14)

Here, we have denoted the local cosmological constant in a small maximally symmetric di-
amond by λ, in order to distinguish it from the total cosmological constant variation to be

26For small diamonds the conformal Killing energy variation can be approximated by δ〈Hm̃
ζ
〉 = Vζδ〈T m̃

00〉 and
the thermodynamic volume is to first order given by Vζ = κΩd−2Rd/(d2 − 1) (see Sec. 5.2). Inserting these
approximations into (4.13) yields the actual conjecture (21) in [21].
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introduced below. The variations δHg and δHλ are explicitly given by (1.4) and (1.3), respec-
tively, so we can further rewrite this first law as

−
κk

8πG
δV +

Vζ
8πG

(δλ− 8πGδX ) = TδSgen . (4.15)

Now, since the δX contribution from non-conformal matter appears together with the local
cosmological constant variation δλ in this way, we may combine them into one net variation,

δΛ := δλ− 8πGδX , (4.16)

in terms of which (4.15) is expressed as

−
κk

8πG
δV +

Vζ
8πG

δΛ= TδSgen . (4.17)

The first law including non-conformal quantum fields is thus also expressed in terms of the
generalized entropy variation, and the temperature in this first law is still negative. We con-
clude that the assignment of a negative temperature to the diamond remains consistent when
extended to the semiclassical realm.

4.3 Entanglement equilibrium

If the proper volume V and cosmological constant Λ are held fixed in (4.17), then the gener-
alized entropy is stationary in a maximally symmetric vacuum,

δSgen

�

�

V,Λ = δSBH

�

�

V,Λ +δSm̃ = 0 . (4.18)

There is no need to fix V and Λ in the matter entropy variation, because there is no first order
metric variation of the matter entropy, since the zeroth order matter state is the vacuum.
The condition δΛ = 0 means that δλ is chosen to cancel the change in the effective local
cosmological constant, −8πGδX .

In [21], it was shown, assuming the conjecture (4.13), that the semiclassical Einstein equa-
tion holds if and only if the generalized entropy is stationary at fixed volume in small local
diamonds everywhere in spacetime.27 The validity of the latter property was called the “max-
imal vacuum entanglement hypothesis", but we shall refer to it as the entanglement equilib-
rium hypothesis. Here we have deduced the entanglement equilibrium statement (4.18) from
the conjecture (4.13) together with the quantum corrected first law of causal diamonds (4.6),
which itself was derived from the semiclassical gravitational equations of motion. In this sense
the semiclassical Einstein equation is equivalent to the quantum corrected first law for small,
and therefore maximally symmetric diamonds. However, the variations in the entanglement
equilibrium setting [21] and in the present paper are viewed somewhat differently, so the pre-
cise relation between the two results is not immediately clear. We shall now explain how they
may be brought into alignment.

In the setting of [21], an arbitrary spacetime and matter state, (g, |ψ〉), are considered, in
every small causal diamond, as a variation of a maximally symmetric spacetime (MSS) and
vacuum (gλ, |0〉), with an initially arbitrary λ. The idea is that any spacetime is locally close
to an “equilibrium" state, and that all maximally symmetric states qualify as equilibria. The
generalized entropy Sgen in the diamond is then compared to that of the diamond with the
same volume in the MSS, the difference being

δSgen|V,λ = Sgen|V (g,|ψ〉) − Sgen|V (gλ,|0〉). (4.19)

27In that context, the area term in the generalized entropy was assumed to have the form ηA, and the gravita-
tional constant G was found to be given by 1/4ħhη.
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The notation suggests “fixed λ”, but at this stage λ is just an arbitrary background value for the
comparison. The entanglement equilibrium assumption amounts to the postulate that there
exists some λ, in each diamond, for which the stationary condition δSgen|V,λ = 0 holds. When
applied to all diamonds this condition, together with energy-momentum conservation and the
Bianchi identity, implies that λ for each diamond is determined, up to one overall spacetime
constant Λ, by the δX of the state, and it implies that the Einstein equation holds for that Λ.

To bring this more in line with the variational relations of the present paper, instead of
setting the difference (4.19) to zero, we may first reckon the diamond entropy of (g, |ψ〉)
relative to that of a diamond in flat spacetime. In the notation of [21] this yields

δSgen|V = ηδA|V +
2π
ħh
δ〈K〉=

Ωd−2Rd

d2 − 1

�

−ηG00 +
2π
ħh

(δ〈T00〉+δX )
�

. (4.20)

Now, rather than postulating that this variation vanishes, we postulate that it is the same
as would be obtained by varying from the Minkowski vacuum to a MSS vacuum with some
cosmological constant λ (3.22),

δMSSSgen|V = ηδMSSA|V = −
Ωd−2Rd

d2 − 1
ηλ. (4.21)

The equality of (4.20) and (4.21) implies the relation

G00 +λ g00 =
2π
ħhη

(δ〈T00〉 −δX g00), (4.22)

(since g00 = −1 in Riemann normal coordinates at the center of the diamond) and the validity
of this relation for all small diamonds in spacetime implies the tensor equation

Gab +Λ gab =
2π
ħhη
δ〈Tab〉, (4.23)

where28

Λ := λ+
2π
ħhη
δX . (4.24)

With the identification η= 1/4ħhG, the relation (4.24) matches that found in (4.16), when it is
recognized that λ and Λ here refer to a maximally symmetric comparison spacetime, whereas
in (4.16) the background spacetime is implicit and δλ and δΛ are part of the one overall
variation that is made. Adding λ to the comparison spacetime yields the same change of
entropy as including a variation δλ = −λ in the variation being considered, and similarly for
Λ, so that the appropriate identification is λ = −δλ and Λ = −δΛ. This establishes how the
first law derived in the present paper from the Einstein equation is related to the entanglement
equilibrium postulate used in [21] to derive the Einstein equation.

4.4 Free conformal energy

In this section we address two questions concerning the entanglement equilibrium proposal.
First, in standard thermodynamics the stationarity of entropy at fixed energy follows from
the stationarity of free energy at fixed temperature. Hence, it is natural to ask whether we
can identify a thermodynamic potential (e.g. free energy) in our setting whose stationarity
corresponds to an equilibrium condition. The stationarity is a condition on the first order
variation of the free energy. Whether the free energy is minimized or maximized can only be

28Eq. (4.24) agrees with the result in Ref. [21] after correcting the sign error there of the δX term in (25), which
appears due to an error in equation (24).
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determined from the second order variation of the free energy, which we leave for future work
(see also [43]).29 Second, an essential ingredient in the derivation of the Einstein equation
in [21] was the fixed volume requirement. One advantage of characterizing the equilibrium
state in terms of free energy stationarity, instead of entropy stationarity, is that the fixed volume
constraint is relaxed. It is desirable to understand the fixed volume requirement better, and
to see whether the free energy stationarity can be used as an input assumption in deriving the
Einstein equation.

Let us start with the free energy for classical matter configurations. The classical first law
(4.3) implies that the free conformal energy30

F = Hζ − TSBH (4.25)

is stationary at fixed temperature, i.e. δF = −SBHδT = 0.31 This means that causal diamonds
in flat space and (A)dS are equilibrium states.

Next, in the semiclassical regime the quantum corrected free conformal energy can be
defined by replacing the matter Hamiltonian by its quantum expectation value

Fquan = 〈Hm̃
ζ 〉+ Hg+Λ

ζ
− TSBH . (4.26)

The stationarity of the quantum free energy at fixed temperature in the vacuum, i.e. δFquan = 0,
follows from the quantum first law of causal diamonds (4.6). We woud like to show that the
free energy stationarity is equivalent to the entanglement equilibrium hypothesis (4.18), i.e.
the stationarity of generalized entropy at fixed V and Λ. In establishing the equivalence we
will treat conformal quantum fields and non-conformal quantum matter separately. Using the
expressions (1.3) and (1.4) for HΛ

ζ
and Hg

ζ
, respectively, in terms of the variation of the volume

and the cosmological constant, we see that the variation of the quantum free energy (4.26) at
fixed V and Λ is equal to

δFquan

�

�

V,Λ = δ〈Hm̃
ζ 〉 − TδSBH

�

�

V,Λ . (4.27)

For conformal matter, the first law of entanglement (4.8) can be used to trade the conformal
Killing energy variation δ〈Hm̃

ζ
〉 for a matter entropy variation, which then combines with δSBH

to form the generalized entropy variation, i.e. δFquan|V,Λ = THδSgen|V,Λ. The free energy for
conformal quantum fields is thus stationary at fixed V and Λ if and only if the generalized
entropy is stationary at fixed V and Λ.

Dealing with non-conformal matter is more subtle since, to relate the variation of the con-
formal Killing energy to the matter entropy variation, apart from the first law of entanglement
we need the additional assumption (4.13), which holds only for small diamonds. For small
maximally symmetric diamonds we denote the local cosmological constant by λ, rather than
Λ in (4.27), and the variation of the associated Hamiltonian is (Vζ/8πG)δλ. Inserting the as-
sumption (4.13) for δ〈Hm̃

ζ
〉 and the expression above for δHλ

ζ
into the variation of the quantum

free energy at fixed volume yields

δFquan

�

�

V = THδSgen

�

�

V +
Vζ

8πG
(δλ− 8πGδX ) . (4.28)

29We expect that maximally symmetric causal diamonds have maximum free energy. This is because local thermo-
dynamic stability requires that entropy be maximized at fixed energy, which for systems with negative temperature
(such as our diamonds) implies that free energy is maximized (see e.g. [75]). We thank Batoul Banihashemi for
pointing this out.

30The term “conformal” here refers to the fact that the Hamiltonian Hζ generates evolution along the conformal
Killing vector ζ, and not to a conformal symmetry of the matter fields (as for CFTs).

31We remind the reader that the temperature of a vacuum causal diamond is always T = −ħh/2π.
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The variations in parenthesis can be combined into a single net variation δΛ, cf. (4.16). Thus,
restricting the variations such that δΛ = 0 and holding the volume V fixed, we establish that
the stationarity of quantum free energy is equivalent to the stationarity of generalized entropy

δFquan

�

�

V,Λ = 0 ⇐⇒ δSgen

�

�

V,Λ = 0 . (4.29)

Holding the volume and (effective) cosmological constant fixed is therefore analogous to hold-
ing the internal energy fixed in an ordinary thermodynamic system. In fact, it corresponds here
to holding fixed the metric and Λ contributions to the conformal Hamiltonian Hζ (assuming,
for non-conformal matter, that there exists a Hamiltonian such that δHΛ

ζ
= (Vζ/8πG)δΛ,

where Λ is the effective cosmological constant (4.16) in a small diamond.32 In this sense,
the entanglement equilibrium hypothesis would correspond to the statement that generalized
entropy is stationary at fixed “internal energy" (as it should be for an equilibrium state).

In standard thermodynamical equilibrium, not only is entropy stationary at fixed energy,
but also energy is stationary at fixed entropy. Let us now see to what extent the latter is true for
causal diamonds. For conformal matter, and for any sized diamond, if the generalized entropy
is kept fixed then Eq. (4.26) implies that the Hamiltonian associated to g and Λ is stationary
in the vacuum

δFquan

�

�

Sgen
= 0 ⇐⇒ δHg+Λ

ζ

�

�

Sgen
= 0 . (4.30)

For non-conformal matter, we must restrict to small diamonds if we want to hold the gener-
alized entropy fixed, and as above assume the existence of HΛ

ζ
. But if instead we keep the

Bekenstein-Hawking entropy fixed, rather than the full generalized entropy, then we need not
restrict to small diamonds and the total Hamiltonian is stationary in the vacuum, i.e.

δFquan

�

�

SBH
= 0 ⇐⇒ δ

�

〈Hm̃
ζ 〉+ Hg+Λ

ζ

��

�

SBH
= 0 . (4.31)

This equilibrium condition states that the total conformal Killing energy is stationary in the
vacuum if the dimension of the Hilbert space is fixed (if we interpret the Bekenstein-Hawking
entropy as the logarithm of that dimension). It would be interesting to explore this energy
relation further.

Next, we return to the role of the fixed volume constraint in (4.29). For small diamonds
the free energy variation at fixed Λ can be expressed as

1
TH
δFquan

�

�

Λ
=

1
4Għh

(δA− kδV )
�

�

Λ
+δSm̃ , (4.32)

(where the volume variation comes from the variation of Hg
ζ

in (4.26)) whereas the variation
of the free energy at fixed V and Λ is given by

1
TH
δFquan

�

�

V,Λ =
1

4Għh
δA
�

�

V,Λ +δSm̃ . (4.33)

Now any given variation at fixed Λ can be expressed as a variation at fixed V and Λ, together
with a variation induced by a diffeomorphism that changes the volume. Under such a diffeo-
induced variation, δA− kδV vanishes, as explained in Sec. 3.3.2, and δSm̃ vanishes because
the renormalized matter entropy is zero in the vacuum. The two free energy variations are
therefore equivalent, i.e.

δFquan

�

�

Λ
∼ δFquan

�

�

V,Λ , (4.34)

where the equivalence is modulo diffeo-induced variations. This implies that the stationarity
of the free energy at fixed Λ is equivalent to the stationarity of the free energy at fixed V and

32It is not clear to us whether this Hamiltonian exists, since Λ includes both a local cosmological constant and a
piece from the non-conformal matter. The latter contribution seems to spoil the derivation of equation (3.44).
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(1) de Sitter horizon

⇣

⇠ HC
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Figure 3: A causal diamond in the de Sitter space static patch. The conformal Killing vector ζ
turns into the timelike Killing vector ξ if the boundary of the diamond coincides with the
cosmological horizon HC .

Λ, and hence — using the equivalence (4.29) — equivalent to the entanglement equilibrium
postulate. Therefore, the derivation of the Einstein equation in [21] can be rephrased without
the requirement to fix the volume. One can thus take as the input assumption that the free
energy is stationary at fixed Λ, rather than that the generalized entropy is stationary at fixed
V and Λ (see also Ref. [76]).

5 Limiting cases: small and large causal diamonds

In this section we comment on various limiting cases of the first law of causal diamond mechan-
ics (3.45). Since the law applies to arbitrary sized diamonds in (A)dS, it has a wide domain
of applicability. Here we apply it to the static patch of de Sitter spacetime, small diamonds
in any maximally symmetric spacetime, flat and AdS Rindler spacetimes, and to the so-called
“Wheeler-DeWitt patch" in AdS, tying these limiting cases together into one framework.

5.1 De Sitter static patch

If the boundary of a causal diamond in dS space coincides with the cosmological horizon, i.e.
if R = L, then the conformal Killing vector (2.6) becomes the time translation Killing vector of
the static patch,33

ξdS = L∂t , (5.1)

normalized so that the surface gravity is unity (see Fig. 3). Since this is a true Killing vector,
the variation of the gravitational part of the Hamiltonian (3.25) vanishes. This is consistent
with (3.35), because the Sitter horizon has extremal area on the (d−1)-sphere, so k = 0. The
first law (3.45) thus reduces to

δHm̃
ξ = −

1
8πG

�

κδA+ VξδΛ
�

. (5.2)

The thermodynamic volume (3.14) in this case reduces to V dS-static-patch
ξ

= κLV flat
L . The relation

(5.2) with δΛ= 0 was established long ago by Gibbons and Hawking [5], and was generalized
to include a variation of the cosmological constant in [57,77].

33In this section we use the letter ξ for Killing vectors and retain ζ for conformal Killing vectors.
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If one assigns a negative temperature T = −κħh/2π and pressure p = −Λ/8πG to the dS
static patch, the first law can be turned into a proper thermodynamic relation34

δHm̃
ξ = TδSBH + Vξδp . (5.3)

Since this thermodynamic relation is of the form dH = T dS + V thdp, where H is the enthalpy
of the system and V th is the thermodynamic volume, Hm̃

ξ
coincides with the enthalpy instead

of simply the internal energy. The matter Hamiltonian vanishes in the background, hence we
observe that the enthalpy of the static patch of dS space is zero.

Through a Legendre transformation, U = H − pV th, the first law can be rewritten in the
standard form dU = T dS − p dV th. But what is the internal energy U of de Sitter space? The
common lore, cf. e.g. [5], is that the energy of dS space is zero, because it has no asymptotic in-
finity. However, we find that its (vacuum) internal energy is nonzero and given by Uvac = ρ Vξ,
the redshifted vacuum energy, where we used the equation of state p = −ρ and the fact that
H = 0 for dS. The first law can thus be expressed as

δU = TδSBH − pδVξ , (5.4)

where U = Uvac + Hm̃
ξ

is the internal energy. Finally, we note that the Gibbs free energy of
dS space is G = H − TS = −TS, and the Helmholtz free energy is F = Uvac − TS. As usual,
the former is extremized in a fixed (T, p) ensemble, whereas the latter is extremized in a
fixed (T, Vξ) ensemble. The free energy computed in [5] from the on-shell Euclidean action
agrees with the Gibbs free energy, and not the Helmholtz free energy, because the Euclidean
action was extremized there at fixed period (i.e. fixed temperature) and fixed cosmological
constant.35

5.2 Small diamonds and Minkowski space

In the small radius limit R � L the mean curvature (2.12) and the thermodynamic volume
(3.14) are given up to second order in R/L by

k =
d − 2

R

�

1−
1
2

R2

L2
+ . . .

�

, (5.5)

Vζ =
κΩd−2Rd

d2 − 1

�

1+
d

d + 3
R2

L2
+ . . .

�

. (5.6)

To first order in R/L, the first law (3.45) thus reduces to the one that would be found in flat
spacetime,

δHm̃
ζ = −

κ

8πG

�

δA−
d − 2

R
δV flat +

Ωd−2Rd

d2 − 1
δΛ

�

. (5.7)

This identity, without the cosmological constant term, is the one derived in [21], both by
Riemann normal coordinate expansion, and by varying the Noether current for the conformal

34For δHm̃
ξ
= 0, it might look like one could assign a positive temperature to the dS static patch, i.e. T = TH > 0;

however, according to the first law, the “pressure” would then have to be defined as p = +Λ/8πG, in contradiction
to the sign of the pressure associated to the cosmological constant when viewed as a stress-energy contribution.

35If one takes the timelike Killing vector to be ξdS = ∂t , so that ξ2 = −1 at the center of the diamond, then
temperature and pressure are not independent in the dS static patch. That is because the surface gravity is
set by the dS radius in this case, i.e. κdS = 1/L, and the pressure is determined by the cosmological constant
Λ = (d − 1)(d − 1)/2L2. Hence, by fixing the temperature one also fixes the pressure, and vice versa, when using
this normalization of the Killing field to define the temperature.

29

https://scipost.org
https://scipost.org/SciPostPhys.7.6.079


SciPost Phys. 7, 079 (2019)
(2) Minkowski space

⇣

⇠

i�
<latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit><latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit><latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit><latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit>

i0
<latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit><latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit><latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit><latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit>

i+
<latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit><latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit><latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit><latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit>
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(3) Rindler horizon
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i�
<latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit><latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit><latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit><latexit sha1_base64="ZSbFs6JeHrC0ArlkCYOjuo0PKO0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJYPZpygH9GB5CFn1Fjpnj+e9coVt+rOQJaJl5MK5Kj3yl/dfszSCKVhgmrd8dzE+BlVhjOBk1I31ZhQNqID7FgqaYTaz2anTsiJVfokjJUtachM/T2R0UjrcRTYzoiaoV70puJ/Xic14ZWfcZmkBiWbLwpTQUxMpn+TPlfIjBhbQpni9lbChlRRZmw6JRuCt/jyMmmeVz236t1dVGrXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnBfn3fmYtxacfOYQ/sD5/AHtMo2M</latexit>

i0
<latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit><latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit><latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit><latexit sha1_base64="Aw7JB7uQbNkz9SA4r01XcsLhw/I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0sWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//cS1EbF6wEnC/YgOlQgFo2ile/Ho9ssVt+rOQVaJl5MK5Gj0y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiVnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa2LqudWvbvLSv06j6MIJ3AK5+BBDepwCw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH/G+jY8=</latexit>

i+
<latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit><latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit><latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit><latexit sha1_base64="ELxKv827V+rBKqN8BLyyBeQWcqY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWtB/QxrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RRWVtfWN4qbpa3tnd298v5BU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPX8865UrbtWdgSwTLycVyFHvlb+6/ZilEUrDBNW647mJ8TOqDGcCJ6VuqjGhbEQH2LFU0gi1n81OnZATq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0SjYEb/HlZdI8r3pu1bu7qNSu8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QPqKo2K</latexit>
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Figure 4: (a) A causal diamond associated to a ball at the center of Minkowski space. If one
the normalizes the conformal Killing vector that preserves the diamond such that ζ2 = −1 at
the center of the ball, then it becomes identical to the timelike Killing vector ξ = ∂t in the
infinite-size limit. (b) A causal diamond whose edge touches the bifurcation surface of two
Rindler horizons in Minkowski space. In the infinite-size limit the diamond coincides with
the right Rindler wedge, and the conformal Killing vector ζ becomes the boost Killing vector
ξ.

Killing vector that preserves a causal diamond in flat space. That conformal Killing vector can
be recovered from (2.6) in the limit L→∞, and is given by

ζflat =
1

2R

��

R2 − t2 − r2
�

∂t − 2t r∂r

�

. (5.8)

(See Fig. 4a for a conformal diagram of a diamond in Minkowski space.) As a side remark, if
the variation δT m̃

abuaub is constant on Σ,36 then the conformal Killing energy variation becomes
proportional to the thermodynamic volume

δHm̃
ζ = δT m̃

abuaub Vζ , (5.9)

where δT m̃
abuaub is evaluated at the center of the ball.

5.3 Rindler space

A Rindler wedge is an infinite diamond in flat space, as can be seen from the Penrose dia-
gram in Fig. 4b. More precisely, the right Rindler wedge can be obtained by inflating the
causal diamond whose edge touches the origin of flat space and whose center is located at
{t = 0, x1 = R, x2 = 0, . . . , xd−1 = 0}.37 In the infinite R limit, only an infinitesimal solid angle
of the edge coincides with the entire Rindler horizon, and the rest of the edge covers half the
sphere at spatial infinity (see Fig. 5). Moreover, by replacing the coordinate x1 by x1 − R in
ζflat and then taking the limit R→∞, the conformal Killing vector (5.8) becomes the boost
Killing vector of Rindler space,

ξRindler = x1∂t + t∂x1 . (5.10)

36Note that since Σ has vanishing extrinsic curvature, mc∇cu
a = 0 for any vector mc tangent to Σ. Thus constancy

on Σ of the scalar δT m̃
abuaub is equivalent to the condition (mc∇cδT m̃

ab)u
aub = 0.

37Instead of increasing the size of the diamond to infinity, one could also directly relate the diamond nestled
in the corner of the right Rindler wedge to the entire wedge itself through a conformal map. See Appendix E for
further details.
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Figure 5: Sequence of causal diamond edges anchored at the origin and with growing radius,
shown on a time slice of compactified 2+1 dimensional Minkowski spacetime. In the infinite
radius limit, the entire Rindler horizon subtends an infinitesimal angle of the diamond’s edge,
and the remainder of the edge lies at spatial infinity.

Given that the regions agree it is interesting to understand the relation between the infinite-
size limit of the first law of this causal diamond and the first law for the Rindler wedge [10,
11,78,79].

Although the first law of causal diamonds was originally derived for diamonds which are
centered at the origin of flat space, it actually applies to any causal diamond associated to a
spherical region whose center is located at {t = t0, x i = x i

0}. Hence, in particular it applies
to the causal diamond described above which is centered at x1 = R. We evaluated the terms
in the first law (5.7) for the variation produced by a point mass m at a distance δ from the
Rindler horizon at t = 0, using the weak field approximation and with δΛ= 0. In the infinite
R limit the area and volume variations both diverge as mR, and these divergences cancel each
other. The kδV term contains a left-over finite part equal to mδ which balances the boost
Killing energy variation of the Rindler wedge. Strangely, at least when defined by this limiting
procedure, the first law for the Rindler wedge involves not only an area variation but also
a volume variation, and the finite geometric variation comes entirely from the volume term.
Using the fact that the combination δA− kδV is diffeomorphism invariant — as shown in
Section 3.3.2 — this finite contribution could presumably be shifted entirely onto the area
term by composing the variation with an appropriate infinitesimal diffeomorphism.

The presence of the volume term in the infinite-size limit is unexpected, since the con-
formal Killing vector of the diamond becomes the Rindler boost Killing vector (5.10) in this
limit, and the gravitational Hamiltonian variation δHg

ξ
(3.35) vanishes for a Killing vector ξ.

Nevertheless, since the volume variation diverges, kδV survives (and diverges) in this limit.
On the other hand, one can derive an equilibrium variation version of the first law for the
Rindler wedge by applying the Noether identity (3.26) for the boost Killing vector (5.10) in a
finite region, and then taking the infinite region limit. In this way, no volume variation term
would be present. For example, for a finite half-spherical ball with radius R and center o on
the Rindler horizon the identity takes the form

δHm
ξ = −

κ

8πG
δAdisk +

∫

hemisphere

(δQξ − ξ ·Θ), (5.11)

where δAdisk is the area variation of the disk on the Rindler horizon and the boundary integral
on the right-hand side is over the hemispherical boundary of the half ball. We evaluated the
terms in this identity for a weak field variation produced by a point mass at a perpendicular
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distance δ from o, in d = 4 dimensions. The disk contribution is −mR/2 + mδ/2, while the
hemisphere contribution is mR/2 + mδ/2, up to O(1/R) corrections. In the infinite R limit,
the half-spherical ball fills the entire Rindler wedge at t = 0, and these two contributions add
to mδ, which equals the boost energy variation δHm

ξ
. This result too is peculiar. We would

have expected a first law with just the area variation of the Rindler horizon, as in the physical
process version of the first law for Rindler horizons, but that is not the result of this limiting
procedure.

A physical process version of the first law for Rindler space was stated in [10], and subse-
quently proven using the Einstein equation in [11,78,79]. This version of the first law describes
how the horizon area changes if an infinitesimal amount of Killing energy flows through the
horizon. The physical process first law is

δEξ =
κ

8πG
δA , (5.12)

where δA is the horizon area change and δEξ =
∫

HδTabξ
adΣb is the flux of Killing energy

across the horizon. This differs in two ways from the equilibrium version of the first law
(5.11): the hemispherical boundary integral is absent, and the sign of the coefficient of the
area variation term is opposite. In the physical process version it is assumed that the energy
flux crosses the horizon rather than escapes to infinity, which perhaps accounts for the fact
that only the area change of the Rindler horizon enters. As for the sign difference, this is due
to a different definition of the area change: the equilibrium version compares the areas of the
bifurcation surface in two infinitesimally nearby solutions (Rindler space and the spacetime
perturbed by the presence of matter), whereas the process version involves the difference
between the asymptotic area of the future horizon and the area of the bifurcation surface in
one solution involving a matter boost energy flux across the horizon.

The positive coefficient in the process version (5.12) arises because the generators of the
horizon are parallel at future null infinity (due to the teleological nature of the horizon),
so that the sign of the area change is the same as the same as the sign of the boost energy
flux. For example, when matter with positive Killing energy crosses the future horizon, the
horizon expansion decreases because of the attractive nature of gravity. In order to satisfy
the zero expansion boundary condition at infinity, the generators must initially have positive
expansion, and hence the area of the horizon cross-section increases towards the future.38

Finally, note that the area change in the process version can also be expressed as a com-
parison of two solutions,

(δA)phys. proc. = Afinal − Ainitial = δAfinal −δAinitial, (5.13)

since the area change is zero in the background Minkowski solution. If we consider variations
to solutions with the final horizon area held fixed, then (δA)phys. proc. = −δAinitial. With this
replacement, the sign of the coefficient in the process version becomes the same as that in the
equilibrium version.39

5.4 AdS-Rindler space

In empty AdS space there also exists a Rindler wedge, which admits a boost Killing vector.
Unlike in Minkowski space, accelerating observers in AdS start and end on the boundary at

38Ref. [79] also interpreted this in terms of an equilibrium variation version of the first law, which refers to the
variation of the asymptotic horizon area (assuming the bifurcation surface area is fixed) rather than the variation
of the bifurcation surface as in our version.

39For another viewpoint on the negative sign, note that the process version for the past horizon takes the form:
δEξ = −κδA/8πG, where κ is positive and Killing energy flows through the past horizon into the right Rindler
wedge. For example, if the Killing energy flux is positive, then the horizon generators converge, so that the area
of the past horizon decreases, hence δA= Afinal − Ainitial is negative.
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Figure 6: (a) A causal diamond centered at the origin of AdS space can be mapped to two
equally large AdS-Rindler wedges in two different Poincaré patches. The situation is depicted
for a coordinate radius R < L/

p
3 of the centered ball, since for larger values R > L/

p
3 the

diamond overlaps with the right Rindler wedge. (b) A small causal diamond and infinite
size diamond in AdS space. The infinite size diamond is called the Wheeler-DeWitt patch of
global AdS, and is also preserved by a conformal Killing vector.

a finite global Killing time. In the Penrose diagram the AdS-Rindler wedge therefore has the
shape of a half diamond rather than a full diamond (see Fig. 6a). The vertices of the diamond
are located at the AdS boundary, and are separated by an infinite proper time but a finite global
Killing time. Due to the presence of the conformal boundary, in addition to the area variation
one should take the boundary term

∫

∞[δQξ − ξ · θ (g,δg)] at spatial infinity into account in
the variational identity (3.26). This boundary term has been shown in [80, 81] to be equal
to the gravitational energy variation δEg

ζ
=
∫

∞δT g
abζ

a
flatdΣ

b, where T g
ab is the holographic

stress-energy tensor, and ζflat is the boundary conformal Killing vector given by (5.8). The
first law for AdS-Rindler space can subsequently be derived along the lines of Sec. 3.2 using
Wald’s variational identity, but now applied to the boost Killing vector.

The variational identity was established in [13] for general relativity, and later generalized
in [17] to an arbitrary higher-derivative theory of gravity. The bulk modular energy term δHm̃

ξ

was included in the first law in [18, 82], and it has been extended to allow for variations of
the cosmological constant in [58,59]. For general relativity the full first law reads

δĒg
ζ
=

1
8πG

�

κδA+ V̄ξδΛ
�

+δHm̃
ξ . (5.14)

The proper volume term is absent since the gravitational Hamiltonian variation δHg
ξ

vanishes

for a true Killing vector. In the energy variation δĒg
ζ

:=
∫

∞[δQξ −δΛQAdS
ξ
− ξ · θ (g,δg)] we
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have subtracted the boundary term in the AdS background due to a variation of Λ, such that it
stays finite when the cosmological constant is varied.40 From the RHS of the equation we have
also subtracted the outer boundary integral of the Noether charge variation δΛQAdS

ξ
, which for

general relativity is given by

δΛQAdS
ξ = −

d − 2
2Λ

QAdS
ξ δΛ=

δΛ

8πG
ωAdS
ξ , (5.15)

where ωAdS
ξ

is the Killing potential form in AdS. This first equality is due to the scaling

QAdS
ξ
∼ Ld−2, and the second equality follows from the definition of the Noether charge

jξ = dQξ and the Killing potential form ξ ·ε= dωξ, together with equations (3.2) and (3.11).
This amounts to replacing the thermodynamic volume by the background subtracted thermo-
dynamic volume: V̄ξ =

∫

∞(ωξ − ωAdS
ξ

) −
∫

Hωξ (similar to the expression in footnote 9).

Since ωξ = ωAdS
ξ

for the AdS-Rindler wedge, the boundary term at infinity cancels and only
the horizon surface integral remains. More explicitly, in [58] the background subtracted ther-
modynamic volume was found to be equal to: V̄ξ = −κA L2/(d−1), where A is the area of the
bifurcation surface of the AdS-Rindler horizon.

As in the Rindler case, although there exists a map from the finite causal diamond to the
AdS-Rindler wedge that takes the conformal Killing vector of the former to the true Killing
vector of the latter, the relation between the first laws for these two regions is not straightfor-
ward. Here we will just describe the nature of the map from a causal diamond in AdS space
to an AdS-Rindler wedge. This map consists of shifting the diamond towards the boundary
in the z direction, where z is the radial Poincaré coordinate. At the level of the (conformal)
isometries, the conformal Killing vector which preserves the diamond transforms under this
shift into the boost Killing vector of AdS-Rindler space. In Appendix D we find the Poincaré
coordinate expression for the conformal Killing vector that preserves a diamond in AdS with
center located at {t = 0, z = L, x i = 0} (see equation (D.17))

ζAdS =
1

2R

�p

L2 + R2(2z∂t + 2t∂z)− (L2 + t2 + ~x2 + z2)∂t − 2t x i∂i − 2tz∂z

�

. (5.16)

Now, by shifting the radial coordinate as z→ z+
p

L2 + R2, the conformal Killing vector above
turns into the boost Killing vector of an AdS-Rindler wedge [17]

ξAdS-Rindler =
1

2R

��

R2 − t2 − ~x2 − z2
�

∂t − 2t x i∂i − 2tz∂z

�

. (5.17)

At the boundary (z = 0) this reduces to the conformal Killing vector ζflat in (5.8). The boost
Killing vector becomes null on the Killing horizon H =

�

z2 = (R± t)2 − ~x2
	

, and vanishes at
the vertices

�

t = ±R, z = x i = 0
	

and hemisphere B =
�

t = 0, z2 + ~x2 = R2
	

. Notice, though,
that there are two solutions to these quadratic equations, one for which z takes positive values
and the other for which z takes negative values. Thus, one part of the causal diamond is
mapped to the AdS-Rindler wedge in the z > 0 Poincaré patch, and the other part is shifted to
the equally large Rindler wedge in the z < 0 Poincaré patch (see Fig. 6a).

5.5 Wheeler-DeWitt patch in AdS

The first law applies also to causal diamonds whose spatial slice is an entire slice of AdS. The
spacetime region covered by such an infinite diamond is commonly known as the “Wheeler-
DeWitt patch” of AdS (see Fig. 6b). In this limit, i.e. R/L →∞, the vector field ζAdS (5.16)

40We note that θ (g,δΛg) = 0 since the symplectic potential for general relativity is linear in ∇cδgab, and we
have δΛgab = −(δΛ/Λ)gab (see also appendix C of [59]).
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takes the following simple form in Poincaré coordinates

ζWdW = z∂t + t∂z . (5.18)

This limiting value also follows directly from expression (D.17) for ζAdS in terms of the gener-
ators of the conformal group. By taking the limit R/L→∞ of (3.45), we obtain the first law
for the Wheeler-DeWitt patch

δHm̃
ζ = −

κ

8πG

�

δA−
d − 2

L
δV
�

. (5.19)

In this limit the proper volume V ≈ A L/(d − 2) of the t = 0 timeslice in AdS is divergent, but
its variation can be finite. Here we have restricted to fixed cosmological constant, i.e. δΛ= 0.
Note that the proper volume variation is still present in the first law for the Wheeler-dDeWitt
patch, because the conformal Killing vector (5.18) is not a true Killing vector.

6 Discussion

In this paper we explored aspects of the gravitational thermodynamics of causal diamonds in
maximally symmetric spacetimes and their first order variations. Our starting point was the
notion that the maximally symmetric diamonds behave as thermodynamic equilibrium states.
This is initially motivated by the examples offered by the static patch of de Sitter spacetime
and the Rindler wedge of Minkowski spacetime, which are special cases of causal diamonds
admitting a true Killing field. Other maximally symmetric causal diamonds, in particular fi-
nite ones, admit only a conformal Killing vector. Since neither general relativity nor ordinary
matter are conformally invariant, it is not at all clear from the outset that the presence of a
conformal Killing symmetry should be adequate to support the interpretation of a physical
equilibrium state. However, it seems in all respects to be sufficient. This can be traced to
three important facts: (i) the conformal Killing vector is an “instantaneous" Killing vector at
the maximal volume slice, which (ii) behaves at the edge as a boost-like Killing vector, with
a well-defined surface gravity; and (iii) in a maximally symmetric diamond the vacuum of a
conformal matter field restricted to the diamond is thermal with respect to the Hamiltonian
that generates the conformal Killing flow.

We first established a classical Smarr formula and a “first law" variational identity for causal
diamonds in maximally symmetric spacetime, i.e. in either Minkowski, de Sitter, or Anti-de
Sitter spacetime. Since we include a cosmological constant and variations thereof, the “ther-
modynamic volume" [33–35] plays a role, generalized here to the case of a conformal Killing
vector. The name is appropriate for this quantity since it is thermodynamically conjugate to
the cosmological constant which is a type of pressure. It is defined, given a (conformal) Killing
vector ζ, by Vζ =

∫

Σ
ζ ·ε, which might well be called the “redshifted volume". For finite causal

diamonds it appears as such, while for infinite asymptotically Anti-de Sitter diamonds or black
hole spacetimes it diverges. We reviewed how finite relations have nevertheless been obtained
by subtracting the same divergence from both sides of an equation.

We then analyzed the thermodynamic interpretation of the first law, finding that the gravi-
tational temperature of a diamond is minus the Hawking temperature associated with the hori-
zon of the conformal Killing vector. The idea that a negative temperature should be assigned
to the static patch of de Sitter spacetime has been floated before [31], but not followed up. We
found that the notion appears sound, and indeed is required by the thermodynamics of causal
diamonds in general. The consistency with the positive Gibbons-Hawking temperature hinges
on the fact that, in gravitational thermodynamics, the matter contribution to the first law
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enters either as an energy contribution, or as an entropy contribution, unlike in ordinary ther-
modynamics. In the latter form, the matter entropy combines with the Bekenstein-Hawking
area entropy to comprise the generalized entropy. We showed that it works this way also for
quantum corrections. In establishing this for nonconformal matter we invoked a conjecture,
previously postulated in [21] and checked in [37,38], to relate the conformal boost energy to
the entanglement entropy.

We next reformulated the entanglement equilibrium proposal of [21], replacing the role
of generalized entropy maximization by a free energy extremization, and showed that in this
way, the need to fix the volume is no longer present. We find that extremization of the free
conformal energy Hζ − TSBH at fixed cosmological constant is equivalent to the stationarity
of the generalized entropy at fixed cosmological constant and fixed volume. Therefore, the
Einstein equation is implied by stationarity of the free energy at fixed cosmological constant,
without fixing the volume.

In the final section we considered limiting cases of causal diamonds, such as small dia-
monds, the de Sitter static patch, Rindler space, and AdS-Rindler space, and showed how our
general result for the first law appears and reduces to known results in these different settings.
In particular, we gained some interesting perspective on the first law in Rindler space, viewed
as the infinite size limit of a causal diamond.

In one of the appendices we established a link between conformal Killing time and York
time in a maximally symmetric causal diamond. The latter time is defined by the mean curva-
ture on a foliation by constant mean curvature slices. We found that these slices coincide with
the foliation orthogonal to the conformal Killing vector, and that the conformal Killing time
parameter also labels these surfaces.

We end with some questions and future research directions:

(i) Can the first law for causal diamonds be generalized to non-spherical regions and/or
non-maximally symmetric spacetimes? The particular form (3.45) applies only to max-
imally symmetric spaces, but the general form (3.28) holds in general. On the other
hand, the conformal Killing Hamiltonian variation may have no particular geometric
significance. Since the connection between the York time Hamiltonian and proper vol-
ume holds for any solution to Einstein gravity, however, perhaps this would produce a
geometrically meaningful form of the first law in the absence of a conformal Killing vec-
tor. Note also that the diamond itself doesn’t play an essential role in the first law, since
all the quantities are evaluated at the ball. Therefore, the thermodynamics might be a
property of the ball rather than the full diamond.

(ii) In the case of a large diamond in AdS, could there be a dual CFT interpretation of the first
law? Proposals exist for holographic CFT duals of the maximal volume and boundary
area in the bulk. The area of the cut-off boundary surface in Planck units may be dual to
the number of degrees of freedom of the cut-off CFT [83]. The proposed dual quantities
for the maximal volume are computational complexity [84], fidelity susceptibility [85],
and (for variations) the symplectic form on the space of sources in the Euclidean path
integral [86, 87]. One can also consider varying the cosmological constant, which is
equivalent to varying the number of degrees of freedom N in the CFT. The thermody-
namic volume is the conjugate to the cosmological constant, and in the AdS-Rindler case
it is dual to the chemical potential for N in a ball in the CFT [58]. It would be interesting
to find a variational relation in the CFT between these quantities dual to the bulk area,
maximal volume, and thermodynamic volume of the maximal slice.

(iii) Black hole thermodynamics, as well as de Sitter thermodynamics, has been well studied
from the viewpoint of the partition function, formulated as a path integral over Rie-
mannian geometries beginning with the work of Gibbons and Hawking [5]. Can the
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thermodynamics of causal diamonds similarly be formulated in terms of the Euclidean
path integral in the canonical and/or microcanonical ensemble? If so this should provide
a foundation for determining the stability of different ensembles, and for a systematic
treatment of the quantum corrections.
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A Conformal isometry of causal diamonds in (A)dS

We seek the conformal isometry that preserves a causal diamond in de Sitter space. Since the
property of being a conformal isometry is invariant under a Weyl rescaling of the metric, we
will use the form of the line element (2.4), leaving off the conformal factor sech2(r∗/L). Note
that any vector field of the form

ζ= A(u)∂u + B(v)∂v (A.1)

is then a conformal isometry of the dudv factor of the metric: Lζdudv = [A′(u)+B′(v)]dudv,
where Lζ is the Lie derivative along ζ. It will be a conformal isometry of the full metric
provided Lζ sinh2(r∗/L) = [A′(u) + B′(v)] sinh2(r∗/L). Using r∗ = (v − u)/2 we find that in
fact Lζ sinh2(r∗/L) = 1

L (B − A) sinh(r∗/L) cosh(r∗/L), so ζ is a conformal Killing field if

[A′(u) + B′(v)]L tanh(r∗/L) = B(v)− A(u) . (A.2)

For u = v, r∗ = 0 and thus tanh(r∗/L) = 0, so this implies B(v) = A(v). Then evaluating at
v = 0, we have r∗ = −u/2, so (A.2) becomes

[A′(u) + A′(0)]L tanh(u/(2L)) = A(u)− A(0) . (A.3)

The general solution to this equation is

A(u) = B(u) = a + b sinh(u/L) + c cosh(u/L) . (A.4)

To map the diamond onto itself, the flow of ζ must leave invariant the boundaries u = −R∗
and v = R∗. This implies A(±R∗) = 0, and hence A(u) = a1(cosh(u/L) − cosh(R∗/L)). The
requirement that the surface gravity κ of ζ be unity at the future conformal Killing horizon
implies κ = −B′(R∗) = − 1

L a1 sinh(R∗/L) = 1. Therefore, the conformal Killing vector that
preserves a diamond in dS and has unit surface gravity at the horizon is given by

ζ=
L

sinh(R∗/L)

�

(cosh(R∗/L)− cosh(u/L))∂u + (cosh(R∗/L)− cosh(v/L))∂v

�

. (A.5)

Expressed in terms of the standard t and r coordinates, ζ reads

ζ=
L2

R

�

�

1−
p

1− (R/L)2
p

1− (r/L)2
cosh(t/L)

�

∂t −
r
L

Æ

(1− (R/L)2) (1− (r/L)2) sinh(t/L)∂r

�

.

(A.6)
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A similar expression exists for the conformal Killing vector which preserves a causal diamond
in AdS, which can be obtained by sending L → i L. Moreover, in the flat space limit L →∞,
ζ reduces to the well-known expressions [17,21]

ζflat =
1

2R

��

R2 − u2
�

∂u +
�

R2 − v2
�

∂v

�

=
1

2R

��

R2 − t2 − r2
�

∂t − 2r t∂r

�

.
(A.7)

B Conformal Killing time and mean curvature

In this appendix we show that on slices of constant conformal Killing time s in a maximally
symmetric causal diamond, the trace K of the extrinsic curvature is constant, and we establish
the relation (3.50) between K and s. To this end, we first construct a coordinate system adapted
to the flow of ζ, and then we compute K on the constant s slices using this coordinate system.

Conformal Killing time is a function s satisfying ζ · ds = 1, but there are many such func-
tions. Given one choice of a constant s hypersurface, s is determined by integration along the
flow lines of ζ. We choose the t = 0 slice of the diamond to be the s = 0 slice. This slice is
everywhere orthogonal to ζ, hence ζa and ∇as are parallel on it. The Lie derivative Lζ∇as
vanishes by definition of s, and Lζζa = 2αζa, since ζ is a conformal Killing vector satisfying
Lζgab = 2αgab. The flow therefore preserves the proportionality of these two covectors, hence
all of the constant s slices are orthogonal to ζ.

Now choose a spherically symmetric coordinate x on the s = 0 slice, such that |d x | = |ds|
and x = 0 at r = 0, and extend it to the diamond by the flow of ζ, i.e. so that ζ · d x = 0. Both
ds and d x are invariant under the conformal Killing flow, and they are orthogonal and have
equal norms at s = 0, hence these conditions hold for all values of s. The line element (2.4)
therefore takes the form

ds2 = C2(s, x)(−ds2 + d x2) + r2dΩ2
d−2 . (B.1)

The conformal Killing equation then implies that r = Cρ, where ρ = ρ(x) is a function of x
alone, so we have

ds2 = C2(s, x)[−ds2 + d x2 +ρ2(x)dΩ2
d−2] . (B.2)

In this coordinate system the future horizon of the diamond is located at s =∞, and the past
horizon is at s = −∞ (see Fig. 2 for an illustration of constant s and x surfaces). Further, we
have ζ = ∂s, the surface gravity is κ = −C−1∂sC

�

�

s→∞, and the unit timelike vector normal to
the constant s slices is u = C−1∂s. The divergence∇aua is the trace K of the extrinsic curvature
of these slices,

K = (d − 1)C−2∂sC = (1− d)∂sC
−1 . (B.3)

It remains to show that ∂sC
−1 is independent of x , and to evaluate it explicitly.41

We proceed by finding the relation between the null coordinates (u, v) defined in (2.2) and
the null coordinates ū = s − x and v̄ = s + x . The form of the metric indicates that ū = ū(u)
and v̄ = v̄(v), and the conditions ζ · ds = 1 and ζ · d x = 0 imply ζ · dū = 1 = ζ · d v̄. Using the
expression (A.5) for ζ (which is the conformal Killing vector which has unit surface gravity),
we find the coordinate relations

eū =
sinh[(R∗ + u)/2L]
sinh[(R∗ − u)/2L]

, eu/L =
cosh[(R∗/L + ū)/2]
cosh[(R∗/L − ū)/2]

, and (u→ v) . (B.4)

41We note that the mean curvature can also be expressed as K = (d − 1)α/|ζ|, since α =∇ · ζ/d = C−1∂sC and
|ζ|= C .
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With the help of Mathematica we then find

C−1 =
cosh s + cosh(x) cosh(R∗/L)

L sinh(R∗/L)
, ρ = sinh x . (B.5)

With this equation forρ the metric between brackets in (B.2) becomes that of conformal Killing
time cross hyperbolic space, R×Hd−1.42 From this expression for C−1 it follows that

K =
1− d

L sinh(R∗/L)
sinh s = (d − 1)α̇|s=0 sinh s , (B.6)

where we used (2.11) in the last equality. This establishes in particular that K is constant on
the constant s slices.43 Instead of using (2.11) we could use α =∇ · ζ/d = −C∂sC

−1 to write
α̇= ua∇aα= −C−1∂s(C∂sC

−1). Inserting (B.5) then yields α̇|s=0 = −1/[L sinh(R∗/L)], which
again establishes the fact that α̇|s=0 is independent of x .

Finally, as a side comment, let us explain how the conformal Killing flow is related to
the “new York” transformation of [86, 87]. In terms of the induced metric and the extrinsic
curvature of a Cauchy surface the latter transformations reads: δY hab = 0 and δY Kab = α̃hab.
This transformation is not a diffeomorphism in general, so it is not expected to be the same as
the variation induced by the conformal Killing vector: δζφ = Lζφ. In our setup the extrinsic
curvature is given by Kab := 2∇(aub) = (C−2∂sC)hab = αhab/|ζ|. The Lie derivative of the
induced metric hab := uaub + gab on Σ and of the extrinsic curvature are given by

Lζhab = 2αhab , LζKab = (C−2∂ 2
s C)hab = (α̇+α2/|ζ|)hab . (B.7)

The first equation follows from the definition (2.7) of a conformal Killing vector, and from
Lζua = αua, where ua = ζa/|ζ|. The second equation follows from the expression above for
Kab and from the fact that hab(s, x) = C2(s, x)σab(x), whereσab(x) is the metric on hyperbolic
space Hd−1. Since α= 0 on Σ, we find that on the extremal slice of the diamond

Lζhab

�

�

Σ
= 0 , LζKab

�

�

Σ
= α̇|s=0hab . (B.8)

This is of the same form as the new York transformation, if we identify α̃ = α̇
�

�

s=0. In other
words, the new York transformation and the conformal Killing transformation only coincide
at the extremal surface Σ.

C Zeroth law for bifurcate conformal Killing horizons

A vector field ζa is a conformal Killing vector of the metric gab if Lζgab = 2αgab for some
function α. A conformal Killing horizon H is a null hypersurface whose null generators are
orbits of a conformal Killing field. The notion of surface gravity for Killing horizons can be
extended to conformal Killing horizons [27–29], however definitions that are equivalent in
the former case (see e.g. Sec. 12.5 in [88]) are not generally equivalent in the latter case.
One of these definitions has two properties not shared by the other definitions: it is (i) Weyl
invariant, and (ii) constant on the horizon. In this appendix we establish these properties, the
second one assuming H has a bifurcation surface B where ζa vanishes. We also show that

42The limit L → ∞, R∗ → R of (B.4) and (B.5) yields the result for a diamond in flat spacetime:
ū = ln[(R+ u)/(R− u)], u = R tanh(ū/2), and C = R/(cosh s + cosh x). The limit R → L, R∗ → ∞ leads to
the result for the static patch of de Sitter spacetime: ū = u/L, and C = L/cosh x . And by replacing L → i L and
setting R∗ = Lπ/2 we obtain for the Wheeler-DeWitt patch of AdS: C = L/ cosh s, where L is the AdS radius.

43A degenerate case is the dS static patch (R∗ →∞), since in that case K = 0 for all s, i.e. all the CMC slices
have zero mean curvature, so there is no York time flow for the dS static patch.
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∇aζb
B
= κnab, where κ is the surface gravity and nab is the binormal to B. In particular, the

Killing equation holds at B.
The conformal Killing horizon is a hypersurface defined by the equation ζ2 = 0. The

gradient∇aζ
2 is normal to this surface; and, since it is a null surface, the normal is proportional

to ζa, so

∇a

�

ζbζb

� H
= −2κζa (C.1)

for some function κ. Under a Weyl transformation, gab → Ω2 gab, ζa remains a conformal
Killing field, and H a conformal Killing horizon. Moreover both sides of (C.1) transform ho-
mogeneously, acquiring a factor Ω2. This definition of the surface gravity κ is therefore Weyl
invariant [29].

The zeroth law for stationary black holes asserts that the surface gravity is constant over
the entire event horizon. This was originally proven in [2] by assuming the Einstein field equa-
tions and the dominant energy condition for matter.44 A simpler, and in a sense more general,
proof of the zeroth law for black hole horizons was given by Kay and Wald in [91].45 This
proof applies to Killing horizons that contain a bifurcation surface where the Killing vector
vanishes — also called bifurcate Killing horizons — and it holds independently of any gravi-
tational field equation or energy condition. Here we extend this proof to bifurcate conformal
Killing horizons:

Zeroth Law. Let H be a (connected) conformal Killing horizon with bifurcation surface B. Then
the surface gravity κ, defined in (C.1), is constant on H.

Proof: We show first that κ is constant along the generators of H, and then that its value also
does not vary from generator to generator.

That κ is constant on each generator can be expected, since the flow of the conformal
Killing vector leaves the metric unchanged up to a Weyl transformation, and κ is Weyl invari-
ant. To make this into a computational proof, we take the Lie derivative of both sides of (C.1)
along ζ. On the lhs we have

Lζ∇aζ
2 =∇aLζζ2 =∇aLζ(gbcζ

bζc) =∇a(2αζ
2)

H
= 2α∇aζ

2 H
= −4ακζa. (C.2)

On the rhs we have
Lζ(−2κζa) = (−2Lζκ− 4ακ)ζa . (C.3)

Since (C.2) and (C.3) must be equal, we conclude that

Lζκ
H
= 0, (C.4)

i.e. κ is constant along the flow of ζa and hence along each null generator of H.
Next, to prove that κ does not vary from generator to generator, we will show that it is

constant on the bifurcation surface B. We begin by noting that, since ζa is a conformal Killing
vector, we have

∇aζb = αgab +ωab, (C.5)

where ωab = −ωba is an antisymmetric tensor. If ma is tangent to B, then the contraction
of this equation with mamb yields zero on the lhs (since ζb = 0 on B), and yields αm2 on
the rhs. It follows that the conformal factor α vanishes on B, and thus the Killing equation

44There exists another proof of the zeroth law by Carter [89] and Rácz and Wald [90] that does not depend
on the Einstein equation or an energy condition. The proof assumes the black hole horizon is a Killing horizon
and the black hole is either (i) static or (ii) stationary-axisymmetric with “t −φ” reflection isometry. It would be
interesting to see whether this proof can be generalized to conformal Killing horizons.

45Gibbons and Geroch are acknowledged, respectively, in [91] for this version of the zeroth law and for the proof.
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∇(aζb)
B
= 0 holds there. In addition, the contraction of the lhs of (C.5) with a single vector ma

vanishes on B, so maωab
B
= 0 for all ma tangent to B, which implies that ωab is proportional

to the binormal nab to B, i.e. ∇aζb
B
= βnab for some function β . To evaluate β , contract both

sides of this equation with a null vector kb that is tangent to H. On the lhs we have kb∇aζb,
which according to (C.1) off of B is equal to −κka (since ka is proportional to ζa). Taking

the limit as B is approached along the horizon thus yields kb∇aζb
B
= −κka. On the rhs we

have βnabkb = −βka, so it follows that β = κ, if the sign of the binormal is chosen so that
nabkb = −ka.46 This establishes the useful relation47

∇aζb
B
= κnab. (C.6)

To demonstrate that κ is constant on B, we act on both sides of (C.6) with nabmc∇c . Since
nabnab = −2 is constant on B, we obtain

nabmc∇c∇aζb
B
= −2ma∇aκ. (C.7)

Finally, a conformal Killing vector satisfies a generalization of the usual Killing identity,

∇c∇aζb = ζdRdcab + gab∇cα+ gbc∇aα− gac∇bα . (C.8)

The contraction of the rhs of this identity with nabmc vanishes on B, since ζd and α vanish
on B, and nabmb = 0. It follows that the lhs of (C.7) vanishes, which establishes that κ is
constant on B. �

D Conformal group from two-time embedding formalism

It is well-known that d-dimensional Minkowski spacetime can be embedded inR2,d as a section
of the light cone through the origin, described by the equation (see e.g. [92])

X · X = −
�

X−1
�2 −

�

X 0
�2

+
�

X 1
�2

+ · · ·+
�

X d
�2

= 0 . (D.1)

Here X A are the standard flat coordinates on R2,d . The embedding space naturally induces a
metric on a hyper-lightcone section, for example the section X−1+X d = 1 realizes the standard
Minkowski metric on R1,d−1. In fact, any conformally flat manifold can be embedded in R2,d

as a section of the light cone, because under the coordinate transformation eX A = Ω(x)X A the
induced metric becomes

des2 = (X dΩ+ΩdX )2 = Ω2dX · dX = Ω2(x)ds2 , (D.2)

where we used the light cone properties X ·dX = 0 and X ·X = 0. This means that the induced
metrics on two different hyper-lightcone sections are related by a Weyl transformation.

This embedding construction is particularly useful for characterizing the conformal group
O(2, d) of Minkowski space, since it corresponds to the symmetry group that preserves a light
cone in R2,d . Moreover, it follows from the observation above that the conformal group gen-
erators of any conformally flat spacetime can be obtained from the embedding space. In this
appendix we will use the two-time embedding formalism to derive all conformal Killing vec-
tors of dS and AdS space – which are both conformally flat – and, in particular, we will write
the conformal Killing vector (A.6) in terms of embedding coordinates.

46Note that this means that the sign of κ is opposite for the two sheets of a bifurcate Killing horizon.
47This relation is also needed to derive the expressions (3.6) and (3.27) for the Noether charge (see section 7

in [43]).
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D.1 Conformal Killing vectors of de Sitter space

The embedding coordinates for the static line element (2.1) of de Sitter space are

X 0 =
p

L2 − r2 sinh(t/L) , X−1 = L ,

X d =
p

L2 − r2 cosh(t/L) , X i = r Ωi , i = 1, . . . , d − 1 ,
(D.3)

with Ω1 = cosθ1,Ω2 = sinθ1 cosθ2, ..., Ωd−1 = sinθ1 sinθ2 · · · sinθd−2 and the condition
∑d−1

i=1 (Ω
i)2 = 1. Note that we have promoted the de Sitter length scale to a coordinate, which

is a convenient trick to obtain the conformal group. If the relation X−1 = L is inserted back
into (D.1), then the embedding constraint turns into the equation for a hyperboloid in R1,d ,
which is the standard embedding of de Sitter space.

The conformal group of d-dimensional Lorentzian de Sitter space is O(2, d), whereas the
isometry group is O(1, d). Hence, de Sitter space admits 1

2 d(d+1) true Killing vectors and d+1
conformal Killing vectors which do not generate isometries (in total there are 1

2(d + 1)(d + 2)
conformal generators). The generators of O(2, d) are boosts and rotations in embedding space,
and hence take the form

JAB = i (XA∂X B − XB∂X A) . (D.4)

Coordinates with lower indices are defined as XA = ηABX B, such that for instance the generator
J01 = −i

�

X 0∂X 1 + X 1∂X 0

�

is a proper boost. The generators satisfy the usual Lorentz algebra
commutation relations

[JAB, JC D] = i (ηADJBC +ηBC JAD −ηAC JBD −ηBDJAC) . (D.5)

In embedding space the true Killing vectors correspond to boosts and rotations in the X 0, . . . , X d

directions, since these generators preserve the light cone section, whereas the extra d +1 con-
formal Killing vectors are boosts and rotations in the X−1 direction, which do not preserve the
section.

We are now ready to compute the conformal generators explicitly. In terms of static coor-
dinates the true Killing vectors of de Sitter space are given by

iJ0d = L∂t

iJ0i =
LrΩi cosh(t/L)
p

L2 − r2
∂t +

p

L2 − r2Ωi sinh(t/L)∂r +
p

L2 − r2

r
sinh(t/L)∇i

iJid =
LrΩi sinh(t/L)
p

L2 − r2
∂t +

p

L2 − r2Ωi cosh(t/L)∂r +
p

L2 − r2

r
cosh(t/L)∇i

iJi j = Ω j∂Ωi −Ωi∂Ω j ,

(D.6)

where ∇i = ∂Ωi −ΩiΩ
j∂Ω j is the covariant operator48 on the unit sphere Sd−2, and the other

48 In terms of the angular coordinates θ1, . . . ,θd−2 the covariant operator on the unit sphere is given by

∇1 = − sinθ1∂θ1
, ∇2 = cosθ1 cosθ2∂θ1

−
sinθ2

sinθ1
∂θ2

, . . . ,

∇d−2 =
d−3
∑

j=1

cosθ j sinθ j · · · sinθd−3 cosθd−2

sinθ1 · · · sinθ j
∂θ j
−

sinθd−2

sinθ1 · · · sinθd−3
∂θd−2

,

∇d−1 =
d−3
∑

j=1

cosθ j sinθ j · · · sinθd−3 sinθd−2

sinθ1 · · · sinθ j
∂θ j

+
cosθd−2

sinθ1 · · · sinθd−3
∂θd−2

.
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d + 1 conformal generators take the form

iJ−10 =
L2 cosh(t/L)
p

L2 − r2
∂t +

r
L

p

L2 − r2 sinh(t/L)∂r

iJ−1i =
L2 − r2

L
Ωi∂r +

L
r
∇i

iJ−1d = −
L2 sinh(t/L)
p

L2 − r2
∂t −

r
L

p

L2 − r2 cosh(t/L)∂r .

(D.7)

Finally, by comparing expression (A.6) for the conformal Killing vector that preserves a causal
diamond in dS with the previous conformal generators, we see that ζ can be written as a linear
combination of J0d and J−10

ζdS =
i L
R

�

J0d −
Æ

1− (R/L)2J−10

�

. (D.8)

D.2 Conformal Killing vectors of Anti-de Sitter space

Global coordinates for d-dimensional Anti-de Sitter space are defined by

X−1 =
p

L2 + r2 cos(t/L) , X d = L ,

X 0 =
p

L2 + r2 sin(t/L) , X i = r Ωi , i = 1, . . . , d − 1 .
(D.9)

Note that here we have set a space coordinate X d , instead of a time coordinate X−1, equal
to the curvature scale L. In this way the embedding constraint (D.1) turns into the familiar
embedding equation for AdS, which is that of a hyperboloid in R2,d−1. It is manifest from
this embedding that the isometry group of Lorentzian AdSd is O(2, d − 1), whereas the full
conformal group is the same as that of dSd , i.e. O(2, d).

In terms of these coordinates, the induced metric on the light cone reads

ds2 = −[1+ (r/L)2]d t2 + [1+ (r/L)2]−1dr2 + r2dΩ2
d−2 . (D.10)

For r ≥ 0 and 0 ≤ t < 2πL this solution covers the entire hyperboloid. However, to avoid
closed timelike curves AdS is usually defined as the universal cover of the hyperboloid. This
means that the timelike cycle is unwrapped, i.e. the range of the coordinate t is extended:
−∞< t <∞.

The generators of the conformal group take the following form in global AdS coordinates

iJ−10 = L∂t

iJ−1i = −
LrΩi sin(t/L)
p

L2 + r2
∂t +

p

L2 + r2Ωi cos(t/L)∂r +
p

L2 + r2 cos(t/L)
r

∇i

iJ0i =
LrΩi cos(t/L)
p

L2 + r2
∂t +

p

L2 + r2Ωi sin(t/L)∂r +
p

L2 + r2 sin(t/L)
r

∇i

iJi j = Ω j∂Ωi −Ωi∂Ω j

iJ−1d = −
L2 sin(t/L)
p

L2 + r2
∂t −

r
L

p

L2 + r2 cos(t/L)∂r

iJ0d =
L2 cos(t/L)
p

L2 + r2
∂t −

r
L

p

L2 + r2 sin(t/L)∂r

iJid =
L2 + r2

L
Ωi∂r +

L
r
∇i .

(D.11)
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The first four generators are true Killing vector fields, whereas the latter three are conformal
Killing fields. The conformal Killing vector that preserves a causal diamond centered at the
origin r = 0 of AdS can be obtained from (A.6) by analytically continuing the curvature scale
L→ i L. One then finds the following expression in terms of the conformal generators

ζAdS =
i L
R

�Æ

1+ (R/L)2J0d − J−10

�

. (D.12)

Notice that for a causal diamond of infinite size, i.e. R/L →∞, the conformal Killing field ζ
reduces to the conformal generator iJ0d . The t = 0 time slice of this diamond covers the entire
AdS time slice, and at the center of this diamond ζ is equal to the timelike Killing vector L∂t .

Another useful set of coordinates for AdS are the Poincaré coordinates, which are defined
by

X−1 =
1
2z

�

L2 − t2 + ~x2 + z2
�

, X 1 =
1
2z

�

L2 + t2 − ~x2 − z2
�

,

X 0 = Lt/z , X i = Lx i/z , X d = L , i = 2, . . . , d − 1 .
(D.13)

The induced metric in Poincaré coordinates is

ds2 =
L2

z2

�

−d t2 + d ~x2 + dz2
�

, (D.14)

where the coordinates t and x i range from −∞ to∞. The coordinate z behaves as a radial
coordinate and divides the hyperboloid into two charts (z ≶ 0). The Poincaré patch of AdS is
typically taken to be the chart z > 0, which covers one half of the hyperboloid. The location
z = 0 corresponds to the conformal boundary of AdS.

It is convenient to introduce the following generators of the conformal group

D = J−11 , Pµ = Jµ−1 − Jµ1 ,

Mµν = Jµν , Kµ = Jµ−1 + Jµ1 ,
(D.15)

where µ= 0, i, or d, corresponding to the coordinates (t, x i , z) respectively. On the conformal
boundary of AdS these generators turn into the standard conformal generators of flat space
(where D denotes the generator of dilatations, Pµ of translations, Mµν of Lorentz transforma-
tions, and Kµ of special conformal transformations). In Poincaré coordinates the conformal
generators are equal to

iD = −
�

t∂t + x i∂i + z∂z

�

,

iPt = −L∂t , iPi = −L∂i , iPz = −L∂z ,

iKt =
−1
L

�

(t2 + ~x2 + z2)∂t + 2t(x i∂i + z∂z)
�

,

iKi =
1
L

�

(t2 − ~x2 − z2)∂i + 2x i(t∂t + x j∂ j + z∂z)
�

,

iKz =
1
L

�

(t2 − ~x2 + z2)∂z + 2z(t∂t + x i∂i)
�

,

iMt i = x i∂t + t∂i , iMiz = z∂x − x∂z ,

iMtz = z∂t + t∂z , iMi j = x j∂i − x i∂ j .

(D.16)

The generators Pz , Kz , Mtz and Miz are conformal Killing vectors, and the other generators are
true Killing vectors. With this list of conformal generators at hand, we are able to write the
conformal Killing field (D.12) that preserves a diamond in AdS in terms of Poincaré coordinates

ζAdS =
i L
R

�Æ

1+ (R/L)2J0d + J0−1

�

=
i L
R

�

Æ

1+ (R/L)2Mtz +
1
2
(Pt + Kt)

�

=
1

2R

�p

L2 + R2(2z∂t + 2t∂z)− (L2 + t2 + ~x2 + z2)∂t − 2t x i∂i − 2tz∂z

�

.
(D.17)
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This conformal Killing vector field generates a modular flow inside a causal diamond D in the
Poincaré patch of AdS. The center of the diamond D is located at {t = 0, z = L, x i = 0}, and
its boundaries are given by

past and future vertices: p, p′ =
¦

t = ±R, z =
p

L2 + R2, x i = 0
©

,

edge/bifurcation surface: B =
¦

t = 0, z =
p

L2 + R2 ±
p

R2 − ~x2
©

,

past null boundary: Hpast =
¦

z =
p

L2 + R2 ±
Æ

(R+ t)2 − ~x2
©

,

future null boundary: Hfuture =
¦

z =
p

L2 + R2 ±
Æ

(R− t)2 − ~x2
©

.

One can readily check that the conformal Killing vector (D.17) vanishes at p, p′ and B, and
acts as a null flow on Hpast/future. Hence this causal diamond is entirely contained within the
z > 0 Poincaré patch.

One can, of course, shift the causal diamond such that its center is located at a different
position. An interesting special case is the diamond which is centered at the boundary of AdS,
i.e. z = 0, and whose past and future null boundaries coincide with the Killing horizon of AdS-
Rindler space. This can be established by sending z→ z +

p
L2 + R2 in (D.17). The conformal

Killing vector then turns into the boost Killing vector of AdS-Rindler space, given in [17]

ξAdS-Rindler =
i L
2R

��

1− (R/L)2
�

J0−1 +
�

1+ (R/L)2
�

J01

�

=
i L
2R

�

Kt − (R/L)2Pt

�

=
1

2R

��

R2 − t2 − ~x2 − z2
�

∂t − 2t x i∂i − 2tz∂z

�

.
(D.18)

Note that the normalization of the boost Killing vector is different than in [17], since we
have set the surface gravity of the Killing horizon equal to one. The center of this diamond is
located at {t = 0, z = 0, x i = 0}, and the past and future vertices are at

�

t = ±R, z = 0, x i = 0
	

.
Moreover, the bifurcation surface corresponds to the hemisphere B =

�

t = 0, z2 + ~x2 = R2
	

.
There exist two solutions to this quadratic equation, i.e. z = ±

p
R2 − ~x2, so there are in fact

two equal-sized Rindler wedges in AdS that are preserved by this boost Killing vector (see Fig.
6a).

E Conformal transformation from Rindler space to causal diamond

It is well known in the literature [12,22,23] that there exists a special conformal transforma-
tion that maps Rindler space to a causal diamond in flat space. In this appendix we describe
this transformation and derive the conformal Killing vector that preserves the diamond from
the boost Killing vector of Rindler space. In particular, we focus on the conformal transforma-
tion from the right Rindler wedge to the diamond whose left edge is fixed at the bifurcation
surface of the Rindler wedge. (See Fig. 4b for a depiction of this diamond inside the right
Rindler wedge.) The special conformal transformation and its inverse are given by

xµ =
Xµ − X · X Cµ

1− 2X · C + X · X C · C
, Xµ =

xµ + x · x Cµ

1+ 2 x · C + x · x C · C
, (E.1)

where Cµ = (0,−1/(2R), 0, 0), and xµ and Xµ are Cartesian coordinates in Minkowski space.
This is just a shift of the map mentioned in [12] (and we included a minus sign in Cµ, correcting
a typo in their paper). The transformation Xµ → xµ maps the Minkowski metric to a metric
on the diamond given by ds2 = Ω2ηµνd xµd xν = ηµνdXµdX ν, where the conformal factor is
given by

Ω= 1− 2X · C + X · X C · C = [1+ 2x · C + x · x C · C]−1 . (E.2)
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Note that the conformal transformation maps spatial infinity i0 = (T = 0, X 1 =∞) to the
right edge of the diamond (t = 0, x1 = 2R), and the origins are also mapped to each other.

Further, with the help of Mathematica, we find that under the mapping (E.1) the boost
Killing field

ξ= X 1∂T + T∂X 1 (E.3)

becomes the conformal Killing field that preserves the diamond

ζ=
1

2R

��

R2 − (x1 − R)2 − (x i)2 − t2
�

∂t − 2t(x1 − R)∂x1 − 2t x i∂i

�

, (E.4)

where i = 2, . . . , d − 1. By replacing x1 by x1 + R one obtains the standard conformal Killing
vector (A.7) that preserves a diamond centered at the origin of flat space. At T = t = 0 the
norm of the two vector fields (E.3) and (E.4) is

|ξ|
(T=0)
= X 1 , |ζ|

(t=0)
=

X 1

Ω
= x1 −

~x2

2R
. (E.5)

The former blows up at spatial infinity i0, whereas the latter vanishes at the edge of the di-
amond (x1 − R)2 + (x i)2 = R2. This is because, although both X 1 and Ω diverge at spatial
infinity, their ratio vanishes in this limit.

F Acceleration of the conformal Killing flow

In this appendix we show that the orbits of the conformal Killing field that preserves a maxi-
mally symmetric causal diamond have uniform acceleration inside the diamond. In the (s, x)
coordinate system, defined in Appendix B, the conformal Killing vector that preserves the di-
amond is ζ = ∂s. The flow lines of ζ coincide at the past and future tip of the diamond, but
never cross inside the diamond (see Fig. 2). The velocity vector of the conformal Killing flow is
ua = ζa/

p

−ζ · ζ = δs
aC−1, and the acceleration vector is defined as

ab = ua∇aub = δx
bC−3∂x C . Using the expression (B.5) for C = C(s, x), we find that the

proper acceleration a :=
p

abab is equal to

a(x) = C−2∂x C = R−1 sinh x . (F.1)

Note that the proper acceleration depends only on x , which is constant on the conformal
Killing orbits.49 The central orbit at x = 0 is unaccelerated, and at the edge where x →∞
the acceleration diverges.

Finally, we note that the surface gravity associated to ζ is equal to the redshifted proper
acceleration evaluated at the bifurcation surface B, i.e.

κ= lim
x→∞

Ca = 1 . (F.2)

This formula for the surface gravity is known to be equivalent to other definitions of surface
gravity for Killing horizons (see e.g. [88] p. 332). For bifurcate conformal Killing horizons,
following the same steps as [88], the acceleration definition (F.2) can be shown to be equivalent
to the definition (C.1), but only in the limit as the bifurcation surface is approached, since the
conformal Killing field is instantaneously a true Killing field at B (see Appendix C).

49We were unable to anticipate this surprising fact.
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