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ABSTRACT: In this paper, we present a computational reverse-
engineering analysis for scattering experiments (CREASE) based
on genetic algorithms and molecular simulation to analyze the
structure within self-assembled amphiphilic polymer solutions.
For a given input comprised of scattering intensity profiles and
information about the amphiphilic polymers in solution,
CREASE outputs the structure of the self-assembled micelles
(e.g., core and corona diameters, aggregation number) as well as
the conformations of the amphiphilic polymer chains in the
micelle (e.g., blocks’ radii of gyration, chain radii of gyration,
monomer concentration profiles). First, we demonstrate
CREASE’s ability to reverse-engineer self-assembled nanostruc-
tures for scattering profiles obtained from molecular simulations (or in silico experiments) of generic coarse-grained bead−
spring polymer chains in an implicit solvent. We then present CREASE’s outputs for scattering profiles obtained from small-
angle neutron scattering (SANS) experiments of poly(D-glucose carbonate) block copolymers in solution that exhibit assembly
into spherical nanoparticles. The success of this method is demonstrated by its ability to replicate, quantitatively, the results
from in silico experiments and by the agreement in micelle core and corona sizes obtained from microscopy of the in vitro
solutions. The primary strength of CREASE is its ability to analyze scattering profiles without an off-the-shelf scattering model
and the ability to provide chain and monomer level structural information that is otherwise difficult to obtain from scattering
and microscopy alone.

I. INTRODUCTION

Over the past two decades, nanoscience has evolved from a
vision to a nanotechnological reality, yet only recently has the
capability of theory and computation evolved to the point of
being able to understand and predict composition−structure-
property phenomena to guide experimental designs. One
particular field where this powerful synergy of theory,
simulation, and experiments has been harnessed is in self-
assembly of amphiphilic block copolymers (BCPs) in
solution.1−7 BCPs self-assemble in solution to form well-
defined nanostructures that have been used in a broad range of
applications within healthcare and medicine,8 sensing,9

separations,10 electronics,11 and environmental sciences.12,13

To tailor the assembled structures for these applications, many
computational and experimental studies have focused on
understanding how the polymer design (e.g., polymer
chemistry,14,15 composition,16−19 and architecture20,21) and
solution conditions (e.g., temperature, solvent,14,22,23 pH,24−26

and small-molecule addition27) impact the assembly. A critical
step to accomplish this goal of designing BCPs and optimizing
nanostructures involves the unambiguous characterization of
the self-assembled structure. The next frontier involves
harnessing the power of simulations to analyze in depth the
molecular details that are contained within the data from
traditional experimental characterization techniques.
To characterize the structure of BCP micelles, experimen-

talists rely on microscopy and scattering techniques, such as
small-angle X-ray and neutron scattering. In particular, small-
angle neutron scattering (SANS) is a powerful tool for probing
BCP-assembled structures at various length scales from local
chain conformations (e.g., radius of gyration) to micelle
dimensions (e.g., aggregation number, micelle size). The
measured quantity from a SANS experiment is the scattering
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intensity, I(q), of neutrons elastically colliding with the sample
as a function of the wavevector, q, that encodes information on
correlations between different scattering species in reciprocal
space. These SANS results complement the real-space but
short-length and low-contrast information provided by trans-
mission electron microscopy (TEM). SANS is particularly
useful in the analysis of BCP micelles because different
chemical blocks can be selectively deuterated to contrast-
match with the solvent and highlight chain- and micelle-level
features of the noncontrast-matched components,28 allowing
for selective core or corona signals.29

Interpretation of I(q) typically relies on (mathematical)
models that have been developed for some of the canonical
shapes of the assembled micelles.29 In particular, models for
BCP micelles developed by Pedersen and co-workers30 rely on
assumptions regarding the nature and shape29 of the core (e.g.,
spherical shape, with possible swelling by solvents22), corona
chain conformations (e.g., Gaussian30,31 and semiflexible with
excluded volume effects31), and micelle size polydispersity
effects.30,32,33 Correct usage and fitting of I(q) with these
models requires extensive experience, and correct interpreta-
tion of the fit results may not be obvious to a nonexpert.
Additionally, chain-level structural features from these fits are
contingent on the assumptions (e.g., Gaussian chain
conformations) that the model is based on. To reliably
interpret SANS measurements, one needs an optimization
method that is able to tie the features of I(q) directly to the
micelle, chain, and monomer features without needing off-the-
shelf analytical models. To address this need, we present in this
article an approach based on genetic algorithms and coarse-
grained molecular simulations.
A genetic algorithm (GA) is a robust global optimization

method34,35 that has been used in materials discovery36,37 and
for designing polymeric,38−42 colloidal,43 and inorganic44−47

materials. GA is inspired by evolutionary processes where the

“fitness”a function that encodes the desirability of a set of
parameters toward a goalof a population of individuals is
maximized by selecting “good” individuals and applying
genetic operators on selected individuals to improve the
overall population fitness while maintaining diversity in order
to avoid local optima.34,35 This last feature makes it useful in
problems with inherently complex fitness functions, such as the
problem of extracting micelle properties from I(q).
Coarse-grained molecular dynamics (CGMD) simulations

have been used extensively to understand the fundamentals of
BCP assembly in solution, shown in review articles48,49 as well
as our recent studies,50−55 including the relationship between
chain composition, sequence (e.g., diblock, triblock), archi-
tecture, concentration, and solvent quality on micelle shape,
size, and chain conformations. With an appropriate level of
coarse graining, CGMD simulations capture relevant length
and time scales of the macromolecular solutions to shed light
on both the (relatively) macroscopic-assembled structure and
microscopic chain-level features that are usually hard to
observe directly from experiments, including chain conforma-
tions and spatial arrangement of the different monomers in a
micelle.
We introduce in this paper a two-stage computational

method based first on a GA stage for evaluation of micelle-level
structure from the I(q) and then a second stage involving
CGMD simulation to add finer resolution to micelle-level
structure and attain chain- and monomer-level structural detail.
We name this method computational reverse-engineering
analysis for scattering experiments (CREASE). In this paper,
we present the details and implementation of CREASE for the
specific case of spherical BCP micelles. First, we evaluate the
method against simulated experiments, where both micelle-
level and chain-level features are known, to test the predictive
power and understand possible drawbacks of CREASE. We
then proceed to evaluate CREASE with experimental SANS

Figure 1. Schematic flow diagram of computational reverse-engineering analysis for scattering experiments.
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measurements of poly(D-glucose carbonate) (PGC)-based
amphiphilic diblock copolymer micelles. Beyond this proof-
of-concept, in future work, we expect CREASE to be extended
to other systems with polymer chain assembly by using
different global optimization methods or become integrated
with different machine learning algorithms to improve the level
of structural detail and the efficiency of the parameter space
explored. Additionally, different levels of coarse-grained
models or atomistic simulations could be used to extract the
desired level of structural detail.
The breadth of the work presented in this paper extends

from the synthesis of natural product-derived and recyclable
glucose carbonates to their supramolecular assembly in
solution, as analyzed experimentally, with a focus on method
development that allows for reverse engineering of simulated
nanoscopic assemblies. The future promise of this dual
experimental−computational effort is in the advanced under-
standing of the global and local molecular details within
complex chemical systems.

II. METHODS
II.A. CREASE Method Description. In this section, we present

the key steps in CREASE. Inputs to CREASE include the scattering
experiment measurement, information about the BCP chemistry used,
and the shape of the BCP assembly. This input information is fed into
a genetic algorithm (GA) step that determines macroscopic features of
the assembly (e.g., micelle dimensions, number of BCP chains in a
micelle). This output from the GA step is then fed to a micelle
reconstruction step where coarse-grained molecular dynamics
(CGMD) simulations are used to provide microscopic features of
the assembly (e.g., BCP chain conformations, spatial distribution of
the monomers in the micelle). Put together, for a given scattering
intensity profile and BCP design, CREASE provides structural
information starting from the length scale of a monomer up to the
entire micelle. Figure 1 shows this overall flow of information and
these key steps in CREASE.
II.A.1. Input Information. The input parameters for CREASE

include the BCP design, the experimentally obtained scattering
intensity, Iexp(q), where q is the wavevector, and the shape of the
micelle that can be obtained from an independent measurement, such
as microscopy. The BCP design includes: (1) the chemistry of the
solvophilic A and solvophobic B monomers, the molar masses of A
and B repeat units, MA and MB, and their contour lengths, lmono,A and
lmono,B, (2) the BCP composition, fA, i.e., the fraction of repeat units
that correspond to the A block chemistry, and the sequence in which
the A and B chemistries are arranged, e.g., AB or ABA, (3) the total
molecular weight or number of repeat units, N, and (4) the density of
the polymer in the solvophobic B block, ρP, taken as the bulk density
of the B polymer chemistry at the same conditions, temperature, and
pressure as the micelle.
In the present work, we focus on spherical micelles comprised of a

spherical micelle core of a B block surrounded by a shell (corona) of
an A block, as a proof of concept of the method. The method can be
extended to other micelle shapes (e.g., cylinders, vesicles) as well. As
stated above, the shape of the micelle is an input to CREASE. One
could estimate the dimensionality and/or shape of the micelle based
on the Porod exponent and exponents of the intermediate q-range.56

However, there are multiple ways to interpret the Porod or
intermediate q-range exponents as the exponents are not necessarily
unique to each shape; for example, both rectangular slabs and
cylindrical structures have a possible limiting Porod exponent of 4 at
high q, indicating a sharp interface between their respective three-
dimensional shape and the solvent. Additionally, the fitted exponent
may not be a whole number, due to experimental uncertainty or
sample inhomogeneity. Therefore, to minimize the uncertainty
involved with scattering data, we recommend an independent
measurement (e.g., microscopy) for estimating micelle shape.

II.A.2. Genetic Algorithm (GA). We use a GA to find the
macroscopic micelle properties that result in a computed scattering
intensity, Icomp(q), that best matches Iexp(q). The algorithm starts with
a random population of potential macroscopic micelle characteristics
(individuals). “Fitness” is evaluated for all the individuals of the
population to determine which individuals result in Icomp(q) closer to
Iexp(q); i.e., an individual with a high fitness has a Icomp(q) that is a
close match to Iexp(q). In the selection step we pick the best
individuals from those available based on their fitness; a solution with
high fitness has a higher probability of being selected. Some of the
selected individuals undergo crossover or mutation, and the new
population (a new generation) advances to the next iteration of the
algorithm. The procedure is repeated for several generations until the
average population fitness converges to a plateau value. The final
individual reported corresponds to the best match between Icomp(q)
and Iexp(q) (highest fitness) from the last generation. In the following
passages we go through the various steps in the GA in more detail.

Step 1: Generating Individuals of a Population and Calculating
Computed Scattering Intensity, Icomp(q). The set of macroscopic
micelle characteristics that impact Icomp(q) includes the input
parameters to CREASE (section II.A.1.)A and B polymer
chemistries, fA, N, and ρPand structural parameters that are
calculated during the GAthe number of chains per micelle or the
micelle aggregation number (Nagg), the diameter of the micelle core
(Dcore), the extent of the corona (Ecorona), the total micelle diameter
(Dmicelle), and the background scattering intensity (Ibackground). Ecorona is
a parameter between 0 (completely collapsed corona) and 1
(completely extended corona). As shown in the equations below,
Nagg and Ecorona are the two independent parameters that can uniquely
define a spherical micelle. The micelle core diameter Dcore is

π ρ
=

−
D

N N f M

N
6 (1 )

P
core

agg A B

Av

1/3

(1)

where NAv is the Avogadro number. The total micelle diameter is

= +D D E Nf l2 ( )micelle core corona A mono,A (2)

The maximum distance the corona can extend past the micelle core is
the contour length of the solvophilic block of one chain.

At the start of a GA run we generate a population of 100 random
individuals given by the set Nagg in the range [2, 100], Ecorona in the
range [0, 1], and Ibackground in the range [10−5, 1]. When choosing the
population size, it is important to have a population large enough to
allow for significant genetic diversity while balancing the increased
computational power required to run a larger population. While the
choice of population size is problem-dependent, in our case the
consistency between duplicate runs indicates that we have an
adequate population size for our systems. For each individual of the
population, we need to calculate the Icomp(q) based on the set of initial
parameters. To do that, we first calculate the intramicellar structure
factor of a micelle, ω(q), as

∑ ∑ω =
+ =

+

=

+
q

N N

qr

qr
( )

1 sin( )

i

N N

j

N N
ij

ijA B 1 1

A B A B

(3)

where rij is the distance between point scatterers i and j, and NA and
NB are the number of point scatterers of blocks A and B, respectively.
We note that eq 3 includes the scattering of both solvophilic and
solvophobic blocks and is valid for experimental cases where both
chemistries scatter neutrons similarly with respect to the solvent and
background. In the case where one species is contrast-matched with
the solvent, that species would not count toward ω(q), and eq 3
would need to be changed accordingly. To calculate ω(q) with eq 3,
we place NB point scatterers randomly in the micelle core and NA
point scatterers in the micelle corona for a given Nagg, Dcore, and
Dmicelle. For each individual’s Nagg, Dcore, and Dmicelle, we generate three
independent, randomly generated configurations of the scatterers to
get an average ω(q). We note that the calculation of ω(q) in eq 3 is
computationally expensive and is the rate-limiting step of the GA. To
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increase the speed of this calculation, we do not have one point
scatterer per atom but instead treat BCP as an 8-point scatterer
sequence of beads, each of size σGA,A or σGA,B (for the A and B block,
respectively) given by

σ =
Nl

8GA,A
mono,A

(4)

and

σ =
Nl

8GA,B
mono,B

(5)

The number of point scatterers in a micelle is then NA = 8fANagg and
NB = 8(1 − fA)Nagg. The choice of 8 scatterer beads is arbitrary and
can indeed be any number that the user wishes to use while balancing
the level of detail used to represent the polymer and the
computational expense for this calculation of ω(q). We tested a
different number of scatterers per chain, namely, 4, 8, and 12, and
found that 4 scatterers per chain result in a σGA,B similar to Dcore,
which reduces the ability to correctly resolve Dcore and results in a
poor GA performance. For 8 and 12 scatterers per chain our results
are not significantly impacted by the number of scatterers for these
cases (see Section S.1). Besides choosing scatterer size and number of
scatterers, there are other ways to speed up/avoid this rate-limiting
calculation of ω(q) in eq 3. These include making use of tabulated
ω(q) for specific input parameters, treating the calculation semi-
analytically when certain structural features (e.g., shape) are well-
known and have corresponding equations for ω(q), and incorporating
machine learning algorithms to bypass or speed up the fitness
calculation after enough generations have passed to train the
algorithm.57,58

After calculating the ω(q), the micelle form factor is calculated as

∑ ∑ ω=
α β

α β α β
∈{ } ∈{ }

F q b b F q F q q( ) ( ) ( ) ( )M
2

A,B A,B
GA, GA,

(6)

where bA and bB are the scattering lengths of A and B scatterers,
respectively, and FGA,A(q) and FGA,B(q) are the spherical form factors
of spheres of diameter σGA,A and σGA,B, respectively, given by

σ σ σ
σ

= [ − ]α α α α

α

F q q q q

q

( ) 3 sin( 0.5 ) 0.5 cos( 0.5 )

/( 0.5 )

GAGA, , GA, GA,

GA,
3

(7)

where α stands for A or B. Finally, the computed scattering intensity
Icomp(q) is given by

= +I q F q S q I( ) ( ) ( )comp M
2

MM background (8)

where SMM(q) is the micelle−micelle structure factor and Ibackground is
the experimental background scattering intensity. In the present study,
we focus on dilute polymer solutions that result in negligible micelle−
micelle interactions and thus, SMM(q) = 1. For concentrated solutions
with micelle−micelle interactions, SMM(q) depends on the way
micelles interact with each other. A simple assumption is to treat
micelles as hard spheres of effective diameter Dmicelle,eff; Dmicelle,eff =
Dmicelle for neutral BCPs in good solvent conditions and Dmicelle,eff >
Dmicelle for charged BCPs with an electrostatics-derived repulsion
between micelles. Using hard spheres of Dmicelle,eff at the appropriate
micelle concentration, one can calculate SMM(q) either from liquid-
state theory59,60 or from a radial distribution function obtained from
configurations sampled in molecular simulations.61

Step 2: Calculating Fitness of an Individual. Fitness is a measure
of how similar Icomp(q) and Iexp(q) are, and a high fitness implies a
close match between Icomp(q) and Iexp(q). For the range of q values
explored, we define a sum of (log difference) squared errors between
the two functions as

∑= w
I q

I q
sse log

( )

( )
exp

comp

2

(9)

where w is a weighting factor proportional to log(Δq) in order to give
similar weights to I(q) values in the range of q values explored. We
use log difference squared errors to give similar importance to features
at different orders of magnitude. The sum of square errors is minimal
when Icomp(q) matches Iexp(q) and large when the two functions differ.
To define a fitness function, we rescale sse as

= − +X YFitness (sse sse)max (10)

where ssemax is the maximum value of sse for an individual in the
current population. The subtraction of ssemax − sse ensures that fitness
is maximum when Icomp(q) matches Iexp(q). The parameters X and Y
serve the purpose of ensuring that low fitness solutions are not
eliminated completely from the population to ensure the GA does not
prematurely converge. In Section S.2, we describe in detail how the
parameters X and Y are calculated.

Step 3: Selecting Individuals That Go to the Next Generation.
Selection refers to the process of choosing which individuals of the
population are preserved in the following generation. The probability
that an individual is selected for the next generation is proportional to
its fitness values, Pselection ∼ Fitness. Selection ensures that individuals
with high fitness are more likely to be preserved, while individuals
with low fitness are more likely to be discarded but not completely
eliminated. Our implementation of GA uses a population of 100
individuals, out of which 99 are selected using the procedure
described above, and the remaining one is always the individual with
the highest fitness.35

Step 4: Crossover and Mutation. Crossover is the process in
which two selected “parent” individuals are mixed to produce a new
“offspring” individual that, in theory,35 combines desirable character-
istics from its parents and leads to a higher fitness. A selected
individual is chosen for crossover with a probability PC. Once an
individual is chosen for crossover, a second “parent” individual is
selected using the selection criterion explained above. An “offspring”
individual has characteristics (Nagg, Ecorona, and Ibackground) randomly
mixed from the two parents. Mutation is the process in which a
selected individual is changed randomly to produce a new individual
that brings new features to the population that are not present before.
A selected individual is chosen for mutation with a probability PM.
Once an individual is chosen for mutation, a randomly chosen
characteristic (Nagg, Ecorona, or Ibackground) is changed randomly within
its range of possible values. While crossover is meant as a mechanism
to improve population fitness, mutation is meant to be a process to
maintain population diversity to avoid early convergence in local
optima. Probabilities PC and PM are, thus, updated throughout a GA
run. In Section S.2, we describe in detail the crossover and mutation
procedures as well as the choice and update of PC and PM and how
Nagg, Ecorona, and Ibackground are updated.

Step 5: Terminating the Algorithm. The algorithm finishes when
the average population fitness and the fitness of the best individual
reach a plateau. In this work, the GA is run for a total of 150
generations. All cases studied herein result in converged fitness before
the 150 generation mark. Dcore, Dmicelle, and Nagg are reported as the
average and standard deviation from the individual with the highest
fitness among 10 independent GA runs.

II.A.3. Micelle Reconstruction. After Nagg, Dcore, and Dmicelle have
been determined by GA, we reconstruct the micelles with molecular
detail using CGMD simulations. We take Dcore, Dmicelle, and Nagg from
the individual with highest fitness from each of the 10 independent
GA runs; this leads to 10 independent micelle reconstruction results.

Step 1: Determining the Polymer Model. The first step in micelle
reconstruction is to determine the parameters of a bead−spring
coarse-grained (CG) polymer model to use. In principle one can
choose any polymer model representation for these micelle
reconstruction simulations based on guidance from extensive previous
work on the development of CG models of polymers.49,62−65 The
choice of the model depends on the desired resolution of micelle
features, where more detailed models can be used to determine, for
example, the distribution of chemical functional groups within the
micelle. Alternatively, the results from CREASE could be used to
validate an existing model or to parametrize a desired molecular
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model to capture the characteristics of the assembled structure. In this
paper, we first determine the degree of coarse graining, i.e., the
number of beads of each type, NCG,A and NCG,B, and the diameter of
those beads, σCG,A and σCG,B, that represent the polymer in CGMD
simulations. To determine the degree of coarse graining for the
solvophobic B block, we match the density of the B polymer in
micelle cores, ρP, between CGMD simulations and experimental
values. The packing fraction of the B polymer in the core, ηcore, is
defined as the volume of CG B beads in the micelle core divided by
the micelle core volume and is given by

η
σ

=
N N

Dcore
CG,B agg CG,B

3

core
3 (11)

The density of polymer in micelle cores, ρP, is given by

ρ
π

=
−N f N M

D
6 (1 )

P
A agg B

core
3 (12)

The number of CG B beads, NCG,B, at a packing fraction ηcore
corresponding to a B polymer density of ρP is obtained by rearranging
eqs 11, 12, and 14 (below) as

π ρ
η

= −N N f
N l

M
(1 )

6CG,B A
P Av mono,B

3

B core

1/2

(13)

Equation 13 is comprised of constants that are input to GA (Section
II.A.2) and ηcore. If we know ηcore we can then fix the degree of coarse
graining that matches the polymer density in micelle cores. Our past
experience50−55 has shown that CG beads that interact with attractive
Lennard-Jones (LJ) potentials pack in micelle cores at a packing
fraction of ηcore ∼ 0.5; thus, we use that value to fix the degree of
coarse graining. NCG,B is linked to the diameter of CG beads, σCG,B,
through

σ =
−N f l

N

(1 )
BCG,

A mono,B

CG,B (14)

For our case we set the diameter of solvophilic A CG beads to be the
same as that of B CG beads (i.e., σCG,A = σCG,B), although this can also
be the choice of the user or be updated based on the comparison with
experiments. From σCG,A we determine the number of CG A beads as

σ
=N

Nf l
CG,A

A mono,A

CG,A (15)

Step 2: Reconstructing the Micelle. For simulating the micelle
reconstruction, we first create an initial configuration where the Nagg
(from the individual with the highest fitness in the GA) number of
CG polymer chains are placed together side by side in a square array.
The choice of the initial configuration is arbitrary and, in our case, is
chosen purely for convenience, to ensure that B blocks are localized
together and can, in a short time frame, relax away from this
configuration while keeping the B beads together in the micelle core.
One may choose alternate initial configurations, such as placing all the
B blocks of Nagg number of chains within a spherical confinement of
Dcore and letting the system relax from that initial configuration under
the spherical confinement.
During the relaxation stage of the simulation (see Section II.B.1 for

simulation details), the system evolves away from the chosen initial
configuration and into spherical micelles with a distinct core and
corona. There are a few important checks to do during this relaxation
stage to determine whether the reconstruction is successful. The
attractive interaction strength between solvophobic B beads, εBB (see
Section II.B.1 for model and simulation details), needs to be high
enough to prevent the polymer chains from disassembling and
dispersing but not too high to prevent them from being kinetically
trapped in the user-selected initial configuration. If, during the
relaxation stage, the chains disassemble to organize themselves into
multiple smaller micelles of aggregation number below Nagg, and then
the value of εBB should be increased. The simulation should be rerun

from the initial configuration. It is possible to predict a value for εBB
based on the specific polymer chemistry and solvent/solvent mixture.
As an example, we direct the reader to the supplementary sections of
our recent work52,53 where we connected εBB to the Flory−Huggins χ
parameter using the Hildebrand solubility theory. Nonetheless, a
discrepancy between Dcore from the GA and Dcore from micelle
reconstruction indicates that the CG model determination needs to
be revisited. In all cases reported here, the resulting Dcore from micelle
reconstruction is comparable to GA results. A discrepancy between
Dmicelle from the GA and Dmicelle from micelle reconstruction is a result
of incorrect assumptions for solvophilic A bead diameter and
interactions. If Dmicelle from micelle reconstruction is smaller than
that from GA prediction, we can add a soft repulsive potential
between A beadsequivalent to electrostatic repulsion in a charged
polymer. If Dmicelle from micelle reconstruction is greater than that
from GA, then a weak attractive potential between A beads can be
addedequivalent to the solvophilic block being in a slightly poor
solvent. In the results presented herein, there is good agreement
between Dmicelle from the GA and Dmicelle from micelle reconstruction,
and therefore we did not need to change the assumed values for
solvophilic bead size or interactions.

Once the micelle reconstruction simulations are validated, we
report Nagg, Dcore, and Dmicelle, as well as microscopic information
about the micelles, including the radius of gyration of the A block and
the spatial arrangement of species A and B monomers within the
micelle.

II.B. CGMD Simulation Details. The role of CGMD simulations
in this paper is 2-fold. First, we use CGMD simulations for micelle
reconstruction to elucidate the chain- and monomer-level structural
details of the micelles for the best individuals produced by GA.
Second, we use CGMD simulations for the “simulated experiments”
where we sample a range of micelle configurations for a variety of
polymer designs and generate different kinds of in silico experimental
I(q) to test the ability of CREASE to predict micelle structures for
those in silico Iexp(q), prior to testing CREASE for in vitro SANS-
generated Iexp(q).

To run these CGMD simulations, we need a CG polymer model.
We use CG models identical to the ones used in our recent
work,50−53,55 where BCPs have a solvophilic A block and a
solvophobic B block53 and are modeled as flexible CG bead−spring
chains.66,67 The neighboring bonded CG beads are connected
through a harmonic spring potential with an equilibrium bond
distance σ and force constant equal to 50 kT/σ 2, where σ is the
diameter of CG beads; k is Boltzmann’s constant; and T is the
absolute temperature. We model the solvent implicitly and capture
the effect of solvent quality on the behavior of the amphiphilic chains
through nonbonded interactions. To model the poor solvent quality
on the solvophobic B beads, we use an attractive Lennard-Jones (LJ)
potential between the B beads with a cutoff distance equal to 2.5σ.
The increasing value of the interaction strength of this LJ potential,
εBB, also termed solvophobicity, corresponds to increasingly poor
solvent quality for the B beads. As the implicit solvent is a good
solvent for block A, we model A−A interactions with the repulsive
Weeks−Chandler−Andersen (WCA) potential;68 WCA potential is a
shifted-truncated LJ potential with a cutoff distance of 21/6σ. As the
B−B interactions are the dominant interaction in the solution that
drives micellization of the BCPs, we model the nonbonded A−B
interaction also with a repulsive-only WCA potential.

For both micelle reconstruction and the simulated experiments, we
run molecular dynamics (MD) simulations using the LAMMPS
package69 (April 2015 version). These simulations are run in periodic
cubic simulation boxes in an NVT ensemble with a Langevin
thermostat. Much of our simulation protocol is similar to our recent
work,50−53,55 and we only present the essential details here.

II.B.1. Details for Micelle Reconstruction. The Nagg number of CG
polymer chains are placed in a cubic simulation box equal to twice the
total chain length plus the cutoff range of nonbonded potentials in
order to prevent any self-interaction of the chains across the periodic
boundaries. As stated in Section II.A.3, the solvophobic components
of the chains are packed together in a square array in the initial
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configuration. We evolve the system from this initial configuration by
simulating the system for a total of 10 000 000 timesteps at a fixed
value of εBB to relax the chains from their initial conformation.
Keeping in mind the checks described in Section II.A.3, we run this
relaxation stage at εBB = 0.5; if the system evolves away from the Nagg
obtained in GA toward smaller micelles, we then increase the εBB in
steps of 0.1 until, for a selected εBB, the system maintains the spherical
micelle shape at the intended Nagg throughout the relaxation from the
initial configuration.
As the configurations relax, we calculate the Nagg, Dcore, and Dmicelle

of the micelles. To calculate these parameters, we first identify the
cluster(s) or micelle(s) and the chains in each micelle using our
protocol described in detail in refs 50−55. For each cluster we also
calculate the monomer/bead concentration profiles, C(r), defined as
the volume packing fraction of beads at various radial distances
starting from the center of mass of each cluster/micelle. In C(r), we
consider the solvophilic A beads and solvophobic B beads separately,
where the A bead concentration profile indicates the solvophilic
micelle corona and the B bead concentration profile indicates the
solvophobic micelle core. We use the values of r where the A and B
concentration profiles reach 50% of their maximum values to
determine Dmicelle and Dcore, respectively, as shown in Figure S3. We
also calculate the conformations of corona chains by calculating the
radius of gyration of the solvophilic A block of each chain, Rg, and
report the ensemble average of Rg over all chains in each cluster in
multiple configurations.
II.B.2. Details for Simulated Experiments. We simulate the self-

assembly of the amphiphilic BCPs in dilute conditions. These
simulations are performed on diblock BCPs with a total of 24 CG
beads with different compositions: A12-b-B12, A6-b-B18, and A18-b-B6.
As these are generic BCPs, the length scale of the simulation is
described in units of diameter of 1 CG bead, σ. However, σ can be
equated to a real distance if one wishes to model a specific chemistry.
For example, the diameter of 1 CG bead, σ, will be equal to 5.04 nm if
that CG bead represented approximately 7 repeat units for the PGC
polymer synthesized (see section II.C.2). The initial configuration
contains 600 polymer chains placed in a cubic simulation box that is
larger than the desired occupied polymer volume fraction (η) of 0.025
in order to help the chain relax from their initial configurations and to
prevent unrealistic overlap of CG beads. We then linearly reduce each
of the simulation box sides over 600 000 timesteps at a temperature of
T* = 4 and εBB = 0.055 until the desired η is attained. For the last step
in the equilibration procedure, we set the simulation temperature T*
= 1 and further equilibrate for an additional 600 000 time steps.

To drive the self-assembly of the amphiphilic BCPs, we gradually
increase the solvophobicity, εBB, in a stagewise manner which is
similar to experiments where a good solvent for the solvophobic block
is gradually exchanged with a poor solvent for the solvophobic block.
We spend 1 000 000 timesteps at each value of εBB, and at the end of
each stage we increase εBB in increments of 0.009 until we see no
further change in the self-assembly behavior of the BCPs. We
extensively tested the amount of time spent at each stage as well as the
increase in εBB between stages to ensure that the results are
reproducible and are not in trapped states during the simulation
procedure. To ensure that we sample uncorrelated simulation
configurations, we save the simulation configurations every 100 000
time steps and disregard the results of the first half of the stage.

As done in our previous studies,50−55 we analyze the structure of
the micelles formed in the simulated experiments by determining the
aggregation numbers of the micelles, Nagg, the micelle concentration
profiles, C(r), the micelle dimensions, Dcore and Dmicelle, and the
scattering intensity of simulated experiments, Iexp(q). Iexp(q) is
determined by

∑ ∑=
α β

α β α β
∈{ } ∈{ }

I q b b F q F q S q( ) ( ) ( ) ( )b bexp
A,B A,B

, , tot
(16)

where bA, bB, Fb,α(q), and Fb,β(q) are defined in section II.A.1. Stot(q)
is the structure factor of all beads in the simulation and is calculated
by

∫πρ
= + −S q

q
r g r qr r( ) 1

4
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tot
tot (17)

where ρtot is the total bead number density in the simulation, and
gtot(r) is the radial distribution function of all beads within the
simulation.

II.C. Synthesis of Cationic-Modified PGC Block Copolymers.
A cationic-modified diblock BCP of poly(D-glucose carbonate),
PGC(EEC)-b-PGC(EPC)(NH3Cl), is used in this work as an
experimental evaluation of the capabilities of CREASE for sphere-
forming BCPs. This PGC polymer is at a three-to-one degree of
polymerization ratio of the solvophobic (PGC(EEC))-to-solvophilic
(PGC(EPC)(NH3Cl)) block component, with cationic characteristics
on the solvophilic block.

II.C.1. Monomer Synthesis. Two different monomers are selected
for the construction of the degradable sugar-based functional diblock
copolymers. The bicyclic alkyne-functionalized glucose carbonate
methyl-2-O-ethoxycarbonyl-3-O-propargyloxycarbonyl-4,6-O-carbon-

Figure 2. (a) Synthesis of diblock copolymer PGC(EEC)-b-PGC(EPC) via sequential ROP. (b) Synthesis of cationic modified amphiphilic diblock
copolymers via thiol−yne reaction.
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yl-α-D-glucopyranoside GC(EPC) with an alkynyl function group
provides the capability of various click-type chemistries including
azide−alkyne cycloaddition and thiol−yne reaction. The bicyclic
nonreactive glucose carbonate monomer methyl-2,3-O-ethoxycarbon-
yl-4,6-O-carbonyl-α-D-glucopyranoside GC(EEC) is used to serve as
the hydrophobic segment. GC(EPC) and GC(EEC) are synthesized
following previously reported methods.70

II.C.2. Synthesis and Postpolymerization Modification of the
Functional, Degradable Diblock Copolymers. The degradable
diblock copolymer PGC(EEC)-b-PGC(EPC) is synthesized by
rapid one-pot sequential organocatalyzed ROP at −78 °C in
dichloromethane with 1,5,7-triazabicyclo-[4.4.0]dec-5-ene (TBD) as
the organocatalyst (Figure 2a). The monomer feed ratio [GC-
(EEC)]/[GC(EPC)] is set to 3:1 to provide potentially interesting
morphologies and sufficient length of the polymer as predicted by
computational results.53 The first block is allowed to proceed for 10
min before addition of the second monomer GC(EPC), and the
reaction is quenched by addition of an excess amount of acetic acid
after 8 min of the subsequent polymerization. Size exclusion
chromatography (SEC) of the crude product shows less than 5%
remaining monomers, indicating quantitative conversions of both
monomers (Figure S4b). The shorter retention time of PGC(EEC)-b-
PGC(EPC) relative to the first block homopolymer PGC(EEC)
confirms the successful chain extension to afford the expected diblock
copolymer. SEC traces further reveal monomodal and narrow
molecular weight distribution and low dispersity (Đ < 1.10),
demonstrating the well-defined structure of the diblock copolymer.
The degrees of polymerization (DPn) of each block are calculated
from the 1H NMR spectrum (Figure S4c) acquired after isolation of
the polymer by precipitation, by comparing the integration of the
methyl proton resonance at 2.24 ppm from the initiator with the
integrations of the resonances of the anomeric proton (5.02, 5.06
ppm) and 4-O proton resonances (4.84, 4.92 ppm) in the PGC(EPC)
and PGC(EEC), respectively.
The cationic copolymer PGC(EEC)-b-PGC(EPC)(NH3Cl) is

obtained by postpolymerization modification of the diblock
copolymer PGC(EEC)-b-PGC(EPC) with an excess (5 equiv) of
cysteamine via photoinitiated thiol−yne click reaction (Figure 2b).
The reaction mixture is allowed to stir in N,N-dimethylformamide
(DMF) under 365 nm in a UV cross-linker at room temperature for 2
h, followed by dialysis against nanopure water (pH = 3 with addition
of HCl) at 4 °C for 2 days to remove excess thiol and photoinitiator.
Finally, the obtained solution is lyophilized to afford fluffy white
powders in 80−90% yield. The presence of the thiolether side chain
group proton resonances in the 1H NMR spectra (Figure S5)
indicates quantitative consumption of the alkyne groups. The
appearance of frequencies at 3650−2300 cm−1 in the Fourier-
transform infrared spectroscopy (FT-IR) further suggests the
introduction of amine groups (Figure S6).
II.D. PGC Micelle Sample Preparation and Experimental

Micelle Characterization. The BCPs synthesized following the
protocol shown in the previous section are dispersed directly in water,
where they self-assemble into micelles. For transmission electron
microscopy (TEM) imaging, the PGC is dissolved in pure Milli-Q
water. For SANS sample preparation, the PGC is dissolved in
deuterated water in order to provide isotopic contrast. For TEM and
SANS, the samples are prepared at 0.01, 0.1, and 0.5 wt % block
copolymer concentrations.
II.D.1. Transmission Electron Microscopy (TEM). TEM experi-

ments are performed on an FEI TALOS microscope operating at an
accelerating voltage of 200 keV, equipped with an FEI Falcon II
camera. For TEM grid preparation, a droplet of polymer solution is
deposited directly onto a plasma-treated carbon-coated copper grid
and dried at room conditions. Before the solution is completely
evaporated, a droplet of freshly prepared phosphotungstic acid (2 wt
%) is deposited for negative staining, and the excess solution is
blotted. For cryogenic-TEM sample preparation, the vitrified grid
preparation is done by using the FEI Vitrobot system, an automated
plunge vitrification device. A droplet (3 μL) of polymer micelle
solution is deposited onto a plasma-treated lacey carbon grid and then

quickly plunged into a liquid ethane reservoir. The grids are then
transferred to liquid nitrogen until imaging. During the imaging, the
temperature is maintained at −176 °C to prevent aqueous solvent
crystallization. All images are analyzed with Fiji-ImageJ software.71

The average size of the particles and the error are calculated from the
mean and standard deviation values, respectively, with sample size, n >
∼50 particles.

II.D.2. Small-Angle Neutron Scattering (SANS). SANS experi-
ments are conducted using the NGB7 30m SANS instrument at the
Center for Neutron Research (NCNR) in the National Institute for
Standards and Technology (NIST, Gaithersburg, MD). Three
configurations at 1, 4, and 13 m sample-to-detector distances are
used to collect I(q) at a q-range spanning 0.003−0.5 Å−1 with cell
thickness of 1 mm. All experiments are carried out at ambient
conditions. All data are corrected for the instrument background,
empty cell scattering, and detector efficiency/sensitivity, as well as
converted to absolute scale in units of cm−1 based on the NIST
NCNR data reduction protocol.72 The three concentrations are used
to find the optimal concentration with minimum micelle−micelle
interactions. SANS I(q) is fitted initially using the SASVIEW
software73 using the polymer micelle model developed by Pedersen
and co-workers.30 This model describes a spherical micelle core with
corona chains as noninteracting Gaussian chains attached to the
surface of the core. In section S.5 we include the polymer micelle
model. Our fit does not include polydispersity effects, and the corona
penetration factor is 1.0. This assumes that the distance between the
center of the corona and the center of the core is 0.5Dcore + Rg with no
overlapping core/corona region.

The parameters we extract from SASVIEW fits are micelle core
diameter (Dcore), radius of gyration of the corona chains (Rg), and
aggregation number (Nagg). For the SASVIEW fit, data for q < 0.02
Å−1 are ignored, so micelle−micelle interactions are not considered.

III. RESULTS AND DISCUSSION
We start by evaluating CREASE for the scattering profiles
obtained from the simulated experiments where micelle
dimensions, aggregation number, chain conformation, and
spatial polymer block distribution are known based on averages
collected from the simulated trajectories. As explained in the
Methods section, the results from simulated experiments are
used to generate a scattering intensity, Iexp(q), that serves as an
input to CREASE. Comparing the output of CREASE to the
known values of micelle dimensions, aggregation number,
chain conformation, and spatial polymer block distribution
allows us to establish how well CREASE predicts these known
values. After evaluating CREASE against simulated experi-
ments, we test the ability of CREASE with Iexp(q) obtained
from experiments, in particular SANS characterization of BCP
micelles; we use electron microscopy images to infer micelle
shapes which is also an input to CREASE. The output from
CREASE is then compared to the results obtained by fitting
the spherical polymer micelle model30 to the Iexp(q) and to
dimensions of micelles obtained from cast film TEM and
cryogenic-TEM analysis. These comparisons establish that
CREASE is a viable computational tool to analyze scattering
results of BCP solutions to predict the assembled structure
without having to fit the Iexp(q) with a known model.

III.A. Evaluation of CREASE Using Scattering Profiles
from Simulated Experiments. The CGMD simulation
trajectories of three solutions containing A12-b-B12, A6-b-B18,
and A18-b-B6

53 BCPs show the formation of spherical micelles
of similar Dmicelle but varying Dcore and Nagg and serve as three
different tests of the capabilities of CREASE.
The A12-b-B12 BCPs at a BCP packing fraction of η = 0.025

form spherical micelles with aggregation number Nagg ∼ 30
chains/micelle (± ∼7), Dcore ∼ 40 nm (± ∼5 nm), and Dmicelle
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∼ 80 nm (± ∼7 nm). The Iexp(q) obtained from the CGMD
simulations of this system (Figure 3a) is characterized by an
initial decrease at low wavevector, q, followed by a mid-q
oscillation, followed by further decrease. We carefully choose
the range of q values to fit with GA as there are inaccuracies at
low values of q due to the finite simulation box size limitations,
and we are limited at high q values by the size of the scatterers.
The range of Iexp(q) used as an input for CREASE
encompasses part of the low-q decrease, the mid-q oscillation,
and part of the high-q decrease. The computed scattering
profiles from CREASE, Icomp(q), shown in green in Figure 3a
agree with Iexp(q) in the range of q values (0.038 to 0.078 Å−1)
where CREASE is run, capturing the mid-q oscillation. The
table in Figure 3b shows excellent overall agreement in the
values of Nagg, Dcore, and Dmicelle from the simulated experiment
and the corresponding CREASE predictions. CREASE over-
estimates Dcore slightly, and this may be because Iexp(q)
includes the contribution of a polydisperse group of micelles.
CREASE in its current form assumes monodisperse micelles.

Polydispersity is known to shift the mid-q oscillations to lower-
q values in dynamic light-scattering experiments.74 Analysis of
mid-q oscillations that are shifted without accounting for
polydispersity leads to biasing the analysis toward larger
micelles. Figure 3c shows a typical micelle formed in an MD
simulation next to a snapshot of a micelle reconstructed from
CREASE, thus serving as a visual confirmation of the predictive
power of CREASE.
The A6-b-B18 BCPs also form spherical micelles with Nagg ∼

70 chains/micelle (± ∼20), Dcore ∼ 60 nm (± ∼8 nm), and
Dmicelle ∼ 90 nm (± ∼8 nm). The scattering intensity from the
simulated experiments, Iexp(q), is shown in Figure 3d and is
characterized by similar features as that for A12-b-B12, i.e., low-q
decrease, mid-q secondary maximum, and high-q decrease. The
range of Iexp(q) used as an input for CREASE encompasses,
similar to A12-b-B12, part of the low-q drop, the mid-q
oscillation, and part of the high-q drop. CREASE Icomp(q)
(solid curves in Figure 3d) agrees with Iexp(q) in the range of q
values where CREASE is run, capturing the mid-q oscillation.

Figure 3. Evaluation of CREASE for scattering intensity results from simulated experiments of A12-b-B12 BCP (a, b, and c) and A6-b-B18 BCP (d, e,
and f) in solution. Panels (a) and (d) show scattering intensity from simulated experiment, Iexp(q), in open symbols and from CREASE results,
Icomp(q), in lines. Different colored lines represent different independent runs of CREASE. Panels (b) and (e) show aggregation number (Nagg),
micelle core (Dcore), and total micelle (Dmicelle) diameters for the simulated experiment and from CREASE. Reported values for simulated
experiments correspond to average and standard deviation from ∼20 micelles present in the simulation box in 50 independent configurations.
Reported values for CREASE correspond to the average and standard deviation from 10 independent runs of the methods. Panels (c) and (f) show
renderings of typical micelles from the simulated experiment and CREASE results.
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The table in Figure 3e shows excellent agreement between
Dcore and Dmicelle from the simulated experiment and CREASE.
The value of CREASE Nagg falls within the distribution of Nagg
values sampled in the simulated experiment. Further visual
confirmation of the predictive capability of CREASE is seen in
Figure 3f where micelles from simulated experiment and
CREASE prediction are shown side-by-side.
The A18-b-B6 BCPs also form spherical micelles with Nagg ∼

25 chains/micelle, Dcore ∼ 25 nm, and Dmicelle ∼ 75 nm. These
A18-b-B6 micelles are similar to the A6-b-B18 micelles, but the
corona is larger and denser in the former case. The Iexp(q) for
the A18-b-B6 micelles is shown in Figures 4a and 4b; the same
plot is shown in two parts to show two different CREASE fits.
The range of Iexp(q) used as an input for CREASE
encompasses, similar to the case for A12-b-B12, part of the
low-q decrease, the smoothed mid-q oscillation, and part of the
high-q decrease. We see that the CREASE Icomp(q) agrees with
Iexp(q) in the range of q values where CREASE is run;
nonetheless, the location of the mid-q oscillation is not clear,
and as a result, CREASE provides two populations with best
fitness. Population 1 (Figure 4a) corresponds to micelles with
features similar to the simulated experiment. The snapshot of
the micelle in Figure 4a from CREASE and the snapshot in
Figure 4c for the simulated experiment show that the micelles

are visually similar. The table in Figure 4d shows that micelle
Nagg ∼ 25 for the simulated experiment and Nagg ∼ 30 for
CREASE results are close, but the core and total micelle
diameters predicted by CREASE are larger than those of the
simulated experiment. Population 2 (Figure 4b and the table in
Figure 4d) corresponds to larger micelles predicted from
CREASE as compared to those in the simulated experiment.
This is a case where our results from simulated experiments
guide us in identifying which of the two populations is closer to
the correct answer. We also note that the poor prediction from
CREASE for A18-b-B6 BCPs is likely due to the reduced
certainty of the location of the mid-q oscillation that was well
resolved for the previous two BCP cases (Figure 3) of A12-b-
B12 and A6-b-B18. In similar scenarios in experiments where one
may have in vitro Iexp(q) with higher uncertainty in one or
more q regions in the Iexp(q) profile, to identify/isolate which
(if at all) of the populations predicted by CREASE is correct,
we need another independent, visual measurement of micelles
(e.g., electron microscopy).

III.B. Experimental Characterization of PGC BCP
Micelles. The PGC micelle structures in water are first
examined using TEM. Both dried cast film and cryogenic-TEM
data for PGC at 0.1 wt % show that the resulting structures are
spherical micelles, as seen in Figure 5. These micelles each

Figure 4. Evaluation of CREASE for scattering intensity results from simulated experiments of A18-b-B6 BCP in solution, showing multiple possible
populations. Panels (a) and (b) show scattering intensity from the simulated experiment, Iexp(q), in open symbols and from CREASE results,
Icomp(q), in lines for population 1 and 2, respectively, of CREASE results. Different colored lines represent different independent runs of CREASE.
Insets in panels (a) and (b) show renderings of micelles from CREASE results. Panel (c) shows a rendering of typical micelles from the simulated
experiment. Panel (d) shows aggregation number (Nagg), micelle core (Dcore), and total micelle (Dmicelle) diameters for the simulated experiment
and for CREASE results. Reported values for simulated experiments correspond to average and standard deviation from ∼20 micelles present in the
simulation box in 50 independent configurations. Reported values for CREASE correspond to average and standard deviation from 10 independent
runs.
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have a hydrophobic PGC(EEC) core with charged PGC-
(EPC)(NH3

+) in the corona. The dark spheres in the cryo-
TEM micrograph represent primarily the denser hydrophobic
cores of the micelles. The average diameter of these cores,
from a sample of ∼50 micelles in the field of view, is ∼20.0 nm
with a standard deviation of 0.2 nm. Figure 5 highlights sample
micelle cores encircled in red for both dried cast film and
cryogenic-TEM. Although the contrast of the corona blocks is
too low to be visible in the TEM images, the distances between
each core of close-packed regions in cryogenic-TEM data are
estimated to provide an approximate total micelle diameter,
Dmicelle. The inset in Figure 5 shows two micelles with the
measured Dcore and Dmicelle highlighted side-by-side to provide
a visual representation of micelle dimensions in scale.
Assuming that corona chains of neighboring micelles are not
overlapping, these micelles have a Dmicelle ∼ 29.2 nm and a
corona shell thickness, 2Rg, of approximately 4.6 nm. The
TEM-measured values of Dcore, Dmicelle, and corona chain Rg for
0.01, 0.1, and 0.5 wt % PGC BCP solutions are presented in
the next section. Figure S7 shows TEM images for 0.01 and 0.5
wt % PGC micelles.
TEM data provide important real space information on the

micelle structures but are limited to the sample size captured in
a field of view, as seen in Figure 5. SANS, on the other hand,
provides reciprocal space information from a much larger,
bulk-like sample size and can access larger length scale features.
The SANS results of a concentration series of 0.01, 0.1, and 0.5
wt % PGC BCP in D2O are shown in Figure 6 with scattering
intensity Iexp(q) plotted as a function of wavevector, q. For all
three concentrations, a prominent oscillation at the mid-q
region indicates a regular nanostructure of the micelles.75 The
PGC block copolymers are unique in that the entire backbone
is the same poly(D-glucose carbonate) chain with the
hydrophobic core and hydrophilic corona blocks created

with different side chain chemical functionality (Figure 2b).
Additionally, the reported persistence length, Lp, for typical
neutral glucose backbone-based polymers (i.e., cellulose
derivatives) can range from several to tens of nanometers.76

This chain stiffness would more closely exhibit rigid rod-like
chain behavior rather than flexible, vinyl polymer behavior (Lp
∼ 1 nm). As mentioned in the Introduction, the primary
strength of CREASE is its ability to analyze scattering profiles
without a scattering model and provide chain- and monomer-
level structural information that is otherwise difficult to obtain
from scattering and microscopy alone. This is particuarly
important for the assembly of PGC BCPs since there is no
established model that perfectly describes the packing of such
stiff chains into a micelle-like nanoparticle with charged, stiff
corona chains. To highlight the importance of the CREASE
method, we use the most appropriate model available, the
polymer micelle model30 in SASVIEW,73 to fit the
experimental SANS data with the best fit lines shown as
solid lines in Figure 6. SASVIEW fit results for the micelle core
diameter, Dcore ∼ 19 nm, are consistent with the cores
observed in the TEM data. We expect micelle dimensions from
SASVIEW fits of SANS data not to change with changing
polymer concentration because the critical micelle concen-
tration of block copolymers is typically extremely low,77−79 and
PGC(EEC) cores are likely glassy as the pure block copolymer
glass transition temperature, Tg, is >100 °C.70 The observed
consistency between micelle core approximate size in SANS
and cryogenic-TEM makes sense since the core provides the
most contrast in both scattering and microscopy. However, the
polymer micelle model is meant for flexible chain amphiphilic
block copolymers with no significant chain stiffness or long-
range, repulsive interactions between corona chains.30,31

Therefore, the use of an inappropriate model provides fitted
Nagg and corona Rg values with no consistency within the range
of concentrations as well as physically unrealistic results.
Particularly, Nagg and corona Rg show that high variability
(Table 2) with SASVIEW fits of the corona chain Rg is much

Figure 5. TEM images of 0.1 wt % cationic-modified PGC BCP
micelles in water are shown. The main image shows cast film TEM,
while the inset shows a cryogenic-TEM image. In the main image, the
red line encircles a micelle core with Dcore ∼ 20 nm. In the inset, red
lines encircle two adjacent micelle cores, and blue lines encircle the
probable corona chain boundaries with Dmicelle ∼ 30 nm.

Figure 6. SANS scattering intensities for PGC block copolymers in
D2O for 0.01 (pink), 0.1 (green), and 0.5 (orange) wt %. Symbols
show SANS data with standard error, and dashed lines show
SASVIEW fits.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b08028
J. Am. Chem. Soc. 2019, 141, 14916−14930

14925

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b08028/suppl_file/ja9b08028_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b08028


larger than the cryogenic-TEM measurements shown in Figure
5. Furthermore, we can compare the fitted Nagg from
SASVIEW to an estimated Nagg value of approximately 69
calculated using the approximate volume of the micelle core
and the known density of hydrophobic PGC chains in water
(assuming there is no water present in the hydrophobic core).
The reported SASVIEW Nagg fit values range from 10 to 30,
which are significantly lower than the calculated Nagg of 69
using the known PGC density and micelle core diameter. For
the Nagg from the SASVIEW fit to match the Nagg from
CREASE, the scattering length densities (β) of the core and
corona would have to be extremely large, beyond what is
physically possible. If we force both the βcore and βcorona to be
within reasonable values and get the SASVIEW Nagg close to
the CREASE Nagg, the overall SASVIEW fit to the scattering
data is poor (data not shown). Since most fit parameters have a
narrow range of sensible values (concentration, Dmicelle, βcore,
βcorona, and βsolvent), the reported SASVIEW Nagg is from the
result that gave us the best data fit. The SASVIEW fit results
show a clear need for a model-independent method like
CREASE for describing the nanostructure giving rise to the
SANS data.
III.C. CREASE Characterization of PGC BCP Micelles

from SANS Scattering Intensities. In this section, we use
CREASE to characterize the PGC micelles analyzed in the
previous section. We start by listing the input parameters to
CREASE from known information from polymer synthesis and
then proceed to show the output from CREASE and
comparison to experimental characterization.
As stated in the Methods section, the input parameters to

CREASE are the Iexp(q), taken here from SANS experiments
shown in Figure 6, polymer design, density of the solvophobic
block (PGC(EEC)), and shape (spherical). The range of
wavevector, q, values we analyze with CREASE is 0.038−0.078
Å−1 and corresponds to the mid-q oscillation that characterizes
the spherical shape. Table 1 summarizes relevant quantities we
use in CREASE runs for PGC BCPs.
CREASE is run ten independent times to determine Nagg,

Dcore, Dmicelle, and corona chain Rg. Reported values represent

the average and standard deviation of those ten runs. The
variability of CREASE results in all reported quantities is below
4% (standard deviation/average) which points to a high
precision within independent runs. In section S.7, Supporting
Figures S8−S10, we show CREASE fits to the scattering
intensity where all individuals show low variability in the way
they fit SANS data within the fit range. In section III.A, we
discuss the possibility of multiple populations exhibiting high
fitness, especially when the mid-q oscillation is not well
resolved. SANS scattering intensities for PGC block copoly-
mers do not appear to have that issue, which explains the low
variability in CREASE fit parameters and scattering intensity fit
curves. CREASE predictions of micelle characteristics do not
change with increasing PGC concentration, consistent with our
expectation given the low critical micelle concentration.
Table 2 shows a summary of CREASE results for PGC block

copolymer micelles, alongside TEM and SASVIEW fit
parameters. Overall, CREASE predictions of micelle dimen-
sions are in good agreement with independently measured
TEM results. The micelle core diameter, Dcore ∼ 20 nm, is
consistently found in all three techniques. Total micelle
diameter, Dmicelle, from SASVIEW fits (∼70 nm) is different
from that seen in cryogenic-TEM and CREASE (∼30 nm). As
we discussed in the previous sections, the assumptions behind
the SASVIEW fit include that the corona chains are Gaussian,
which ignores the excluded volume and possible semiflexible or
rigid rod behavior of the sugar-derived polymer. These
assumptions likely explain the difference between measure-
ments. While the polymer micelle model fit provides Nagg that
varies between different sample concentrations and is too low
to be physically possible, CREASE provides Nagg estimates that
seem physically appropriate. As previously discussed, if one
uses the known solvophobic PGC polymer density, one can
estimate that Nagg should be ∼69 which is much closer to the
CREASE predictions. Overall, Dcore values are consistent
throughout independent measurements; the cryogenic-TEM
micelle observations and CREASE predictions agree well on
the total micelle dimensions; and the Nagg from CREASE
matches closely with the estimate based on core dimensions
and solvophobic polymer density. This combination of results
supports the accuracy and feasibility of the CREASE method in
describing the physical nanostructure that produces the
experimental SANS data.
Our results so far have focused on comparing CREASE

predictions with micelle-level quantities from the standard
spherical polymer micelle model and TEM measurements with
overall good results. CREASE also provides additional chain-
level detail that is difficult to obtain experimentally. As an
example, we show in Figure 7 monomer concentration profiles,
C(r), as functions of distance from micelle center of mass, r, for
micelles formed from PGC BCPs at 0.1 wt %. Figures S11−
S12 show C(r) for other experimental conditions. The kind of
information provided by micelle reconstruction, including but
not limited to C(r), is useful in many BCP micelle applications,
e.g., location and accessibility of functional groups in corona
chain blocks.

IV. CONCLUSIONS
We present a computational approach for analyzing scattering
profiles from experiments to elucidate both assembled micelle
structure as well as chain- and monomer-level structural
information. As a proof-of-concept, we analyze the structure of
spherical block copolymer micelles where (1) the assembled-

Table 1. Input Parameters for CREASE Implementation for
PGC Block Copolymers Relevant to Polymer Design and
Polymer Density

parameter value

molar mass of solvophobic block, PGC(EEC)
(g/mol)

364

molar mass of solvophilic block, PGC(EPC)(NH3Cl)
(g/mol)a

601

contour length of solvophobic repeat unit,
lmono,B (nm)

0.72

contour length of solvophilic repeat unit, lmono,A (nm) 0.72
polymer composition, fA

b 0.234 (0.25)
total number of repeat units, N 128
solvophobic block density, ρP (g/mL)c 1.13 (1.25)
number of point scatterers per chain used in GA NGA,A = 2, NGA,B = 6
number of CG beads per chain used in micelle
reconstruction

NCG,A = 28,
NCG,B = 84

aThe molar mass of the solvophilic block, PGC(EPC)(NH3Cl),
includes the chlorine counterion. CREASE calculations are not
affected by the addition of the counterion molar mass. bCopolymer
composition is rounded up to 0.25 in CREASE calculations to yield
integer number of beads. cSolvophobic block density increases to
value in parentheses due to the rounding of fA.
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state information includes the micelle core and total diameter
and aggregation number and (2) the chain-level information
includes chain conformations and spatial arrangement of
copolymer blocks within a micelle. This method, CREASE
(computational reverse-engineering analysis for scattering
experiments), expands the capabilities of traditional analysis
techniques for scattering experiments, that typically use
approximate models that tie the structure to the scattering
intensity, by using assembled-structure information as an input
to molecular simulations where features not easily seen
experimentally are extracted.
We evaluate CREASE with simulated experiments of

spherical micelles formed from block copolymers that we
studied in a previous work.53 In our tests we find, in general,
comparable values for micelle dimensions between simulated
experiments and the results of CREASE. An important
exception is in systems with long corona chains, where
CREASE finds two populations of solutions that yield good fits

to the simulated experiment scattering intensity. One
population yields micelles larger than the input simulated
experiment, while the other population yields micelles
comparable to the input simulated experiment. We propose a
way to unequivocally discern which population to include in
the results by realizing that scattering experiments can be made
alongside real-space imaging, such as electron microscopy.
After the validation against simulated experiments, CREASE

is applied to SANS measurements of spherical-micelle-forming
PGC block copolymers, which represent next-generation
renewable source-based materials.70 Microscopy character-
ization of the spherical micelles formed by PGC block
copolymers agrees well with CREASE results. Fits to SANS
data using well-known models30,31 that are physically
inappropriate for the unique block copolymers reveal the
importance of the CREASE method for analysis of scattering
experiments of polymer structures.
Future work on this topic includes the extension of CREASE

to different micellar shapes and acceleration and streamlining
of the algorithm to provide fast results. Given the small
number of parameters and assumptions within the framework,
along with the information that this method elucidates, which
is difficult to extract experimentally, CREASE is a promising
technique for characterization of a broad range of assembled
polymer materials.
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Table 2. Summary of CREASE and Experimental Characterization Results for PGC BCP Micelles

PGC wt % CREASEa SASVIEWb dried cast TEMc cryogenic-TEMd

0.01 Nagg, aggregation number 88.7 ± 2.0 7 ± 1 (10)
Dcore, core diameter (nm) 20.0 ± 0.2 15.6 ± 2.6 (18.6) 19.4 ± 0.2
Dmicelle, micelle diameter (nm) 32.4 ± 0.4 74.8 ± 9.56 (65.8)
Rg of corona chain (nm) 3.0 ± 0.0 14.8 ± 2.3 (11.8)

0.1 Nagg, aggregation number 87.7 ± 2.9 14 ± 2 (16)
Dcore, core diameter (nm) 19.9 ± 0.2 18.2 ± 0.1 (18.6) 19.9 ± 0.2 20.0 ± 0.2
Dmicelle, micelle diameter (nm) 32.2 ± 0.4 73.4 ± 5.6 (59.4) 29.2 ± 0.4
Rg of corona chain (nm) 3.0 ± 0.0 13.8 ± 1.4 (10.2)

0.5 Nagg, aggregation number 81.4 ± 0.9 23 ± 5 (32)
Dcore, core diameter (nm) 19.5 ± 0.2 18.0 ± 0.6 (19.4) 19.7 ± 0.3
Dmicelle, micelle diameter (nm) 31.5 ± 0.2 34.6 ± 4.63 (32.6)
Rg of corona chain (nm) 3.0 ± 0.0 4.14 ± 1.15 (3.3)

aCREASE results reported correspond to average ± standard deviation from 10 independent runs. bSASVIEW results reported from fits to the
polymer micelle model correspond to average ± standard deviation from 5 independent runs of the software. Values in parentheses correspond to
the best fit. cDried cast TEM results from image analysis correspond to average ± standard deviation from ∼100 micelles in the field of view.
dCryogenic-TEM results from image analysis correspond to average ± standard deviation from ∼40 micelles in the field of view.

Figure 7. Monomer concentration profile, C(r), as a function of
distance from the micelle center of mass, r, for PGC at 0.1 wt %. The
red line denotes the solvophobic PGC(EEC), while the blue line
denotes the solvophilic PGC(EPC) concentration profiles.
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(33) Borbeĺy, S. Aggregate structure in aqueous solutions of Brij-35
nonionic surfactant studied by small-angle neutron scattering.
Langmuir 2000, 16 (13), 5540−5545.
(34) De Jong, K. A. Analysis of the behavior of a class of genetic
adaptive systems. Technical Report No. 185, 1975.
(35) Eiben, A. E.; Smith, J. E. Introduction to evolutionary computing;
Springer: 2003; Vol. 53.
(36) Chakraborti, N. Genetic algorithms in materials design and
processing. Int. Mater. Rev. 2004, 49 (3−4), 246−260.
(37) Le, T. C.; Winkler, D. A. Discovery and optimization of
materials using evolutionary approaches. Chem. Rev. 2016, 116 (10),
6107−6132.
(38) Arora, V.; Bakhshi, A. Molecular designing of novel ternary
copolymers of donor−acceptor polymers using genetic algorithm.
Chem. Phys. 2010, 373 (3), 307−312.
(39) Mitra, K. Genetic algorithms in polymeric material production,
design, processing and other applications: a review. Int. Mater. Rev.
2008, 53 (5), 275−297.
(40) Kasat, R. B.; Ray, A. K.; Gupta, S. K. Applications of genetic
algorithm in polymer science and engineering. Mater. Manuf. Processes
2003, 18 (3), 523−532.
(41) Jaeger, H. M.; de Pablo, J. J. Perspective: Evolutionary design of
granular media and block copolymer patterns. APL Mater. 2016, 4
(5), 053209.
(42) Khaira, G. S.; Qin, J.; Garner, G. P.; Xiong, S.; Wan, L.; Ruiz,
R.; Jaeger, H. M.; Nealey, P. F.; De Pablo, J. J. Evolutionary
optimization of directed self-assembly of triblock copolymers on
chemically patterned substrates. ACS Macro Lett. 2014, 3 (8), 747−
752.
(43) Srinivasan, B.; Vo, T.; Zhang, Y.; Gang, O.; Kumar, S.;
Venkatasubramanian, V. Designing DNA-grafted particles that self-
assemble into desired crystalline structures using the genetic
algorithm. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (46), 18431−
18435.
(44) Chua, A. L.-S.; Benedek, N. A.; Chen, L.; Finnis, M. W.; Sutton,
A. P. A genetic algorithm for predicting the structures of interfaces in
multicomponent systems. Nat. Mater. 2010, 9 (5), 418.
(45) Fornleitner, J.; Verso, F. L.; Kahl, G.; Likos, C. N. Genetic
algorithms predict formation of exotic ordered configurations for two-
component dipolar monolayers. Soft Matter 2008, 4 (3), 480−484.
(46) Deaven, D. M.; Ho, K.-M. Molecular geometry optimization
with a genetic algorithm. Phys. Rev. Lett. 1995, 75 (2), 288.
(47) Kanters, R. P.; Donald, K. J. CLUSTER: Searching for unique
low energy minima of structures using a novel implementation of a
genetic algorithm. J. Chem. Theory Comput. 2014, 10 (12), 5729−
5737.
(48) Zhang, Q.; Lin, J.; Wang, L.; Xu, Z. Theoretical modeling and
simulations of self-assembly of copolymers in solution. Prog. Polym.
Sci. 2017, 75, 1−30.
(49) Gartner III, T. E.; Jayaraman, A. Modeling and simulations of
polymers: A Roadmap. Macromolecules 2019, 52 (3), 755−786.
(50) Lyubimov, I.; Beltran-Villegas, D. J.; Jayaraman, A. PRISM
theory study of amphiphilic block copolymer solutions with varying
copolymer sequence and composition. Macromolecules 2017, 50 (18),
7419−7431.
(51) Wessels, M. G.; Jayaraman, A. Molecular dynamics simulation
study of linear, bottlebrush, and star-like amphiphilic block polymer
assembly in solution. Soft Matter 2019, 15 (19), 3987−3998.
(52) Beltran-Villegas, D. J.; Lyubimov, I.; Jayaraman, A. Molecular
dynamics simulations and PRISM theory study of solutions of

nanoparticles and triblock copolymers with solvophobic end blocks.
Molecular Systems Design & Engineering 2018, 3 (3), 453−472.
(53) Beltran-Villegas, D. J.; Jayaraman, A. Assembly of Amphiphilic
Block Copolymers and Nanoparticles in Solution: Coarse-Grained
Molecular Simulation Study. J. Chem. Eng. Data 2018, 63 (7), 2351−
2367.
(54) Dong, M.; Wessels, M. G.; Lee, J. Y.; Su, L.; Wang, H.; Letteri,
R. A.; Song, Y.; Lin, Y.-N.; Chen, Y.; Li, R.; et al. Experiments and
Simulations of Complex Sugar-Based Coil- Brush Block Polymer
Nanoassemblies in Aqueous Solution. ACS Nano 2019, 13 (5),
5147−5162.
(55) Lyubimov, I.; Wessels, M. G.; Jayaraman, A. Molecular
Dynamics Simulation and PRISM Theory Study of Assembly in
Solutions of Amphiphilic Bottlebrush Block Copolymers. Macro-
molecules 2018, 51 (19), 7586−7599.
(56) Sivia, D. S. Elementary scattering theory: for X-ray and neutron
users; Oxford University Press: 2011.
(57) Michalski, R. S. Learnable evolution model: Evolutionary
processes guided by machine learning. Machine learning 2000, 38 (1−
2), 9−40.
(58) Patra, T. K.; Meenakshisundaram, V.; Hung, J.-H.; Simmons,
D. S. Neural-network-biased genetic algorithms for materials design:
Evolutionary algorithms that learn. ACS Comb. Sci. 2017, 19 (2), 96−
107.
(59) Wertheim, M. Exact solution of the Percus-Yevick integral
equation for hard spheres. Phys. Rev. Lett. 1963, 10 (8), 321.
(60) Thiele, E. Equation of state for hard spheres. J. Chem. Phys.
1963, 39 (2), 474−479.
(61) Martin, T. B.; Jayaraman, A. Using theory and simulations to
calculate effective interactions in polymer nanocomposites with
polymer-grafted nanoparticles. Macromolecules 2016, 49 (24),
9684−9692.
(62) Levi, L.; Raim, V.; Srebnik, S. A brief review of coarse - grained
and other computational studies of molecularly imprinted polymers. J.
Mol. Recognit. 2011, 24 (6), 883−891.
(63) Kotelyanskii, M. Simulation methods for modeling amorphous
polymers. Trends Polym. Sci. 1997, 5 (6), 192−197.
(64) Karatrantos, A.; Clarke, N.; Kröger, M. Modeling of polymer
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