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abstract: Metacommunity theory and its constituent theory of is-
land biogeography (TIB) have the potential to unify ecology across dif-
ferent scales. The TIB has been successful in predicting alpha diversity
patterns, such as species-area relationships and species-abundance dis-
tributions, but lags behind in predicting spatial beta diversity patterns.
In this study we use island biogeography theory as the starting point to
integrate spatial beta diversity patterns into metacommunity theory.
We first derive theoretical predictions for the expected beta diversity
patterns under the classic MacArthur and Wilson framework, where
all species have equal colonization and extinction rates. We then test
these predictions for the avian community composition of 42 islands
(and 93 species) in Thousand Island Lake, China. Our theoretical re-
sults corroborate that longer distance and smaller area lead to higher
beta diversity and further reveal that pairwise beta diversity is inde-
pendent of the size of the mainland species pool. We also find that for
the partitioned pairwise beta diversity components, the turnover com-
ponent increases with the ratio of extinction rates and colonization
rates, while the nestedness component is a unimodal function of the
ratio of extinction rates and colonization rates. For the empirical island
system, we find that beta diversity patterns better distinguish a species-
equivalentmodel froma species-nonequivalentmodel than alpha diver-
sity patterns. Our findings suggest that beta diversity patterns provide
a powerful tool in detecting nonneutral processes, and our model has
the potential to incorporate more biological realism in future analyses.

Keywords: neutral theory, null model, metacommunity, incidence
function, community assembly, regional species pool.

Introduction

Metacommunity theory is at the frontier of unifying ecol-
ogy across scales (Leibold et al. 2004; Leibold and Chase
2018), as it provides a natural way to integrate four funda-
mental processes in ecology—selection, drift, speciation,
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and dispersal (Vellend 2010). Integrating the theory of is-
land biogeography (TIB), neutral theory, metapopulation
theory, and metacommunity theory has been successful in
explaining patterns such as species area relationships and
species abundance distributions (Hensiques-Silva et al. 2013;
Leibold and Chase 2018). But it has also become clear that
our ability to infer processes is limited by the number of ex-
amined patterns. Increasing the dimensionality of the diag-
nostic patterns is thus crucial for further development of
metacommunity theory (Leibold and Chase 2018).
One dimension of biodiversity that has been increasingly

gaining attention in metacommunity studies is spatial beta
diversity, which measures species compositional dissimilar-
ity among communities. The concept of beta diversity was
first introduced by Whittaker (1960, 1965) and was quickly
linked to an array of important mechanisms in commu-
nity assembly, such as biotic interactions (Graham and Fine
2008), environmental filtering (Veech and Crist 2007; Buck-
ley and Jetz 2008), dispersal limitation (Ojima and Jiang
2017; Wu et al. 2017), and historical contingency (Fukami
and Nakajima 2011). An important reason for the increas-
ing prominence of beta diversity in metacommunity stud-
ies is the emergence of partitioning frameworks that have
the potential to disentangle contributions of different pro-
cesses, such as environmental filtering and competitive ex-
clusions, to beta diversity patterns (Baselga 2010). Although
the best way to partition pairwise beta diversity metrics re-
mains debated (Baselga 2010; Podani and Schmera 2011;
Legendre 2014; Baselga and Leprieur 2015), there is a gen-
eral agreement that different measures quantify different as-
pects of communities and that their use should be guided
by the research question (Anderson et al. 2011; Legendre
2014). Another value offered by beta diversity for metacom-
munity studies is its emergence as an effective tool to differ-
entiate the niche model, where species have different re-
source or environmental requirements, and the neutral
model, where all species are assumed to be the same (Chase
and Myers 2011; Segre et al. 2014; Püttker et al. 2015). In a
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pure environmental niche model, beta diversity should be a
function of distance in environmental space but independent
of geographic distance; in contrast, in a pure neutral model,
beta diversity should be a function of geographic distance but
independent of environmental distance (Leibold and Chase
2018). Hubbell also showed that in a neutral model the dis-
tance decay of compositional similarity should be weaker
in metacommunities with larger local community size or
higher dispersal rates (2001). In reality, both niche process
and neutral process contribute to observed beta diversity pat-
terns (Legendre et al. 2005), together with additional factors
such as species abundance distribution (Xu et al. 2015) and
the size of the regional species pool (Chase et al. 2011; Kraft
et al. 2011; Qian et al. 2013; Karger et al. 2015; Ulrich et al.
2017). Larger regional species pools are hypothesized to in-
crease beta diversity because they allowmore species to enter
different local communities. Much progress has been made
in measuring beta diversity (Chao et al. 2016), but analyti-
cal predictions from process-based theories remain rare and
limited to abundance-basedmetrics, which calculate the prob-
ability of two random individuals belonging to the same
species at a given distance (Chave and Leigh 2002; Condit
et al. 2002; Zillio et al. 2005). A theoretical examination of
beta diversity patterns based on an occupancy-based meta-
community model is still lacking.
We chose the TIB as the starting point for our work be-

cause it is the most parsimonious metacommunity model
that has a constant species pool and because islands offer
compelling study systems with growing global information
(Weigelt et al. 2013; Patiño et al. 2017). The TIB (MacArthur
and Wilson 1967) is most celebrated for elegantly linking
species richness with colonization and extinction rates, which
in turn are influenced by island area and distance to themain-
land. Equilibrium TIB makes two key predictions: (1) equi-
librium species richness depends on colonization and extinc-
tion rates and (2) the community composition of an island is
undergoing constant turnover. While early empirical studies
have focused on testing the equilibrium and temporal turn-
over predictions (Diamond 1969; Simberloff 1969; Simber-
loff andWilson 1969, 1970; Diamond andMay 1977), recent
interest in the TIB lies in more complex processes, including
allometric scaling (Jacquet et al. 2017), trophic interactions
(Gravel et al. 2011; Cazelles et al. 2016), speciation (Chen
and He 2009; Rosindell and Phillimore 2011; Rosindell and
Harmon 2013), habitat heterogeneity (Kadmon and Allouche
2007), and island ontogenies (Whittaker et al. 2008; Borre-
gaard et al. 2016). However, examinations to date have fo-
cused on alpha diversity patterns, such as species richness
(MacArthur andWilson 1967), species-abundance relation-
ships (Rosindell and Phillimore 2011; Rosindell and Har-
mon 2013; Kessler and Shnerb 2015), functional diversity
(Jacquet et al. 2017), and endemism (Chen and He 2009).
A theoretical examination of beta diversity in the TIB is still
missing. It is unclear how processes such as colonization
and extinction shapes beta diversity patterns in the TIB.
In this study, we address this shortcoming and provide a

theoretical integration of beta diversity into the TIB. Specif-
ically, we present the first theoretical derivations for the ex-
pected pairwise beta diversity patterns for Jaccard dissimi-
larity under the classic MacArthur and Wilson framework.
This framework is based on a species-level occupancy model
where all species have the same colonization and extinction
rates. We first derived the probability mass function of
pairwise beta diversity and its expected value in a general
case where the equilibrium assumption is not required. We
then examined our results under the classic MacArthur-
Wilson equilibrium framework and extended our discus-
sion to N-community (multisite) beta diversity measures.
Last, we tested the derived predictions for a data set of
93 avian species occurring across 42 islands of the Thousand
Island Lake region in China (Wang et al. 2010).
Material and Methods

To derive the expected beta diversity patterns, we need to
consider the joint statistical distribution of the occupancy
patterns of multiple islands. We focus on pairwise commu-
nity comparisons because the average pairwise dissimilarity
is shown to be the only unbiased and consistent estimator
when applied to empirical data (Marion et al. 2017). We
also calculated the expected value of the partitioned com-
ponents of pairwise beta dissimilarity for both the Baselga
and the Podani families (Baselga 2010; Podani and Schmera
2011). To test our predictions, we applied the “incidence
function” approach pioneered by Diamond (1975) and used
by Connor and Simberloff (1978, 1979) during early debates
of null models.
Probability Mass Function of Pairwise Beta Diversity

All pairwise beta diversity indices share the same probabil-
ity mass function to describe island community composition
because they are calculated from four quantities: the total
number of species of two islands g (regional species rich-
ness), the number of species shared by both islands k, the
number of species unique to the first island i, and the number
of species unique to the second island j (thus, g p k1 i1 j).
Then the number of species present on the first island is

i1 k, and the number of species present on the second is-
land is j1 k. Denoting the size of the mainland species pool
as M, the probability mass function of pairwise beta diver-
sity, conditioning on g, k, and i, can be derived as follows.
Letting the occurrence probability of a species on the first
island be p and a species on the second island be q, and
furthermore assuming that the occurrence probabilities de-
pend only on properties of islands rather than of species,
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the probability of obtaining exactly i unique species and k
shared species from a species pool of size M on the first
island is pk1i(12 p)M2(k1i). Similarly, the probability of ob-
taining j unique and k shared species on the second island is
qk1j(12 q)M2(k1j), which yields the probability of obtaining
the regional community specifiedby i, j, k, andM as the prod-
uct pk1i(12 p)M2(k1i)qk1j(12 q)M2(k1j).
We then count how many different combinations of is-

land communities could be obtained with regional richness
g, k shared species, and i unique species to the first island
(the number of unique species to the second island is then
fixed as k2 i). There are exactly C(M, g) ways of choosing g
out of M species to be present in either or in both islands
from the mainland species pool. Similarly, there are C(g, k)
ways to choose k out of g species to be shared by both islands,
and for the unique g2 k species there are C(g2 k, i) ways
of assigning i species to the first island. After simplification,
the probability of pairwise beta diversity conditioning on the
total number of species of both islands g, the number of spe-
cies shared by both islands k, and the number of species
unique to the first island i is

Pr(regional:communityjg, k, i) p
M

g

� �
g

k, i

� �
pk1iqk1j(12 p)M2(k1i)(12 q)M2(k1j):

ð1Þ

Becausebetadiversitymeasures (e.g., JaccardandSørensen
indices) are usually undefined at g p 0, the expected pair-
wise beta diversity should be normalized by the term 12
(12 p)M(12 q)M to exclude “double-absence” scenarios (An-
derson et al. 2011). Only the expected Jaccard dissimilarity

12
k
g

has a simple analytical form that is independent of the size of
the mainland species poolM (for the derivation, see the ap-
pendix, available online; we do not show the analytical form
of the expected Sørensen dissimilarity because the specific
form depends on the size of the mainland species pool):

E(Jaccard:dissimilarity) p
p1 q2 2pq
p1 q2 pq

: ð2Þ

It has a form that is similar to the expected pairwise Jac-
card derived by Chase et al. (2011) but allows two islands to
have different occurrence probabilities. The occurrence prob-
abilities p and q could also be interpreted as probabilities of
thesameislandatdifferent times, andinthatcaseequation(2)
becomes the expected temporal Jaccard dissimilarity. This
quantity does not require any equilibrium assumptions of al-
pha diversity and hence could be seen as a generalized ver-
sion of the apparent turnover derived by Diamond andMay
(1977), which is essentially a pairwise Sørensen dissimilarity
index at equilibrium (Morrison 2017).
We also calculated the expected pairwise beta diversity
for Jaccard and Sørensen families as well as their partitioned
components (for detailed formulas of the Baselga and Po-
dani families, see Baselga and Leprieur 2015) conditioning
on both islands having species (i1 k 1 0 and j1 k 1 0) be-
cause empty islands are sometimes excluded from analy-
sis (Wang et al. 2016). In Baselga’s (2010) framework, the
partitioned components are, respectively, the turnover com-
ponent (which is different from the turnover metric used in
DiamondandMay1977) and thenestednesscomponent (dif-
ferent from the concept of nestedness in multisite measure-
ments; Matthews et al. 2015). In Podani’s (2011) framework
the partitioned components are, respectively, the replace-
ment component and the richness difference component.
The turnover component in Baselga’s framework and the re-
placement component in Podani’s framework have the same
numerator and account for species replacement in slightly
different ways (Legendre 2014). The nestedness component
inBaselga’s framework only accounts for dissimilarity caused
by richness differences derived from nested patterns, while
the richness difference component in Podani’s framework
accounts for all kinds of richness differences (Baselga and
Leprieur 2015). Although the Baselga’s partitioned compo-
nents and the Podani’s partitioned components are related,
they quantify different aspects of dissimilarity.
Island Biogeography Theory

Following the stochastic TIB (MacArthur andWilson 1967),
the occurrence probability of a species on an island is a func-
tion of colonization rate c and extinction rate e:

dp
dt

p c(12 p)2 ep: ð3Þ

When the occurrence probability of a species is at sto-
chastic equilibrium (stationary distribution), the occurrence
probability is

pi,eq p
c

c1 e
: ð4Þ

Let v p e=c, which is the relative extinction rate; equa-
tion (4) then becomes

pi,eq p
1

11 v
: ð5Þ

Substituting

p p q p
1

11 v

into equation (2), the expected Jaccard dissimilarity when
two islands have equal relative extinction rates is
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E(Jaccard:dissimilarity) p
2v

11 2v
: ð6Þ

To take into account asymmetry between islands (e.g., the
effect of area, isolation, or habitat types), let

p p
1

11 v

and

q p
1

11 zv
,

so that the relative extinction rate on the second island is
z times the relative extinction rate on the first island. Equa-
tion (2) becomes

E(Jaccard:dissimilarity) p
(11 z)v

11 (11 z)v
: ð7Þ

Wealso simulated the scenariowhen two islands are iden-
tical but species have different relative extinction rates to as-
sess the effect of interspecific variation as well as the effect of
the shape of occurrence probability distribution (appendix).
N-Community Jaccard Dissimilarity

We further provide a heuristic link between pairwise Jac-
card dissimilarity to N-community Jaccard dissimilarity in
the TIB with a recent Hill’s number framework (Chao et al.
2016).A class of regional (Jaccard-type) species-overlapmea-
sure is

UqN p
(1=qDb)

12q 2 (1=N)12q

12 (1=N)12q , ð8Þ

where

qDb p
qDg

qDa

: ð9Þ

The term q is the order of Hill’s number, which in the case
of presence-absence measure equals 0, and N is the number
of total communities (islands). The terms qDg , qDa , and qDb

are, respectively, the effective regional diversity, the effective
alpha diversity, and the effective beta diversity, the former
two of which are just regional richness and local richness
in the case of the presence-absence metric.
Under the TIB framework, expected regional richness

(gamma diversity) is the size of the mainland species pool
multiplied by the probability of having at least one species
on one of the islands:

qp0Dg p M

�
12

YN
i

(12 pi)

�
, ð10Þ

where pi is the occurrence probability of a species on is-
land i.
The expected alpha diversity is the size of the mainland
species pool multiplied by the sum of occurrence probabil-
ities of all of the islands:

qp0Da p M
XN

i

pi: ð11Þ

Combining equations (8)–(11) and setting

N p 2,
p1 p p,
p2 p q,

which corresponds to the pairwise situation, we get the pair-
wise Jaccard similarity

Uqp0,Np2 p
pq

p1 q2 pq
, ð12Þ

which is the same with what we derived in equation (2) once
we subtract (12) from 1. But this does not mean that we
could automatically get the expected N-community Jaccard
dissimilarity for N 1 2 unless

E(Db) p E(Dg)=E(Da)

is always true. However, in the special case where N ap-
proaches infinity and

E(Dg) p M,

we could use (5) and (8)–(11) to derive the expected N-
communities Jaccard similarity, which is just the ratio be-
tween alpha diversity and gamma diversity assuming that all
islands are the same:

Uqp0,N→∞ p
qp0Da

qp0Dg

p pi,eq p
1

11 v
: ð13Þ

Empirical Tests

Data. We used a published data set of avian community
composition for 93 birds and 42 islands in Thousand Island
Lake, China, to test our predictions (see the appendix in
Wang et al. 2010). The region (2972200–2975000N, 11873400–
11971500E) consists of an inundated lake with more than
1,000 islands created by dam constructions in 1959. Because
the islands were formed recently, it is unlikely that there
has been in situ speciation in this region. The relatively small
area of the region (573 km2) ensures that the islands are
accessible to most of the bird species (Si et al. 2016). Bird
occupancies from 2006 to 2009 on 42 islands were docu-
mented using the line-transectmethod. Island variablesmea-
sured in the data set include area, distance to mainland, hab-
itat diversity (the number of habitat types within an island),
and vascular plant species richness (table 1).
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Incidence Function and Statistical Analysis. Because extinc-
tion rates and colonization rates are difficult to measure di-
rectly, an alternative way is to use an incidence function ap-
proach to estimate parameters from a snapshot of occupancy
patterns (Diamond 1975; Hanski 2009). To test the predic-
tions of island biogeography theory, equation (4) is modeled
as a function of isolation and area. We first constructed our
own binomial likelihood function with different assump-
tions for the relationship between extinction rates and area
and the relationship between colonization rates and isola-
tion. Then we used the nlm function in the R package stat
to fit the maximum likelihood parameters for the first two
models. We expected that the species-equivalent general-
ized linear model (GLM) would have an overall better per-
formance than any other model based solely on isolation
and area information because it allows for the incorpora-
tion of other variables. Therefore, we chose only two species-
equivalent models to capture different colonization-isolation
and extinction-area relationshipsmostly for theirmathemat-
ical tractability and easier convergence in fitting.
Species-equivalent model 1: inverse ratio. Colonization

rates aremodeled as an inverse ratio function of isolation (I),

c p
a
I
,

and extinction rates aremodeled as an inverse ratio of area (A),

e p
b
A
,

where a and b are parameters. In actual fitting, a and b are re-
duced to one parameter.
Species-equivalent model 2: exponential. Colonization

rates are modeled as an exponential function of isolation,

c p exp(2aI),

and extinction rates are modeled as an exponential function
of area,

e p exp(2bA),

where a and b are fitted parameters. Substitute

c p exp(2aI)

and

e p exp(2bA)

into equation (4), and the occurrence probability becomes

p p
1

11 exp(2bA1 aI)
:

Thus, the exponential species-equivalent model is equiva-
lent to a logistic regression without intercept, which could
be directly fitted by the glm function in the R package stats
with a binomial distribution and logit link.
Species-equivalent model 3: GLM. This model adds hab-

itat diversity and vascular plant richness to the predictors in
addition to area and isolation in species-equivalent model 2.
The Akaike information criterion (AIC) is used to select the
best model (Burnham and Anderson 2004). Area and isola-
tion are log transformed for better linearity.
Table 1: Summary statistics for islands in Thousand
Island Lake, China
Island

Area
(ha)
Isolation
(m)
No. habitat
types
Plant
richness
1
 1,289.23
 897.41
 7
 198

2
 143.19
 1,415.09
 6
 99

3
 109.03
 964.97
 6
 86

4
 55.08
 953.95
 5
 59

5
 46.37
 729.8
 5
 51

6
 35.64
 2,110.41
 5
 49

7
 32.29
 1,936.95
 5
 57

10
 5.69
 21.85
 3
 69

11
 3.42
 583
 4
 74

12
 2.9
 1,785.3
 3
 85

13
 2.83
 1,238.14
 4
 86

14
 2.29
 973.85
 4
 65

15
 2.23
 3,261.96
 3
 53

16
 2
 1,042.38
 3
 45

17
 1.93
 888.05
 4
 50

18
 1.74
 2,293.25
 3
 100

20
 1.54
 711.04
 3
 88

21
 1.52
 849.88
 3
 40

22
 1.52
 2,849.99
 3
 53

23
 1.4
 1,760.34
 3
 49

24
 1.26
 54.86
 3
 65

25
 1.2
 657.72
 3
 56

26
 1.2
 2,128.52
 3
 68

27
 1.17
 2,453.37
 3
 69

28
 1.15
 847.12
 3
 33

30
 1.03
 1,458.81
 3
 36

31
 1.01
 2,437.85
 3
 29

32
 1.01
 2,103.85
 3
 36

33
 .97
 938.85
 3
 70

34
 .96
 3,133.96
 3
 50

35
 .91
 1,339.71
 4
 50

36
 .86
 2,321.51
 3
 56

37
 .83
 2,298.5
 3
 50

38
 .83
 1,098.58
 4
 45

39
 .8
 102.6
 3
 68

40
 .8
 2,097.52
 2
 80

41
 .73
 1,320.4
 3
 31

42
 .67
 1,139.87
 3
 39

43
 .59
 640.53
 3
 42

44
 .59
 1,018.42
 3
 55

45
 .57
 3,712.31
 3
 47

46
 .3
 1,086.03
 2
 75
Note: Plant richness refers only to vascular plant richness. The original ta-
ble of island variables can be found in Wang et al. (2010).
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Species-nonequivalent model: aggregate species-level GLM.
To take into account interspecific variation in occurrence
probabilities, species identity is included as a fixed effect cat-
egorical variable in the GLM, which allows each species to
have a different intercept (baseline occurrence probability)
but share the same response to island area, isolation, plant
richness, and habitat types. This is essentially a stacked spe-
cies distribution modeling approach (Calabrese et al. 2014;
Ko et al. 2016), which increases the number of parameters
by the number of species minus one (92 parameters in this
case). This procedure aims to capture the observed presence-
absence variation among species but does not pin down the
causes of interspecific variation, such as traits and differences
in abundance. More realistic assumptions of species non-
equivalence, suchasdifferent responses toareaand isolation,
could bemade but are not themain focus of this paper. Area
under the curve (AUC) andAICvalues are calculated to com-
pare the overall performance of the models. AUC is calcu-
lated with a Mann-Whitney U statistic using the R package
PresenceAbsence (FreemanandMoisen 2008).AIC is calcu-
lated from the best-fit likelihood function (BurnhamandAn-
derson 2004). DAIC is calculated by subtracting the AIC of
the null model (GLM with only the intercept) from the AIC
of the fitted model.
Predictions of Alpha Diversity and Beta Diversity

The predicted species richness of each island is given by the
summed fitted occurrence probabilities of all species, as used
in conventional stacked species distribution modeling (Ca-
labrese et al. 2014; Ko et al. 2016). While predicted pairwise
Jaccarddissimilarity canbecalculatedanalytically fromequa-
tion (2), the partitioned nestedness and turnover compo-
nents can be estimated only by simulations.
For the clarity of demonstrating the strength of a parti-

tioned framework, we present only the results of Baselga’s
family, although Podani’s family could be similarly calcu-
lated. We therefore estimate predicted pairwise beta diversity
as themean of 1,000 communitymatrices simulated from the
fitted occurrence probabilities. Observed values are regressed
against predicted values using ordinary least squares. R2 is
used as a measure of predictive power for alpha and beta di-
versity patterns. If the model predicts the observed patterns
well, then thefitted regression line should be close to the 1∶1 ra-
tio line when observed values are plotted against predicted val-
ues. All statistical analyses are performed in R version 3.3.2.
Code is provided in a zip file, available online.1
1. Code that appears in The American Naturalist is provided as a conve-
nience to readers. It has not necessarily been tested as part of peer review.
Results

Symmetric Islands (Same Colonization
and Extinction Rates for Both Islands)

The expected Jaccard dissimilarity conditioned on both is-
lands having nonzero species richness increases with rela-
tive extinction rate v and the size (number of species) of
the mainland species poolM. AsM increases, the expected
Jaccard dissimilarity converges to

2v
11 2v

(fig. 1a). When decomposed into turnover and nestedness
(or replacement and richness difference) components, con-
trasting patterns are observed: while the turnover compo-
nent and the replacement component increase monotoni-
cally with v and M (fig. 1b, 1e), the nestedness component
and the richness difference component are both unimodal
functions of v with maximum values less than 0.3 (fig. 1c, 1f ).
The maximum nestedness decreases asM increases (fig. 1c),
while the maximum richness difference changes less with the
increase ofM (fig. 1f ). The ratio of expected turnover to ex-
pected nestedness increaseswith v andM (fig. 1d). In the spe-
cial case of twomainland species, the ratio of expected turn-
over and expectednestedness equals v (fig. 1d). TheSørensen
family indices have qualitatively similar but quantitatively
nonequivalent behaviors compared with the Jaccard family
indices (see fig. A1; figs. A1–A4 are available online). Intro-
ducing interspecific variation in relative extinction rates re-
duces the total amount of beta diversity as well as the turn-
over component (fig. A2). ForM 1 50, the effect of the size
of themainland species pool onmean beta diversity is negli-
gible. Increasing the size of the mainland species pool only
decreases the variance of beta diversity (fig. A2). Increasing
unevenness of the occurrence probability leads to lower beta
diversity (figs. A3, A4)
Asymmetric Islands (Different Colonization
and Extinction Rates for Two Islands)

The expected Jaccard dissimilarity conditioned on both is-
lands having nonzero species richness converges to

(11 z)v
11 (11 z)v

as M increases. But the deviation from

(11 z)v
11 (11 z)v

also increases with island asymmetry z (fig. 2a, 2e, 2i). The
turnover component increases monotonically with v and M
and decreases with z (fig. 2b, 2f, 2j). The nestedness component
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decreases withM when z is small (fig. 2c), but this relation-
ship withM is reversed when z gets larger (fig. 2g, 2k). There
is also less variability withM for the nestedness component
as z increases. The ratio of expected turnover and expected
nestedness also increases with M when z is small (fig. 2d)
and decreases with M when z is large (fig. 2h, 2l).
Empirical Test

We tested some of the predictions described above for an
inland lake island system using 93 bird species and 42 is-
lands.We used an incidence function approach to fit the ob-
served occupancy patterns and calculated predicted alpha
Figure 1: Expected pairwise Jaccard beta diversities (Y-axes) of two identical islands (same colonization and extinction rates), conditioned
on both islands having species. Results are derived from the joint presence-absence distribution of two islands and shown for different main-
land pool sizes. The blue dashed line in a is the analytical solution E(Jaccard:dissimilarity) p 2v=(11 2v) for the case of at least one island
having species. The relative extinction rate is the ratio of the extinction rate and the colonization rate.
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and beta diversity patterns from the fitted models. The
species-nonequivalent GLM has the lowest AIC and the
highest AUC of all models (table 2). Among three species-
equivalent models, the GLM has the lowest AIC and the
highestAUC.Allmodels are better at predicting alphadiver-
sitypatterns thanatpredictingbetadiversitypatterns (fig. 3).
The species-equivalent exponential model and GLM sys-
tematically underestimate the nestedness component but
overestimate the turnover component (fig. 3f–3h, 3j–3l). In
contrast, the species-equivalent inverse ratio model system-
aticallyunderestimates all observedpairwisebetadiversity at
the lower range of the predictions, yet it overestimates pair-
wise beta diversity at the higher range of the predictions
(fig. 3a–3d). Both the species-equivalent GLM and the species-
nonequivalentGLMsuccessfully predict the observed alphadi-
versity pattern (fig. 3i, 3m), but only the species-nonequivalent
Figure 2: Expected pairwise Jaccard beta diversities of two islands (Y-axes) differing in colonization and/or extinction rates, conditioned on
both islands having species. The blue dashed lines in a, e, and i are the analytical solutions of E(Jaccard:dissimilarity) p ([11 z]v)=
(11 [11 z]v), conditioned on at least one island having nonzero species. Expectations are provided for different levels of z, that is, the num-
ber of times the relative extinction rate on the second island exceeds that on the first. The black dashed lines in d, h, and l represent a 1∶1
ratio. Different lines in a graph represent different mainland pool sizes (for color key, see fig. 1).
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GLM successfully predicts the observed beta diversity pat-
terns (fig. 3n–3p).
Discussion

Theoretical Results

We demonstrate the mechanistic link of beta diversity pat-
terns to the extinction rates and colonization rates of spe-
cies in islands, which has been lacking in previous devel-
opments of island biogeography theory (Santos et al. 2016;
Patiño et al. 2017). Part of our theoretical results echo what
the neutral theory predicts about the effect of distance (iso-
lation) and local community size (which in the neutral theory
is proportional to area): longer distance and lower dispersal
rates increase beta diversity, while larger area reduces beta di-
versity (Hubbell 2001;Chave et al. 2002;Kraft et al. 2011).But
other parts of our theoretical results reveal novel insights
about the formation of beta diversity, such as the effect of re-
gional species pool and behaviors of the partitioned pairwise
beta diversity components.
There is a heated debate about the effect of gamma diver-

sity or the richness of the regional species pool on beta diver-
sity patterns (Kraft et al. 2011; Qian et al. 2012, 2013; Ulrich
et al. 2017). The usual assumption is that a larger species pool
should increase beta diversity because it allows more species
to enter different communities. But our results show that in
the classic island biogeography model the expected pairwise
Jaccard dissimilarity is independent of the size of the main-
land species pool. In other words, as long as all species in the
regional pool have the same occurrence probability on an is-
land, the species compositional difference of any two islands
will be the same no matter how many species are there in
the pool. The dependence of beta diversity on the size of the
mainland species pool in figure 1 results from renormalizing
the joint probability distribution of island occupancy by ex-
cluding the probability when one of the islands is empty.
Our simulations further confirm that even in the presence
of interspecific variation in occurrence probabilities, the size
of the mainland species pool does not significantly change
expected beta diversity (fig. A2). This implies that the spe-
cies pool effect is more likely to act indirectly through other
factors, such as species abundance distribution (Xu et al.
2015) or functional diversity (Patrick and Brown 2018) in-
stead of richness per se. The frequency distribution of occur-
rence probabilities in the simulation also reveals that the de-
viation from species-equivalent expectation could be caused
by species abundance distribution (fig. A3). As beta diver-
sity is a measure of the proportion of shared species, any in-
equality in occurrence probabilities should increase the rel-
ative prevalence of more abundant species, thus decreasing
overall beta diversity. This result is corroborated by our sim-
ulations (fig. A4). But we also caution against overinter-
preting our results in relation to previous studies because
prior work often used a different beta diversity metric (which
might change the relationship between beta diversity and the
size of species pool) and fixed local community sizes (as op-
posed to dynamic sizes in the TIB).
By partitioning pairwise Jaccard dissimilarity into the

nestedness and the turnover components, we reveal how the
proportions of these two independent components change
with extinction and colonization rates. One key result is that
the relative importance of the turnover component increases
nearly linearly with higher extinction rates, which shows that
Table 2: Models fitted to the presence-absence patterns of 93 bird species in 42 islands in Thousand Island Lake, China
Estimate
 DAIC
 AUC
R2
Richness
 Dissimilarity
 Turnover
 Nestedness
Species nonequivalent GLM
 log(Isolation): 2.22***

log(Area): .54***

Plant richness: .0065**
22,627
 .949
 .91
 .37
 .53
 .75
Species equivalent GLM
 log(Isolation): 2.079*

log(Area): .21***

Plant richness: .0038*
2172
 .605
 .9
 .01
 .45
 .68
Species-equivalent exponential
 a: .0005***

b: .0015***

28
 .569
 .41
 .01
 .17
 .26
Species-equivalent inverse ratio
 d: .0063***
 1,587
 .603
 .69
 .04
 .46
 .56
Note: For the species-equivalent exponential model, c p exp(2aI) and e p exp(2bA). For the species-equivalent inverse ratio model, c p a=I, e p b=A,
and d p b=a. Dissimilarity is the sum of the turnover component and the nestedness component. Area under the curve (AUC) is calculated with a Mann-
Whitney U statistic. AIC p Akaike information criterion.

* P ! :05.
** P ! :01.
*** P ! :001.
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the turnover component has great potential to reveal acceler-
ated extinction events (Baselga and Leprieur 2015). A larger
proportion of the nestedness component might reflect that
processes other than ecological drift (such as historical con-
tingency) have a greater contribution to community assembly
(Leprieur et al. 2011). The relationships between Podani’s
partitioned components with relative extinction rates are sim-
ilar but not equivalent to Baselga’s partitioned components
(fig. A2). This might have further implications for more com-
plex metacommunity models, where a richness difference
gradient metacommunity does not correspond to a nested-
ness gradient metacommunity.We did not fully explore these
differences, and they remain an area worthy of future work.
Last, we provide the first theoretical prediction of an N-

community betadiversitymetric, which is increasingly gain-
ing attention in recent literature because of the rich biodi-
versity information they supply (Hui and McGeoch 2014;
Arita 2017; Latombe et al. 2017). Even though we cannot
derive expected N-community Jaccard similarity for all N
bigger than two and less than infinity, we can calculate the
ratio between expected alpha diversity and expected gamma
diversity from equations (10) and (11), which should ap-
proximate the expected Jaccard similarity at equilibrium
(Chase et al. 2011). The ratio of equations (10) and (11) is

PN
i pi

12
QN

i (12 pi)
:

It could be rewritten as

N�p
12 [G(12 p)]n

,

where �p and G(12 p) are, respectively, the arithmetic mean
of all pi and the geometric mean of all (12 pi), which im-
mediately shows that habitat heterogeneity (by drawing pi
from a statistical distribution) is always going to increase
N-community beta diversity because the maximum value
of G(12 p) is reached when all pis are equal.
Empirical Test

We tested the empirical beta diversity patterns of the Thou-
sand Island Lake bird data set against various models as a
proof of concept todemonstrate that occupancy-basedmod-
els have much to offer in terms of linking theoretical predic-
tions to empirical patterns. We show that both the species-
equivalent GLM and the species-nonequivalent GLM are
successful in predicting species richness (alpha diversity)
of birds in Thousand Island Lake (fig. 3i, 3m). But only the
species-nonequivalent model predicts the observed beta di-
versity patterns. We suggest that the lower sensitivity of the
alpha diversity pattern to nonneutral processes is caused by
the fact that species richness is ignorant of species identity
andco-occurrencepatternsandthusis less likelytodetectnon-
random species-habitat associations. The patterns of parti-
tioned components further reveal that the species-equivalent
GLM fails to predict the observed pairwise Jaccard dissimi-
larity because it overestimates the turnover component and
underestimates the nestedness component (fig. 3j–3l). A thor-
ough investigation of why the empirical pattern deviates from
the species-equivalentmodel is beyond the scope of this study,
but a few factors are likely to contribute to the species-specific
occupancy variation: (1) variation in abundance among the
species translates into differences in occurrence probability,
(2) differences in dispersal traits cause variation in coloniza-
tion rates among islands, (3) species-specific habitat prefer-
ences intersect with habitat differences among islands, and
(4) anthropogenic activities cause selective extinctions. Re-
cent evidence suggests that all of these factors have contrib-
uted to shaping beta diversity patterns in Thousand Island
Lake (Si et al. 2016; Wu et al. 2017; Liu et al. 2018). A more
rigorous test of the TIB thus will involve estimating actual
turnover and extinction rates using time-series data (Si et al.
2014).
Our method belongs to a group of mechanistic null mod-

els (O’Dwyer et al. 2017) that differ from random shuffling
null models (Ulrich and Gotelli 2013) by explicitly incorpo-
rating process parameters such as extinction and coloniza-
tion rates into the model. In terms of beta diversity, the en-
tangled links among alpha, beta, and gamma diversity are
known to reduce the statistical power of randomization tests
and bring ambiguity to their interpretations (Chase et al. 2011;
Kraft et al. 2011;Qianet al. 2012, 2013;Ulrichet al. 2017).Our
results support the use of mechanistic null models such as
those based on neutral theory (O’Dwyer et al. 2009; Rosindell
et al. 2012), maximum entropy theory (Xiao et al. 2015, 2016;
O’Dwyer et al. 2017), and incidence functions (Hanski et al.
1996; Helm et al. 2006; Hanski 2009) to improve on random-
shuffling null models in hypothesis testing.
Conclusions and Future Directions

In this article, we studied the beta diversity patterns of a sim-
ple metacommunity model: the island biogeography model.
But to understand more complex community assembly pro-
cessesandtoenhance thetransferabilityof the theorytomain-
land applications, more biological realism should be consid-
ered in the future. For example, local dispersal is known to
interact with disturbance (Ojima and Jiang 2017), environ-
mental heterogeneity (Gianuca et al. 2017), and priority ef-
fects (Vannette and Fukami 2014, 2017) to create complex
beta diversity patterns that deserve in-depth theoretical ex-
aminations. Local dispersal could be incorporated into our
model by making the occurrence probability of an island
dependent on immigrations from neighboring islands. An-
other important process that is missing in our model is
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speciation. Studying how speciation influences beta diversity
patterns is crucial for understanding the origins and mainte-
nance of biodiversity in oceanic islands (Cabral et al. 2014).
We believe that the integration of beta diversity patterns into
the TIB offers new opportunities for inferring community
assembly processes and developing a unified metacommu-
nity theory.
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