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Abstract 

This study investigated relations between the distribution of practice problems in 

textbooks and students’ learning of decimal arithmetic. In Study 1, we analyzed the 

distributions of decimal arithmetic practice problems that appeared in three leading math 

textbook series in the US. Similar imbalances in the relative frequencies of decimal 

arithmetic problems were present across the three series: Addition and subtraction more 

often involved two decimals than a whole number and a decimal, but the opposite was 

true for multiplication and division. We expected children’s learning of decimal 

arithmetic to reflect these distributional biases. In Studies 2, 3, and 4, we tested the 

prediction that children would have more difficulty solving types of problems that 

appeared less frequently in textbooks, regardless of the intrinsic complexity of solving 

the problems. We analyzed students’ performance on decimal arithmetic from an 

experiment conducted in a different lab 35 years ago (Study 2), from a contemporary 

large-scale web-based learning platform (Study 3), and from a recent controlled 

experiment conducted in our own lab (Study 4). Despite many differences among the 

three studies, performance in all three was in accord with the predictions. These findings 

suggest that the distributions of practice problems in math textbooks may influence what 

children do and do not learn. Usefulness of analyzing textbook problem distributions, as 

well as educational implications of the current findings, are discussed. 

Keywords: textbook analysis, decimal arithmetic, rational numbers, math learning, and 

practice problems. 
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Educational Impact and Implications Statement 

Analysis of three leading math textbook series in the US revealed large imbalances in 

distributions of decimal arithmetic problems: Addition and subtraction problems more 

often had two decimal operands than a whole number operand and a decimal operand, but 

the reverse was true for multiplication and division. Children, tested over a wide range of 

time periods and in a wide range of contexts, consistently showed lower accuracy on 

problems that appeared less frequently in the textbooks. This finding suggests that 

distributions of practice problems in textbooks may influence children’s performance and 

that more balanced distributions may lead to better learning. The results have the 

potential to improve math education, because in contrast to most factors influencing 

children’s learning, changes in distributions of practice problems can be implemented 

relatively easily by textbook companies, teachers, and parents.   
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Solving practice problems is a major part of learning mathematics. However, 

relatively little is known about what effects, if any, the specific characteristics of practice 

problems have on specific aspects of mathematics learning. The present research analyzes 

the distributions of decimal arithmetic practice problems that appear in three math 

textbook series and tests the hypothesis that the distributions influence children’s 

learning. 

The practice problems that we examined were those presented in mathematics 

textbooks. This focus does not reflect a belief that these are the only practice problems 

that children receive: They clearly are not. Instead, the focus reflects a belief that 

textbooks are one major source of practice problems in children’s mathematics learning 

(Horsley & Sikorová, 2014) – a source that is publicly accessible and verifiable – and 

also a belief that other sources of practice problems, such as workbooks and websites, are 

likely to reflect biases similar to those that shape textbook problems (Siegler et al., under 

review; Tian et al., in prep).   

An important potential advantage of focusing on the impact of practice problems 

on learning is that suboptimal distributions of practice problems could be changed 

relatively easily. This contrasts with many less tractable sources of difficulty in math 

learning, including socioeconomic disadvantages, societal values and beliefs, inadequate 

teacher knowledge, and weak student motivation. If the specific types of problems that 



Running head: TEXTBOOK PROBLEMS SHAPE LEARNING 

 5 

children encounter create unnecessary difficulties for learning, changes could be made at 

scale, relatively quickly, to mitigate those difficulties.  

The present study focused on relations between textbook problems and children’s 

learning of rational number arithmetic, specifically decimal arithmetic. This focus was 

justified by the importance and difficulty of this domain. In a national survey of more 

than 1,000 US Algebra I teachers, failure to understand “rational numbers and operations 

involving fractions and decimals” was rated the second largest source of difficulty in 

their students’ preparation for Algebra I, trailing only the amorphous category “word 

problems” (Hoffer, Venkataraman, Hedberg, & Shagle, 2007). Data on children’s 

acquisition of mathematics knowledge also attests to the importance of understanding 

rational numbers: students’ rational number arithmetic competence in Grade 5 uniquely 

predicted their mathematics achievement in Grade 10 in both the US and the UK, even 

after controlling for IQ, working memory, parental education, and family income (Siegler 

et al., 2012; see also Booth & Newton, 2012; Hurst & Cordes, 2018; Powell, Gilbert, & 

Fuchs, 2019; see Bush & Karp, 2013 for a review). Given the importance of this area, it 

is especially unfortunate that many students have little understanding of rational number 

arithmetic (Lortie-Forgues, Tian, & Siegler, 2015). 

Below, we first describe previous findings on the effects of textbook problems on 

children’s learning of mathematics. We then briefly review previous research on 

children’s decimal arithmetic and discuss how textbook problem distributions might 

affect children’s decimal arithmetic learning. 
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Effects of Textbook Problems on Mathematics Learning 

Although diverse teaching resources are available online and from other sources, 

textbooks continue to be widely used by math teachers in classrooms (Elsaleh, 2010). On 

the 2011 Trends in International Mathematics and Science Study (TIMSS), more than 

75% of the students in Grades 4 and 8 reported that their math teachers used textbooks as 

the “basis for instruction” (Horsley & Sikorová, 2014). Textbooks also often serve as a 

key instrument for translating educational reform ideas into classroom instruction. The 

first step that many school districts take in response to a reform is to adopt a new 

textbook series that at least claims to align with the proposed reform (Remillard, 2000).  

Influences of math textbooks on children’s concepts of mathematical 

equality. Despite the widespread use of math textbooks, surprisingly, little is known 

about how distributions of textbook problems are related to children’s learning. However, 

one area in which the impact of textbook problem distributions has been examined 

involves understanding of mathematical equivalence. Children in elementary and middle 

school often interpret the equal sign as a signal to perform mathematical operations 

instead of as a relational symbol that represents mathematical equivalence (Baroody & 

Ginsburg, 1983; McNeil & Alibali, 2005; Renwick, 1932). Illustrating children’s 

interpretation of the equal sign as a “go signal,” most sixth graders in Falkner, Levi, and 

Carpenter (1999) answered “8+4=_+5” by writing “12” or “17,” answers that would 

emerge if children added the numbers to the left of the equal sign or added all numbers in 

the expression.  

Analyses of math textbooks used in elementary (Powell, 2012) and middle school 

(McNeil et al., 2006) suggested that the distribution of problems involving the equal sign 
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contributes to children’s misconceptions about the equal sign. Problems in US math 

textbooks, especially those used in elementary school, usually present the arithmetic 

operation to the left of the equal sign and the unknown to the right of it (e.g., 2 + 5 = __). 

They less often present problems in non-standard forms, including those where 

operations appear on both sides of the equal sign (e.g., 2 + 5 = __ + 4) or only to the right 

of it (e.g., __ = 2 + 5) or problems where no operation appears on either side of the equal 

sign (e.g., 7 = __; McNeil et al., 2006; Powell, 2012). Virtually invariant presentation of 

the standard problem format in textbooks may encourage children to interpret the equal 

sign as a “go signal.”  

Consistent with this hypothesis, McNeil (2008) found that receiving math lessons 

in which problems were presented in non-standard formats immediately before test 

problems in the standard format weakened the bias toward interpreting the equal sign as a 

“go signal.” In contrast, receiving lessons with problems in the standard format 

immediately before test problems in the standard format strengthened the bias. The 

improvement in understanding of mathematical equivalence among children who 

encountered problems in non-standard formats persisted 5 to 6 months later (McNeil, 

Fyfe, & Dunwiddie, 2015). Thus, infrequent presentation of certain types of problem may 

create or reinforce misconceptions, and more frequent presentation of rare problem types 

can help correct such misconceptions. 

Influences of math textbooks on children’s fraction arithmetic. The influence 

of textbook problem distributions has also been examined with fraction arithmetic. 

Braithwaite, Pyke, and Siegler (2017) found extreme imbalances in the distributions of 

fraction arithmetic problems in the fourth, fifth, and sixth grade math textbooks of three 
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leading series. For example, multiplication and division problems almost never involved 

fractions with equal denominators (equal denominator multiplication and division 

problems each constituted only about 1% of items in each of the textbook series). 

Braithwaite et al. (2017) also found that these imbalanced problem distributions 

were highly predictive of middle school children’s fraction arithmetic performance. For 

example, despite correct multiplication and division procedures being identical for 

problems with equal and unequal denominators, two previous studies indicated that 

children were considerably less accurate on the infrequently presented multiplication and 

division problems with equal denominators than on the frequently presented 

multiplication and division problems with unequal denominators (Siegler & Pyke, 2013; 

Siegler et al., 2011). In Siegler and Pyke (2013), children were correct on 58% of 

multiplication items with unequal denominators (e.g., 3/5 × 1/4) but on only 36% of 

multiplication items with equal denominators (e.g., 3/5 × 1/5).  

 Braithwaite et al.’s (2017) results went beyond previous findings (e.g., McNeil et 

al., 2006; Powell, 2012) by showing that not only individual features of practice 

problems, but also interactions between problem features (in this case, interactions 

between arithmetic operations and characteristics of operands), predict students’ 

problem-solving performance. However, this finding might be due to some idiosyncrasy 

of fraction arithmetic rather than reflecting a general property of math learning. Thus, a 

major purpose of the present study was to test whether interactions between problem 

features would predict students’ performance in a different domain: decimal arithmetic. 
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Decimal Arithmetic 

 Despite its importance, decimal arithmetic has received much less attention from 

researchers than fraction arithmetic. Exploring relations between textbook problem 

distributions and decimal arithmetic performance allowed us to test the generality of 

Braithwaite et al.’s (2017) conclusions, which were based on fraction arithmetic findings, 

and also to enrich the currently-sparse literature on decimal arithmetic. 

 Many children experience difficulty with decimal arithmetic (Hiebert & Wearne, 

1985, 1986). For example, on a National Assessment of Educational Progress (NAEP), 

less than half of 13-year-olds correctly solved the problem 4.5 - .53 (Kouba et al., 1988). 

In a more recent study, fourth- and fifth-grade children correctly answered only 77% of 

decimal addition problems involving decimals with one or two digits to the right of the 

decimal point (Hurst & Cordes, 2018). 

Children’s inaccurate decimal arithmetic performance may relate to their limited 

conceptual understanding of decimal place values and decimal arithmetic (Durkin & 

Rittle-Johnson, 2015; Hiebert & Wearne, 1985, 1986; Lortie-Forgues et al., 2015). In one 

study, sixth graders correctly answered only 39% of items assessing understanding of 

decimal place value, such as “3 tenths are worth how many hundredths?” (Rittle-Johnson 

& Koedinger, 2009). This poor conceptual understanding could open the door to 

arithmetic errors, such as adding digits with different place values, as when claiming that 

6 + .32 = .38. Lortie-Forgues and Siegler (2017) reported that middle school students and 

even pre-service teachers usually judged that multiplying a number by a decimal would 

produce an answer larger than that number, even when both multiplicands were between 
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0 and 1. This misconception may prevent students from recognizing the implausibility of 

decimal multiplication and division answers, such as 5.5 * 0.6 = 33. 

Possible Effects of Textbook Problem Distributions on Decimal Arithmetic Learning 

Although decimal arithmetic is challenging in general for many children, our 

expectation was that children would encounter particular difficulty with types of 

problems that are rarely presented in textbooks, even if the problems could be solved 

easily via simple procedures. This expectation derives from previous findings that most 

US students have little conceptual understanding of decimal place value (Durkin & 

Rittle-Johnson, 2015; Rittle-Johnson & Koedinger, 2009) and decimal arithmetic (Lortie-

Forgues & Siegler, 2017). As proposed by Braithwaite, et al. (2017), absence of 

conceptual knowledge opens the door to irrelevant associations in practice problems 

strongly influencing performance.  

To investigate relations between textbook problem distributions and decimal 

arithmetic performance, we first conducted textbook analyses to generate predictions 

about performance; then, we tested the predictions empirically. In the textbook analysis, 

we examined the distributions of decimal arithmetic problems in three widely-used 

contemporary US textbook series to identify possible biases in the distributions. We also 

examined distributions in a textbook from more than 30 years ago, to determine the 

stability of the biases over time. In the empirical tests, we analyzed three datasets on 

children’s decimal arithmetic to determine whether children’s decimal arithmetic 

performance corresponds in detailed ways to the textbook problem distributions. The 

study procedures of Studies 1, 2, and 3 were approved under Teachers College, Columbia 

University, IRB protocol 19-150, “Improving Fraction Understanding - Existing Data”. 
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Study 1: Distribution of Decimal Arithmetic Problems in US Textbooks  

To obtain a comprehensive and representative database of decimal arithmetic 

problems in US textbooks, we coded decimal arithmetic problems from the current 

editions (as of 2016, when we began to create the textbook database) of three US math 

textbook series (the same ones examined in Braithwaite et al., 2017): Houghton Mifflin 

Harcourt’s GO Math! (Dixon, Adams, Larson, & Leiva, 2012), Pearson’s enVision 

MATH (Charles et al., 2012), and McGraw-Hill’s Everyday Mathematics (University of 

Chicago School Mathematics Project, 2015a, 2015b). These series were among the most 

widely-used in the US (Opfer, Kaufman, Pane, & Thompson, 2018) and covered the 

entire period from Grade 4 (when introduction of decimals is recommended by the 

Common Core State Standard Initiatives, CCSSI; National Governors Association Center 

for Best Practices, 2015) to Grade 6 (last mention of understanding decimals as an 

explicit goal in CCSSI; National Governors Association Center for Best Practices, 2015). 

The database consisted of all decimal arithmetic problems that met three criteria: 1) the 

problem had two operands, 2) at least one operand was a decimal, and 3) the problem 

required children to generate an exact numeric answer (rather than being a worked 

example or requiring an estimate). The database did not include word problems, due to 

the complexity of categorizing such problems (Geary, 2004). A total 1441 problems were 

entered: 715 from GO Math!, 551 from enVision MATH, and 175 from Everyday 

Mathematics1. See the Supplementary Materials, Section A for more details about the 

problems.  

 
1 One reason that Everyday Mathematics has so few problems compared to the other two series is that it 

frequently uses games for practicing problem solving (University of Chicago School Mathematics Project, 

n.d.). Because numbers in most games of Everyday Mathematics are generated randomly each time a game 

is played, the specific problems in these games could not be analyzed. 
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Coding and Analyses 

Problems were categorized by arithmetic operation and characteristics of 

operands. For each of the four arithmetic operations (addition, subtraction, multiplication, 

and division), we distinguished among three types of problems:  

1) Whole-decimal (WD) problems: items with a whole number operand and a 

decimal operand, which inherently had unequal numbers of decimal digits 

(e.g., 5 × 1.2); 

2) Decimal-decimal equal decimal digits (DDE) problems: items with two 

decimal operands that had an equal number of decimal digits (e.g., 1.23 + 

4.56); 

3) Decimal-decimal unequal decimal digits (DDU) problems: items with two 

decimal operands that had unequal numbers of decimal digits (e.g., 4.5 - 1.23). 

Here and throughout this article, we use “decimal” to refer to numbers that include 

a decimal point (e.g., 1.52 or 0.6). We use the term “decimal digits” to refer to the digits 

to the right of the decimal point (e.g. 1.52 has two decimal digits; 1.527 has three). The 

features that we coded (whether operands in each problem were two decimals or a whole 

number and a decimal; whether number of decimal digits were equal) were chosen 

because they were analogous to features that had previously been found to influence the 

relatively difficulty of fraction arithmetic problems (Braithwaite et al., 2017) and were 

not confounded with whole number arithmetic complexity (e.g., the total number of digits 

in the problem).  

Tables 1-3 show the frequencies of WD, DDE, and DDU problems for each of the 

four arithmetic operations in each textbook series. Because patterns of frequencies of 
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WD, DDE, and DDU problems in the textbooks were highly similar for addition and 

subtraction, we combined frequency of addition and subtraction items into a single 

operation group (addition/subtraction). For the same reason, we combined frequency of 

multiplication and division items into another operation group (multiplication/division). 

In the following analyses, we first examined the associations between operand type (WD 

vs. DD) and arithmetic operation group (addition/subtraction vs. multiplication/division). 

Within DD problems, we examined the associations between equality of decimal digits 

(DDE vs. DDU) and arithmetic operation group (addition/subtraction vs. 

multiplication/division).    

===========================Tables 1 – 3 here ======================== 

Results 

 Operand type.  Chi-square tests of independence revealed associations between 

operand type (WD vs. DD) and arithmetic operation group (addition/subtraction vs. 

multiplication/division) in all three textbook series: χ2(1) = 208.21, p < .001, cramer = .54 

for GO Math!; χ2(1) = 137.38, p < .001, cramer = .50 for enVision MATH; and χ2(1) = 

29.35, p < .001, cramer = .42 for Everyday Mathematics. As shown in Tables 1-3, 

addition and subtraction problems far more frequently involved two decimal operands 

(DD) than a whole number and a decimal operand (95% DD operands, 5% WD 

operands), but multiplication and division problems showed the opposite pattern (39% 

DD operands, 61% WD operands). 

 Equality of decimal digits. Considering only DD problems, associations again 

were present in all textbooks between arithmetic operation group (addition/subtraction vs. 

multiplication/division) and equality of number of decimal digits in the operands (DDE 
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vs. DDU): χ2(1) = 25.15, p < .001, cramer = .26 for GO Math!; χ2(1) =5.18, p 

= .02, cramer = .14 for enVision MATH; and χ2(1) = 5.78, p = .02, cramer = .26 for 

Everyday Mathematics. As shown in Tables 1-3, addition and subtraction problems more 

often involved DDE than DDU operands (71% vs. 29%), whereas multiplication and 

division problems equally often involved DDE and DDU operands (51% vs. 49%).  

Discussion 

In all three contemporary math textbook series that we examined, strong 

associations were present between operations and operands. Addition and subtraction 

more often involved two decimals than a whole number and a decimal, but the reverse 

held for multiplication and division. Among problems with two decimal operands, 

addition and subtraction more often involved operands with equal than unequal numbers 

of decimal digits, whereas multiplication and division equally often involved operands 

with equal and unequal numbers of decimal digits. Of special interest was the extremely 

low frequency of addition and subtraction WD problems, such as “4 + .56.” Such 

problems were only 5% of textbook addition and subtraction problems involving at least 

one decimal operand.  

There was no apparent mathematical basis for these relations between operations 

and operands. However, the low frequency of certain types of problems might have 

reflected textbook authors believing that children do not need much experience to 

succeed on the rarely presented problem types. For example, the infrequency of WD 

addition problems might have been due to textbook authors assuming that children can 

accurately answer such problems with minimal practice. After all, solving “4 + .56” only 

requires concatenating the two numbers, a procedure that might be learned with little 
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practice. Alternatively, textbook authors may assume that children know that arithmetic 

procedures are independent of operands and therefore assume that practicing adding DD 

problems leads to children learning to solve both DD and WD addition problems.  

However, because children’s conceptual understanding of decimal arithmetic is 

very limited, we expected their performance to be influenced by these distributional 

biases in the practice problems. We expected that children would have difficulty solving 

types of problems that appear rarely in textbooks—including seemingly easy problems 

such as “4 + .56.” Conversely, we expected that more frequent presentation of problems 

would lead to better performance, as children would have more opportunities to practice 

and receive feedback on them. Based on this logic and the findings of Study 1, we made 

three predictions regarding children’s performance:  

Prediction 1. The effect of operand type (WD vs. DD) on children’s accuracy 

should interact with arithmetic operation group (addition/subtraction vs. 

multiplication/division). 

Prediction 2. For addition and subtraction, children’s accuracy should be higher 

on DD than WD problems. 

Prediction 3. For multiplication and division, children’s accuracy should be 

higher on WD than on DD problems. 

We tested these predictions in Studies 2, 3, and 4. Study 2 examined data from an 

experiment from a different lab published 35 years ago (Hiebert & Wearne, 1985). Study 

3 examined unpublished contemporary data from a large-scale web-based learning 

platform. Study 4 examined new data from a controlled experiment conducted in our lab. 

The goal was to examine the generality of the findings over labs (the Hiebert/Wearne lab 
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versus our own), time of data collection (before 1985 versus 2013-2019), and data source 

(web-based platform versus controlled experiment).  

Prediction 2 deserves special emphasis, because simply considering the 

complexity of the procedures required to solve the problems would lead to the opposite 

prediction, at least for addition. Adding a whole number and a decimal seems particularly 

easy, especially when the decimal does not have a whole number part (e.g., .7). Such 

problems have no computational demand, because they only require copying the whole 

number and concatenating the decimal operand to it (e.g., 5 + .7 = 5.7). In contrast, 

adding two decimals, especially when the decimals have unequal numbers of decimal 

digits, requires a more complex procedure involving aligning the addends’ digits 

according to their place values, adding the decimal parts and the whole number parts of 

the operands, and sometimes carrying from the decimal parts to the whole number parts 

(e.g., 5.62 + .7 = (5) + (.62+.7) = 5 + 1.32 = (5+1) + 0.32 = 6.32)2. Nonetheless, the much 

lower frequency of WD than DDE or DDU addition problems in textbooks led us to 

predict that WD problems would elicit more errors despite their lesser complexity. 

Study 1 also revealed that for addition and subtraction, DDE problems were more 

frequent than DDU problems, suggesting that children would solve the former more 

accurately than the latter. However, addition and subtraction are intrinsically easier with 

DDE than DDU operands, because aligning the rightmost decimal digits leads to correct 

answers on the former but not the latter problems. Therefore, testing such a prediction 

 
2 It might be argued that WD addition problems are intrinsically difficult because it is tempting to misalign 

the addends, as in 5 + .7 = 1.2, and avoiding such errors requires understanding of place value. However, 

the same is true of DDU addition problems, such as .5 + .73. As shown below, WD addition problems 

proved more difficult for children than both DDE and DDU addition problems, a finding that is difficult to 

explain in terms of intrinsic difficulty alone. 
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would not be very informative regarding how textbook problem distributions influence 

learning. 

Study 2: Exploration with a Pre-Existing Dataset 

The purpose of Study 2 was to examine relations between the textbook problem 

distributions and children’s performance on decimal arithmetic problems. We wanted to 

test these relations first using an existing data set collected outside of our lab. To allow 

the required comparisons, such a data set needed to report separately WD, DDU, and 

DDE problems for each arithmetic operation.  

The one data set that we found that met these requirements was reported in 

Hiebert and Wearne (1985). In that study, seventh graders3 were presented decimal 

arithmetic problems that included WD, DDE, and DDU items for each operation. There 

were five addition problems (4.6 + 2.3, 5.3 + 2.42, 5.1 + .46, 6 + .32, 4 + .3), five 

subtraction problems (.78 - .35, .60 - .36, .86 - .3, 4.7 - .24, 7 - .4), six multiplication 

problems (.4 × .2, .34 × 2.1, .05 × .4, 6 × .4, 2 × 3.12, 8 × .06), and six division problems 

(.24 ÷ .03, .028 ÷ .4, 2.1 ÷ 3, .56 ÷ 7, 42 ÷ .6, and 3 ÷ .6). Children attempted to solve 

these problems with paper and pencil, once in their fall semester and once in their spring 

semester. In the fall, 279 students received all addition and subtraction problems, and 81 

also received all multiplication and division problems. In the spring, 272 students 

received all addition and subtraction items, and 80 also received all multiplication and 

division problems. 

 
3 Hiebert and Wearne (1985) reported data on fifth, sixth, seventh, and ninth graders. Our analyses focused 

on the seventh graders because (1) the fifth and sixth graders did not receive problems involving all four 

arithmetic operations, and (2) the ninth graders would have completed formal instruction in decimal 

arithmetic more than two years before the study was conducted and would have received many unknown 

kinds of decimal arithmetic problems in math and science classes in the two years beyond those covered in 

our textbook analyses.  



Running head: TEXTBOOK PROBLEMS SHAPE LEARNING 

 18 

Predictions regarding children’s performance were based on the assumption that 

the distributions of problems that children encountered 35 years ago approximated those 

in contemporary textbooks. To test this assumption, we coded and analyzed decimal 

arithmetic problems from the one volume of a math textbook series from the 1980s that 

we were able to find, Addison-Wesley Mathematics (1985)4. This textbook series was 

described by Stigler, Ham, Kim, and Fuson (1986) as “widely used.” The volume we 

coded included 647 decimal arithmetic problems; the distribution of these problems is 

shown in Table 4.  

Comparison of Tables 1-3 and Table 4 indicates that patterns of problem 

frequencies in the 1985 textbook closely resembled those in the contemporary textbooks. 

Particularly relevant to our predictions, addition and subtraction problems in the 1985 

textbook never involved a whole number and a decimal operand (0% WD operands vs. 

100% DD operands), but multiplication and division problems more often involved a 

whole number and a decimal operand than two decimal operands (58% WD operands vs. 

42% DD operands), χ2(1) = 150.97, p < .001, cramer = .49. This finding, in addition to 

demonstrating the stability over time of textbook problem distributions, strengthened our 

expectation that students’ performance in Hiebert and Wearne (1985) would conform to 

our three predictions.  

===========================Table 4 here =========================== 

Hiebert and Wearne (1985) reported the overall percent correct and the most 

frequent error for each problem at each grade at each testing occasion. Data for individual 

 
4 Due to the difficulty of accessing math textbooks from more than 35 years ago, we were only able to 

locate one volume of a math textbook published about when the Hiebert and Wearne (1985) study was 

done. Fortunately, topics in this volume included all four decimal arithmetic operations. 
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children were not available, nor were data separately reported for the subset of students 

who received problems for all four operations. This precluded inferential statistics, 

including tests of the interaction posited in Prediction 1. Nonetheless, the data proved 

revealing. 

Results 

The accuracy data from Hiebert and Wearne (1985) are presented in Table 5, 

organized in terms of arithmetic operation; time of testing; whether the problem included 

a whole number; and if not, whether the two operands had equal numbers of decimal 

digits. 

=============================Table 5 here ========================= 

Prediction 2: Higher accuracy on DD than WD addition and subtraction 

problems. Consistent with Prediction 2, for addition and subtraction, students were less 

accurate on WD problems than on DD problems both in the fall (37% vs. 70% correct) 

and in the spring (38% vs. 73% correct). The poor performance on WD addition and 

subtraction problems, and the differences in accuracy between them and DD addition and 

subtraction problems, was highly consistent across items. Percent correct on individual 

WD addition and subtraction problems at the two times of testing ranged from 31% to 

42%, whereas percent correct on individual DD addition and subtraction problems 

(including both DDE and DDU) ranged from 65% to 90%. 

Prediction 3: Higher accuracy on WD than DD multiplication and division 

problems. Consistent with Prediction 3, for multiplication and division, students were 

more accurate on WD than DD problems in both the fall (44% vs. 26% correct) and the 

spring (72% vs. 64% correct). The superior performance on WD problems was highly 
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consistent among multiplication items at each testing time. Percent correct on each WD 

multiplication problem ranged from 54% to 79% in the fall and 84% to 86% in the 

spring, whereas percent correct on each DD multiplication problem ranged from 17% to 

41% in the fall and 60% to 79% in the spring. The trend was less consistent across 

division problems. Percent correct on individual WD division problems ranged from 2% 

to 68% in the fall and 44% to 91% in the spring, whereas percent correct on individual 

DD division problems ranged from 20% to 25% in the fall and 56% to 61% in the spring. 

The reasons for the high variability among WD division problems are unknown. 

Discussion 

As expected, textbook problem frequency was related to middle school students’ 

decimal arithmetic performance. Accuracy on addition/subtraction problems was much 

higher on DD than WD items; on multiplication/division items, the opposite was true.  

The findings were especially striking for addition of a whole and a decimal. For 

the seemingly simple problem “6 + .32,” the 7th graders’ percent correct was 42% in the 

spring and 39% in the fall; for the seemingly simple problem “4 + .3,” their percent 

correct was 39% in the fall and 37% in the spring. Moreover, the most common errors 

children made on these problems were likely produced by overgeneralizing strategies 

from frequently presented problems. For example, the most common incorrect response 

to “6 + .32” was 0.38; this response accounted for 45% and 50% of the errors children 

made on this problem in the Fall and Spring, respectively. Similarly, the most common 

error for “4 + .3” was 0.7, which comprised 51% and 48% of all the errors in the Fall and 

Spring, respectively (see Hiebert & Wearne, 1985 for common errors on the other 

problems). These errors on WD addition problems were likely generated by aligning the 
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rightmost digits of the operands, a strategy that would yield a correct answer on the 

frequently presented DDE addition problems (as well as for whole number addition). 

Given that WD addition problems make minimal computational demands, the inaccurate 

performance seems likely to reflect their infrequent presentation (combined with poor 

conceptual understanding of place value).  

Study 3: Validation with a Large-Scale, Online, Contemporary Dataset 

 The results of Study 2 revealed that children’s performance on decimal arithmetic 

problems 35 years ago was related to distributions of problems in math textbooks. 

However, due to the limitations of the available data from Study 2, we were unable to 

conduct inferential statistical analyses to confirm these relations or to examine the 

interaction implied by Prediction 1. Study 3 was an effort to address these issues and test 

the generality of the relations with performance data from a large number of 

contemporary students.  

The data used in this study were obtained from the Skill Builder module on 

ASSISTments, a web-based platform that allows teachers to assign practice problems for 

several school subjects, including math (Heffernan & Heffernan, 2014). Skill Builder 

hosts a large bank of practice problems (for example, the adding decimals problem set 

included 77 problems) developed by researchers and teachers for topics aligned with the 

CCSSI (National Governors Association Center for Best Practices, 2015). The large 

number and variety of problems and the large number of active users of ASSISTments 

(over 50,000 students across 42 states in 2018, according to assistments.org) allowed us 

to test each of the three predictions with inferential statistical analyses. The 

ASSISTments data also offered a unique opportunity to test whether the Study 2 findings 
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were due to idiosyncrasies of the problems, students, or time period in which the data 

were collected.  

Dataset Description 

We requested all available data (as of February, 2019) on students’ decimal 

arithmetic performance in the ASSISTments Skill Builder module5 from the 

ASSISTments team. We included in our analyses data from all trials that met the 

following criteria: 1) the problem fit the inclusion criteria of Study 1, 2) each data point 

was a student’s first attempt to answer a problem on which the student had not asked for 

a hint6, and 3) the data were from a student who completed addition/subtraction 

problems, multiplication/division problems, and at least one WD and one DD problem for 

each of the two arithmetic operation groups. The data analyzed were collected from 

2013-2019 and included 3359 students’ performance on 637 decimal arithmetic 

problems.  

Participants 

The 3359 students included in this study were in Grade 6 when tested. Among 

them, 98% (3303 students) indicated the school district they attended; they were from 73 

different school districts. For 92% of these students (3081), data were available on the 

proportion of children eligible for free or reduced-price lunch (FRPL) in the school 

district. Among them, 54% attended school districts in which less than 25% of students 

 
5 Only data on accuracy were available; data on children’s specific wrong answers were not. 
6 ASSISTments allows students to ask for a hint on how to solve a given problem without attempting to 

answer; it also allows students to make multiple attempts on a given problem. Students whose data were 

analyzed in this experiment asked for a hint on their first attempt on less than 2% of the problems. Analyses 

that included these attempts as incorrect responses yielded results similar to those reported. 



Running head: TEXTBOOK PROBLEMS SHAPE LEARNING 

 23 

were eligible for FRPL, 42% attended districts where between 25% and 75% were 

eligible, and 4% attended districts where more than 75% were eligible.  

Results 

On average, students answered 20 decimal arithmetic problems (SD = 14) that 

met the study’s criteria. Because students worked on different problems, we predicted the 

accuracy of answers by fitting mixed-effects logistic regression models with R (R Core 

Team, 2018) and lme4 (Bates, Mächler, Bolker, & Walker, 2014). P-values were 

obtained by likelihood ratio tests comparing the full model, including the effect in 

question, to the model without the effect in question. In each model, random intercepts 

for participant and problem were added. Because there is no agreed-on approach for 

calculating standard effect sizes for individual model terms in such models (see Rights & 

Sterba, 2019), none were reported. Analyses that examined each arithmetic operation 

separately yielded similar results to those reported (see Supplementary Materials, Section 

B). Table 6 indicates accuracy on each type of problem. 

============================Table 6 here ========================== 

Prediction 1: An interaction between operand type and arithmetic operation 

group. Consistent with Prediction 1, operand type (WD vs. DD) interacted with 

arithmetic operation group (addition/subtraction vs. multiplication/division), χ2 (1) = 

98.16, p < .001, indicating that the effect of operand type on the odds of generating 

correct answers differed by arithmetic operation group. 

Prediction 2: Higher accuracy on DD than WD addition and subtraction 

problems. Consistent with Prediction 2, the odds of students correctly answering 
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addition/subtraction problems were higher on DD than WD problems (M = 84%, SD = 

36%, versus M = 76%, SD = 43%), χ2(1) = 57.43, p < .001.  

To test whether this effect was driven by DDE addition/subtraction problems 

being easier than WD problems, we ran two separate models, one comparing accuracy on 

WD and DDE problems, the other comparing accuracy on WD and DDU problems. The 

odds of giving correct answers on addition/subtraction problems were higher not only for 

DDE than WD problems, (M = 86%, SD = 35%, versus M = 76%, SD = 43%), χ2(1) = 

46.56, p < .001, but also for DDU than WD problems (M = 83%, SD = 38% versus M = 

76%, SD = 43%), χ2(1) = 32.95, p < .001.  

To ensure that these results were not solely due to differences in performance on 

subtraction problems, we also fitted separate models for only addition problems. Results 

were similar to those when addition and subtraction problems were combined. The odds 

of giving correct answers were higher on DDE than WD addition problems (M = 85%, 

SD = 36%, versus M = 80%, SD = 40%), χ2(1) = 3.92, p < .05, and also on DDU than 

WD addition problems (M = 85%, SD = 35% versus M = 80%, SD = 40%), χ2(1) = 9.91, 

p < .01.  

Prediction 3: Higher accuracy on WD than DD multiplication and division 

problems. Consistent with Prediction 3, the odds of giving correct answers for 

multiplication and division items were higher on WD than on DD problems (M = 86%, 

SD = 34%, versus M = 79%, SD = 41%), χ2(1) = 44.31, p < .001. To better understand 

this effect, we ran separate models on multiplication/division problems, one comparing 

accuracy on WD and DDE problems, the other comparing accuracy on WD and DDU 
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problems. The odds of correct answers were higher on WD than DDE 

multiplication/division problems (M = 86%, SD = 34%, versus M = 78%, SD = 41%), 

χ2(1) = 25.62, p < .001, and also on WD than DDU problems (M = 86%, SD = 34%, 

versus M = 80%, SD = 40%), χ2(1) = 40.56, p < .001. Thus, the effect was general across 

the DD problems. 

Discussion 

As in Study 2, decimal arithmetic performance of middle school students mirrored 

biases in textbook problem distributions. The presence of a whole number operand 

influenced children’s accuracy in opposite directions on addition/subtraction and 

multiplication/division problems. Students were more likely to answer correctly decimal 

addition and subtraction problems without a whole number operand than with one. In 

contrast, students were more likely to answer correctly decimal multiplication and 

division problems with a whole number operand than without one. Especially 

noteworthy, despite the seeming simplicity of adding a whole number and a decimal, 

children’s accuracy on such problems was lower than when adding two decimals with 

equal or unequal number of decimal digits. 

Compared to children in Study 2, children in Study 3 showed a smaller difference 

between accuracies on the frequently presented and the rarely presented problems. Their 

accuracy across all problems also was higher.  

Nevertheless, the two studies demonstrated considerable stability of findings on 

relations between distributions of textbook problems and children’s accuracy on different 

types of problems. In both studies, types of problems that were rarely presented in 

textbooks were more difficult than would have been expected from the complexity of 
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solution procedures for those types of problems. The data in the two studies were 

collected decades apart, a period during which many changes in approaches to 

mathematics education and in student populations occurred. The studies also differed in 

how the data were collected. Students in Study 2 solved problems in a single session, in 

groups, with paper and pencil; students in Study 3 solved problems over multiple 

sessions, individually, on a web-based platform. The similar pattern of findings despite 

these differences, along with the sheer number of students from diverse backgrounds and 

geographical locations in Study 3, suggest that the predictions generalize to a broad range 

of US students. 

Study 4: Validation with a Controlled Experiment 

Studies 2 and 3 revealed stability over a 35-year period of the finding that 

students’ decimal arithmetic performance paralleled the distributions of textbook 

problems. However, in neither study did all students receive a complete and balanced set 

of decimal arithmetic problems, including all four arithmetic operations and WD, DDE, 

and DDU problems within each operation. Study 4 was designed to address this 

limitation with a carefully controlled experiment that tested more precisely whether 

parallels were present between students’ performance and textbook problem distributions. 

We asked sixth graders to complete sets of decimal arithmetic problems that included all 

types of problems needed to test predictions based on the textbook data described in 

Study 1. Sixth graders were selected because decimal arithmetic is recommended to be 

taught in fifth grade in CCSSI (National Governors Association Center for Best Practices, 

2015), so that sixth graders would recently have received instruction in the subject. The 

same three predictions as in Study 3 were tested.  
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Method 

Participants. Sixty-six sixth graders from a public middle school in Pittsburgh, 

PA participated in the study in the Fall semester of 2016. We aimed to have 

approximately 60 students, which was comparable to the sample size of sixth graders in 

previous studies using similar tasks that had sufficient power to reveal a number of 

effects of interest (e.g., Siegler & Pyke, 2013). The study was conducted in a whole-class 

format, and we included all students (i.e., 66) in the participating classes.  

The participating school enrolled students in Grades 6 through 8. Of students at 

this school, 34% were eligible for FRPL. About 50% of the sixth graders in the 

participating school achieved “Advanced/Proficient” level on the math section of 

Pennsylvania System of School Assessments (the standardized test used in Pennsylvania) 

administered in the Spring of 2017, which was somewhat, but not greatly, higher than the 

state average of 40.3%. The study procedures were approved under Carnegie Mellon 

University, IRB protocol 2016_00000420, “Improving Understanding of Fractions”. 

Task. Each child completed 12 decimal arithmetic problems from one of two 

problem sets. Each set included three problems for each arithmetic operation: one 

problem with a whole number and a decimal (WD), one problem with two decimals 

having an equal number of decimal digits (DDE), and one problem with two decimals 

with unequal numbers of decimal digits (DDU). To avoid differences among operations 

due to idiosyncratic differences among the operands, the same three operand pairs were 

used for all four arithmetic operations (Set A: 3 and 1.5, 3.6 and 1.5, and 4.74 and 1.5; 

Set B: 4.5 and 2, 4.5 and 1.8, and 4.5 and 1.25). The larger number in each operand pair 

was always the first operand.  
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Each problem set was presented equally often in a fixed quasi-random order or 

the reverse of that order. The quasi-random order was generated with the following 

constraints: 1) each operation appeared once in each block of four problems, 2) neither an 

operation nor an operand pair was repeated on successive trials, 3) each operand pair 

appeared equally often in the first and second halves of the trials, and 4) the first 

operation was either subtraction or multiplication. 

Procedure. Children from each classroom participated in the study as a whole 

group during a regular class period. All children in each class were presented a printed 

booklet by a trained experimenter and asked to write answers in it at their own pace (see 

Supplementary Materials, Section C for an example booklet). Calculator use was not 

allowed. 

Results 

Table 7 indicates accuracy on each type of problem. Examining each arithmetic 

operation separately yielded similar results to those produced by pairing 

addition/subtraction and multiplication/division (see Supplementary Materials, Section 

D).  

===========================Table 7 here =========================== 

Prediction 1: An interaction between operand type and arithmetic operation 

group. A 2 (arithmetic operation group) * 2 (operand type) ANOVA on percent correct 

yielded the predicted interaction, F(1, 65)= 40.92, p < .001, 𝜂𝑝
2 = 0.39. 

 Prediction 2: Higher accuracy with DD than WD operands on addition and 

subtraction problems. Consistent with Prediction 2, for addition/subtraction, children 

were more accurate on DD (M = 80%, SD = 25%) than on WD problems (M = 68%, SD = 
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44%), F(1, 65)= 6.28, p = .01, 𝜂𝑝
2 = 0.09. Dividing the DD category into DDE and DDU 

items, paired t-tests revealed that children were more accurate on DDE than on WD 

addition/subtraction problems (M = 88%, SD = 25%, versus M = 68%, SD = 44%), t(65) 

= 3.90, p < .001, d = 0.55; but no more accurate on WD addition/subtraction problems 

than on the seemingly harder DDU addition/subtraction problems (M = 68%, SD = 44% 

versus M = 73%, SD = 34%), t(65) = 0.85, p = .40, d = 0.11.  

As in Study 3, we performed similar paired t-tests for accuracy on addition 

problems alone. The results were very similar to those on addition and subtraction 

problems combined. Children were more accurate on DDE than on WD addition 

problems (M = 88%, SD = 33% versus M = 68%, SD = 47%), t(65) = 3.40, p = .001, d = 

0.49, and their accuracy did not differ on DDU and WD addition problems (M = 68%, SD 

= 47% versus M = 68%, SD = 47%), t(65) = 0, p = 1, d = 0. 

Prediction 3: Higher accuracy with WD than DD operands on multiplication 

and division problems. A one-way ANOVA with operand type as a within-subject 

variable was conducted on multiplication/division accuracy. Consistent with Prediction 3, 

for multiplication and division, children were more accurate on WD than DD problems 

(M = 57%, SD = 35% versus M = 28%, SD = 31%), F(1, 65) = 42.69, p < .001, 𝜂𝑝
2 = 0.40.  

Also as predicted, paired t-tests revealed that for multiplication/division, children 

were more accurate on WD than on either DDU problems (M = 57%, SD = 35% versus M 

= 20%, SD = 32%), t(65) = 7.09, p < .001, d = 1.09, or DDE problems (M = 57%, SD = 

35% versus M = 36%, SD = 39%), t(65) = 4.47, p < .001, d = 0.55.  



Running head: TEXTBOOK PROBLEMS SHAPE LEARNING 

 30 

Discussion 

In a carefully controlled experiment, the hypothesized relations between textbook 

problem frequency and children’s performance emerged again. The presence of a whole 

number operand affected children’s accuracy differently on addition/subtraction and 

multiplication/division problems. On addition and subtraction items, accuracy with WD 

operands was lower than with DD operands, but on multiplication and division items, 

accuracy was higher on WD than on DD items.  

As in Study 3, children’s accuracy on the seemingly easy WD addition problems 

was lower than accuracy on the DDE addition problems. Accuracy on WD addition 

problems also did not differ from that on the seemingly more difficult DDU addition 

problems. Despite the seeming simplicity of WD addition problems, the sixth graders in 

Study 4 erred on more than 30% of trials with them.  

As in Study 2, children’s most common errors on the WD addition problems 

likely arose from overgeneralizing the strategy of aligning the rightmost digit, a correct 

strategy on DDE and whole number addition problems. On “3 + 1.5”, the answer 1.8 

accounted for 64% of errors; on “4.5 + 2”, the answer 4.7 accounted for 54% of errors 

(see Supplementary Materials, Section E for common errors on the other problems). 

Again, students’ minimal prior exposure to WD addition problems seems likely to have 

contributed to their relatively inaccurate performance on such problems.  

General Discussion 

In this concluding section, we first summarize our findings on relations between 

textbook problem distributions and children’s decimal arithmetic performance. Then, we 

discuss how analyzing textbook problems can improve understanding of children’s 
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learning more generally. Following that, we consider how textbook biases might combine 

with limited conceptual knowledge to weaken children’s learning of decimal arithmetic. 

Finally, we note educational implications and limitations of the current findings. 

Textbook Problem Distributions Predict Children’s Decimal Arithmetic  

Our analysis of three popular contemporary US math textbook series and one older series 

revealed similar imbalances in the frequencies of decimal arithmetic problems across the 

four series. Problems involving addition and subtraction of a whole number and a 

decimal were rare; they made up less than 2% of all arithmetic problems involving any 

decimal and less than 5% of problems involving a whole number and a decimal. In 

contrast, multiplication and division problems with a whole and a decimal were common, 

more common than multiplication and division with two decimals.  

Findings from Studies 2, 3, and 4 were consistent with the hypothesis that biases 

in textbook problem distributions influence children’s decimal arithmetic. The infrequent 

presentation of problems was associated with relatively inaccurate decimal arithmetic 

performance among children. In particular, presence of a whole number was associated 

with lower accuracy on addition and subtraction problems, where WD problems were 

rare, but was associated with higher accuracy on multiplication and division problems, 

where WD problems were frequent.  

The pattern was general over the three studies: Study 2 (conducted before 1985, 

with children solving problems with paper and pencil in a single session), Study 3 

(conducted from 2013 to 2019, with children solving problems on a web-based platform 

in multiple sessions), and Study 4 (conducted in 2016, with children solving problems 

with paper and pencil in a single session). Even though the effects were very large in 
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some studies and smaller in others, the consistency of the effects across the three studies 

showed that the relations were not idiosyncratic to a specific time period, testing format, 

or sample. 

Some associations between children’s performance and textbook problem 

distributions could have arisen from children’s performance and textbook problem 

distributions both reflecting the inherent difficulty of the decimal arithmetic problems. 

For example, WD multiplication problems (e.g., 3 × 1.24) seem inherently easier than 

DDU multiplication problems (e.g., 3.1 × 1.24), because WD multiplication problems can 

be solved correctly by placing the decimal point in the answer according to the number of 

decimal digits in the decimal operand, whereas DDU problems cannot be solved in this 

way. From this perspective, multiplication should be more accurate on WD than DDU 

problems. Data in Studies 2, 3, and 4 were consistent with this prediction.  

Although such differences in the inherent difficulty of decimal arithmetic 

problems probably contributed to the observed accuracy patterns, they could not account 

for the overall pattern of findings in any of the three studies of children’s performance. In 

all three, children consistently exhibited poor performance on addition problems with a 

whole number and a decimal, even though such problems make minimal computational 

demands. For example, solving 4 + .3, and 6 + .32, two WD problems presented in Study 

2, only requires concatenating the two operands, a procedure that can likely be learned 

with minimal practice.  

Despite this seeming simplicity, children were less accurate on WD than DDE 

addition problems in all three studies. They also were less accurate on WD than DDU 

addition problems in two of the three studies, with no difference in the third. Children’s 
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most common errors suggested that they frequently overgeneralized the right alignment 

procedure (which is appropriate for DDE addition problems and whole number addition 

problems) to WD addition problems, where that strategy is inappropriate. Addition with 

DDE operands appearing as 18 times often as addition with WD operands in the 

textbooks (as shown in Tables 1-3) seems likely to have contributed to the 

overgeneralization of the right alignment procedure. 

Braithwaite, Pyke, and Siegler (2017) proposed that, in the domain of fraction 

arithmetic, distributions of practice problems affect performance via reinforcement 

learning. Whether a student would correctly solve a problem mainly depended on 

choosing the correct strategy; the probability of choosing the correct strategy mainly 

depended on how often the student had solved similar problems with that strategy in the 

past. Thus, students were more likely to use correct strategies on types of problem that 

they had encountered frequently than on those they had encountered rarely. These 

assumptions were implemented in a computational model of fraction arithmetic learning, 

FARRA. After being trained on fraction arithmetic problems extracted from a popular 

math textbook, FARRA’s pattern of accuracies on different types of problem paralleled 

the frequency distribution of problem types in the textbook; the same pattern emerged 

when FARRA was trained with problems from a different textbook. Moreover, children’s 

pattern of accuracy in two previous studies closely resembled the pattern generated by the 

model. The present findings dovetail with those of Braithwaite et al. (2017) and suggest 

that FARRA’s theoretical assumptions extend to decimal arithmetic. 
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Usefulness of Analyzing Textbook Problems for Understanding Children’s Learning 

The present findings support the proposition that analyzing textbook problem 

distributions is useful for understanding children’s learning. The idea that textbooks 

influence children learning is widespread (Acosta-Tello, 2010; Mayer, Steinhoff, Bower, 

& Mars, 1995). For example, Acosta-Tello (2010) analyzed the readability of word 

problem narratives in math textbooks and found that the narratives were hard to 

comprehend for a substantial proportion of students. These findings suggest that levels of 

readability of word problems in the textbooks may contribute to many children’s 

difficulty with solving these problems.  

More similar to the current approach, analyses of how textbooks present the equal 

sign shed light on the development of children’s misconceptions about mathematical 

equality (Li, Ding, Capraro, & Capraro, 2008; McNeil et al., 2006; Powell, 2012). The 

present findings go beyond these earlier ones in extending the findings to a new domain 

and in demonstrating that the specifics of textbook problems, at the level of interactions 

between operands and operations, are related to the specifics of what children learn about 

rational number arithmetic procedures.  

Although the focus of the current study was on decimal arithmetic, we expect that 

analyzing textbook problems will be helpful in understanding children’s learning in other 

areas of mathematics, as well as in other subjects where problems sets are common. 

Physics, chemistry, statistics, and computer science are some of the many such areas. In 

both fraction arithmetic and decimal arithmetic, the two areas where we have examined 

the specifics of textbook problems and relations of the problem distributions to children’s 

learning, textbook analysis has revealed the same biases across different contemporary 
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textbook series. Similar biases were present in the textbook series published in 1985. 

Moreover, the distribution of problems in textbooks showed similar relations to 

children’s learning in both decimal and fraction arithmetic.  

For example, just as problems with a whole number and a decimal constituted 

only about 2% of decimal addition and subtraction problems in the current study, 

problems with two fractions with equal denominators constituted only about 1% of 

fraction multiplication and division problems in the three mathematics textbooks 

examined by Braithwaite et al. (2017). In both cases, children’s performance was less 

accurate on the rarely presented types of problems than would have been expected from 

the seeming computational difficulty of the problems. Such similarities across textbooks 

in fraction and decimal arithmetic suggest that biases in textbook input probably are 

present in other areas of mathematics and other school subjects. It also suggests that 

textbook problem distributions in those areas may influence learning in them as well. 

Determining whether these hypotheses are correct clearly requires additional research on 

relations between the specifics of textbook problem distributions and learning in a variety 

of areas. In addition to the types of experiments in this study, it would be useful to test 

experimentally whether more balanced problem presentation leads to greater learning of 

types of problems that are rarely presented in current textbooks.  

The Potential Interaction of Conceptual Knowledge and Textbook Problem Input 

Weak conceptual knowledge of place value and decimal arithmetic seems likely to 

increase the influence on math learning of distributional biases in textbook problems. In 

the context of decimal addition, understanding place value would lead students to align 

the decimal points of addends, so that tenths are added to tenths, hundredths to 
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hundredths, and so on. The absence of such understanding, together with plenty of 

experience with DDE addition items (which constituted 79%, 61% and 62% of all 

decimal addition problems in GO Math!, enVision MATH, and Everyday Mathematics, 

respectively), may lead students to conclude that decimals can be added by aligning their 

rightmost digit. Prior experience with whole number addition would also support the 

right alignment strategy. Consistent with this view, in both Studies 2 and 4, the most 

common error when adding a whole number and a decimal was that produced by aligning 

the rightmost digits of the addends. 

 Children’s minimal exposure to WD addition problems in textbooks – 0 problems 

in GO Math!, 0 problems in Everyday Mathematics, and 8 problems in enVision MATH - 

seems especially unfortunate because it deprives students of opportunities to learn about 

place value on problems that might facilitate such learning. That is, students’ greater 

understanding of whole numbers than decimals might make WD addition problems 

especially useful for conveying how place value concepts apply to decimals. Students 

who would be unfazed if asked whether .6 + .32 could really equal .38, for example, 

might recognize the implausibility if asked whether 6 + .32 could really equal .38. 

Adding whole numbers to decimals also might improve understanding of place value 

through the act of aligning whole number digits with whole number digits and decimal 

digits with decimal digits. Current distributions of textbook problems deprive students of 

such opportunities to learn concepts relevant to place value and decimal addition.  

Limitations 

The present study was correlational in nature. The findings are consistent with, but do not 

demonstrate, a causal connection between textbook problem distributions and children’s 
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learning. Even if a causal connection does exist, its direction is not entirely clear. It could 

be children’s difficulty with certain types of problems leading textbook writers to avoid 

them, rather than the limited textbook presentation of the problems causing children’s 

difficulty with them. Causal evidence for the effect of problem presentation on children's 

learning could be obtained by manipulating problem distributions in textbooks or other 

contexts, such as homework problems, and then comparing effects on children’s learning.  

  A second limitation is that students receive practice problems from many sources 

other than textbooks. Given that textbooks usually serve as the primary resource for 

instruction in math classrooms, and that there is no obvious reason to expect problem 

distributions from other sources to differ, we assumed that problems in textbooks were 

representative of the overall distribution of problems children encounter. However, 

further research is needed to verify whether the actual practice problems students are 

assigned by teachers are distributed similarly to those in textbooks. We are currently 

examining homework problems to test whether distributions of fraction and decimal 

arithmetic problems assigned by teachers parallel those in textbooks. 

A third limitation is that although similar patterns of performance were present 

across Studies 2, 3, and 4, the data also differed in some important ways. In particular, 

accuracy on WD addition/subtraction problems was much lower in Study 2 than in 

Studies 3 and 4. One intriguing possibility involves a difference in the format of the WD 

problems in the three studies. In Study 2, but not in Studies 3 and 4, decimals smaller 

than 1 were presented without a zero to the left of the decimal point. Students might more 

often correctly add “4 + 0.3” than “4 + .3,” because the presence of the two whole 

numbers (“4” and “0”) could lure them to left adjust the operands and therefore to add 
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whole to whole rather than whole to decimal digit. Contemporary students also might 

more often encounter WD problems that explicitly indicate that there are zero whole 

numbers in the decimal than problems that leave it implicit (e.g., 5 + 0.42 more frequent 

than 5 + .42). The small number of WD addition problems in the textbooks (8 WD 

addition problems across the three textbooks) precluded testing this possibility. 

Alternatively, because Study 2 was conducted 30 years before Studies 3 and 4, 

instruction might have improved over time on this type of problem. Whatever the 

explanation, the common pattern of findings across the three studies, despite the many 

differences among them, is encouraging. 

Another limitation was that we lacked sufficient data from individual children to 

examine individual differences. Children probably are impacted by distributional biases 

in practice problems to different degrees. For example, a recent analysis of individual 

differences in fraction arithmetic identified four patterns of accuracy on different problem 

types (Braithwaite, Leib, Siegler, & McMullen, 2019). One of the four patterns paralleled 

textbook problem distributions much more strongly than the other three patterns. 

Children with greater conceptual understanding might be less influenced by the 

distributions than children with little or no conceptual understanding. The possibility of 

individual differences in the degree to which children’s performance is influenced by 

textbook problem distributions should be evaluated in future studies. 

Educational Implications 

Many efforts have been made to improve children’s knowledge of fractions and decimals. 

One approach has been to try to improve general factors related to math achievement, 

such as teachers’ mathematical knowledge (Hill, Rowan, & Ball, 2005), time spent on 
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homework (Singh, Granville, & Dika, 2002), and students’ mathematics self-efficacy 

(Williams & Williams, 2010). Unfortunately, these factors have proven difficult to 

change. Another approach has been to improve the specifics of instruction (e.g., Fuchs et 

al., 2013; Moss & Case, 1999). However, successful interventions have required multiple 

instructional components and extensive training for instructors to implement them 

successfully. The multifaceted nature of these interventions has made it difficult to 

specify what differences between the interventions and typical curricula are responsible 

for improved learning. For these and other reasons, such as lack of incentives for making 

large changes in instruction, none of these successful interventions has been widely 

implemented in classrooms.  

The present findings suggest an approach that could be implemented at scale quite 

easily: Change the distributions of problems that children receive in textbooks, and 

ideally in other instructional material as well, so underrepresented types of problems are 

presented more often. Regardless of whether poor performance on problems that appear 

infrequently in textbooks is due to children’s lack of experience with the problems, to 

lack of experience combined with insufficient conceptual knowledge, or to some other 

source of difficulty, increasing the frequency of the underrepresented problems should 

improve performance on them.  

Changes in textbook problem distributions could be made much more easily than 

many other approaches to improving learning. Moreover, even without changes in 

textbooks, teachers and parents could implement changes for themselves by providing 

worksheets with types of problems that rarely appear in textbooks.  

Changes in distributions of textbook problems may be useful but insufficient to 
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produce strong decimal arithmetic learning. Improved conceptual understanding of how 

and why correct procedures yield the results they do, why the results produced by 

common incorrect procedures are incorrect, and the approximate magnitudes produced on 

specific problems by correct arithmetic procedures, also may be necessary. In general, 

acquiring mathematical capabilities appears to be a hand-over-hand process, in which 

initial conceptual knowledge helps shape initial procedural knowledge, the initial 

procedural knowledge provides a base for more advanced conceptual understanding, the 

more advanced conceptual knowledge promotes yet more advanced procedural 

knowledge, and so on (Rittle-Johnson, Siegler, & Alibali, 2001). In the context of 

decimal arithmetic, improved initial conceptual understanding of the magnitudes yielded 

by decimal arithmetic operations might reduce the temptation to use a right adjustment 

procedure that yields “6+.32 = .38,” because the sum of positive addends must be greater 

than either addend. Conversely, acquiring procedural knowledge of problems such as “6 

+ .32 = 6.32” could deepen children’s understanding of the place value concept in the 

context of decimal addition. Of course, these potential gains require encountering 

relevant problems in textbooks or elsewhere. 

Using findings on textbook problem distributions to improve students’ 

mathematics learning will require further research on textbook problem distributions; 

dissemination of the research to textbook companies, teachers, and parents; and 

demonstrations that presenting underrepresented problems improves children’s learning. 

We hope to contribute to this effort, and we hope many others also will.  
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Table 1 

Percentage of Each Type of Problem for Each Arithmetic Operation in GO Math! 

Arithmetic  

Operation 

Type of Problem 

WD DDE DDU 

Addition 0 11 3 

Subtraction 1 10 3 

Multiplication 24 7 8 

Division 21 7 4 

Note. Here and in Tables 2 – 7, WD =  problems on which the operands are a Whole 

number and a Decimal; DDE = problems on which one operand is a Decimal, the other 

operand is a Decimal, and the two have Equal numbers of decimal digits; DDU = 

problems on which one operand is a Decimal, the other operand is a Decimal, and the two 

have Unequal numbers of decimal digits. 
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Table 2 

Percentage of Each Type of Problem for Each Arithmetic Operation in enVision MATH 

Arithmetic  

Operation 

Type of Problem 

WD DDE DDU 

Addition 1 9 5 

Subtraction 1 9 6 

Multiplication 20 9 7 

Division 23 5 6 
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Table 3 

Percentage of Each Type of Problem for Each Arithmetic Operation in Everyday 

Mathematics 

Arithmetic  

Operation 

Type of Problem 

WD DDE DDU 

Addition 0 7 5 

Subtraction 2 10 3 

Multiplication 15 8 7 

Division 25 6 12 
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Table 4 

Percentage of Each Type of Problem for Each Arithmetic Operation in Addison-Wesley 

Mathematics (1985 Edition) 

Arithmetic  

Operation 

Type of Problem 

WD DDE DDU 

Addition 0 8 2 

Subtraction 0 10 2 

Multiplication 18 10 10 

Division 28 2 10 
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Table 5 

Seventh Graders’ Percent Correct on Decimal Arithmetic Problems in Hiebert and 

Wearne (1985).  

Arithmetic Operation 

Time of 

Testing 

Type of Problem 

WD DDE DDU 

Addition 

Fall 40 89 66 

Spring 38 90 72 

Subtraction 

Fall 31 71 54 

Spring 37 74 53 

Multiplication 

Fall 70 17 34 

Spring 85 60 72 

Division 

Fall 24 20 25 

Spring 62 61 56 
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Table 6 

Percent Correct (Means and Standard Deviations) on Each Type of Problem: Study 3 

Arithmetic  

Operation 

  Type of Problem  

WD DDE DDU 

 M SD M SD M SD 

Addition 80  40 85 36 85 35 

Subtraction 75 43 86 34 82 38 

Multiplication 78 42 78 42 73 45 

Division 87 34 79 41 83 38 
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Table 7 

Percent Correct (Means and Standard Deviations) on Each Type of Problem: Study 4 

Arithmetic  

Operation 

  Type of Problem  

WD DDE DDU 

 M SD M SD M SD 

Addition 68 47 88 33 68 47 

Subtraction 68 47 88 33 77 42 

Multiplication 71 46 48 50 26 44 

Division 42 50 24 43 15 36 

 

 


