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Abstract

This study investigated relations between the distribution of practice problems in
textbooks and students’ learning of decimal arithmetic. In Study 1, we analyzed the
distributions of decimal arithmetic practice problems that appeared in three leading math
textbook series in the US. Similar imbalances in the relative frequencies of decimal
arithmetic problems were present across the three series: Addition and subtraction more
often involved two decimals than a whole number and a decimal, but the opposite was
true for multiplication and division. We expected children’s learning of decimal
arithmetic to reflect these distributional biases. In Studies 2, 3, and 4, we tested the
prediction that children would have more difficulty solving types of problems that
appeared less frequently in textbooks, regardless of the intrinsic complexity of solving
the problems. We analyzed students’ performance on decimal arithmetic from an
experiment conducted in a different lab 35 years ago (Study 2), from a contemporary
large-scale web-based learning platform (Study 3), and from a recent controlled
experiment conducted in our own lab (Study 4). Despite many differences among the
three studies, performance in all three was in accord with the predictions. These findings
suggest that the distributions of practice problems in math textbooks may influence what
children do and do not learn. Usefulness of analyzing textbook problem distributions, as
well as educational implications of the current findings, are discussed.
Keywords: textbook analysis, decimal arithmetic, rational numbers, math learning, and

practice problems.
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Educational Impact and Implications Statement
Analysis of three leading math textbook series in the US revealed large imbalances in
distributions of decimal arithmetic problems: Addition and subtraction problems more
often had two decimal operands than a whole number operand and a decimal operand, but
the reverse was true for multiplication and division. Children, tested over a wide range of
time periods and in a wide range of contexts, consistently showed lower accuracy on
problems that appeared less frequently in the textbooks. This finding suggests that
distributions of practice problems in textbooks may influence children’s performance and
that more balanced distributions may lead to better learning. The results have the
potential to improve math education, because in contrast to most factors influencing
children’s learning, changes in distributions of practice problems can be implemented

relatively easily by textbook companies, teachers, and parents.
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Solving practice problems is a major part of learning mathematics. However,
relatively little is known about what effects, if any, the specific characteristics of practice
problems have on specific aspects of mathematics learning. The present research analyzes
the distributions of decimal arithmetic practice problems that appear in three math
textbook series and tests the hypothesis that the distributions influence children’s
learning.

The practice problems that we examined were those presented in mathematics
textbooks. This focus does not reflect a belief that these are the only practice problems
that children receive: They clearly are not. Instead, the focus reflects a belief that
textbooks are one major source of practice problems in children’s mathematics learning
(Horsley & Sikorova, 2014) — a source that is publicly accessible and verifiable — and
also a belief that other sources of practice problems, such as workbooks and websites, are
likely to reflect biases similar to those that shape textbook problems (Siegler et al., under
review; Tian et al., in prep).

An important potential advantage of focusing on the impact of practice problems
on learning is that suboptimal distributions of practice problems could be changed
relatively easily. This contrasts with many less tractable sources of difficulty in math
learning, including socioeconomic disadvantages, societal values and beliefs, inadequate

teacher knowledge, and weak student motivation. If the specific types of problems that
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children encounter create unnecessary difficulties for learning, changes could be made at
scale, relatively quickly, to mitigate those difficulties.

The present study focused on relations between textbook problems and children’s
learning of rational number arithmetic, specifically decimal arithmetic. This focus was
justified by the importance and difficulty of this domain. In a national survey of more
than 1,000 US Algebra I teachers, failure to understand “rational numbers and operations
involving fractions and decimals” was rated the second largest source of difficulty in
their students’ preparation for Algebra I, trailing only the amorphous category “word
problems” (Hoffer, Venkataraman, Hedberg, & Shagle, 2007). Data on children’s
acquisition of mathematics knowledge also attests to the importance of understanding
rational numbers: students’ rational number arithmetic competence in Grade 5 uniquely
predicted their mathematics achievement in Grade 10 in both the US and the UK, even
after controlling for 1Q, working memory, parental education, and family income (Siegler
et al., 2012; see also Booth & Newton, 2012; Hurst & Cordes, 2018; Powell, Gilbert, &
Fuchs, 2019; see Bush & Karp, 2013 for a review). Given the importance of this area, it
is especially unfortunate that many students have little understanding of rational number
arithmetic (Lortie-Forgues, Tian, & Siegler, 2015).

Below, we first describe previous findings on the effects of textbook problems on
children’s learning of mathematics. We then briefly review previous research on
children’s decimal arithmetic and discuss how textbook problem distributions might

affect children’s decimal arithmetic learning.
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Effects of Textbook Problems on Mathematics Learning
Although diverse teaching resources are available online and from other sources,
textbooks continue to be widely used by math teachers in classrooms (Elsaleh, 2010). On
the 2011 Trends in International Mathematics and Science Study (TIMSS), more than
75% of the students in Grades 4 and 8 reported that their math teachers used textbooks as
the “basis for instruction” (Horsley & Sikorova, 2014). Textbooks also often serve as a
key instrument for translating educational reform ideas into classroom instruction. The
first step that many school districts take in response to a reform is to adopt a new
textbook series that at least claims to align with the proposed reform (Remillard, 2000).

Influences of math textbooks on children’s concepts of mathematical
equality. Despite the widespread use of math textbooks, surprisingly, little is known
about how distributions of textbook problems are related to children’s learning. However,
one area in which the impact of textbook problem distributions has been examined
involves understanding of mathematical equivalence. Children in elementary and middle
school often interpret the equal sign as a signal to perform mathematical operations
instead of as a relational symbol that represents mathematical equivalence (Baroody &
Ginsburg, 1983; McNeil & Alibali, 2005; Renwick, 1932). Illustrating children’s
interpretation of the equal sign as a “go signal,” most sixth graders in Falkner, Levi, and
Carpenter (1999) answered “8+4=_+5” by writing “12” or “17,” answers that would
emerge if children added the numbers to the left of the equal sign or added all numbers in
the expression.

Analyses of math textbooks used in elementary (Powell, 2012) and middle school

(McNeil et al., 2006) suggested that the distribution of problems involving the equal sign
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contributes to children’s misconceptions about the equal sign. Problems in US math
textbooks, especially those used in elementary school, usually present the arithmetic
operation to the left of the equal sign and the unknown to the right of it (e.g.,2+5=_).

They less often present problems in non-standard forms, including those where

operations appear on both sides of the equal sign (e.g., 2 +5=__ +4) or only to the right
ofit(e.g., =2+5) or problems where no operation appears on either side of the equal
sign (e.g., 7= __; McNeil et al., 2006; Powell, 2012). Virtually invariant presentation of

the standard problem format in textbooks may encourage children to interpret the equal
sign as a “go signal.”

Consistent with this hypothesis, McNeil (2008) found that receiving math lessons
in which problems were presented in non-standard formats immediately before test
problems in the standard format weakened the bias toward interpreting the equal sign as a
“go signal.” In contrast, receiving lessons with problems in the standard format
immediately before test problems in the standard format strengthened the bias. The
improvement in understanding of mathematical equivalence among children who
encountered problems in non-standard formats persisted 5 to 6 months later (McNeil,
Fyfe, & Dunwiddie, 2015). Thus, infrequent presentation of certain types of problem may
create or reinforce misconceptions, and more frequent presentation of rare problem types
can help correct such misconceptions.

Influences of math textbooks on children’s fraction arithmetic. The influence
of textbook problem distributions has also been examined with fraction arithmetic.
Braithwaite, Pyke, and Siegler (2017) found extreme imbalances in the distributions of

fraction arithmetic problems in the fourth, fifth, and sixth grade math textbooks of three
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leading series. For example, multiplication and division problems almost never involved
fractions with equal denominators (equal denominator multiplication and division
problems each constituted only about 1% of items in each of the textbook series).

Braithwaite et al. (2017) also found that these imbalanced problem distributions
were highly predictive of middle school children’s fraction arithmetic performance. For
example, despite correct multiplication and division procedures being identical for
problems with equal and unequal denominators, two previous studies indicated that
children were considerably less accurate on the infrequently presented multiplication and
division problems with equal denominators than on the frequently presented
multiplication and division problems with unequal denominators (Siegler & Pyke, 2013;
Siegler et al., 2011). In Siegler and Pyke (2013), children were correct on 58% of
multiplication items with unequal denominators (e.g., 3/5 x 1/4) but on only 36% of
multiplication items with equal denominators (e.g., 3/5 x 1/5).

Braithwaite et al.’s (2017) results went beyond previous findings (e.g., McNeil et
al., 2006; Powell, 2012) by showing that not only individual features of practice
problems, but also interactions between problem features (in this case, interactions
between arithmetic operations and characteristics of operands), predict students’
problem-solving performance. However, this finding might be due to some idiosyncrasy
of fraction arithmetic rather than reflecting a general property of math learning. Thus, a
major purpose of the present study was to test whether interactions between problem

features would predict students’ performance in a different domain: decimal arithmetic.
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Decimal Arithmetic

Despite its importance, decimal arithmetic has received much less attention from
researchers than fraction arithmetic. Exploring relations between textbook problem
distributions and decimal arithmetic performance allowed us to test the generality of
Braithwaite et al.’s (2017) conclusions, which were based on fraction arithmetic findings,
and also to enrich the currently-sparse literature on decimal arithmetic.

Many children experience difficulty with decimal arithmetic (Hiebert & Wearne,
1985, 1986). For example, on a National Assessment of Educational Progress (NAEP),
less than half of 13-year-olds correctly solved the problem 4.5 - .53 (Kouba et al., 1988).
In a more recent study, fourth- and fifth-grade children correctly answered only 77% of
decimal addition problems involving decimals with one or two digits to the right of the
decimal point (Hurst & Cordes, 2018).

Children’s inaccurate decimal arithmetic performance may relate to their limited
conceptual understanding of decimal place values and decimal arithmetic (Durkin &
Rittle-Johnson, 2015; Hiebert & Wearne, 1985, 1986; Lortie-Forgues et al., 2015). In one
study, sixth graders correctly answered only 39% of items assessing understanding of
decimal place value, such as “3 tenths are worth how many hundredths?” (Rittle-Johnson
& Koedinger, 2009). This poor conceptual understanding could open the door to
arithmetic errors, such as adding digits with different place values, as when claiming that
6 + .32 = .38. Lortie-Forgues and Siegler (2017) reported that middle school students and
even pre-service teachers usually judged that multiplying a number by a decimal would

produce an answer larger than that number, even when both multiplicands were between
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0 and 1. This misconception may prevent students from recognizing the implausibility of

decimal multiplication and division answers, such as 5.5 * 0.6 = 33.

Possible Effects of Textbook Problem Distributions on Decimal Arithmetic Learning

Although decimal arithmetic is challenging in general for many children, our
expectation was that children would encounter particular difficulty with types of
problems that are rarely presented in textbooks, even if the problems could be solved
easily via simple procedures. This expectation derives from previous findings that most
US students have little conceptual understanding of decimal place value (Durkin &
Rittle-Johnson, 2015; Rittle-Johnson & Koedinger, 2009) and decimal arithmetic (Lortie-
Forgues & Siegler, 2017). As proposed by Braithwaite, et al. (2017), absence of
conceptual knowledge opens the door to irrelevant associations in practice problems
strongly influencing performance.

To investigate relations between textbook problem distributions and decimal
arithmetic performance, we first conducted textbook analyses to generate predictions
about performance; then, we tested the predictions empirically. In the textbook analysis,
we examined the distributions of decimal arithmetic problems in three widely-used
contemporary US textbook series to identify possible biases in the distributions. We also
examined distributions in a textbook from more than 30 years ago, to determine the
stability of the biases over time. In the empirical tests, we analyzed three datasets on
children’s decimal arithmetic to determine whether children’s decimal arithmetic
performance corresponds in detailed ways to the textbook problem distributions. The
study procedures of Studies 1, 2, and 3 were approved under Teachers College, Columbia

University, IRB protocol 19-150, “Improving Fraction Understanding - Existing Data”.

10
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Study 1: Distribution of Decimal Arithmetic Problems in US Textbooks

To obtain a comprehensive and representative database of decimal arithmetic
problems in US textbooks, we coded decimal arithmetic problems from the current
editions (as of 2016, when we began to create the textbook database) of three US math
textbook series (the same ones examined in Braithwaite et al., 2017): Houghton Mifflin
Harcourt’s GO Math! (Dixon, Adams, Larson, & Leiva, 2012), Pearson’s enVision
MATH (Charles et al., 2012), and McGraw-Hill’s Everyday Mathematics (University of
Chicago School Mathematics Project, 2015a, 2015b). These series were among the most
widely-used in the US (Opfer, Kaufman, Pane, & Thompson, 2018) and covered the
entire period from Grade 4 (when introduction of decimals is recommended by the
Common Core State Standard Initiatives, CCSSI; National Governors Association Center
for Best Practices, 2015) to Grade 6 (last mention of understanding decimals as an
explicit goal in CCSSI; National Governors Association Center for Best Practices, 2015).
The database consisted of all decimal arithmetic problems that met three criteria: 1) the
problem had two operands, 2) at least one operand was a decimal, and 3) the problem
required children to generate an exact numeric answer (rather than being a worked
example or requiring an estimate). The database did not include word problems, due to
the complexity of categorizing such problems (Geary, 2004). A total 1441 problems were
entered: 715 from GO Math!, 551 from enVision MATH, and 175 from Everyday
Mathematics'. See the Supplementary Materials, Section A for more details about the

problems.

! One reason that Everyday Mathematics has so few problems compared to the other two series is that it
frequently uses games for practicing problem solving (University of Chicago School Mathematics Project,
n.d.). Because numbers in most games of Everyday Mathematics are generated randomly each time a game
is played, the specific problems in these games could not be analyzed.

11
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Coding and Analyses
Problems were categorized by arithmetic operation and characteristics of
operands. For each of the four arithmetic operations (addition, subtraction, multiplication,
and division), we distinguished among three types of problems:
1) Whole-decimal (WD) problems: items with a whole number operand and a
decimal operand, which inherently had unequal numbers of decimal digits
(e.g., 5 x1.2);
2) Decimal-decimal equal decimal digits (DDE) problems: items with two
decimal operands that had an equal number of decimal digits (e.g., 1.23 +
4.56);
3) Decimal-decimal unequal decimal digits (DDU) problems: items with two
decimal operands that had unequal numbers of decimal digits (e.g., 4.5 - 1.23).
Here and throughout this article, we use “decimal” to refer to numbers that include
a decimal point (e.g., 1.52 or 0.6). We use the term “decimal digits” to refer to the digits
to the right of the decimal point (e.g. 1.52 has two decimal digits; 1.527 has three). The
features that we coded (whether operands in each problem were two decimals or a whole
number and a decimal; whether number of decimal digits were equal) were chosen
because they were analogous to features that had previously been found to influence the
relatively difficulty of fraction arithmetic problems (Braithwaite et al., 2017) and were
not confounded with whole number arithmetic complexity (e.g., the total number of digits
in the problem).
Tables 1-3 show the frequencies of WD, DDE, and DDU problems for each of the

four arithmetic operations in each textbook series. Because patterns of frequencies of

12
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WD, DDE, and DDU problems in the textbooks were highly similar for addition and
subtraction, we combined frequency of addition and subtraction items into a single
operation group (addition/subtraction). For the same reason, we combined frequency of
multiplication and division items into another operation group (multiplication/division).
In the following analyses, we first examined the associations between operand type (WD
vs. DD) and arithmetic operation group (addition/subtraction vs. multiplication/division).
Within DD problems, we examined the associations between equality of decimal digits
(DDE vs. DDU) and arithmetic operation group (addition/subtraction vs.

multiplication/division).

Tables 1 — 3 here

Results

Operand type. Chi-square tests of independence revealed associations between
operand type (WD vs. DD) and arithmetic operation group (addition/subtraction vs.
multiplication/division) in all three textbook series: y°(1) = 208.21, p < .001, @eramer = .54
for GO Math!; y’(1) = 137.38, p < .001, @eramer = .50 for enVision MATH; and y°(1) =
29.35, p <.001, Dcramer = .42 for Everyday Mathematics. As shown in Tables 1-3,
addition and subtraction problems far more frequently involved two decimal operands
(DD) than a whole number and a decimal operand (95% DD operands, 5% WD
operands), but multiplication and division problems showed the opposite pattern (39%
DD operands, 61% WD operands).

Equality of decimal digits. Considering only DD problems, associations again
were present in all textbooks between arithmetic operation group (addition/subtraction vs.

multiplication/division) and equality of number of decimal digits in the operands (DDE

13
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vs. DDU): (1) = 25.15, p < .001, @eramer = .26 for GO Math!; y°(1) =5.18, p

= .02, @Deramer = .14 for enVision MATH; and y°(1) = 5.78, p = .02, @eramer = .26 for
Everyday Mathematics. As shown in Tables 1-3, addition and subtraction problems more
often involved DDE than DDU operands (71% vs. 29%), whereas multiplication and
division problems equally often involved DDE and DDU operands (51% vs. 49%).
Discussion

In all three contemporary math textbook series that we examined, strong
associations were present between operations and operands. Addition and subtraction
more often involved two decimals than a whole number and a decimal, but the reverse
held for multiplication and division. Among problems with two decimal operands,
addition and subtraction more often involved operands with equal than unequal numbers
of decimal digits, whereas multiplication and division equally often involved operands
with equal and unequal numbers of decimal digits. Of special interest was the extremely
low frequency of addition and subtraction WD problems, such as “4 + .56.” Such
problems were only 5% of textbook addition and subtraction problems involving at least
one decimal operand.

There was no apparent mathematical basis for these relations between operations
and operands. However, the low frequency of certain types of problems might have
reflected textbook authors believing that children do not need much experience to
succeed on the rarely presented problem types. For example, the infrequency of WD
addition problems might have been due to textbook authors assuming that children can
accurately answer such problems with minimal practice. After all, solving “4 + .56 only

requires concatenating the two numbers, a procedure that might be learned with little

14
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practice. Alternatively, textbook authors may assume that children know that arithmetic
procedures are independent of operands and therefore assume that practicing adding DD
problems leads to children learning to solve both DD and WD addition problems.

However, because children’s conceptual understanding of decimal arithmetic is
very limited, we expected their performance to be influenced by these distributional
biases in the practice problems. We expected that children would have difficulty solving
types of problems that appear rarely in textbooks—including seemingly easy problems
such as “4 +.56.” Conversely, we expected that more frequent presentation of problems
would lead to better performance, as children would have more opportunities to practice
and receive feedback on them. Based on this logic and the findings of Study 1, we made
three predictions regarding children’s performance:

Prediction 1. The effect of operand type (WD vs. DD) on children’s accuracy
should interact with arithmetic operation group (addition/subtraction vs.
multiplication/division).

Prediction 2. For addition and subtraction, children’s accuracy should be higher
on DD than WD problems.

Prediction 3. For multiplication and division, children’s accuracy should be
higher on WD than on DD problems.

We tested these predictions in Studies 2, 3, and 4. Study 2 examined data from an
experiment from a different lab published 35 years ago (Hiebert & Wearne, 1985). Study
3 examined unpublished contemporary data from a large-scale web-based learning
platform. Study 4 examined new data from a controlled experiment conducted in our lab.

The goal was to examine the generality of the findings over labs (the Hiebert/Wearne lab

15
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versus our own), time of data collection (before 1985 versus 2013-2019), and data source
(web-based platform versus controlled experiment).

Prediction 2 deserves special emphasis, because simply considering the
complexity of the procedures required to solve the problems would lead to the opposite
prediction, at least for addition. Adding a whole number and a decimal seems particularly
easy, especially when the decimal does not have a whole number part (e.g., .7). Such
problems have no computational demand, because they only require copying the whole
number and concatenating the decimal operand to it (e.g., 5 +.7 = 5.7). In contrast,
adding two decimals, especially when the decimals have unequal numbers of decimal
digits, requires a more complex procedure involving aligning the addends’ digits
according to their place values, adding the decimal parts and the whole number parts of
the operands, and sometimes carrying from the decimal parts to the whole number parts
(e.g.,5.62+.7=(5)+(.62+.7) =5+ 1.32 = (5+1) + 0.32 = 6.32)2. Nonetheless, the much
lower frequency of WD than DDE or DDU addition problems in textbooks led us to
predict that WD problems would elicit more errors despite their lesser complexity.

Study 1 also revealed that for addition and subtraction, DDE problems were more
frequent than DDU problems, suggesting that children would solve the former more
accurately than the latter. However, addition and subtraction are intrinsically easier with
DDE than DDU operands, because aligning the rightmost decimal digits leads to correct

answers on the former but not the latter problems. Therefore, testing such a prediction

2 1t might be argued that WD addition problems are intrinsically difficult because it is tempting to misalign
the addends, as in 5 +.7 = 1.2, and avoiding such errors requires understanding of place value. However,
the same is true of DDU addition problems, such as .5 +.73. As shown below, WD addition problems
proved more difficult for children than both DDE and DDU addition problems, a finding that is difficult to
explain in terms of intrinsic difficulty alone.

16
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would not be very informative regarding how textbook problem distributions influence
learning.
Study 2: Exploration with a Pre-Existing Dataset

The purpose of Study 2 was to examine relations between the textbook problem
distributions and children’s performance on decimal arithmetic problems. We wanted to
test these relations first using an existing data set collected outside of our lab. To allow
the required comparisons, such a data set needed to report separately WD, DDU, and
DDE problems for each arithmetic operation.

The one data set that we found that met these requirements was reported in
Hiebert and Wearne (1985). In that study, seventh graders® were presented decimal
arithmetic problems that included WD, DDE, and DDU items for each operation. There
were five addition problems (4.6 + 2.3, 5.3 +2.42, 5.1 + .46, 6 + .32, 4 + .3), five
subtraction problems (.78 - .35, .60 - .36, .86 - .3, 4.7 - .24, 7 - .4), six multiplication
problems (4 x .2, .34 x 2.1, .05 x 4,6 x 4,2 x3.12, 8 x .06), and six division problems
(.24 +.03,.028 ~ .4,2.1 +3,.56 = 7,42 + .6, and 3 + .6). Children attempted to solve
these problems with paper and pencil, once in their fall semester and once in their spring
semester. In the fall, 279 students received all addition and subtraction problems, and 81
also received all multiplication and division problems. In the spring, 272 students
received all addition and subtraction items, and 80 also received all multiplication and

division problems.

3 Hiebert and Wearne (1985) reported data on fifth, sixth, seventh, and ninth graders. Our analyses focused
on the seventh graders because (1) the fifth and sixth graders did not receive problems involving all four
arithmetic operations, and (2) the ninth graders would have completed formal instruction in decimal
arithmetic more than two years before the study was conducted and would have received many unknown
kinds of decimal arithmetic problems in math and science classes in the two years beyond those covered in
our textbook analyses.

17
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Predictions regarding children’s performance were based on the assumption that
the distributions of problems that children encountered 35 years ago approximated those
in contemporary textbooks. To test this assumption, we coded and analyzed decimal
arithmetic problems from the one volume of a math textbook series from the 1980s that
we were able to find, Addison-Wesley Mathematics (1985)*. This textbook series was
described by Stigler, Ham, Kim, and Fuson (1986) as “widely used.” The volume we
coded included 647 decimal arithmetic problems; the distribution of these problems is
shown in Table 4.

Comparison of Tables 1-3 and Table 4 indicates that patterns of problem
frequencies in the 1985 textbook closely resembled those in the contemporary textbooks.
Particularly relevant to our predictions, addition and subtraction problems in the 1985
textbook never involved a whole number and a decimal operand (0% WD operands vs.
100% DD operands), but multiplication and division problems more often involved a
whole number and a decimal operand than two decimal operands (58% WD operands vs.
42% DD operands), y°(1) = 150.97, p < .001, @cramer = .49. This finding, in addition to
demonstrating the stability over time of textbook problem distributions, strengthened our
expectation that students’ performance in Hiebert and Wearne (1985) would conform to

our three predictions.

Table 4 here

Hiebert and Wearne (1985) reported the overall percent correct and the most

frequent error for each problem at each grade at each testing occasion. Data for individual

4 Due to the difficulty of accessing math textbooks from more than 35 years ago, we were only able to
locate one volume of a math textbook published about when the Hiebert and Wearne (1985) study was
done. Fortunately, topics in this volume included all four decimal arithmetic operations.

18
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children were not available, nor were data separately reported for the subset of students
who received problems for all four operations. This precluded inferential statistics,
including tests of the interaction posited in Prediction 1. Nonetheless, the data proved
revealing.
Results

The accuracy data from Hiebert and Wearne (1985) are presented in Table 5,
organized in terms of arithmetic operation; time of testing; whether the problem included
a whole number; and if not, whether the two operands had equal numbers of decimal

digits.

Table 5 here

Prediction 2: Higher accuracy on DD than WD addition and subtraction
problems. Consistent with Prediction 2, for addition and subtraction, students were less
accurate on WD problems than on DD problems both in the fall (37% vs. 70% correct)
and in the spring (38% vs. 73% correct). The poor performance on WD addition and
subtraction problems, and the differences in accuracy between them and DD addition and
subtraction problems, was highly consistent across items. Percent correct on individual
WD addition and subtraction problems at the two times of testing ranged from 31% to
42%, whereas percent correct on individual DD addition and subtraction problems
(including both DDE and DDU) ranged from 65% to 90%.

Prediction 3: Higher accuracy on WD than DD multiplication and division
problems. Consistent with Prediction 3, for multiplication and division, students were
more accurate on WD than DD problems in both the fall (44% vs. 26% correct) and the

spring (72% vs. 64% correct). The superior performance on WD problems was highly
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consistent among multiplication items at each testing time. Percent correct on each WD
multiplication problem ranged from 54% to 79% in the fall and 84% to 86% in the
spring, whereas percent correct on each DD multiplication problem ranged from 17% to
41% in the fall and 60% to 79% in the spring. The trend was less consistent across
division problems. Percent correct on individual WD division problems ranged from 2%
to 68% in the fall and 44% to 91% in the spring, whereas percent correct on individual
DD division problems ranged from 20% to 25% in the fall and 56% to 61% in the spring.
The reasons for the high variability among WD division problems are unknown.
Discussion

As expected, textbook problem frequency was related to middle school students’
decimal arithmetic performance. Accuracy on addition/subtraction problems was much
higher on DD than WD items; on multiplication/division items, the opposite was true.

The findings were especially striking for addition of a whole and a decimal. For
the seemingly simple problem “6 + .32,” the 7™ graders’ percent correct was 42% in the
spring and 39% in the fall; for the seemingly simple problem “4 + .3,” their percent
correct was 39% in the fall and 37% in the spring. Moreover, the most common errors
children made on these problems were likely produced by overgeneralizing strategies
from frequently presented problems. For example, the most common incorrect response
to “6 + .32 was 0.38; this response accounted for 45% and 50% of the errors children
made on this problem in the Fall and Spring, respectively. Similarly, the most common
error for “4 + .3” was 0.7, which comprised 51% and 48% of all the errors in the Fall and
Spring, respectively (see Hiebert & Wearne, 1985 for common errors on the other

problems). These errors on WD addition problems were likely generated by aligning the
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rightmost digits of the operands, a strategy that would yield a correct answer on the
frequently presented DDE addition problems (as well as for whole number addition).
Given that WD addition problems make minimal computational demands, the inaccurate
performance seems likely to reflect their infrequent presentation (combined with poor
conceptual understanding of place value).

Study 3: Validation with a Large-Scale, Online, Contemporary Dataset

The results of Study 2 revealed that children’s performance on decimal arithmetic
problems 35 years ago was related to distributions of problems in math textbooks.
However, due to the limitations of the available data from Study 2, we were unable to
conduct inferential statistical analyses to confirm these relations or to examine the
interaction implied by Prediction 1. Study 3 was an effort to address these issues and test
the generality of the relations with performance data from a large number of
contemporary students.

The data used in this study were obtained from the Skill Builder module on
ASSISTments, a web-based platform that allows teachers to assign practice problems for
several school subjects, including math (Heffernan & Heffernan, 2014). Skill Builder
hosts a large bank of practice problems (for example, the adding decimals problem set
included 77 problems) developed by researchers and teachers for topics aligned with the
CCSSI (National Governors Association Center for Best Practices, 2015). The large
number and variety of problems and the large number of active users of ASSISTments
(over 50,000 students across 42 states in 2018, according to assistments.org) allowed us
to test each of the three predictions with inferential statistical analyses. The

ASSISTments data also offered a unique opportunity to test whether the Study 2 findings
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were due to idiosyncrasies of the problems, students, or time period in which the data
were collected.
Dataset Description

We requested all available data (as of February, 2019) on students’ decimal
arithmetic performance in the ASSISTments Skill Builder module® from the
ASSISTments team. We included in our analyses data from all trials that met the
following criteria: 1) the problem fit the inclusion criteria of Study 1, 2) each data point
was a student’s first attempt to answer a problem on which the student had not asked for
a hint®, and 3) the data were from a student who completed addition/subtraction
problems, multiplication/division problems, and at least one WD and one DD problem for
each of the two arithmetic operation groups. The data analyzed were collected from
2013-2019 and included 3359 students’ performance on 637 decimal arithmetic

problems.

Participants

The 3359 students included in this study were in Grade 6 when tested. Among
them, 98% (3303 students) indicated the school district they attended; they were from 73
different school districts. For 92% of these students (3081), data were available on the
proportion of children eligible for free or reduced-price lunch (FRPL) in the school

district. Among them, 54% attended school districts in which less than 25% of students

3 Only data on accuracy were available; data on children’s specific wrong answers were not.

¢ ASSISTments allows students to ask for a hint on how to solve a given problem without attempting to
answer; it also allows students to make multiple attempts on a given problem. Students whose data were
analyzed in this experiment asked for a hint on their first attempt on less than 2% of the problems. Analyses
that included these attempts as incorrect responses yielded results similar to those reported.
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were eligible for FRPL, 42% attended districts where between 25% and 75% were

eligible, and 4% attended districts where more than 75% were eligible.

Results

On average, students answered 20 decimal arithmetic problems (SD = 14) that
met the study’s criteria. Because students worked on different problems, we predicted the
accuracy of answers by fitting mixed-effects logistic regression models with R (R Core
Team, 2018) and /me4 (Bates, Méachler, Bolker, & Walker, 2014). P-values were
obtained by likelihood ratio tests comparing the full model, including the effect in
question, to the model without the effect in question. In each model, random intercepts
for participant and problem were added. Because there is no agreed-on approach for
calculating standard effect sizes for individual model terms in such models (see Rights &
Sterba, 2019), none were reported. Analyses that examined each arithmetic operation
separately yielded similar results to those reported (see Supplementary Materials, Section

B). Table 6 indicates accuracy on each type of problem.

Table 6 here

Prediction 1: An interaction between operand type and arithmetic operation
group. Consistent with Prediction 1, operand type (WD vs. DD) interacted with
arithmetic operation group (addition/subtraction vs. multiplication/division), ° (1) =
98.16, p <.001, indicating that the effect of operand type on the odds of generating
correct answers differed by arithmetic operation group.

Prediction 2: Higher accuracy on DD than WD addition and subtraction

problems. Consistent with Prediction 2, the odds of students correctly answering
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addition/subtraction problems were higher on DD than WD problems (M = 84%, SD =

36%, versus M = 76%, SD = 43%), (1) = 57.43, p < .001.

To test whether this effect was driven by DDE addition/subtraction problems
being easier than WD problems, we ran two separate models, one comparing accuracy on
WD and DDE problems, the other comparing accuracy on WD and DDU problems. The
odds of giving correct answers on addition/subtraction problems were higher not only for
DDE than WD problems, (M = 86%, SD = 35%, versus M = 76%, SD = 43%), °(1) =
46.56, p < .001, but also for DDU than WD problems (M = 83%, SD = 38% versus M =

76%, SD = 43%), 1*(1) = 32.95, p < .001.

To ensure that these results were not solely due to differences in performance on
subtraction problems, we also fitted separate models for only addition problems. Results
were similar to those when addition and subtraction problems were combined. The odds
of giving correct answers were higher on DDE than WD addition problems (M = 85%,
SD = 36%, versus M = 80%, SD = 40%), x°(1) = 3.92, p < .05, and also on DDU than
WD addition problems (M = 85%, SD = 35% versus M = 80%, SD = 40%), x°(1) = 9.91,

p<.0l.

Prediction 3: Higher accuracy on WD than DD multiplication and division
problems. Consistent with Prediction 3, the odds of giving correct answers for
multiplication and division items were higher on WD than on DD problems (M = 86%,
SD = 34%, versus M = 79%, SD = 41%), y°(1) = 44.31, p < .001. To better understand
this effect, we ran separate models on multiplication/division problems, one comparing

accuracy on WD and DDE problems, the other comparing accuracy on WD and DDU
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problems. The odds of correct answers were higher on WD than DDE
multiplication/division problems (M = 86%, SD = 34%, versus M = 78%, SD = 41%),
2’(1)=25.62, p<.001, and also on WD than DDU problems (M = 86%, SD = 34%,
versus M = 80%, SD = 40%), x°(1) = 40.56, p < .001. Thus, the effect was general across

the DD problems.

Discussion

As in Study 2, decimal arithmetic performance of middle school students mirrored
biases in textbook problem distributions. The presence of a whole number operand
influenced children’s accuracy in opposite directions on addition/subtraction and
multiplication/division problems. Students were more likely to answer correctly decimal
addition and subtraction problems without a whole number operand than with one. In
contrast, students were more likely to answer correctly decimal multiplication and
division problems with a whole number operand than without one. Especially
noteworthy, despite the seeming simplicity of adding a whole number and a decimal,
children’s accuracy on such problems was lower than when adding two decimals with
equal or unequal number of decimal digits.

Compared to children in Study 2, children in Study 3 showed a smaller difference
between accuracies on the frequently presented and the rarely presented problems. Their
accuracy across all problems also was higher.

Nevertheless, the two studies demonstrated considerable stability of findings on
relations between distributions of textbook problems and children’s accuracy on different
types of problems. In both studies, types of problems that were rarely presented in

textbooks were more difficult than would have been expected from the complexity of
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solution procedures for those types of problems. The data in the two studies were
collected decades apart, a period during which many changes in approaches to
mathematics education and in student populations occurred. The studies also differed in
how the data were collected. Students in Study 2 solved problems in a single session, in
groups, with paper and pencil; students in Study 3 solved problems over multiple
sessions, individually, on a web-based platform. The similar pattern of findings despite
these differences, along with the sheer number of students from diverse backgrounds and
geographical locations in Study 3, suggest that the predictions generalize to a broad range
of US students.
Study 4: Validation with a Controlled Experiment

Studies 2 and 3 revealed stability over a 35-year period of the finding that
students’ decimal arithmetic performance paralleled the distributions of textbook
problems. However, in neither study did all students receive a complete and balanced set
of decimal arithmetic problems, including all four arithmetic operations and WD, DDE,
and DDU problems within each operation. Study 4 was designed to address this
limitation with a carefully controlled experiment that tested more precisely whether
parallels were present between students’ performance and textbook problem distributions.
We asked sixth graders to complete sets of decimal arithmetic problems that included all
types of problems needed to test predictions based on the textbook data described in
Study 1. Sixth graders were selected because decimal arithmetic is recommended to be
taught in fifth grade in CCSSI (National Governors Association Center for Best Practices,
2015), so that sixth graders would recently have received instruction in the subject. The

same three predictions as in Study 3 were tested.
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Method

Participants. Sixty-six sixth graders from a public middle school in Pittsburgh,
PA participated in the study in the Fall semester of 2016. We aimed to have
approximately 60 students, which was comparable to the sample size of sixth graders in
previous studies using similar tasks that had sufficient power to reveal a number of
effects of interest (e.g., Siegler & Pyke, 2013). The study was conducted in a whole-class
format, and we included all students (i.e., 66) in the participating classes.

The participating school enrolled students in Grades 6 through 8. Of students at
this school, 34% were eligible for FRPL. About 50% of the sixth graders in the
participating school achieved “Advanced/Proficient” level on the math section of
Pennsylvania System of School Assessments (the standardized test used in Pennsylvania)
administered in the Spring of 2017, which was somewhat, but not greatly, higher than the
state average of 40.3%. The study procedures were approved under Carnegie Mellon
University, IRB protocol 2016 00000420, “Improving Understanding of Fractions”.

Task. Each child completed 12 decimal arithmetic problems from one of two
problem sets. Each set included three problems for each arithmetic operation: one
problem with a whole number and a decimal (WD), one problem with two decimals
having an equal number of decimal digits (DDE), and one problem with two decimals
with unequal numbers of decimal digits (DDU). To avoid differences among operations
due to idiosyncratic differences among the operands, the same three operand pairs were
used for all four arithmetic operations (Set A: 3 and 1.5, 3.6 and 1.5, and 4.74 and 1.5;
Set B: 4.5 and 2, 4.5 and 1.8, and 4.5 and 1.25). The larger number in each operand pair

was always the first operand.
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Each problem set was presented equally often in a fixed quasi-random order or
the reverse of that order. The quasi-random order was generated with the following
constraints: 1) each operation appeared once in each block of four problems, 2) neither an
operation nor an operand pair was repeated on successive trials, 3) each operand pair
appeared equally often in the first and second halves of the trials, and 4) the first
operation was either subtraction or multiplication.

Procedure. Children from each classroom participated in the study as a whole
group during a regular class period. All children in each class were presented a printed
booklet by a trained experimenter and asked to write answers in it at their own pace (see
Supplementary Materials, Section C for an example booklet). Calculator use was not
allowed.

Results

Table 7 indicates accuracy on each type of problem. Examining each arithmetic
operation separately yielded similar results to those produced by pairing
addition/subtraction and multiplication/division (see Supplementary Materials, Section

D).

Table 7 here

Prediction 1: An interaction between operand type and arithmetic operation
group. A 2 (arithmetic operation group) * 2 (operand type) ANOVA on percent correct

yielded the predicted interaction, F(1, 65)=40.92, p <.001, n; = 0.39.

Prediction 2: Higher accuracy with DD than WD operands on addition and
subtraction problems. Consistent with Prediction 2, for addition/subtraction, children

were more accurate on DD (M = 80%, SD = 25%) than on WD problems (M = 68%, SD =
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44%), F(1, 65)= 6.28, p = .01, n; = 0.09. Dividing the DD category into DDE and DDU
items, paired #-tests revealed that children were more accurate on DDE than on WD
addition/subtraction problems (M = 88%, SD = 25%, versus M = 68%, SD = 44%), t(65)
=3.90, p <.001, d = 0.55; but no more accurate on WD addition/subtraction problems
than on the seemingly harder DDU addition/subtraction problems (M = 68%, SD = 44%
versus M = 73%, SD = 34%), 1(65) = 0.85, p = .40, d = 0.11.

As in Study 3, we performed similar paired #-tests for accuracy on addition
problems alone. The results were very similar to those on addition and subtraction
problems combined. Children were more accurate on DDE than on WD addition
problems (M = 88%, SD = 33% versus M = 68%, SD = 47%), t(65) = 3.40, p = .001, d =
0.49, and their accuracy did not differ on DDU and WD addition problems (M = 68%, SD
=47% versus M = 68%, SD =47%), t(65)=0,p=1,d=0.

Prediction 3: Higher accuracy with WD than DD operands on multiplication
and division problems. A one-way ANOV A with operand type as a within-subject
variable was conducted on multiplication/division accuracy. Consistent with Prediction 3,
for multiplication and division, children were more accurate on WD than DD problems
(M = 57%, SD = 35% versus M = 28%, SD = 31%), F(1, 65) = 42.69, p < .001, n;, = 0.40.

Also as predicted, paired z-tests revealed that for multiplication/division, children
were more accurate on WD than on either DDU problems (M = 57%, SD = 35% versus M
=20%, SD =32%), t(65) =7.09, p <.001, d = 1.09, or DDE problems (M = 57%, SD =

35% versus M =36%, SD = 39%), 1(65) =4.47, p <.001, d = 0.55.
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Discussion

In a carefully controlled experiment, the hypothesized relations between textbook
problem frequency and children’s performance emerged again. The presence of a whole
number operand affected children’s accuracy differently on addition/subtraction and
multiplication/division problems. On addition and subtraction items, accuracy with WD
operands was lower than with DD operands, but on multiplication and division items,
accuracy was higher on WD than on DD items.

As in Study 3, children’s accuracy on the seemingly easy WD addition problems
was lower than accuracy on the DDE addition problems. Accuracy on WD addition
problems also did not differ from that on the seemingly more difficult DDU addition
problems. Despite the seeming simplicity of WD addition problems, the sixth graders in
Study 4 erred on more than 30% of trials with them.

As in Study 2, children’s most common errors on the WD addition problems
likely arose from overgeneralizing the strategy of aligning the rightmost digit, a correct
strategy on DDE and whole number addition problems. On “3 + 1.5”, the answer 1.8
accounted for 64% of errors; on “4.5 + 27, the answer 4.7 accounted for 54% of errors
(see Supplementary Materials, Section E for common errors on the other problems).
Again, students’ minimal prior exposure to WD addition problems seems likely to have
contributed to their relatively inaccurate performance on such problems.

General Discussion

In this concluding section, we first summarize our findings on relations between

textbook problem distributions and children’s decimal arithmetic performance. Then, we

discuss how analyzing textbook problems can improve understanding of children’s
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learning more generally. Following that, we consider how textbook biases might combine
with limited conceptual knowledge to weaken children’s learning of decimal arithmetic.
Finally, we note educational implications and limitations of the current findings.
Textbook Problem Distributions Predict Children’s Decimal Arithmetic

Our analysis of three popular contemporary US math textbook series and one older series
revealed similar imbalances in the frequencies of decimal arithmetic problems across the
four series. Problems involving addition and subtraction of a whole number and a
decimal were rare; they made up less than 2% of all arithmetic problems involving any
decimal and less than 5% of problems involving a whole number and a decimal. In
contrast, multiplication and division problems with a whole and a decimal were common,
more common than multiplication and division with two decimals.

Findings from Studies 2, 3, and 4 were consistent with the hypothesis that biases
in textbook problem distributions influence children’s decimal arithmetic. The infrequent
presentation of problems was associated with relatively inaccurate decimal arithmetic
performance among children. In particular, presence of a whole number was associated
with lower accuracy on addition and subtraction problems, where WD problems were
rare, but was associated with higher accuracy on multiplication and division problems,
where WD problems were frequent.

The pattern was general over the three studies: Study 2 (conducted before 1985,
with children solving problems with paper and pencil in a single session), Study 3
(conducted from 2013 to 2019, with children solving problems on a web-based platform
in multiple sessions), and Study 4 (conducted in 2016, with children solving problems

with paper and pencil in a single session). Even though the effects were very large in
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some studies and smaller in others, the consistency of the effects across the three studies
showed that the relations were not idiosyncratic to a specific time period, testing format,
or sample.

Some associations between children’s performance and textbook problem
distributions could have arisen from children’s performance and textbook problem
distributions both reflecting the inherent difficulty of the decimal arithmetic problems.
For example, WD multiplication problems (e.g., 3 x 1.24) seem inherently easier than
DDU multiplication problems (e.g., 3.1 x 1.24), because WD multiplication problems can
be solved correctly by placing the decimal point in the answer according to the number of
decimal digits in the decimal operand, whereas DDU problems cannot be solved in this
way. From this perspective, multiplication should be more accurate on WD than DDU
problems. Data in Studies 2, 3, and 4 were consistent with this prediction.

Although such differences in the inherent difficulty of decimal arithmetic
problems probably contributed to the observed accuracy patterns, they could not account
for the overall pattern of findings in any of the three studies of children’s performance. In
all three, children consistently exhibited poor performance on addition problems with a
whole number and a decimal, even though such problems make minimal computational
demands. For example, solving 4 + .3, and 6 + .32, two WD problems presented in Study
2, only requires concatenating the two operands, a procedure that can likely be learned
with minimal practice.

Despite this seeming simplicity, children were less accurate on WD than DDE
addition problems in all three studies. They also were less accurate on WD than DDU

addition problems in two of the three studies, with no difference in the third. Children’s
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most common errors suggested that they frequently overgeneralized the right alignment

procedure (which is appropriate for DDE addition problems and whole number addition

problems) to WD addition problems, where that strategy is inappropriate. Addition with
DDE operands appearing as 18 times often as addition with WD operands in the
textbooks (as shown in Tables 1-3) seems likely to have contributed to the
overgeneralization of the right alignment procedure.

Braithwaite, Pyke, and Siegler (2017) proposed that, in the domain of fraction
arithmetic, distributions of practice problems affect performance via reinforcement
learning. Whether a student would correctly solve a problem mainly depended on
choosing the correct strategy; the probability of choosing the correct strategy mainly
depended on how often the student had solved similar problems with that strategy in the
past. Thus, students were more likely to use correct strategies on types of problem that
they had encountered frequently than on those they had encountered rarely. These
assumptions were implemented in a computational model of fraction arithmetic learning,
FARRA. After being trained on fraction arithmetic problems extracted from a popular
math textbook, FARRA’s pattern of accuracies on different types of problem paralleled
the frequency distribution of problem types in the textbook; the same pattern emerged
when FARRA was trained with problems from a different textbook. Moreover, children’s
pattern of accuracy in two previous studies closely resembled the pattern generated by the
model. The present findings dovetail with those of Braithwaite et al. (2017) and suggest

that FARRA'’s theoretical assumptions extend to decimal arithmetic.

33



Running head: TEXTBOOK PROBLEMS SHAPE LEARNING

Usefulness of Analyzing Textbook Problems for Understanding Children’s Learning
The present findings support the proposition that analyzing textbook problem
distributions is useful for understanding children’s learning. The idea that textbooks
influence children learning is widespread (Acosta-Tello, 2010; Mayer, Steinhoff, Bower,
& Mars, 1995). For example, Acosta-Tello (2010) analyzed the readability of word
problem narratives in math textbooks and found that the narratives were hard to
comprehend for a substantial proportion of students. These findings suggest that levels of
readability of word problems in the textbooks may contribute to many children’s
difficulty with solving these problems.

More similar to the current approach, analyses of how textbooks present the equal
sign shed light on the development of children’s misconceptions about mathematical
equality (Li, Ding, Capraro, & Capraro, 2008; McNeil et al., 2006; Powell, 2012). The
present findings go beyond these earlier ones in extending the findings to a new domain
and in demonstrating that the specifics of textbook problems, at the level of interactions
between operands and operations, are related to the specifics of what children learn about
rational number arithmetic procedures.

Although the focus of the current study was on decimal arithmetic, we expect that
analyzing textbook problems will be helpful in understanding children’s learning in other
areas of mathematics, as well as in other subjects where problems sets are common.
Physics, chemistry, statistics, and computer science are some of the many such areas. In
both fraction arithmetic and decimal arithmetic, the two areas where we have examined
the specifics of textbook problems and relations of the problem distributions to children’s

learning, textbook analysis has revealed the same biases across different contemporary
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textbook series. Similar biases were present in the textbook series published in 1985.
Moreover, the distribution of problems in textbooks showed similar relations to
children’s learning in both decimal and fraction arithmetic.

For example, just as problems with a whole number and a decimal constituted
only about 2% of decimal addition and subtraction problems in the current study,
problems with two fractions with equal denominators constituted only about 1% of
fraction multiplication and division problems in the three mathematics textbooks
examined by Braithwaite et al. (2017). In both cases, children’s performance was less
accurate on the rarely presented types of problems than would have been expected from
the seeming computational difficulty of the problems. Such similarities across textbooks
in fraction and decimal arithmetic suggest that biases in textbook input probably are
present in other areas of mathematics and other school subjects. It also suggests that
textbook problem distributions in those areas may influence learning in them as well.
Determining whether these hypotheses are correct clearly requires additional research on
relations between the specifics of textbook problem distributions and learning in a variety
of areas. In addition to the types of experiments in this study, it would be useful to test
experimentally whether more balanced problem presentation leads to greater learning of
types of problems that are rarely presented in current textbooks.

The Potential Interaction of Conceptual Knowledge and Textbook Problem Input
Weak conceptual knowledge of place value and decimal arithmetic seems likely to
increase the influence on math learning of distributional biases in textbook problems. In
the context of decimal addition, understanding place value would lead students to align

the decimal points of addends, so that tenths are added to tenths, hundredths to
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hundredths, and so on. The absence of such understanding, together with plenty of
experience with DDE addition items (which constituted 79%, 61% and 62% of all
decimal addition problems in GO Math!, enVision MATH, and Everyday Mathematics,
respectively), may lead students to conclude that decimals can be added by aligning their
rightmost digit. Prior experience with whole number addition would also support the
right alignment strategy. Consistent with this view, in both Studies 2 and 4, the most
common error when adding a whole number and a decimal was that produced by aligning
the rightmost digits of the addends.

Children’s minimal exposure to WD addition problems in textbooks — 0 problems
in GO Math!, 0 problems in Everyday Mathematics, and 8 problems in enVision MATH -
seems especially unfortunate because it deprives students of opportunities to learn about
place value on problems that might facilitate such learning. That is, students’ greater
understanding of whole numbers than decimals might make WD addition problems
especially useful for conveying how place value concepts apply to decimals. Students
who would be unfazed if asked whether .6 + .32 could really equal .38, for example,
might recognize the implausibility if asked whether 6 + .32 could really equal .38.
Adding whole numbers to decimals also might improve understanding of place value
through the act of aligning whole number digits with whole number digits and decimal
digits with decimal digits. Current distributions of textbook problems deprive students of
such opportunities to learn concepts relevant to place value and decimal addition.
Limitations
The present study was correlational in nature. The findings are consistent with, but do not

demonstrate, a causal connection between textbook problem distributions and children’s

36



Running head: TEXTBOOK PROBLEMS SHAPE LEARNING

learning. Even if a causal connection does exist, its direction is not entirely clear. It could
be children’s difficulty with certain types of problems leading textbook writers to avoid
them, rather than the limited textbook presentation of the problems causing children’s
difficulty with them. Causal evidence for the effect of problem presentation on children's
learning could be obtained by manipulating problem distributions in textbooks or other
contexts, such as homework problems, and then comparing effects on children’s learning.

A second limitation is that students receive practice problems from many sources
other than textbooks. Given that textbooks usually serve as the primary resource for
instruction in math classrooms, and that there is no obvious reason to expect problem
distributions from other sources to differ, we assumed that problems in textbooks were
representative of the overall distribution of problems children encounter. However,
further research is needed to verify whether the actual practice problems students are
assigned by teachers are distributed similarly to those in textbooks. We are currently
examining homework problems to test whether distributions of fraction and decimal
arithmetic problems assigned by teachers parallel those in textbooks.

A third limitation is that although similar patterns of performance were present
across Studies 2, 3, and 4, the data also differed in some important ways. In particular,
accuracy on WD addition/subtraction problems was much lower in Study 2 than in
Studies 3 and 4. One intriguing possibility involves a difference in the format of the WD
problems in the three studies. In Study 2, but not in Studies 3 and 4, decimals smaller
than 1 were presented without a zero to the left of the decimal point. Students might more
often correctly add “4 + 0.3” than “4 + .3,” because the presence of the two whole

numbers (“4” and “0”) could lure them to left adjust the operands and therefore to add
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whole to whole rather than whole to decimal digit. Contemporary students also might
more often encounter WD problems that explicitly indicate that there are zero whole
numbers in the decimal than problems that leave it implicit (e.g., 5 + 0.42 more frequent
than 5 + .42). The small number of WD addition problems in the textbooks (8 WD
addition problems across the three textbooks) precluded testing this possibility.
Alternatively, because Study 2 was conducted 30 years before Studies 3 and 4,
instruction might have improved over time on this type of problem. Whatever the
explanation, the common pattern of findings across the three studies, despite the many
differences among them, is encouraging.

Another limitation was that we lacked sufficient data from individual children to
examine individual differences. Children probably are impacted by distributional biases
in practice problems to different degrees. For example, a recent analysis of individual
differences in fraction arithmetic identified four patterns of accuracy on different problem
types (Braithwaite, Leib, Siegler, & McMullen, 2019). One of the four patterns paralleled
textbook problem distributions much more strongly than the other three patterns.
Children with greater conceptual understanding might be less influenced by the
distributions than children with little or no conceptual understanding. The possibility of
individual differences in the degree to which children’s performance is influenced by
textbook problem distributions should be evaluated in future studies.

Educational Implications
Many efforts have been made to improve children’s knowledge of fractions and decimals.
One approach has been to try to improve general factors related to math achievement,

such as teachers’ mathematical knowledge (Hill, Rowan, & Ball, 2005), time spent on
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homework (Singh, Granville, & Dika, 2002), and students’ mathematics self-efficacy
(Williams & Williams, 2010). Unfortunately, these factors have proven difficult to
change. Another approach has been to improve the specifics of instruction (e.g., Fuchs et
al., 2013; Moss & Case, 1999). However, successful interventions have required multiple
instructional components and extensive training for instructors to implement them
successfully. The multifaceted nature of these interventions has made it difficult to
specify what differences between the interventions and typical curricula are responsible
for improved learning. For these and other reasons, such as lack of incentives for making
large changes in instruction, none of these successful interventions has been widely
implemented in classrooms.

The present findings suggest an approach that could be implemented at scale quite
easily: Change the distributions of problems that children receive in textbooks, and
ideally in other instructional material as well, so underrepresented types of problems are
presented more often. Regardless of whether poor performance on problems that appear
infrequently in textbooks is due to children’s lack of experience with the problems, to
lack of experience combined with insufficient conceptual knowledge, or to some other
source of difficulty, increasing the frequency of the underrepresented problems should
improve performance on them.

Changes in textbook problem distributions could be made much more easily than
many other approaches to improving learning. Moreover, even without changes in
textbooks, teachers and parents could implement changes for themselves by providing
worksheets with types of problems that rarely appear in textbooks.

Changes in distributions of textbook problems may be useful but insufficient to
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produce strong decimal arithmetic learning. Improved conceptual understanding of how
and why correct procedures yield the results they do, why the results produced by
common incorrect procedures are incorrect, and the approximate magnitudes produced on
specific problems by correct arithmetic procedures, also may be necessary. In general,
acquiring mathematical capabilities appears to be a hand-over-hand process, in which
initial conceptual knowledge helps shape initial procedural knowledge, the initial
procedural knowledge provides a base for more advanced conceptual understanding, the
more advanced conceptual knowledge promotes yet more advanced procedural
knowledge, and so on (Rittle-Johnson, Siegler, & Alibali, 2001). In the context of
decimal arithmetic, improved initial conceptual understanding of the magnitudes yielded
by decimal arithmetic operations might reduce the temptation to use a right adjustment
procedure that yields “6+.32 = .38,” because the sum of positive addends must be greater
than either addend. Conversely, acquiring procedural knowledge of problems such as “6
+ .32 =6.32” could deepen children’s understanding of the place value concept in the
context of decimal addition. Of course, these potential gains require encountering
relevant problems in textbooks or elsewhere.

Using findings on textbook problem distributions to improve students’
mathematics learning will require further research on textbook problem distributions;
dissemination of the research to textbook companies, teachers, and parents; and
demonstrations that presenting underrepresented problems improves children’s learning.

We hope to contribute to this effort, and we hope many others also will.
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Table 1

Percentage of Each Type of Problem for Each Arithmetic Operation in GO Math!

Arithmetic Type of Problem

Operation WD DDE DDU
Addition 0 11 3
Subtraction 1 10 3
Multiplication 24 7 8
Division 21 7 4

Note. Here and in Tables 2 — 7, WD = problems on which the operands are a Whole
number and a Decimal; DDE = problems on which one operand is a Decimal, the other
operand is a Decimal, and the two have Equal numbers of decimal digits; DDU =
problems on which one operand is a Decimal, the other operand is a Decimal, and the two

have Unequal numbers of decimal digits.
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Table 2

Percentage of Each Type of Problem for Each Arithmetic Operation in enVision MATH

Arithmetic Type of Problem

Operation WD DDE DDU
Addition 1 9 5
Subtraction 1 9 6
Multiplication 20 9 7
Division 23 5 6
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Table 3

Percentage of Each Type of Problem for Each Arithmetic Operation in Everyday

Mathematics
Arithmetic Type of Problem
Operation WD DDE DDU
Addition 0 7 5
Subtraction 2 10 3
Multiplication 15 8 7
Division 25 6 12
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Table 4
Percentage of Each Type of Problem for Each Arithmetic Operation in Addison-Wesley

Mathematics (1985 Edition)

Arithmetic Type of Problem

Operation WD DDE DDU
Addition 0 8 2
Subtraction 0 10 2
Multiplication 18 10 10
Division 28 2 10
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Table 5

Seventh Graders’ Percent Correct on Decimal Arithmetic Problems in Hiebert and

Wearne (1985).
Time of Type of Problem
Arithmetic Operation
Testing WD DDE DDU
Fall 40 89 66
Addition
Spring 38 90 72
Fall 31 71 54
Subtraction
Spring 37 74 53
Fall 70 17 34
Multiplication
Spring 85 60 72
Fall 24 20 25
Division

Spring 62 61 56
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Table 6

Percent Correct (Means and Standard Deviations) on Each Type of Problem. Study 3

Arithmetic Type of Problem
Operation WD DDE DDU

M SD M SD M SD
Addition 80 40 85 36 85 35
Subtraction 75 43 86 34 82 38
Multiplication 78 42 78 42 73 45
Division 87 34 79 41 83 38
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Table 7

Percent Correct (Means and Standard Deviations) on Each Type of Problem: Study 4

Arithmetic Type of Problem
Operation WD DDE DDU

M SD M SD M SD
Addition 68 47 88 33 68 47
Subtraction 68 47 88 33 77 42
Multiplication 71 46 48 50 26 44
Division 42 50 24 43 15 36
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