
Reservoir Computing Meets Wi-Fi in Software
Radios: Neural Network-based Symbol Detection

using Training Sequences and Pilots
Lianjun Li1, Lingjia Liu1, Jianzhong (Charlie) Zhang2, Jonathan D. Ashdown3, and Yang Yi1

1Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
2Standards and Mobility Innovation Lab., Samsung Research America, Plano, TX, USA

3Information Directorate, U.S. Air Force Research Lab., Rome, NY, USA

Abstract—In this paper, we introduce a neural network (NN)-
based symbol detection scheme for Wi-Fi systems and its as-
sociated hardware implementation in software radios. To be
specific, reservoir computing (RC), a special type of recurrent
neural network (RNN), is adopted to conduct the task of
symbol detection for Wi-Fi receivers. Instead of introducing extra
training overhead/set to facilitate the RC-based symbol detection,
a new training framework is introduced to take advantage of the
signal structure in existing Wi-Fi protocols (e.g., IEEE 802.11
standards), that is, the introduced RC-based symbol detector will
utilize the inherent long/short training sequences and structured
pilots sent by the Wi-Fi transmitter to conduct online learning of
the transmit symbols. In other words, our introduced NN-based
symbol detector does not require any additional training sets
compared to existing Wi-Fi systems. The introduced RC-based
Wi-Fi symbol detector is implemented on the software defined
radio (SDR) platform to further provide realistic and meaningful
performance comparison against the traditional Wi-Fi receiver.
Over the air experiment results show that the introduced RC-
based Wi-Fi symbol detector outperforms conventional Wi-Fi
symbol detection methods in various environments indicating the
significance and the relevance of our work.

Index Terms—Wi-Fi, symbol detection, neural network, reser-
voir computing, USRP, and limited training.

I. INTRODUCTION

Wi-Fi technologies [1] are important in modern wireless
systems to provide low-cost/high-throughput reliable connec-
tions for wireless local area networks (WLAN). Modern Wi-
Fi systems adopt orthogonal frequency division multiplexing
(OFDM) as their physical layer multi-access strategy. Transmit
symbol detection is one of the most important modules in
the receive processing chain of Wi-Fi systems to recover the
transmitted signal from received signals. Conventional model-
based symbol detection methods usually estimate the underly-
ing wireless channel first. Based on the estimated channel and
the received signal, the receiver will conduct various signal
processing techniques to recover the transmitted signal. A
major drawback of this approach is that the underlying sig-
nal processing techniques need to incorporate the underlying
model information of the input-output relationship between
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the transmitted signal and the received signal. However, the
exact model of the transceiver chain is difficult to obtain
due to the presence of radio frequency (RF) non-linearities,
either from the hardware (e.g. power amplifier) or the wireless
channel. Therefore, traditional model-based schemes suffer
from model mismatch and channel estimation errors calling
for more robust and adaptive methods.

Neural networks (NNs) provide learning-based methods that
do not need an explicit model of the underlying problem
providing an ideal approach to resolve the issue of model
mismatch in communication systems. Recently, NN-based
approaches have been applied in many communication prob-
lems such as channel estimation, symbol detection, resource
allocation, and fault detection [2], [3]. For example, in [4] a
3-hidden-layer multilayer perceptron (MLP) is designed for
OFDM symbol detection without explicitly estimating the
underlying wireless channel. An extreme learning machine-
based symbol detection method is introduced in [5] for OFDM
system against fading channel and power amplifier nonlinear
distortion, simulation results show it outperforms the LMMSE
method. Meanwhile, [6] introduces model-based and data-
driven NNs for OFDM receiver, performance of those two
designs are evaluated by simulation as well as the over-the-
air test. Due to the convolution feature of wireless channel,
convolutional neural networks (CNNs) are adopted in [7] for
symbol detection achieving better performance than expert
OFDM receiver in lower to middle SNR regimes of Rayleigh
channels. On the other hand, due to the inherent temporal
correlation exhibits in communication signals recurrent neural
networks (RNNs) have also been utilized in many studies of
communication systems [8], [9]. However, it is important to
note that all these learning-based algorithms require extremely
large number of training samples to achieve good performance,
making it almost impossible to implement these schemes in
practical and relevant communication systems.

In wireless communication systems, control and training
overhead are extremely costly which negatively impact the
underlying system throughput [2]. This is completely different
from other fields such as the computer vision where tens of
thousands of training sets are available. Therefore, introducing
NN-based approaches with reduced training overhead is of
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crucial importance to realize the promise of learning-based
communication strategies in realistic and relevant scenarios.
Ideally, we want to invent communication strategies that are
having the same or less training/control overhead compared
to traditional model-based signal processing techniques. To
realize this objective, reservoir computing (RC), which is a
special category of RNNs that can significantly reduce the
training overhead by only optimizing the output layer weights,
has been introduced in our previous work [10]–[12] to conduct
symbol detection for OFDM systems with very limited training
overhead. Echo state network (ESN), which is one type of
RC, is adopted in [10] to show promising performance with
very limited training overhead. The following work in [11]
introduced the windowed ESN (WESN) to improve ESN-
based strategy by adding a sliding window to its input. In [12],
a deep NN-based DeepRC is introduced to further improve
the system performance by taking advantage of the structural
information of OFDM signals.

In this paper, instead of focusing on generic OFDM signals
we will apply RC-based symbol detection to Wi-Fi systems.
To be specific, we are going to completely relying on the
existing system overhead (long and short training sequences,
comb pilot symbols defined in current Wi-Fi protocols) to
conduct online training of the RC-based symbol detector. To
provide relevant and convincing comparison, we will imple-
ment our scheme on software defined radio (SDR) platform
for performance evaluation. To our best knowledge, this is the
first learning-based scheme that can be directly adopted in Wi-
Fi systems in a plug-and-play manner without any pre-training
procedure and additional training overhead.

II. WI-FI PHYSICAL LAYER

A. Wi-Fi Transceiver Procedure

The family of IEEE 802.11 standards specify the media
access control (MAC) and physical layer (PHY) protocols of
Wi-Fi technologies [1]. Within the family, 802.11a/g are the
most widely adopted technologies in modern wireless systems,
which are also the main focus of this paper. In the rest of this
section, we briefly introduce the PHY procedure of 802.11a/g
transceiver, as shown in Fig. 1.

In the PHY, OFDM is adopted by 802.11a/g as the multi-
access strategy. The frame structure of a Wi-Fi frame can be
illustrated in Fig. 2. On the transmitter side, payload message
from the MAC layer is subsequently processed as following:
• OFDM data generation and carrier allocation: First,

payload information bits are encoded and mapped to quadra-
ture amplitude modulation (QAM) symbols where QAM
symbols are allocated to OFDM sub-carriers forming OFDM
symbols. Specifically, 64 sub-carriers are used in one OFDM
symbol, as shown in Fig. 3, where 48 of them carry data;
4 of them are placed with known pilot symbols, which are
supposed to be utilized by receiver for channel estimation
and symbol detection; the rest 12 are null sub-carriers.
All OFDM data symbols (in the frequency domain) are
generated in this step where the exact number of generated

OFDM data symbols depends on the length of payload as
well as the modulation and coding scheme (MCS) selected.

• Signal field: 1 OFDM signal symbol is added as the prefix
to the OFDM data symbols. It informs the receiver about the
length and MCS information of the following OFDM data
symbols. The signal symbol itself is modulated by binary
phase shift keying (BPSK) and encoded by rate 1/2 code.

• Training sequences: Short training sequences (STS) and
long training sequences (LTS), each with the length of
two OFDM symbols, are added on top of the OFDM
signal symbol. STS and LTS are known symbols aiming
to facilitate frame detection and symbol synchronization as
well as coarse channel estimation on receiver side.

Once the Wi-Fi frame is generated in the frequency domain, an
Inverse Fast Fourier Transform (IFFT) of size 64 is performed
to convert it to time domain. A cyclic prefix (CP) of length
16 is prepended to each OFDM symbol. On the receiver side,
the PHY procedure is the following:
• Frame detection and symbol synchronization: For de-

tecting the start of a frame, receiver correlates the received
samples with the STS, once the correlation exceeds a
certain threshold, the frame start can be identified. OFDM
symbol synchronization is performed through the LTS. To
be specific, received samples are passed through a matched
filter (matched to the LTS) where the peak of the filter output
is used to locate the start of the OFDM symbol.

• Remove CP and FFT: The time domain symbols are
converted to the frequency domain by first removing the
CP and then applying a FFT with size 64.

• Symbol detection and demodulation: Compared with
the transmitted symbols, the received ones are distorted
by the channel and hardware circuits in the transceiver
chain. Symbol detection technique is used to recover the
transmitted symbols from the distorted observations. The
detected QAM symbols will be mapped back to bits to go
through the decoding procedure where the decoded payload
will be delivered to the MAC layer.

MAC 
Payload

OFDM 
Carrier 

Allocation
IFFT Add CP

Tx

Remove 
CP

Rx
Synchroni-

zation
FFT

Symbol 
Detection

Add 
Training 
Sequence

MAC
Payload

Fig. 1. Wi-Fi transceiver procedure

B. Conventional Symbol Detection Methods in Wi-Fi

In this section, we briefly introduce the symbol detection
methods used in Wi-Fi systems. At transmitter, let Xi denotes
the ith frequency domain OFDM symbol in a frame

Xi , [X0
i , · · · , Xk

i , · · · , X
Nsc−1
i ], (1)
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Fig. 3. OFDM carrier allocation

where Xk
i is the QAM symbol at the kth sub-carrier of the

ith frequency domain OFDM symbol, Nsc = 64 is the total
number of sub-carriers. Correspondingly, the ith time domain
OFDM symbol is denoted as xi

xi , [x0i , · · · , xni , · · · , x
Ncp+Nsc−1
i ], (2)

where xni is the nth sample of the ith time domain OFDM
symbol, Ncp = 16 is the CP length. Note Xi can be obtained
from xi by removing the CP and conducting a FFT.

Similarly, at receiver side, let yi and Yi denote the ith
received time and frequency domain OFDM symbol in a
frame, respectively,

yi , [y0i , · · · , yni , · · · , y
Ncp+Nsc−1
i ], (3)

Yi , [Y 0
i , · · · , Y k

i , · · · , Y
Nsc−1
i ]. (4)

Now we introduce three conventional symbol detection
methods adopted in Wi-Fi systems [13]: the Least Squares
(LS) method, the Least Mean Square (LMS) method, and the
Comb pilots interpolation method (Comb). The LS method
utilizes LTS symbols (the 3rd and 4th OFDM symbol in a
frame) to estimate channel H in frequency domain, denoting
the estimated channel as Ĥ , the channel at kth sub-carrier is
estimated as

Ĥk =
1

2

(
Y k
3

Xk
3

+
Y k
4

Xk
4

)
. (5)

This estimated channel is then used to recover all the rest
received symbols through

X̂k
i =

Y k
i

Ĥk
(6)

where X̂k
i is the recovered QAM symbol at the kth sub-carrier

of the ith OFDM symbol. LS is a simple and computational
efficient algorithm, however it only works well when the frame
length is small or the channel has long coherence time.

The LMS method resolves the drawback of LS by updating
the estimated channel at each OFDM symbol. It starts with the
same initial channel estimates as LS. The QAM symbols at

the ith OFDM symbol are recovered by the channel estimates
at the (i− 1)th OFDM symbol

X̂k
i =

Y k
i

Ĥk
i−1

, (7)

then X̂k
i is mapped to the nearest QAM constellation1, denoted

as X̃k
i , finally the channel estimates at current OFDM symbol

are updated by

Ĥk
i = (1− α)Ĥk

i−1 + α
Y k
i

X̃k
i

, (8)

where α ∈ [0, 1] is an averaging factor of the channel updating
procedure. Note LMS uses decision feedback to estimate
channel, the performance suffers when decision is erroneous.

As the name suggests the Comb method uses the channel
estimated at four pilot positions to interpolate the whole
channel in frequency domain. Comb also starts with the same
initial channel estimate as LS, at ith OFDM symbol, the
channel at four pilot sub-carriers are estimated by least square

Ĥk
i =

Y k
i

Xk
i

, k ∈ {11, 25, 39, 53}, (9)

then the channel at sub-carrier 0 and 63 are set to the mean
of the four estimated values

Ĥ0
i = Ĥ63

i = E[Ĥk
i ], k ∈ {11, 25, 39, 53}. (10)

The channel at rest sub-carriers are estimated by linearly
interpolating with above six values where a time averaging
similar to (8) is applied to update the channel.

III. RESERVOIR COMPUTING BASED SYMBOL DETECTION

A. Reservoir Computing and Echo State Network

As discussed in Section I, RC [14] is a special category of
RNN where the RNN is used as a reservoir mapping the input
signals to very high dimensional dynamic states. An output
layer then maps those states to desired outputs. The signature
of RC is only the output weights are trainable, the input and
recurrent weights are initially randomly generated and then
fixed. In general, there are two types of RC: ESN and Liquid
State Machine (LSM) [15]. Like our previous work, we adopt
ESN in this work where its architecture can be illustrated in
Fig. 4. The network dynamics is governed by the following
state update equation

s(t) = f
(
Ws(t−1)+W ini(t)+W fbo(t−1)

)
+n(t) (11)

where s(t) ∈ CNs is the reservoir state, Ns is the number
of neurons in the reservoir. i(t) ∈ CNi is the ESN input,
Ni is the input size. o(t) ∈ CNo is the ESN output, No is
the output size. W ∈ CNs×Ns is the state transition matrix,
W in ∈ CNs×Ni is the input weight matrix, W fb ∈ CNs×No

is the output feedback matrix, it can be nulled when feedback
is not required. n(t) is the noise regulation term. f is the state
activation function. The ESN output is calculated by

o(t) = g(W outz(t)) (12)

1For example X̃k
i ∈ {1 + j,−1 + j, 1− j,−1− j} if using QPSK.
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where z(t) = [s(t), i(t)] is called extended system state.
W out ∈ CNo×(Ns+Ni) is the output weights matrix. g is the
output activation function.

Input Output

Reservoir

Win

W

Wout

Fig. 4. ESN architecture

Assuming the training data size is T , the learning of the
output weights can be formulated using the following
• Feeding training input I = [i(0), · · · , i(T − 1)] to ESN to

generate extended states Z = [z(0), · · · , z(T −1)] by (11),
and outputs O = [o(0), · · · ,o(T − 1)] by (12).

• Obtaining W out by minimizing the loss between outputs O
and training label D = [d(0), · · · ,d(T − 1)]

W out = argmin
W out

L(O,D) (13)

When g in (12) is the identity function and L is the Frobenius
norm, the minimization problem can be rewritten as

W out = argmin
W out

‖D −W outZ‖2F (14)

which can be solved by invoking the Moore-Penrose inverse
(denoted by ·†) of Z

W out = DZ† (15)

this is an offline learning method. Many online learning
methods can also be used to calculate the output weights,
such as Recursive Least Square (RLS) [16], Backpropagation
Decorrelation (BPDC) [17], and FORCE learning [18].

B. ESN-based Symbol Detection for Wi-Fi Systems

The goal of ESN-based symbol detection is to recover
the frequency domain symbols Xi from the time domain
observations yi. Here we use supervised learning to train the
underlying ESN. The training labels come from the STS and
LTS symbols at the beginning of a frame, and 4 pilot sub-
carriers in each data symbol. This means we will not utilize
any extra training sets/overhead compared to the existing Wi-
Fi receiver. This completely distinguishes our work from other
NN-based methods where significantly large training overhead
is needed. The training procedure is described in the following
where the main idea is using STS and LTS to train the initial
ESN output weights, and then utilizing pilots in each data
symbol to update those weights in real-time:
• Training through STS and LTS: As described in II-A, at the

begging of each frame, the first 4 OFDM symbols (STS and
LTS) are known symbols used for synchronization and initial
channel estimation. We can also utilize those symbols for the

initial training of ESN. The training set can be represented
by the input-label tuple:

Φini , {Iini,Dini} (16)
= {[y1,y2,y3,y4], [X1,X2,X3,X4]}
∼= {[y1,y2,y3,y4], [x1,x2,x3,x4]} (17)

where ∼= represents “equivalently defined as”. The initial
ESN output weights can be calculated by (15).

• Training through pilots: As the channel is changing dynam-
ically, the ESN weights need to be updated in real-time to
track the channel. We utilize the 4 pilot sub-carriers in each
OFDM symbol to achieve this. For each data symbol (the
ith symbol, i ≥ 4), the training tuple Φi , {Ii,Di} is
prepared as:

Ii = YiPFH , Di = XiPFH

where FH is the inverse Fourier transform matrix, P is a
Nsc × Nsc diagonal matrix with the nth diagonal element
pn defined as:

pn =

{
1, n = 11, 25, 39, 53;

0, otherwise.
(18)

It can be seen both the input and the label are the time
domain OFDM waveforms purely determined by pilot sym-
bols. In terms of the training method, instead of the one-
shot matrix inversion used for initial training, RLS online
training [16], [19] is more suitable here, because it gradually
updates the ESN weights based on new training samples
achieving more robust performance by utilizing channel’s
temporal correlation. Similar ideas also have been adopted
by conventional symbol detection methods, which average
the channel in time to gain better performance (8). After the
output weights have been updated by new training sample
Φi, ESN will take the ith received symbol yi as input to
inference the transmitted symbol.

IV. IMPLEMENTATION ON SDR PLATFORM

To evaluate the performance of our algorithm in real system,
we implemented the introduced RC-based symbol detection
method on the SDR platform. The software adopted is GNU
Radio2, which is an open-source development kit for im-
plementing signal processing functions. The hardware used
is Ettus USRP N2103, which provides radio frequency (RF)
front-end functionalities.

We utilize the Wi-Fi transceiver framework provided in [20],
which is open sourced on GitHub4. Since the Wi-Fi transmitter
is relatively simple and fully specified by the standards, we
adopted the one provided by the framework, with the modifi-
cation of adding a block to save transmitted OFDM symbols
on local memory for bit error rate (BER) calculation on the
receiver side. The GNU Radio block diagram of transmitter is
depicted in Fig. 5, and the workflow is described below:

2https://www.gnuradio.org/
3https://www.ettus.com/all-products/un210-kit/
4https://github.com/bastibl/gr-ieee802-11
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Fig. 5. GNU Radio diagrams for the Wi-Fi transmitter

(1). The payload bits from MAC layer are encoded by con-
volutional code with rate 1/2.

(2). The packet header generator creates signal field of the
frame, including information such as MCS and frame
length to facilitate receiver procedure.

(3). Data bits are mapped to transmitted QAM symbols based
on the underlying modulation scheme. The information in
the signal field is modulated with BPSK.

(4). Signal field is prepended to the data field.
(5). STS and LTS symbols are added to the Wi-Fi frame while

pilot symbols being inserted to data symbols.
(6). OFDM symbols at the transmitter are saved to local

memory for later BER calculation.
(7). FFT is used to convert the signal to the time domain.
(8). CP of legth 16 is added for each OFDM symbol for

dealing with the frequency selective fading channel.
(9). The time domain samples are transmitted by USRP.

Fig. 6. GNU Radio diagrams for the RC-based Wi-Fi receiver

On the receiver side, we modified and added various re-
ceiving components based on the framework. To be specific,
the synchronization block is modified and the RC-based
symbol detection block is implemented. Conventional Wi-Fi
symbol detection methods discussed in Section II-B are also
implemented for performance comparison. The receiver block
diagram is illustrated in Fig. 6 with the following workflow:
(1). USRP converts received RF signals to the baseband, and

outputs them to following blocks.
(2). The frame start is detected in this block using STS.
(3). OFDM symbol alignment is achieved using LTS. Note

the original block removes STS and CP from its output,
however, we utilize them for ESN training. Therefore, we
modified this block to include STS and CP as its outputs.

(4). This block is the core of the receiver where the RC-
based symbol detection is implemented. The raw received
symbols are ported into this block and the output are
recovered symbols.

The SDR testbed is shown in Fig. 7 where a computer
equipped with GNU Radio v3.7 is connected with two USRP
N210s through Ethernet cable and a switch. One USRP is
serving as the Wi-Fi transmitter and the other is the receiver.
They communicate with each other over the air.

Fig. 7. SDR testbed

V. EXPERIMENT RESULTS

The performance of RC-based symbol detection method
and other conventional methods are evaluated by conducting
experiments on the SDR platform. In this section we first
introduce the details of the setup of the experiments, and then
present the performance evaluation results.

For the Wi-Fi PHY layer configuration, one frame is set
to include 94 OFDM symbols where the first 4 symbols are
STS and LTS, the 5th OFDM symbol is the signal symbol,
and the rests are data symbols. In terms of MCS, quadrature
phase shift keying (QPSK) is adopted for OFDM data symbols.
Even though convolutional coding with rate 1/2 is utilized,
we simply ignored this part to compute the error performance
using bits that are before decoding. The sub-carrier allocation
is same as described in Section II-A: 4 pilot sub-carriers, 48
data sub-carriers, and 12 null sub-carriers, the FFT size is 64,
CP length is 16. For the ESN, the number of neurons Ns is
set to be 16, the input weights W in is randomly generated
from a uniform distribution, the state transition matrix W is
also randomly generated, and the the spectrum radius of the
matrix is set to be 0.2 to satisfy the echo state property [21].
Feedback is not used in state update, so W fb is set to zero.

The experiments are conducted indoor under three different
scenarios. The first scenario is line-of-sight with near distance
(LOS Near), where the transmitter and receiver have LOS
transmission path and the distance between the transmitter
and the receiver is only 10 inches. The second scenario is
LOS with far distance (LOS Far), where the distance between
transmitter and receiver is increased to 10 feet, in addition,
a 30dB attenuator is added to the receiver side to further
decrease the signal strength. The last scenario is non-line-of-
sight (NLOS), where no direct path exists between transmitter
and receiver, and the distance between the transmitter and the
receiver is 5 feet with a 30dB attenuator on the receiver side.
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Fig. 8. Performance of RC-based symbol detection, LMS, Comb and LS

Performance of RC-based symbol detection, LMS, Comb, and
LS under these 3 scenarios are shown in Fig. 8, each BER
value is averaged over 20 frames5. It can be seen from the
figure that as the experiment scenario changes from LOS Near
to LOS Far, and then to NLOS, the wireless environment
becomes more and more challenging. This results in BER
degradation for all four algorithms. Among them, LS has the
worst performance reflecting its drawback: LS suffers from
low temporal correlation since it only keeps initial channel
estimates. LMS achieves better BER performance than Comb
in LOS Near scenario because LMS estimates all data chan-
nels while Comb only estimates pilot channels. Meanwhile, in
LOS Far and NLOS scenarios, LMS still outperforms Comb.
This is because even though LOS Far and NLOS are more
challenging environments, the resulting BER is still low (less
than 5%) without causing error propagation. In future, we will
evaluate the performance of LMS in other more challenging
scenarios. As for our introduced RC-based symbol detection, it
achieves the best performance in all scenarios. We believe this
is due to RC’s capability to efficiently learn a direct mapping
from the input to the output (instead of going through channel
estimation) and to adjust the underlying weights for RC in
real-time to capture the underlying temporal correlation.

VI. CONCLUSION AND FUTURE WORK

RC-based symbol detection for Wi-Fi systems using online
training was introduced. It was further implemented on the
SDR platform showing good BER performance under vari-
ous scenarios. The introduced detector does not require any
additional training overhead providing a convincing case to
incorporate NN-based methods to practical wireless systems.
Since multiple-input multiple-output (MIMO) is supported
in many Wi-Fi standards, a nature future extension of the
work is to MIMO-OFDM systems. Our previous work has

5Total number of data bits within 20 frames are: 20 frames × 89 data
symbols × 48 data sub-carriers × 2 bits/symbol = 170,880.

shown promising performance of RC-based symbol detection
in LTE/LTE-Advanced compatible systems [11], it is beneficial
to evaluate the RC-based algorithm in MIMO Wi-Fi systems.
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