
Learned Belief-Propagation Decoding with

Simple Scaling and SNR Adaptation

Mengke Lian∗, Fabrizio Carpi†, Christian Häger∗‡, and Henry D. Pfister∗

∗Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
†Department of Engineering and Architecture, University of Parma, Parma, Italy

‡Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract—We consider the weighted belief-propagation (WBP)
decoder recently proposed by Nachmani et al. where different
weights are introduced for each Tanner graph edge and optimized
using machine learning techniques. Our focus is on simple-scaling
models that use the same weights across certain edges to reduce
the storage and computational burden. The main contribution is
to show that simple scaling with few parameters often achieves
the same gain as the full parameterization. Moreover, several
training improvements for WBP are proposed. For example, it is
shown that minimizing average binary cross-entropy is subopti-
mal in general in terms of bit error rate (BER) and a new “soft-
BER” loss is proposed which can lead to better performance.
We also investigate parameter adapter networks (PANs) that
learn the relation between the signal-to-noise ratio and the WBP
parameters. As an example, for the (32, 16) Reed–Muller code
with a highly redundant parity-check matrix, training a PAN
with soft-BER loss gives near-maximum-likelihood performance
assuming simple scaling with only three parameters.

I. INTRODUCTION

Recent progress in machine learning and off-the-shelf learn-

ing packages have made it tractable to add many parame-

ters to existing communication algorithms and optimize. One

example of this approach is the weighted belief-propagation

(WBP) decoder recently proposed by Nachmani, Be’ery, and

Burshtein [1], where different weights (or scale factors) are

introduced for each edge in the Tanner graph. These weights

are then optimized empirically using tools and software from

deep learning. Their results show that WBP can provide signif-

icant gains over standard BP when applied to the parity-check

(PC) matrices of short BCH codes. A more comprehensive

treatment of this idea can be found in [2].

While the performance gains of WBP decoding are worth

investigating, the additional complexity of optimizing, storing,

and applying one weight per edge is significant. In this paper,

we focus on simple-scaling models for WBP that share weights

across edges to reduce the storage and computational burden.

In these models, only three scalar parameters are used per

iteration: a message weight, a channel weight, and a damping

factor. We show that such simple-scaling models are often

sufficient to obtain gains similar to the full parameterization.

The work of M. Lian and H. D. Pfister was supported in part by the National
Science Foundation (NSF) under Grant No. 1718494. The work of C. Häger
was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant No. 749798. Any opin-
ions, findings, conclusions, and recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of these
sponsors. Please send correspondence to henry.pfister@duke.edu.

For WBP, the average binary cross-entropy across bit po-

sitions is used as the optimization loss function in [1], [2].

This approach is also adopted in related works, see, e.g., [3],

[4]. On the other hand, we show that minimizing average

binary cross-entropy does not necessarily minimize the bit

error rate (BER). We propose a new loss function which can

be regarded as a “soft” version of BER. This loss function can

lead to performance gains when optimizing WBP with highly

redundant PC matrices, e.g., for Reed–Muller codes.

As a last contribution, we propose a simple solution to the

problem that the optimal WBP parameters may be different for

different signal-to-noise ratios (SNRs). In particular, we use

a parameter adapter network (PAN) that learns the relation

between the SNR and the optimal WBP parameters. The

usefulness of this approach is illustrated with several examples.

II. BACKGROUND

Consider an (N,K) binary linear code C defined by an

M ×N PC matrix H, where N is the code length, K is the

code dimension, and M ≥ N −K. We assume transmission

over the additive white Gaussian noise channel according to

yv = (−1)xv + zv , where yv is the v-th output symbol, xv

is the corresponding bit in the transmitted codeword x, zv ∼
N (0, (2REb/N0)

−1), and R = K/N is the code rate. We

refer to ρ , Eb/N0 as the signal-to-noise ratio (SNR).

Given any PC matrix H, one can construct a bipartite Tanner

graph G = (V,C,E), where V = {1, 2, . . . , N} , [N] and

C = [M] are sets of variable nodes and check nodes. The

edges, E = {(v, c) ∈ V × C |Hcv 6= 0}, connect all parity

checks to the variables involved in them. By convention, the

boundary symbol ∂ denotes the neighborhood operator defined

by ∂v , {c | (v, c) ∈ E} and ∂c , {v | (v, c) ∈ E}.

A. Weighted Belief-Propagation Decoding

WBP is an iterative algorithm that passes messages in the

form of log-likelihood ratios (LLRs) along the edges of G [1].

In the variable-to-check-node step, the pre-update message is

λ′(t)
v→c = w(t)

v ℓv +
∑

c′∈∂v\c

w
(t)
vc′ λ̂

(t−1)
c′→v , (1)

where w
(t)
vc is a weight assigned to the edge (v, c) and w

(t)
v is

a weight assigned to the channel message

ℓv , log

(

Pr (yv |xv = 0)

Pr (yv |xv = 1)

)

= 4Rρyv. (2)

161978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019

In the check-to-variable-node step, the pre-update message is

λ̂′(t)
c→v = 2 tanh−1





∏

v′∈∂c\v

tanh

(

λ
(t)
v′→c

2

)



 . (3)

To mitigate oscillations and enhance convergence, we apply

damping to complete the message updates [5]. In particular,

the final messages are a convex combination of the previous

value and the pre-update value according to

λ(t)
v→c = γλ(t−1)

v→c + (1− γ)λ′(t)
v→c, (4)

λ̂(t)
c→v = γλ̂(t−1)

c→v + (1− γ)λ̂′(t)
c→v, (5)

where γ ∈ [0, 1] is the damping factor and λ
(0)
v→c = λ̂

(0)
c→v = 0

for all (v, c) ∈ E.1 Finally, output LLRs are computed as

m(t)
v = w(t)

v ℓv +
∑

c′∈∂v

w
(t)
vc′ λ̂

(t)
c′→v. (6)

The sigmoid function σ(x) = (1 + e−x)
−1

maps m
(t)
v to an

estimate of the probability that xv = 1 according to o
(t)
v =

1 − σ(m
(t)
v). The corresponding hard decision is denoted by

ô
(t)
v . For convenience, we also define ov , o

(T)
v , ôv , ô

(T)
v ,

and mv , m
(T)
v , where T is the total number of iterations.

Setting all weights to 1 and γ = 0 recovers standard BP.

B. Random Redundant Decoding

The performance of BP can be improved by using redundant

PC matrices where M > N − K. This can for example be

realized by adding dual codewords as rows to a standard PC

matrix [6]. Another approach, referred to as random redundant

decoding (RRD), is to use different PC matrices in each

iteration [7], [8]. This can be implemented efficiently by

exploiting the code’s automorphism group. In particular, let

SN be the symmetric group on N elements, i.e., π ∈ SN is a

permutation on [N]. The automorphism group of a code C is

defined as Aut(C) , {π ∈ SN |xπ ∈ C, ∀x ∈ C}, where xπ

denotes a permuted vector, i.e., xπ
i = xπ(i). RRD cascades

Tout BP decoders, each run with Tin iterations, where the

permuted output LLRs of the last decoder serve as soft input

for the next decoder. A new, randomly sampled permutation

πτ ∈ Aut(C) is used for each outer iteration τ ∈ [Tout].
This effectively uses Tout different PC matrices while fixing

the Tanner graph for decoding. Similar to [2], we consider

weighted RRD by cascading several WBP decoders.

For RRD, the computation of output LLRs is typically

modified by introducing a scale factor before the sum in (6)

[7, Eq. (4)]. We use a similar, but slightly different, approach.

In particular, the soft input to the τ -th decoder is modified to

be a convex combination of the initial channel LLRs and the

output LLRs of the (τ − 1)-th decoder according to

ℓ(τ) =
[

βℓ+ (1− β)m((τ−1)Tin)
]πτ

, (7)

where β ∈ [0, 1] is referred to as the mixing factor and m(0) =
ℓ. Here, all BP messages and weights are iteration-indexed

1Damping is referred to as “relaxed BP” in [2], where it is studied in the
context of weighted min-sum decoding.

π1

ℓ

V→C

Damp

C→V

Damp

Marg

π
−1
1

λ′(1)

λ(1)

λ̂
′(1)

λ̂
(1)

m(1)

ℓ(1)

ℓ(1)

0

0

V→C

Damp

C→V

Damp

Marg

π
−1
1

λ′(2)

λ(2)

λ̂
′(2)

λ̂
(2)

m(2)

ℓ(1)

π2Mixing

ℓ

V→C

Damp

C→V

Damp

Marg

π
−1
2

λ′(3)

λ(3)

λ̂
′(3)

λ̂
(3)

m(3)

ℓ(2)

ℓ(2)

0

0

V→C

Damp

C→V

Damp

Marg

π
−1
2

λ′(4)

λ(4)

λ̂
′(4)

λ̂
(4)

m(4)

ℓ(2)

m =

Fig. 1. Feed-forward computation graph for RRD with Tout = Tin = 2.

consecutively for t ∈ [T], where T = ToutTin. An example of

the resulting feed-forward computation graph for RRD with

Tout = 2 and Tin = 2 is shown in Fig. 1.

III. OPTIMIZING WEIGHTED BELIEF-PROPAGATION

It is well known that BP performs exact marginalization

when the Tanner graph is a tree. However, good codes typically

have loopy Tanner graphs with short cycles. To improve the

BP performance, one can optimize the weights w
(t)
vc and w

(t)
v

in all iterations [1]. The damping and mixing factors γ, β can

also be optimized. In the following, o = f(y; θ) denotes the

entire WBP mapping, where θ comprises all parameters.

A. Deep Learning via Stochastic Gradient Descent

In [1], the authors propose to optimize θ using stochastic

gradient descent (SGD) (or a variant thereof) based on many

codeword–observation pairs (x,y). In particular, the empirical

loss LA(θ) for a finite set A ⊂ C ×R
N of pairs is defined by

LA(θ) ,
1

|A|

∑

(x,y)∈A

L
(

x, f(y; θ)
)

, (8)

where L(a, â) is the loss associated with returning the output

â when a is correct. Mini-batch SGD then uses the parameter

update θi+1 = θi −α∇θLBi
(θi), where α is the learning rate

and Bi is the mini-batch used in the i-th step. Due to channel

and decoder symmetry, transmission of the all-zero codeword

x = 0 can be assumed for the optimization [1].

B. Optimization Loss Function

For supervised classification problems, one typically uses

cross-entropy loss. However, since the number of classes (i.e.,

codewords) scales exponentially with the block length, it is

more practical to assume that the overall loss is the average

of bit-wise losses according to

L(x,o) =
1

N

N
∑

v=1

Lbit(xv, ov), (9)

162

TABLE I
COMPARISON OF BIT-WISE LOSS FUNCTIONS.

name Lbit(a, b) Lbit(0, b)

binary cross-entropy − log(ba(1− b)1−a) − log(1− b)

negative soft bit success −ba(1− b)1−a −(1− b)

soft bit error (1− b)ab1−a b

where Lbit is a bit-wise loss function. For optimizing WBP,

binary cross-entropy Lbit(a, b) = − log(ba(1− b)1−a) is used

in [1], [2]. However, our experiments show that minimizing (9)

using binary cross entropy does not necessarily minimize the

BER. To see why this may be the case, note that the negative

bit success rate (per codeword) can be written as

1

N

N
∑

v=1

Lbit(xv, ôv) = −
1

N

N
∑

v=1

ôxv

v (1− ôv)
1−xv , (10)

where Lbit(a, b) = −ba(1−b)1−a. On the other hand, inserting

binary cross entropy into (9) leads to

L(x,o) = − log

(

N
∏

v=1

oxv

v (1− ov)
1−xv

)

1
N

. (11)

Besides the log, the main difference between (10) and (11) is

that arithmetic mean is used instead of geometric mean.

We propose a new loss function, where Lbit(a, b) = (1 −
b)ab1−a is used in (9). This can be regarded as a “soft” version

of BER since (1 − b)ab1−a for binary variables corresponds

to a XOR b, i.e., Lbit(a, b) indicates a bit error. We refer to

the resulting loss function as soft-BER. Tab. I summarizes the

different binary loss functions and their simplification for the

all-zero codeword. Also note that maximizing negative soft bit

success is equivalent to minimizing soft bit error.

C. Multi-Loss Optimization

The optimization behavior for WBP can be improved by

using a multi-loss function [1], [2] (see also [4])

L(x, {o(t)}Tt=1) ,
1

∑T

t=1 η
T−t

T
∑

t=1

ηT−tL(x,o(t)), (12)

where η ∈ [0, 1] is a discount factor. Multi-loss optimization

takes into account the output after every iteration which helps

to increase the magnitude of gradients corresponding to earlier

iterations. We found that, rather than using a fixed discount

factor as in [1], [2], [4], it is beneficial to decay η during SGD,

i.e., gradually moving from η = 1 (where the outputs of all

BP iterations are considered with equal importance) towards

η = 0 (where only the last BP iteration is taken into account).

D. Weight Sharing

Excluding the damping/mixing factors, the total number of

weights is T (|E|+N) and we refer to this case as the fully-

weighted (FW) decoder. In order to reduce the optimization

complexity, one can share the weights, e.g., as follows:

• Temporal weight sharing (across decoding iterations), i.e.,

w(t)
vc ≡ wvc, w(t)

v ≡ wv, ∀ t ∈ [T],

y compute LLRs

SNR ρ PAN(θ) Parameters

Weighted BP o

Fig. 2. Block diagram illustrating the parameter adapter network (PAN).

is referred to as RNN-FW, due to the similarity with

recurrent neural networks (RNNs) [1].

• Spatial weight sharing (across edges), i.e.,

w(t)
vc ≡ w(t)

msg, w(t)
v ≡ w

(t)
ch , ∀ (v, c) ∈ E,

gives the simple-scaling (SS) model with two weights per

iteration: one message and one channel weight.

• Temporal and spatial weight sharing gives two parameters

in total. This is referred to as RNN-SS.

It is shown in [1], [2] that the RNN-FW structure gives

similar gains as the FW decoder, i.e., there is little improve-

ment when making parameters iteration-dependent. We further

show that the RNN-SS structure incurs little to no performance

penalty in many cases.

E. Training SNR and Parameter Adapter Network

In general, the optimal WBP parameters may be different

for different SNRs [2]. On the other hand, optimizing WBP

separately for each SNR and storing the resulting weights is

impractical if the set of possible SNRs is large or infinite. One

general approach is to instead optimize assuming a range of

different training SNRs [1], [2]. This leads to parameters that

achieve a compromise between different channel conditions.

We propose a different approach where a PAN is used to

learn the relation between the SNR ρ and the corresponding

optimal parameters.2 Once trained, the PAN can be used to

adaptively choose the best parameters for WBP corresponding

to the channel conditions. The basic idea is illustrated in Fig. 2.

In general, one can choose any structure to construct the PAN,

e.g., a vanilla neural network. It is also possible to make only

a subset of parameters SNR-adaptive.

In this paper, we use several shallow neural networks with

one hidden layer of dimension 20 and output dimension

1 to model the SNR-dependency for each WBP parameter

separately. ReLU activations are used for the hidden layer.

The output layer uses sigmoid activations to ensure that the

parameters satisfy their domain constraints, e.g., the damping

factor is in the range [0, 1]. For regular weights, we further

scale the sigmoid outputs by 10 to increase the range to [0, 10].
As an example, for WBP with the RNN-SS structure including

damping, there are three parameters wmsg, wch, and γ. Thus,

the PAN describes an SNR-parameterization according to

PAN(ρ) = [wmsg(ρ), wch(ρ), γ(ρ)] ∈ [0, 10]2 × [0, 1].

IV. NUMERICAL RESULTS

The various decoding architectures in this paper are imple-

mented in the PyTorch framework and optimized using the

2We assume perfect knowledge of the SNR. This knowledge is also required
implicitly to compute channel LLRs. In practice, SNR is typically estimated
and the SNR estimate can then be used as the input to the PAN.

163

0 0.2 0.4 0.6 0.8
10−3

10−2

10−1

100

101

message scaling wmsg

BER

WER

soft-BER

cross-entropy

(a) RM(32, 16), overcomplete Hoc

0.2 0.4 0.6 0.8 1 1.2
10−5

10−4

10−3

10−2

10−1

message scaling wmsg

BER

WER

soft-BER

cross-entropy

(b) BCH(63, 36), cycle-reduced Hcr

Fig. 3. Comparison of loss functions for RNN-SS with wch = 1, γ = 0,
and T = 3. The SNR is Eb/N0 = 3 dB in (a) and Eb/N0 = 7 dB in (b).

RMSprop optimizer which is a variant of mini-batch SGD.

Each mini-batch contains 100 observation pairs and the SNR

for each pair is chosen from 10 equidistant points in the

interval [1 dB, 8 dB] such that exactly 10 pairs have the same

SNR. The discount decay for the multi-loss optimization is

implemented by starting with an initial discount factor η = 1
and multiplying η by 0.5 after every 5000th SGD step. The

same schedule is used to decay the learning rate, starting from

α = 10−3 and using a decay rate of 0.8 instead of 0.5. To

avoid numerical issues, a gradient clipping threshold of 0.1 is

applied and the absolute values of the LLRs λ
(t)
v→c are clipped

into the range [− log(tanh(Lmax/2)), Lmax] with Lmax = 15.

The following Reed–Muller (RM) and Bose–Chaudhuri–

Hocquenghem (BCH) codes are considered:

• RM(32, 16) with standard PC matrix Hstd (size 16×32)

and overcomplete PC matrix Hoc (620×32) whose rows

are all minimum-weight dual codewords, see [9]

• BCH(63, 36) with cycle-reduced PC matrix Hcr (27×63)

and right-regular PC matrix Hrr (27× 63), see [10]

• BCH(127, 64) with cycle-reduced PC matrix Hcr (63 ×
127), see [10]

Ordered statistics decoding (OSD) is used as a benchmark

whose performance is close to maximum-likelihood [11].

A. Comparison of Loss Functions

We start by considering two RNN-SS structures with fixed

wch = 1 and γ = 0 (i.e., no damping): (a) RM(32, 16)
with Hoc and (b) BCH(63, 36) with Hcr. The different loss

functions for T = 3 are plotted in Fig. 3 as a function of

wmsg, which is the only trainable parameter. For the RM

code, cross-entropy has a sharp minimum at wmsg ≈ 0.05,

whereas soft-BER overlaps with BER and has a flat minimum

at wmsg ≈ 0.15. For the BCH code, the minima for cross-

entropy, soft-BER, and BER all occur close to each other, but

at slightly different locations.

In order to explain the distinct behavior of cross-entropy in

Fig. 3(a), note that if a bit is decoded incorrectly, binary cross-

entropy gives a penalty close to the magnitude of the output

LLR |mv|. This is problematic in cases where the decoder is

wrong, but very sure about its decision. Indeed, this behavior

0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

Hstd

Hoc

OSD

Eb/N0 (dB)

B
E

R

standard BP

RNN-FW (γ = 0)

RNN-SS (γ = 0)

RNN-FW

RNN-SS

RNN-SS + PAN

Fig. 4. Results for RM(32, 16) with Hoc (T = 5) and Hstd (T = 20).

is characteristic for BP with highly redundant PC matrices

and such failure cases tend to dominate the average loss. This

effect is even more pronounced for large T since the average

LLR magnitude tends to grow with the iteration number.

The results in Fig. 3 show that, in general, neither cross-

entropy nor soft-BER are guaranteed to minimize BER. All

scenarios in this paper were optimized using both functions.

We found that they give comparable results, with the exception

of highly redundant PC matrices where soft-BER is preferable.

B. Reed–Muller Codes

Results for RM(32, 16) assuming both RNN-FW and RNN-

SS structures are shown in Fig. 4. For Hstd with T = 20
iterations, simple scaling results in a performance loss of up

to 0.3 dB. Damping gives considerable performance improve-

ments in both cases, at the expense of additional computational

complexity and storage requirements. For Hoc with T = 5,

the RNN-SS structure is sufficient to achieve close-to-optimal

performance and the overlapping results for RNN-FW are

omitted. For this case, we note that the optimization with

soft-BER gives lower BER than for CE, as expected from

the discussion in the previous subsection.

C. BCH Codes

For the BCH codes, the parameters are chosen to facilitate

a direct comparison with [2]. In particular, we fix T = 5 and

γ = 0, i.e., no damping is used. Results for BCH(63, 36) with

Hcr are shown in Fig. 5(a), where we compare with the best

results in [2, Fig. 8] for the same parameters. The RNN-SS

with two trainable parameters achieves similar gains as the

RNN-FW in [2] for BERs > 10−4. For lower BERs, the per-

formance starts to deviate. The situation can be improved by

making the parameters SNR-adaptive using the proposed PAN

approach. In this case, the performance improves markedly for

high SNRs. This is due to the fact that training over a range

of SNRs without the PAN tends to focus almost exclusively

on low-SNR/high-BER regions. Similar observations can be

made for the same code with Hrr, as shown in Fig. 5(b). In

this case, RNN-FW performs slightly better than RNN-SS for

some SNRs, i.e., two parameters are not sufficient to obtain

164

2 4 6 8
10−5

10−4

10−3

10−2

10−1

100

O
S
D

RRD

no RRD

Eb/N0 (dB)

B
E

R
standard BP

RNN-FW [2, Figs. 8 & 17]

RNN-SS

RNN-SS + PAN

(a) BCH(63, 36), cycle-reduced Hcr

2 4 6 8

O
S
D

no RRD

RRD

Eb/N0 (dB)

standard BP

RNN-FW [2, Fig. 6]

RNN-SS

RNN-SS + PAN

RNN-FW

(b) BCH(63, 36), right-regular Hrr

2 4 6 8

RRD

O
S
D

Eb/N0 (dB)

standard BP

RNN-FW [2, Fig. 12]

RNN-SS

RNN-SS + PAN

(c) BCH(127, 64), cycle-reduced Hcr

Fig. 5. Results for BCH codes assuming γ = 0 (i.e., no damping), T = 5 iterations (no RRD) and Tin = 2, Tout = 30 for RRD. Data points are extracted
directly from the relevant figures in [2]. Note that our results for BCH(127, 64) are not directly comparable to [2] because of potentially different PC matrices.

the full gain. Finally, results for BCH(127, 64) with Hcr are

shown in Fig. 5(c). We caution the reader that these results

are not directly comparable because our standard BP performs

better than what is shown in [2, Fig. 12]. This is likely due

to different cycle-reduced PC matrices. However, we were not

able to improve upon the shown RNN-SS results using RNN-

FW, which indicates that the simple-scaling approach is also

sufficient in this case.

We also consider weighted RRD for BCH(63, 36) and

BCH(127, 64) where Tin = 2, Tout = 30, and the mixing

factor is treated as an additional optimization parameter.

Results for Hcr are shown in Fig. 5(a) and we compare to

the corresponding results in [2, Fig. 12] labeled as “mRRD-

RNN(1)”. We obtain slightly better performance using RNN-

SS even without a PAN. This can be attributed to the improved

training methodology, particularly the discount decay for the

multi-loss optimization. For Hrr, no RRD results are available

in [2] and we compare to our own results. Both RNN-FW

and RNN-SS give virtually the same performance as shown in

Fig. 5(b). Fig. 5(c) shows that the PAN also gives some extra

performance gain for RRD decoding. Additional simulation

results for larger T can be found in [12].

V. DISCUSSION AND CONCLUSION

In this paper, we have considered WBP decoding of short

Reed–Muller and BCH codes. Our experiments support the

observations in [1], [2] that optimizing WBP can provide

meaningful gains. In addition, we have shown that simple-

scaling models with fewer parameters are often sufficient to

achieve gains similar to the full parameterization. This can lead

to a considerably simpler optimization procedure and greatly

reduce complexity, e.g., in terms of storage requirements.

In general, the performance loss incurred by simple scaling

depends on the employed PC matrix. Small penalties were

observed for matrices with highly irregular degree distributions

(e.g., Hstd for RM(32,16) or Hrr for BCH(63, 36)), whereas

the loss appears to be negligible if the degree distribution is

regular (Hoc for RM(32,16)) or RRD is employed.

It was also shown that choosing a suitable loss function for

the optimization is scenario-dependent. For highly redundant

PC matrices, it was found that binary cross-entropy penalizes

too hard on bit errors where the decoder is very sure about

its decision. In such cases, optimizing with the proposed soft-

BER loss leads to better performance. Lastly, we built on the

observation in [2] that the optimal WBP parameters are SNR-

dependent and proposed a simple solution based on parameter

adapter networks. This approach allows us to learn optimal

parameters for multiple SNRs in a single training process

without trading off performance between channel conditions.

REFERENCES

[1] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Proc. Annual Allerton Conference on

Communication, Control, and Computing, Illinois, USA, 2016.
[2] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and

Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. Sel. Topics Signal Proc., vol. 12, no. 1, pp. 119–131,
Feb. 2018.

[3] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep learning-
based channel decoding,” in Proc. Annual Conf. Information Sciences

and Systems (CISS), 2017.
[4] A. Bennatan, Y. Choukroun, and P. Kisilev, “Deep learning for decoding

of linear codes - a syndrome-based approach,” in Proc. IEEE Int. Symp.

Information Theory (ISIT), Vail, CO, 2018.
[5] M. Fossorier, R. Palanki, and J. Yedidia, “Iterative decoding of multi-

step majority logic decodable codes,” in Proc. Int. Symp. on Turbo Codes

& Iterative Inform. Proc., 2003, pp. 125–132.
[6] J. S. Yedidia, J. Chen, and M. P. Fossorier, “Generating code repre-

sentations suitable for belief propagation decoding,” in Proc. Annual

Allerton Conf. on Commun., Control, and Comp., vol. 40, no. 1, 2002,
pp. 447–456.

[7] J. Jiang and K. R. Narayanan, “Iterative soft decoding of Reed-Solomon
codes,” IEEE Commun. Lett., vol. 8, no. 4, pp. 244–246, April 2004.

[8] T. R. Halford and K. M. Chugg, “Random redundant soft-in soft-out
decoding of linear block codes,” in Proc. IEEE Int. Symp. Inform.

Theory. IEEE, 2006, pp. 2230–2234.
[9] E. Santi, C. Häger, and H. D. Pfister, “Decoding Reed-Muller codes

using minimum-weight parity checks,” in Proc. IEEE Int. Symp. Infor-

mation Theory (ISIT), Vail, CO, 2018.
[10] M. Helmling, S. Scholl, F. Gensheimer, T. Dietz, K. Kraft, S. Ruzika,

and N. Wehn, “Database of channel codes and ML simulation results,”
www.uni-kl.de/channel-codes, 2017.

[11] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41,
no. 5, pp. 1379–1396, Sept. 1995.

[12] M. Lian, C. Häger, and H. D. Pfister, “What can machine learning teach
us about communications?” in Proc. IEEE Information Theory Workshop

(ITW), Guangzhou, China, 2018.

165

