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Abstract—This paper presents the first proof of polarization
for the deletion channel with a constant deletion rate and a
regular hidden-Markov input distribution. A key part of this
work involves representing the deletion channel using a trellis
and describing the plus and minus polar-decoding operations on
this trellis. In particular, the plus and minus operations can be
seen as combining adjacent trellis stages to yield a new trellis
with half as many stages. Using this viewpoint, we prove a weak
polarization theorem for standard polar codes on the deletion
channel. To achieve strong polarization, we modify this scheme
by adding guard bands of repeated zeros between various parts
of the codeword. Using this approach, we obtain a scheme whose
rate approaches the mutual information and whose probability
of error decays exponentially in the cube-root of the block length.

I. INTRODUCTION

In many communications systems, symbol-timing errors may

result in insertion and deletion errors. For example, the deletion

channel maps a length-N input string to a substring using an

i.i.d. process that deletes each input symbol with probabilty

δ. These types of channels were first studied in the 1960s [1],

[2] and modern coding techniques were first applied to them

in [3]. Over the past 15 years, bounds on the capacity of

the deletion channel have been significantly improved but a

closed-form expression for the capacity remains elusive [4]–[8].

Recently, polar codes were applied to the deletion channel in

a series of papers but the question of polarization for non-

vanishing deletion rates remained open [9]–[12]. In this work,

we show that polar codes can be used to efficiently approach

the mutual-information rate between a regular hidden-Markov

input process and the output of the deletion channel with

constant deletion rate.

In [9], a polar code is designed for the binary erasure channel

(BEC) and evaluated on a BEC that also introduces a single dele-

tion. An inner cyclic-redundancy check (CRC) code is used and

decoding is performed by running the successive cancellation

list (SCL) decoder [13] exhaustively over all compatible erasure

locations. The results show one can recover a single deletion in

this setting. Extensions to a finite number of deletions are also

discussed but the decoding complexity grows faster than Nd+1.

In [10], a low-complexity decoder is proposed for the same

setup. Its complexity, for a length-N polar code, is roughly

d2N logN when d deletions occur. The paper also presents

simulation results for polar codes with lengths ranging from

256 to 2048 on two deletion channels. The first channel

has a fixed deletion rate of 0.002 and the second introduces
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exactly 4 deletions. Based on their results, they conjecture that

polarization occurs when N → ∞ while the total number of

deletions, d, is fixed.

The final papers [11], [12] in this series extend the previous

results by proving that weak polarization occurs when N → ∞
and d = o(N). While this result is quite interesting, its proof

does not extend to the case of constant deletion rate. For the

case where N → ∞ with d fixed, these papers also show strong

polarization for the deletion channel and weak polarization for

the cascade of deletion channel and a DMC.

In this paper, we combine the well-known trellis represen-

tation for channels with synchronization errors [3] with low-

complexity joint successive-cancellation decoding for channels

with memory [14], [15]. In particular, [3] describes how

the input-output mapping of the deletion channel (and other

synchronization-error channels) can be represented using a

trellis. The main advantage of the trellis perspective is that it nat-

urally generalizes to other channels with synchronization errors

(e.g., with insertions, deletions, and errors). The papers [14],

[15] describe how the plus and minus polar-decoding operations

can be efficiently applied to a channel whose input-output

mapping is represented by a trellis. Putting these ideas together

defines a low-complexity successive-cancellation decoder for

polar codes on the deletion channel that is essentially equivalent

to the decoder defined in [10].

Building on previous proofs of polarization for channels with

memory [16], [17], this paper also proves weak and strong

polarization for the deletion channel. In order to prove strong

polarization, guard bands of ‘0’ symbols are embedded in the

codewords of Arıkan’s standard polar codes. These guard bands

allow the decoder to effectively work on independent blocks

and enable the proof of strong polarization.

The following theorem is the main result of this paper. We

note that the family of allowed input distributions is defined

in Subsection II-D, whereas the structure of the codeword is

defined in Section VI. Due to space limitations, all proofs are

deferred to the extended version [18].

Theorem 1: Fix a regular hidden-Markov input process.

For any fixed γ ∈ (0, 1/3), the rate of our coding scheme

approaches the mutual-information rate between the input

process and the deletion channel output. For large enough

blocklength Λ, the decoding error probability is at most 2−Λγ

.

II. BACKGROUND

A. Notation

The natural numbers are denoted by N , {1, 2, . . .}. We

also define [m] , {1, 2, . . . ,m} for m ∈ N. Let X denote
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a finite set (e.g., the input alphabet of a channel). In this

paper, we fix X = {0, 1} as the binary alphabet. Extensions to

non-binary alphabets are straightforward, see for example [19,

Chapter 3]. Let x = (x1, . . . , xN ) ∈ XN be a vector of length

N = 2n. We use [statement] to denote the Iverson bracket

which evaluates to 1 if statement is true and 0 otherwise.

The concatenation of vectors y ∈ XN1 and y′ ∈ XN2 lives in

XN1+N2 and is denoted by y ⊙ y′. The length of a vector y

is denoted by |y|.
In this paper, we use the standard Arıkan transform presented

in the seminal paper [20]. Generalization to other kernels [21]

is straightforward. The length N = 2n Arıkan transform of x ∈
XN , is defined recursively using length-N/2 binary vectors,

x[0] and x[1]:

x[0] , (x1 ⊕ x2, x3 ⊕ x4, . . . , xN−1 ⊕ xN ) , (1)

x[1] , ( x2, x4, . . . , xN ) , (2)

where ⊕ denotes modulo-2 addition. Then, for any sequence

b1, b2, . . . , bλ ∈ {0, 1} with λ ≤ n, we extend this notation to

define the vector x[b1,b2,...,bλ] ∈ X 2n−λ

recursively via

z = x[b1,b1,...,bλ−1] , x[b1,b2,...,bλ] = z[bλ]. (3)

Specifically, if λ = n, then the vector x[b1,b2,...,bλ] is a scalar.

This scalar is denoted ui(b), where b defines the index

i(b) , 1 +

n∑

j=1

bj2
n−j . (4)

The transformed length-N vector is given by

u = (u1, . . . , uN ) = An(x) , (5)

where An : X
2n → X 2n is called the Arıkan transform of

order n. Its inverse is denoted A−1
n and satisfies A−1

n = An.

B. Deletion Channel

Let W (y|x) denote the transition probability of N uses

of the deletion channel with constant deletion rate δ. The

input is denoted by x ∈ XN and the output y has a random

length M = |y| supported on {0, 1, . . . , N}. This channel is

equivalent to a BEC with erasure probability δ followed by a

device that removes all erasures from the output. Thus, W (y|x)
equals the probability that N − M deletions have occurred,

which is (1−δ)M ·δN−M , times the number of distinct deletion

patterns that produce y from x, see [4, Section 2].

We will also consider a trimmed deletion channel (TDC)

whose output, denoted y∗, is formed by removing all leading

and trailing ’0’ symbols from the deletion channel output y.

C. Trellis Definition

A trellis T is a labeled weighted directed graph (V, E) whose

vertices V can be arranged into a sequence of sets such that

the edges E only connect adjacent sets. Each edge e ∈ E has

a weight w(e) ∈ R and a label ℓ(e) ∈ X . A trellis section

comprises two adjacent sets of vertices along with the edges

that connect them. See Fig. 1 for an example with 4 sections.

The weight of a path through the trellis is defined as the product

of the weights on each edge in the path times the weights of the

initial and final vertices (denoted q(s) and r(s), respectively).

Thus, an N -section trellis naturally defines a path-sum function

T : XN → R, where T (x) equals the sum of the path weights

over all paths whose length-N label sequences match x.

Let T be a trellis with N = 2n distinct sections. For the

j-th section with j ∈ [N ], let Vj−1 ⊆ V be the set of starting

states, Vj ⊆ V be the set of ending states, and Ej be the set of

edges that connect these states. For an edge e ∈ E , we denote

the starting and ending states by σ(e) and τ(e), respectively.

For trellis T , we write the path-sum function T : XN → R as

T (x) ,
∑

e1∈E1,
ℓ(e1)=x1

∑

e2∈E2,
ℓ(e2)=x2

· · ·
∑

eN∈EN ,
ℓ(eN )=xN

q(σ(e1)) r(τ(eN ))

×

N∏

j=1

w(ej)×

N−1∏

j=1

[τ(ej) = σ(ej+1)] .

where q : V0 → R is the initial state probability and r : VN →
R encapsulates prior knowledge about the final channel state.

D. FAIM processes

For simplicity, this paper sometimes emphasizes the uniform

(i.e., i.i.d. Bernoulli 1/2) input distribution. However, this input

distribution is known to be sub-optimal in terms of information

rate for the deletion channel [4], [6]–[8]. Thus, one stands to

benefit by considering a larger class of input distributions.

Towards this end, let S be a given finite set. Each element

of S is a state of an input process. In the following1 definition,

we have for all j ∈ Z that Sj ∈ S and Xj ∈ X .

Definition 1 (FAIM process): A strictly stationary process

(Sj , Xj), j ∈ Z is called a finite-state, aperiodic, irreducible,

Markov (FAIM) process if, for all j,

PSj ,Xj |S
j−1
−∞

,Xj−1
−∞

= PSj ,Xj |Sj−1
, (6)

is independent of j and the sequence (Sj), j ∈ Z is a finite-state

Markov chain that is stationary, irreducible, and aperiodic.

For a FAIM process, consider the sequence Xj , for j ∈ Z. In

principle, the distribution of this sequence can be computed by

marginalizing the states of the FAIM process (Sj , Xj). Such a

sequence is typically called a hidden-Markov process. In this

paper, we sometimes add the term regular to emphasize that

the hidden state process is a regular finite-state Markov chain.

III. TRELLIS REPRESENTATION OF JOINT PROBABILITY

Consider a vector channel with random input X ∈ XN

and random output Y. For some such channels, the transition

probability Pr(Y = y |X = x) can be computed efficiently

on a trellis with N sections. Likewise, for a regular hidden-

Markov input distribution, the function PX(x) can be computed

efficiently on a trellis with N sections. In this paper, we assume

the input distribution and channel trellises are combined into a

single trellis that is used to represent the entire joint probability

Pr(Y = y,X = x) = PX(x)W (y|x).

A. Trellis for deletion channel with i.i.d. input

This trellis representation for the deletion channel can also

be found in [3]. Since the deletion channel is not memoryless, it

can be beneficial to use an input distribution with memory [5]–

[8]. For simplicity, we restrict our description to an i.i.d.

Bernoulli input distribution PX(x) =
∏N

j=1 PX(xj).

1The definition of FAIM and FAIM-derived processes here is a specialization
of the definition given in [16].
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Fig. 1. A trellis for the binary deletion channel corresponding to a codeword
length of N = 4 and received word y = (011) of length M = 3. Vertices are
denoted vi,j with 0 ≤ i ≤ M and 0 ≤ j ≤ N . All blue edges have label ‘0’
while all red edges have label ‘1’. The horizontal edges are weighted by the
probability δ/2. Diagonal edges are weighted by the probability (1−δ)/2. The
two circled vertices have q(v0,0) = r(vM,N ) = 1, while all other vertices
in V0 and VN have q and r values equal to 0, respectively. Edges that can
be pruned without changing T (x) are dashed.

Let y be the realization of a received output vector Y. We

now describe a trellis that encapsulates the connections between

possible transmitted x, the deletion patterns that occur, the fixed

received vector y, and the joint probability PX(x) ·W (y|x).
Each path in the trellis corresponds to a specific transmitted

x and a specific deletion pattern that is compatible with the

received y (see Fig. 1).

Definition 2 (Base Trellis): For N , δ, PX , M , and y ∈ XM :

• Trellis vertices are denoted vi−1,j−1 for i ∈ [M+1] and

j∈ [N+1]. So, V=∪N
j=0Vj and Vj={vi−1,j | i ∈ [M+1]}.

• Each trellis edge e ∈ E has two attributes associated with

it: the label ℓ(e) ∈ X and the weight w(e) ∈ [0, 1].
• Vertices vi−1,j−1 with i ∈ [M +1] and j ∈ [N +1] each

have up to three outgoing edges: two ‘horizontal’ edges,

each corresponding to a deletion, and one ‘diagonal’ edge,

corresponding to a non-deletion.

• For i ∈ [M+1] and j ∈ [N ], there are two edges e, e′

from vi−1,j−1 to vi−1,j . These are the ‘horizontal’ edges

associated with xj being deleted by the channel. The

first is associated with xj = 0 and has ℓ(e) = 0 and

w(e) = δ · pX(0). The second is associated with xj = 1
and has ℓ(e′) = 1 and w(e′) = (1− δ) · pX(1).

• For i ∈ [M ] and j ∈ [N ], there is a single edge e from

vi−1,j−1 to vi,j . This ‘diagonal’ edge represents xj being

observed as yi. Thus, ℓ(e) = yi and w(e) = (1−δ)·pX(yi)
is the probability xj = yi is sent and not deleted.

• A valid path through the trellis is a directed path starting

at a vertex in V0 and ending at a vertex in VN .

• Each valid path has a corresponding x ∈ XN that equals

the concatenation of the edge labels along the path.

• The initial vertex is always v0,0 and this is enforced by

choosing q(s) = [s = v0,0]. The final vertex is always

vM,N , so we choose r(s) = [s = vM,N ].
• The probability of a valid path equals the product of the

weights along the edges of the path times the weight of

the initial vertex q(s0), where s0 ∈ V0, times the weight

of the final vertex r(sN ), where sN ∈ VN .

The following lemma states the key property of the trellis.

Lemma 2: Let T be the base trellis for N uses of the deletion

channel with i.i.d. inputs defined by PX . Then, for x ∈ XN ,

T (x) = PX(x) ·W (y|x) . (7)

IV. POLARIZATION OPERATIONS ON A TRELLIS

Polar plus and minus transforms for channels with memory

were first presented in [14], [15]. For a vector channel with

input x ∈ XN , N even, and output y, let T be a trellis with

N sections whose path-sum function satisfies T (x) = Pr(Y =
y,X = x). For this channel, the polar minus transform defines

a new path-sum function that depends on z = x[0] = (x1 ⊕
x2, . . . , xN−1 ⊕ xN ). This new path-sum function is given by

T [0](z) , Pr(Y = y,X[0] = z)

=
∑

x∈XN

T (x)

N/2
∏

j=1

[x2j−1 ⊕ x2j = zj ].

Due to the local nature of this reparameterization, there is

a modified trellis T [0] with N/2 sections that represents the

new path-sum function. Let E
[0]
t denote the edge set for the

t-th section of T [0]. Let ẽ ∈ E
[0]
t be the edge with ℓ(ẽ) = z,

σ(ẽ) = a, and τ(ẽ) = b. In trellis T [0], this edge has weight

w(ẽ) =
∑

e1∈E2t−1:
σ(e1)=a

∑

e2∈E2t:
τ(e2)=b

w(e1)w(e2)

× [τ(e1) = σ(e2)] · [ℓ(e1)⊕ ℓ(e2) = z].

Definition 3 (Minus Transform): Let T be a length-N trellis,

where N is even. The trellis T̃ = T [0] is defined as follows.

• For 0 ≤ j̃ ≤ N/2, define j = 2j̃.

• The j̃-th set of vertices in T̃ satisfies Ṽj̃ = Vj .

• The weight of an edge ṽα,j̃
ẽ
−→ ṽγ,j̃+1 in T̃ is the sum of

the product of the edge weights along each two-step path

vα,j
e1−→ vβ,j+1

e2−→ vγ,j+2 in T with ℓ(ẽ) = ℓ(e1)⊕ℓ(e2).

Such an edge exists in T̃ if and only if this sum is positive.

This implicitly defines the edge set of T̃ .

• The minus operation does not affect initial and final

vertices and this implies that q̃(s) = q(s) and r̃(s) = r(s).

This lemma states the key property of the minus transform.

Lemma 3: For a length-N trellis T and z∈XN/2, we have

T [0](z) =
∑

x∈XN :x[0]=z

T (x) .

The polar plus transform defines a new path-sum function

that depends on x[1] = (x2, x4, . . . , xN ). This is done by

using a previously calculated vector z ∈ XN/2 and setting

x2j−1 = x2j ⊕ zj for j ∈ [N/2]. The implied new path-sum

function for x′ ∈ XN/2 is

T [1](x′) , Pr(Y = y,X[1] = x′,X[0] = z)

=
∑

x∈XN

T (x)

N/2
∏

j=1

[x2j−1 = x2j ⊕ zj ] · [x2j = x′
j ].

Due to the local nature of this reparameterization, there is a

modified trellis T [1] with N/2 sections that represents this

new path-sum function. Let E
[1]
j denote the edge set for the
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j-th section of T [1]. Let ẽ ∈ E
[1]
j be the edge with ℓ(ẽ) = x′,

σ(ẽ) = a, and τ(ẽ) = b. In trellis T [1], this edge has weight

w(ẽ) =
∑

e1∈E2t−1:
σ(e1)=a

∑

e2∈E2t:
τ(e2)=b

w(e1)w(e2)

× [τ(e1) = σ(e2)] · [ℓ(e1) = zj ⊕ x′] · [ℓ(e2) = x′].

Below, the transformed trellis T [1] is defined in detail for

fixed vector z.

Definition 4 (Plus Transform): For N even, let T be a

length-N trellis and z∈XN/2. Then, trellis T̃ = T [1] satisfies:

• For 0 ≤ j̃ ≤ N/2, denote j = 2j̃.

• The vertex set is defined exactly as in the minus transform.

The valid starting and ending vertices are unchanged and

this implies that q̃(s) = q(s) and r̃(s) = r(s).

• The weight of an edge ṽj̃,α
ẽ
−→ ṽj̃+1,γ in T̃ with label

x ∈ X is the sum of the weights of all paths vα,j
e1−→

vβ,j+1
e2−→ vγ,j+2 in T such that x = ℓ(e2) and zj =

ℓ(e1)⊕ ℓ(e2). Such an edge exists in T̃ if and only if this

sum is positive. This implicitly defines the edge set of T̃ .

This lemma states the key property of plus transform.

Lemma 4: Let T be a length N trellis with N even and

let z ∈ XN/2 be given. Construct T [1] with respect to fixed

vector z. Then, for any x′ ∈ XN/2, we have

T [1](x′) = T (x) , where x[0]=z and x[1]=x′ .

Note that the vector x∈XN is uniquely defined by x′ and z.

As in Arıkan’s seminal paper [20], the above transforms lead

to a successive cancellation decoding algorithm. In brief, given

y we first construct a base trellis T . Then, there is a recursive

decoder that, given T [b1,b2,...,bλ], constructs T [b1,b2,...,bλ,0] and

calls itself with that argument. When this returns the decoded

x[b1,b2,...,bλ,0], it then builds T [b1,b2,...,bλ,1] with respect to those

hard decisions and calls itself to decode x[b1,b2,...,bλ,1]. Then,

the two decoded vectors are combined to form x[b1,b2,...,bλ] and

the function returns. The following lemma makes this precise.

Lemma 5: Let T be a base trellis with N = 2n sections

corresponding to a received word y. For each i ∈ [N ] in order,

let ûi−1
1 be a vector of past decisions and b1, b2, . . . , bn ∈

{0, 1} satisfy i(b) = i. Construct T [b1,b2,...,bn] iteratively as

follows. For λ = 1, 2, . . . , n, let us define

T [b1,b2,...,bλ] ,

{

(T [b1,b2,...,bλ−1])[bλ] if λ ≥ 2 ,

T [b1] if λ = 1.

If bλ = 1, then we apply the plus transform with respect to

the fixed vector

x̂[b1,b2,...,bλ−1,0] = A−1
λ

(
ûθ
τ

)
,

where ûθ
τ , (ûτ , ûτ+1, . . . , ûθ) and

θ =

λ∑

j=1

bj2
n−j , τ = θ − 2n−λ + 1 .

Then, for U = An(X) ∈ XN we have

T [b1,b2,...,bn](u) = Pr(Ui = u, U i−1
1 = ûi−1

1 ,Y = y) .

Actually, this lemma is not unique to the deletion channel

and it applies to any base trellis for which (7) holds. The above

lemma also gives an efficient method for deciding the value

of ûi at stage i, since

Pr(Ui = u|U i−1
1 = ûi−1

1 ,Y = y) =
T [b1,b2,...,bn](u)

∑

u′∈X

T [b1,b2,...,bn](u′)
.

V. WEAK POLARIZATION

A key result of this paper is that polar coding schemes can

achieve the information rate

I , lim
N→∞

I(X;Y)

N
(8)

of the deletion channel, where X and Y depend implicitly on

N . This existence of this limit is well-known [2], [5]. In this

section, we describe weak polarization to this rate for both the

deletion channel and the trimmed deletion channel. As in [20],

the proof relies on showing a certain process is submartingale

which must converge to 0 or 1.

As a first step, we will shortly define three entropies. These

are defined with respect to an input X of length N = 2n, which

has a hidden-Markov input distribution, and U = An(X). The

corresponding output is denoted Y. Recall that S0 and SN

are the (hidden) states of the input process, just before X is

transmitted and right after X is transmitted, respectively. Also,

we denote by Y∗ the result of trimming all leading and trailing

‘0’ symbols from Y. Then, for a given n and 1 ≤ i ≤ N = 2n,

we define the following (deterministic) entropies:

hi = H(Ui|U
i−1
1 ,Y) , (9)

ĥi = H(Ui|U
i−1
1 , S0, SN ,Y) , (10)

h∗
i = H(Ui|U

i−1
1 ,Y∗) . (11)

Clearly, h∗
i ≥ hi ≥ ĥi and we note that, in the case of a

uniform input distribution, hi and ĥi are equal.

Following [20], we show weak polarization by considering a

sequence B1, B2, . . . of i.i.d. Ber(1/2) random variables. For

any n ∈ N, let Jn = i(B1, B2, . . . , Bn) be the random index

defined by (4), with Bt in place of bt. We will study the three

related random processes defined for n ∈ N by

Hn = hJn
, Ĥn = ĥJn

, H∗
n = h∗

Jn
.

The idea is to show that Ĥn is a submartingale, converging

to either 0 or 1. From this we will infer that Ĥn and H∗
n

must converge to either 0 or 1 as well even though neither are

necessarily a submartingales. The precise statement and proof

of the weak polarization theorem is deferred to [18].

VI. STRONG POLARIZATION

To rigorously claim a coding scheme for the deletion channel,

one must also show strong polarization. So far, we have been

unable to prove strong polarization for the standard polar code

construction. Thus, we will modify the standard coding scheme.

The basic idea is to use standard polar encoding for the

first n0 stages, and then to add a guard band in the middle of

the codeword during each additional encoding stage. That is,

we will generate Φ = 2n−n0 blocks of length N0 = 2n0 bits

drawn independently from the hidden-Markov input distribution.
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Between each two consecutive blocks, we will have a string of

‘0’ symbols, which we term a guard band. The real trick is to

remove these guard bands in a controlled fashion. For example,

if this can be done perfectly, then the effect of the guard bands

would be to add commas between blocks of length N0. The

received sequence would then be the statistically independent

blocks Y1,Y2, . . . ,YΦ, where Yφ is the output of the channel

corresponding to the input segment Xt = Xφ·N0

(φ−1)·N0+1. For

encoding, the Honda-Yamamoto scheme [22] is be applied to

Φ independent blocks of information bits.

Since the received blocks are statistically independent, strong

polarization should occur after stage n0. But, this claim a bit

subtle because we carry out one process for the first n0 stages

and then switch to another. Hence, we are in a different setting

than that considered in the seminal paper on strong polarization,

[23]. However, by [24, Lemma 40], we can indeed establish

strong polarization (see also [25]).

Our procedure to remove the above guard bands is not

perfect but it can be designed to succeed with high probability.

Let the transmitted word be GI ⊙G△ ⊙GII, where G△ is

a string of ‘0’ symbols termed the guard band, and GI and

GII are of equal length. Denote the corresponding parts of the

received word by YI, Y△, and YII. As a preliminary step,

we will remove from the received word Y all leading and

trailing ‘0’ symbols. Then, we will assume that the middle

index (rounding down) in the resulting word originated from

a guard band symbol. We will partition the word into two

words according to this middle index, and remove all leading

and trailing ‘0’ symbols from these two words. A moment’s

thought reveals that, if our assumption is correct (i.e., the

middle index corresponds to a guard band symbol), then the

two resulting words are simply Y∗
I and Y∗

II. That is, YI and

YII, with leading and trailing ‘0’ symbols removed. That is,

in effect, we have transmitted GI and GII not over a deletion

channel, but over the trimmed deletion channel defined earlier.

We will apply this procedure recursively for n− n0 stages. If

during all the recursive steps the middle index does indeed

belong to the corresponding guard band, we will have produced

Y∗
1 ,Y

∗
2 , . . . ,Y

∗
Φ. We note that a trellis corresponding to the

TDC channel can be defined similarly to the trellis we have

presented for the deletion channel. For full details, see [18].

Next, we describe exactly how guard bands are added. For

x = xI ⊙ xII ∈ X 2n , where

xI = x2n−1

1 ∈ X 2n−1

, xII = x2n

2n−1+1 ∈ X 2n−1

are the first and second halves of x respectively, we define

g(x) ,







x if n ≤ n0

g(xI)⊙

ℓn
︷ ︸︸ ︷

00 . . . 0⊙g(xII) if n > n0,

(12)

ℓn , 2⌊(1−ǫ)(n−1)⌋, (13)

where ǫ ∈ (0, 1/2) is a ‘small’ constant specified later. Then,

the channel input with added guard bands is given by g(x).
The following lemma shows that the rate-penalty for trans-

mitting g(x) in place of x is negligible as n0 increases.

Lemma 6: Let x be a vector of length |x| = 2n. Then,

|x| ≤ |g(x)| <

(

1 +
2−(ǫ·n0+1)

1− 2−ǫ

)

· |x| . (14)

Proof Outline for Theorem 1: The full proof is deferred

to the extended paper [18]. But, we note here a few details.

First, weak polarization for the TDC implies that the TDC has

the same proportion of high-entropy and low-entropy indices

as the original deletion channel. Next, we show that recursive

partitioning can be used to the remove guard bands with high

probability. As noted, the guard bands also incur a negligible

rate penalty. Finally, block independence allows us to prove

strong polarization using known techniques [24], [25].
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