
NetDIMM: Low-Latency Near-Memory Network Interface
Architecture

Mohammad Alian
University of Illinois Urbana-Champaign

Nam Sung Kim∗

University of Illinois Urbana-Champaign

ABSTRACT
Optimizing bandwidth was the main focus of designing scale-out
networks for several decades and this optimization trend has served
well the traditional Internet applications. However, the emergence
of datacenters as single computer entities has made latency as
important as bandwidth in designing datacenter networks. PCIe
interconnect is known to be latency bottleneck in communication
networks as its latency overhead can contribute to up to ∼90% of
the overall communication latency. Despite its overheads, PCIe is
the de facto interconnect standard in servers as it has been well
established and maintained for more than two decades. In addition
to PCIe overhead, data movements in network software stack con-
sume thousands of processor cycles and make ultra-low latency
networking more challenging. Tackling PCIe and data movement
overheads, we architect NetDIMM, a near-memory network inter-
face card capable of in-memory buffer cloning. NetDIMM places a
network interface card chip into the buffer device of a dual in-line
memory module and leverages the asynchronous memory access
capability of DDR5 to share the memory modules between the host
processor and near-memory NIC. Our evaluation shows NetDIMM,
on average, improves per packet latency by 49.9% compared with a
baseline network deploying PCIe NICs.

CCS CONCEPTS
•Hardware→Networkinghardware;Dynamicmemory; •Com-
puter systems organization → Client-server architectures.

KEYWORDS
network architecture, near-memory computing

ACM Reference Format:
Mohammad Alian and Nam Sung Kim. 2019. NetDIMM: Low-Latency Near-
Memory Network Interface Architecture. In MICRO ’52: The 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, October 12–16,
2019, Columbus, OH, USA. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3352460.3358278

∗Nam Sung Kim’s current affiliation is Samsung Electronics but this work has been
done while he was at UIUC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358278

1 INTRODUCTION
Traditionally, the main design requirement for scale-out networks
was high bandwidth. To ensure fairness and avoid congestion, net-
work transport protocols such as TCP [41] have thrived. For the past
three decades, such network architecture has served well through-
put oriented Internet applications such as file and email servers.
Even for interactive web applications, such as web search, that
are sensitive to the per packet delivery time, a response time of
several hundreds of milliseconds is considered acceptable as long
as it can satisfy a service level objective, often defined as 99th per-
centile response time. This throughput oriented network design
has driven the development of high bandwidth network devices
such as 100Gb+ Ethernet network interface cards (NIC).

The proliferation of datacenters and emerging applications over
the past few years has changed network design requirements. In ad-
dition to high bandwidth, low-latency communication has become
a primary metric for evaluating the next generation of scale-out net-
works. Ultra-low latency applications such as in-memory caching,
high-performance computing, and financial trading [18, 24, 49]
benefit from even sub microsecond latency improvements in the
network hardware and software stack.

Ethernet, as the backbone of datacenter networking technology,
is tightly coupled with the TCP/IP protocol to ensure reliable and
fair communication between nodes in a datacenter. The deployment
of TCP offload engines [11, 31, 43, 69] along with more efficient
implementation of the software stack [5, 12, 14, 21, 22, 36, 44] has
significantly reduced the computational overhead in the software
stack of Ethernet networks. For instance, RDMA over converged
Ethernet (RoCE) protocol technically offloads the whole network
software stack to the Ethernet NIC device by implementing a prior-
ity flow control inside the NIC to make the Ethernet lossless [23]. A
RoCE network can achieve node to node latency as low as∼1.3µs [4]
by minimizing the software stack overhead. These technological
advancements have made it possible to achieve end to end network
latency that is close to hardware limits.

PCIe is a widely used and well-established server I/O intercon-
nect technology. PCIe is used to connect off-chip storage, network,
and accelerator devices to the processor chip. A bleeding edge ×16
PCIe Gen 4.0 provides a theoretical bandwidth of 31.51GBps. PCIe
has a layered architecture and the protocol overhead at each layer
reduces the usable bandwidth and adds to the latency overhead [28].
Therefore, PCIe interconnect is known to be the bottleneck espe-
cially in low-latency communication networks [34, 45, 50, 52, 59].
Frequent transactions over PCIe interconnect are the main con-
tributor to the end to end network latency of software-stack opti-
mized networks. For example, the PCIe subsystem contributes to
77.2∼90.6% of the overall network latency for sending packets of
various size over an ExaNIC 10Gbps NIC [59]. Besides the PCIe
overhead, data copying from DMA buffers to application memory

1

699

https://doi.org/10.1145/3352460.3358278
https://doi.org/10.1145/3352460.3358278
https://doi.org/10.1145/3352460.3358278

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Alian, et al.

NIC
DIMM

NIC

DIMM

CPU CPU CPU

NIC
DIMMPCIe mem

channel

PCIe NIC Integrated NIC NetDIMM

Figure 1: State of the art network interface architectures vs.
NetDIMM

space is a major bottleneck in network subsystem that can con-
stitute 18∼92% of the per-byte operation overhead for different
network protocols [27, 29].

To confront the PCIe and memory movement bottlenecks, pre-
vious works have proposed several solutions: (S0) reducing the
number of PCIe transactions needed for packet transmission and
reception [34, 50, 52], (S1) integrating the network interface card to
the processor chip [26, 53], (S2) integrating a large memory buffer
to the NIC [35, 47], (S3) adding processing units to the NIC and of-
floading the software to the NIC logic [33, 46], and (S4) developing
zero copy networking [29]. Although these techniques can alleviate
some of the network overhead, each has several drawbacks. S0
proposals mostly minimize the number of PCIe transactions for
small packets. Moreover, the NIC is still connected to the processor
through a PCIe interconnect and at least one round-trip over PCIe is
needed for sending or receiving a packet. S1 designs are costly due
to the area and power overhead for the processor chip. Furthermore,
NIC and processor chips are often manufactured by different ven-
dors and it is not practical to integrate them into one chip. Lastly,
integrated NIC can pollute on-chip CPU resources when receiving
large packet sizes (Sec. 5.3). Even though S2 and S3 can accelerate
some applications, these techniques cannot benefit general purpose
applications and are often hard to manage/program. Moreover, such
NIC architectures still suffer from PCIe overhead. Regarding S4,
although zero copy networking eliminates the data copying from
DMA to application buffers, it introduces several problems includ-
ing security breaches, main memory exhaustion, and extra virtual
memory operation overheads that can nullify its benefits [27, 63].

In this work, we propose Network attached DIMM (NetDIMM),
a novel near-memory network interface card that utilizes a high
speed DDR5 channel to interconnect a near-memory NIC to the
processor. NetDIMM integrates a NIC into the buffer device of a
dual inline memory module (DIMM) and uses the low-latency, high-
bandwidth memory channel to communicate with the processor.
NetDIMM leverages the asynchronous memory access support of
DDR5 specification to seamlessly expose its local memory capacity
to the host processor as if it is part of the host processor address
space. Furthermore, NetDIMM supports in-memory buffer cloning
that provides the performance of zero copy networking without
its drawbacks. More specifically, NetDIMM makes the following
contributions:
• Eliminate the PCIe bottleneck in the network subsystem. Net-
DIMM uses the memory channel instead of PCIe link to
interconnect a NIC to the processor.
• In-memory acceleration of network stack data movements.
NetDIMM accelerates the DMA between NIC and DRAM by

placing the NIC close to the DRAM modules. Furthermore,
NetDIMM performs in-memory buffer cloning to accelerate
data movements in the network stack.
• Application-transparent network stack acceleration.NetDIMM
runs the kernel software stack with minimal modification in
the Linux kernel. Therefore NetDIMM can run unmodified
userspace applications.
• Reducing memory interference from the network traffic. Net-
DIMM reduces the host memory channel utilization by using
the local memory channels of NetDIMM for transferring
packets between the memory and NIC. NetDIMM also split
header and payload of packets that reduces on-chip resource
pollution.

Fig.1 compares NetDIMM with the state of the art NIC architec-
tures. NetDIMM significantly improves the communication latency
by eliminating costly PCIe transactions and leveraging the phys-
ical proximity of NIC and DRAM for data movement. Based on
our evaluation results, across various packet sizes, NetDIMM on
average reduces the one-way network latency between two servers
by 49.9% and 25.9% compared with servers employing PCIe and
integrated NICs, respectively. We also replay traces from three
Facebook production clusters and observe 25.3∼40.6% average per
packet latency reduction when replacing PCIe NICs with NetDIMM
across different clusters. Lastly, we show that depending on the
network application running on a server, co-running applications
that use the same memory channel as NetDIMM can experience
up to 30.9% lower memory access latency while in worst case ex-
periencing 15.4% higher memory access latency compared with
running the workloads on a system with an integrated NIC.

The rest of this paper is as follows.We first start with background
information on the conventional network architecture, DDR5 sup-
port for asynchronous memory access, and memory management
in Linux kernel. Sec. 3 motivates NetDIMM design. Sec. 4 explains
the NetDIMM architecture. Sec. 5 includes the evaluation results.
We talk about related works in Sec. 6. Sec. 7 is conclusion.

2 BACKGROUND
2.1 Network Architecture
Despite a large body of research, the innovations in Internet net-
work architecture have been limited to incremental updates and
its architecture has remained more or less the same since the cre-
ation of the Internet. The main reason for this resistance to changes
is the multi-provider nature of the network echosystem that any
change in the existing architecture needs a consensus among sev-
eral stakeholders. Moreover, this network architecture has been
reliably working for several decades and radical changes in it have
become increasingly difficult.

Fig. 2 shows the overall network hardware architecture of a
server. A NIC is connected to a processor over a PCIe link. Mod-
ern NICs use the Data Direct I/O (DDIO) technology [9, 38] to
reduce memory bandwidth utilization when sending and receiving
network packets. That is, when a packet is received at a NIC, a
DMA engine transfers the packet to a buffer inside processor’s last
level cache (LLC) instead of moving it all the way to DRAM. When
transmitting a packet with a DDIO enabled NIC, the packet buffer
is allocated in LLC and DMA engine reads the packet from LLC.

2

700

NetDIMM: Low-Latency Near-Memory Network Interface Architecture MICRO ’52, October 12–16, 2019, Columbus, OH, USA

core core core core

LLC

I/O ctrlmem ctrl

processor

NIC
DMA

INT
PCIe

DRAM

memory
channel pkt

pkt

RX

TX

Figure 2: Server network architecture.

However, the DDIO share is usually 10% of the LLC capacity [9]
(i.e. a few megabytes) and often this space is exhausted by a NIC
at high RX/TX rates. Moreover, sharing the DDIO space between
several network functions can result in a phenomenon known as
DMA leakage [68]. The DDIO can cause cache pollution for other
applications if there is no upper limit for its LLC share [67].

An Ethernet NIC employs a circular ring buffer (i.e. descriptor
ring) inside the main memory to let the processor and NIC produce
and consume packets at different rates. Because interrupt handling
and interrupt moderation can delay the packet processing for sev-
eral microseconds, ultra-low latency networks are usually deployed
in (adaptive) polling mode [5, 51]. Here we explain NIC, CPU, and
memory interactions when transmitting (TX) and receiving (RX)
a packet using an Ethernet NIC with a polling driver. Before any
transmission or reception (i.e. during the system boot up), the NIC
driver allocates RX and TX descriptor rings, initializes them and
sends their information to the NIC. (T1 - @Driver) The transmit
function of the driver is called and the driver checks the status of
the NIC. (T2 - @Driver) The driver sets up a DMA transfer by writ-
ing into a NIC configuration register. (T3 - @NIC) The DMA device
fetches the next available TX descriptor from DRAM (or LLC if the
DDIO is enabled) and then performs another DMA to transfer the
packet to the NIC. (T4 - @NIC) The packet is transmitted over the
Ethernet link and the TX ring tail pointer is updated. (R0 - @NIC)
The packet is received at the destination NIC. (R1 - @NIC) The next
available RX descriptor is fetched from DRAM or LLC (R2 - @NIC)
The packet is DMAed to the RX descriptor buffer. (R3 - @NIC) The
RX descriptor ring information is updated. (R4 - @Driver) Polling
driver is notified of a new packet reception. (R5 - @Driver) A new
socket buffer (i.e. SKB) is created and initialized with the data in
the RX ring buffer. The Ethernet header is removed, and the rest of
the packet is sent to an upper network layer.

2.2 Asynchronous Memory Access
In this subsection, we discuss nonvolatile dual-inline memory mod-
ule (NVDIMM) protocols. We specifically talk about NVDIMM-P
and how DDR5 specification manages to interact with such mem-
ory technology. The NVDIMM technology offers persistence and
high memory capacity while using the memory channel, that is the
fastest interconnect in the system, to interface with the processor.
Based on JEDEC standard, there are three types of NVDIMMs:

(1) NVDIMM-N consists of byte-addressable DRAM modules
and a backup NAND flash device. In NVDIMM-N, the host DDR
memory controller only addresses the DRAM part of the NVDIMM-
N. NVDIMM-N has the access time of a regular DDR DIMM from
the host perspective.

(2) NVDIMM-F directly exposes the NAND flash storage to the
processor and removes the DRAM devices. NVDIMM-F cannot be

(a)

CA

DQ

ACT RD

DATA

deterministic

DRAM Operation

CA

DQ

XRD ADR

DATA

NVDIMM-P Operation

SEND

RDY

ID
non-deterministic

1

2

3

4
RSP

ID

buffer device - controller

NAND flash

N
VD

IM
M

-P

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

(b)

Figure 3: (a) NVDIMM-P architecture, (b) asynchronous
memory access for NVDIMM-P.

accessed with regular DDR timing and the memory channel has to
slow down to meet the NVDIMM-F timing.

(3) NVDIMM-P uses a novel memory channel protocol that al-
lows asynchronous, out of order completion of the memory ac-
cesses to have the best features of both NVDIMM-N and NVDIMM-
F. NVDIMM-P exposes both DRAM and NAND flash to the host
processor address space. Because the NAND Flash (or any other per-
sistence memory technology such as 3D-XPoint [55]) has different
access timing compared with DRAM, a conventional DDR protocol
cannot be used to access the persistent memory region. DDR5 spec-
ification is designed to comprehend the heterogeneous media type
and support a mixture of convectional DIMM and NVDIMM-P. To
facilitate NVDIMM-P accesses, DDR5 specification supports asyn-
chronous memory transactions [1]. Fig. 3(b) compares the timing
of a cacheline read from DRAM and NVDIMM-P in the DDR5 stan-
dard. As shown, to access a cacheline from NVDIMM-P, depending
on the location of the data (if it is cached in the buffer device of
NVDIMM-P or not), a read access has non-deterministic latency. A
read request to NVDIMM-P starts with a read request (i.e. XRD in
Fig. 3(b)) command that includes the full address of the requested
data and a request ID. Unlike DRAM operations, each NVDIMM-P
request has an ID to facilitate out of order access completion. When
the XRD command is received at NVDIMM-P, the media data read
command is immediately issued. Once the data is ready in the me-
dia, a ready command (i.e. RDY) is issued on the response pins (i.e.
RSP) with the ID of the original request. The memory controller
then issues a send (i.e. SEND) command to read the data. The data
appended with the request ID is available on the data bus (i.e. DQ)
after a specific amount of time.

2.3 Linux Memory Management
Memory Address Mapping. Different systems use different phys-
ical memory address mapping and decode different bits in the
physical address to calculate the channel, rank, bank, row and
column of the address location in the DRAM. If there are DIMMs
installed on multiple memory channels, then the memory mapping
can operate at three different modes as follows: single channel,
multi-channel, and flex channel modes. In single channel mode,
the memory channel bits are mapped to the most significant bits
of the physical address and sequential addresses are mapped to
one memory channel. In multi-channel mode, sequential memory

3

701

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Alian, et al.

addresses are interleaved between multiple memory channels. Flex
mode provides a flexible memory mapping configuration where a
part of address space can work in multi-channel mode and the rest
in single channel mode. Flex mode is especially useful in asymmet-
ric memory configuration where different DIMM types (e.g. DDR5
or NVDIMM-P) are installed on memory channels [16].
Linux Kernel Memory Allocation. Due to hardware limitations,
different parts of physical memory should be treated differently by
Linux kernel. Linux groups physical memory locations that have
same set of properties into different zones. Linux has four primary
memory zones: ZONE_DMA: contains pages that can be used for
DMA; ZONE_DMA32: contains pages that can be used for DMA
by 32-bit devices; ZONE_HIGHMEM: contains ”high memory" [7]
pages that cannot be mapped into the kernel address space in 32bit
machines; ZONE_NORMAL: contains regularly mapped pages in
the system.

kmalloc() is used to allocate memory in kernel, similar to
malloc() in userspace. kmalloc() can allocate memory from a
specific memory zone based on the input arguments. There are also
several APIs for allocating memory in page granularity in Linux.
These APIs are especially used in the network stack for allocating
the paged area of the network socket buffers [62]. The core function
for page allocation is __alloc_pages(). There are several wrapper
APIs to allocate pages from a specified NUMA node and/or memory
zone.

3 MOTIVATION
As we discussed in Sec. 2.1, to send a packet over a conventional
NIC, several PCIe and memory channel transactions need to take
place. More specifically, in a client-server application, 16 one-way
PCIe transactions are needed for completing one request-response
transfer. Several research studies have proposed new NIC and DMA
architectures to reduce the number of PCIe transactions when
sending and receiving network packets, especially for small pack-
ets [34, 50, 52]. Although such architectures improve the network
latency, they still require several PCIe round-trips to send and re-
ceive packets to and from the NIC, respectively.

CPU and NIC integration is a promising approach for solving the
overheads mentioned above. Fig. 4 shows the one-way latency of
sending packets of different size from one node to another through a
40Gb Ethernet link. Formore information on our evaluationmethod-
ology please refer to Sec. 5.1. We evaluate four different NIC config-
urations: discrete NIC (dNIC), which represents a conventional PCIe
Gen3×8 NIC (i.e. Fig. 1(left)); dNIC with zero copy transmission and
reception (dNIC.zcpy); a NIC integrated into CPU chip (iNIC) (i.e.
Fig. 1(middle)); and iNIC with zero copy transmission and recep-
tion (iNIC.zcpy). The figure also shows PCIe contribution to the
overall packet transmission and reception (pcie.overh in Fig.4).
As shown, iNIC improves the network latency by 21.3∼38.6% com-
pared with dNIC. The latency improvement is more signified for
smaller packets and mainly comes from faster accesses to the I/O
registers. Fig. 4 clearly shows the benefit of removing PCIe link
between the CPU and NIC for low-latency networking.

We enable zero copying by letting NIC to access application
buffers as DMA buffers. Zero copy improves iNIC network latency
by 28.8% and 52.3% for 10Byte and 2000Byte packets, respectively.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 250 500 750 1000 1250 1500 1750 2000

La
te

n
cy

 (
μ

s)

Packet Size (Bytes)

dNIC dNIC.zcpy pcie.overh iNIC iNIC.zcpy

52.3%

59.1 %

Figure 4: One-way latency comparison of different NIC
configurations for packets of various sizes: discrete NIC
(dNIC), discrete NIC with zero copy (dNIC.zcopy), integrated
NIC (iNIC), and integrated NIC with zero copy (iNIC.zcpy).
pcie.overh shows the overhead of PCIe interconnect for dis-
crete NIC configurations.

As expected, memory copy overhead increases with packet size
and larger packets benefit more from zero copy networking. On
the other hand, the PCIe overhead is more for smaller packets.
For dNIC.zcpy, 40.9% and 34.3% of the overall network latency is
spent in PCIe interconnect when transferring 10Byte and 2000Bytes
packets, respectively.

Although iNIC.zcpy seems to be an ideal ultra-low latency net-
work architecture, it has several limitations: (L1) Zero copy net-
working can introduce security breaches [63]. Also pinning appli-
cation pages to the memory can cause main memory exhaustion
and the overhead of virtual memory operations and buffer man-
agement can nullify the gains of zero copy networking [27]. (L2)
Integrating a full-blown NIC into CPU significantly increases the
area and power of the processor. It is specifically challenging as
often NIC and CPU are manufactured by different vendors. (L3)
Most importantly, iNIC can pollute on-chip resources, such as LLC,
at high network rates or cause memory interference for co-running
applications. Furthermore, storing the payload of received packets
on the processor chip is waste of precious on-chip resources for
network functions that only require packet header to be processed
by the CPU [32]. Note that (L3) is not specific to iNIC and dNIC
also has the same problem.

To illustrate the memory and cache interference caused by net-
work packets, we study the sensitivity of network bandwidth to
the cache and memory interference. Fig. 5 depicts the sensitivity
of network bandwidth to the pressure on the memory system. In
this experiment, we use two machines, each equipped with a Xeon
E5-2660 processor, three DDR4 memory channels, and an Intel
40Gbps XL710-QDA1 NIC. We use Intel Memory Latency Checker
(MLC) [40] tool to inject dummy memory requests to the memory
subsystem at different rates. We set the ratio of memory read to
write requests to 1. In Fig. 5, the X-axis shows the delay between in-
jected memory requests (higher values lower the interference at the
memory subsystem) and Y-axis shows the achieved iperf [10] TCP
bandwidth at different memory interference levels. iperf band-
width significantly drops when the memory pressure from MLC
increases. For example, at the maximum memory pressure, which

4

702

NetDIMM: Low-Latency Near-Memory Network Interface Architecture MICRO ’52, October 12–16, 2019, Columbus, OH, USA

0

10

20

30

40

50

0 250 500 750 1000 1250 1500 1750 2000

B
a

n
d

w
id

th
 (

G
b

p
s

)

Delay Between Memory Requests (Clock Cycle)

Iperf

Lower Memory Pressure

Figure 5: Iperf bandwidth at different memory pressure lev-
els.
corresponds to 15.1GBps per memory channel, iperf only delivers
∼27.9% of the achieved bandwidth without any interference from
MLC. This experiment shows how sensitive network bandwidth is
to the interference at the memory subsystem. Moreover, Fig. 5 can
be interpreted from another angle: the network traffic can cause
severe interference at the memory subsystem. However, here we
could not show that because TCP flows from iperf regulate the
transmission rate based on the processing capability of the receiver
node. Therefore, before we see any major degradation on the local
application performance, the iperf bandwidth decreases.

Fig. 4 and Fig. 5 illustrate the inefficiencies in the network archi-
tecture of current servers. Ideally, we want to completely remove
the PCIe transactions and exchange data between the processor
and NIC over an interconnect with lower latency without jeopar-
dizing the network bandwidth. Furthermore, to reduce the memory
interference, we want to decrease the host memory subsystem
utilization when sending and receiving packets to and from NIC;
which involves preventing a NIC from injecting all the received
traffic to LLC. Instead, we want a mechanism which collectively
brings different bytes of a received packet to the processor on the
application’s demand. PCIe is a standard and well-developed inter-
connection technology that has been around for three decades. One
key requirement for a replacement is that it should be a standard
andwell-established interconnection technology. Introducing a new
and specialized interconnect is costly and error prone. Also, the
new interconnect should seamlessly work with memory channel
and processor cache hierarchy to facilitate quick data delivery to
the CPU.

Memory channel has the lowest latency amongst off-chip inter-
connects in a modern server. Besides low latency, memory channel
provides high bandwidth. For example, a DDR4 channel provides
12.8GBps (i.e. 102.4Gbps) bandwidth. The latency of transferring
a 4KB page over a DDR4 channel and a ×8 PCIe link are ∼200ns
and ∼2µs, respectively. More importantly, the memory channel is a
standard and well maintained interconnect that can be find on the
motherboard of any server. We leverage these unique features of
the memory channel and propose a near-memory network inter-
face card architecture by placing a NIC into the buffer device of a
DIMM. This design solves all the limitations of dNIC and iNIC: (1)
eliminating the PCIe overhead by utilizing memory channel and
internal DIMM interconnects for packet transmission and recep-
tion; (2) supporting in-memory buffer cloning to copy packets from
application to DMA buffers and vice versa; (3) decoupling header

and payload of packets to reduce LLC pollution and (4) using a
separate memory channel to access network buffers in the DRAM
to reduce the host memory channel interference.

4 NETWORK-ATTACHED DIMM
Motivated by the explanation in Sec.3, we propose NetDIMM, a
low-latency, near-memory network architecture. Building atop the
NVDIMM-P architecture (Sec. 2.2) and based on the near-memory
processing concept, NetDIMM improves the data transfer latency
between the processor, memory, and NIC. In this section, we explain
the hardware and software components of NetDIMM in detail.

4.1 NetDIMM Hardware Architecture
Inspired by the asynchronous, out of order memory access sup-
port of DDR5 specification (Sec. 2.2), we architect a NIC that is
placed on the buffer device of a DIMM. Fig. 6 overviews the over-
all architecture of NetDIMM. Fig. 6(c) shows a system with two
memory channels where each memory channel is occupied with
three DIMMs in total. Out of these three DIMMs, there are two con-
ventional DDR5 DIMMs, and one NetDIMM. Note that the figure
only shows an example system and there is no requirement for the
number of NetDIMMs on a memory channel. For example, a system
can have one NetDIMM installed on one of the DDR5 slots. The
DDR5 support of asynchronous memory request completion allows
mixing DRAM and NetDIMM on a same memory channel [15]. As
shown in Fig. 6(b), the organization of NetDIMM is similar to the
organization of an NVDIMM-P depicted in Fig 3(a).

Fig. 6(a) shows the internal architecture of NetDIMM buffer
device. It consists of the following main components: (nNIC) An
integrated network interface card; (nMC) one (or several) mem-
ory controller(s) to access the NetDIMM local DRAM modules;
(nController) logic that extends the NVDIMM-P controller with
NetDIMM routing and management logic; (DDR5 PHY interface)
DDR5 physical interface and protocol engine. The DDR5 physical
interface contains a protocol engine that repeats DRAM CA, DQ,
and RSP signals similar to a typical NVDIMM-P device; (nCache)
a dual-port SRAM buffer for caching RX data resided in the local
DRAMmodules; (nPrefetcher) a next-line prefetcher for pre-loading
RX packets to nCache from the local DRAM modules; (RowClone
enabled DRAM) DRAM devices that support in-memory data copy-
ing.

We expose the local DRAM capacity of NetDIMM to the host
memory address space, therefore, the local NetDIMM memory is
managed by the host operating system. This is similar to the unified
address space of NVDIMM-P. We explain NetDIMM memory man-
agement in Sec 4.2. Because both nNIC and PHY can independently
access the local DRAM modules through nMC, we need arbitration
between the memory accesses from nNIC and PHY. nController
does this arbitration by giving priority to the nNIC accesses. Be-
cause of the following reasons, the access time to the local DRAM
from the host MC is non-deterministic: (R1) the host MC does not
know the state of the NetDIMM local DRAM modules; (R2) nMC is
shared between nNIC and PHY. Thus, the access time of the local
DRAM modules depends on the current state of the local DRAM
modules, the current nNIC traffic, and the current requests from
PHY.

5

703

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Alian, et al.

nNIC

D
D

R
5

PH
Y

in
te

rfa
ce

nCache

nMC (NetDIMM mem ctrl)

global
memory
channel

Ethernet
connector

N
etD

IM
M

NetDIMM buffer dev

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

Eth

D
D

R
5 D

IM
M

D
D

R
5 D

IM
M

host M
C

 0

N
etD

IM
M

D
D

R
5 D

IM
M

D
D

R
5 D

IM
M

host M
C

 1
host(c)(a)

(b)

global memory channel
local memory channel

nP
re

fe
tc

he
r

In-memory clone capable
DRAM devices local DRAM devices

nController

...

Figure 6: NetDIMM architecture.
We make a key observation that the memory access pattern be-

tween the host processor and NIC is very regular and has spatial
and temporal locality. Fig. 7 plots the relative address and relative
arrival time of memory requests, generated by the DMA engine of
a 40GbE NIC, when receiving six 1514 Byte packets. For detailed ex-
perimental setup please refer to Sec. 5.1. As illustrated, each packet
arrival generates a burst of memory requests to DMA buffers. Each
burst consists of 24 cachelines1 (24 * 64 = 1536 Bytes) that arrive
at the host memory controller in a short time interval, which for
example is 143ns for the third packet. nCache and nPrefetcher com-
ponents exploit the unique characteristics of this memory access
pattern to improve the host MC access latency to the NetDIMM
address space.

Once a packet is received at nNIC from the outside, nNIC notifies
nController. nController implements the same functionality of a
DMA engine in a conventional NIC. Upon receiving the notification
from nNIC, nController reads the next available descriptor buffer
from nMC and depletes the RX buffer of nNIC to the descriptor
ring resided in the NetDIMM local DRAM modules. In Sec. 4.2 we
explain how the descriptor ring is allocated on NetDIMM. While
transferring the RX packets to the NetDIMM local DRAM space,
the nController writes the first cacheline of each received packet
1Unless stated otherwise, we assume that the cacheline size is 64Bytes throughout this
paper

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 32 64 96 128 160 192

R
e

la
ti

v
e

 T
im

e
 (
μ

s
)

Relative Address (Cachelines)

pkt0 pkt1 pkt2 pkt3 pkt4 pkt5

24

$lines

143 ns

Figure 7: Spatial and temporal locality of NIC memory ac-
cesses from host processor perspective

to nCache. The rationale for only caching the first cacheline of
received packets is that for all transport protocols, the header size
is less than 64 Bytes (i.e. one cacheline) and only the header of a
received packet is needed for processing the packet in the network
software stack2. Moreover, as explained in Sec. 3, some network
functions, such as forwarding and firewall, do not need the packet
payload as the application makes forwarding decisions only based
on the header information. The maximum header size of a TCP/IP
packet is 52Bytes [17], so caching the first 64Bytes of a received
packet includes all the headers. The rest of the packet is only ac-
cessed when copying it to a userspace buffer. Storing an entire
received packet in nCache is not efficient as the reuse distance of
the payload of a received packet is much longer than its header.

Assuming a maximum transmission unit (MTU) size of 1500
Bytes, each Ethernet packet can carry 1∼24 cachelines. When the
payload of a received packet is accessed (e.g. to be copied to an
application buffer), a stream of consecutive read requests is received
to NetDIMM PHY, similar to the access pattern shown in Fig. 7. This
access pattern is easy to predict by a simple next-line prefetcher. We
add this prefetcher, shown as nPrefetcher in Fig. 6(a), to NetDIMM.
nPrefetcher prefetches the next n cachelines and stores them in
nCache. Therefore, even if NetDIMM does not cache the payload of
RX packets in nCache, in the worst case, reading an entire RX packet
may only experience one nCache miss. We disable nPrefetcher for
the first cacheline of RX packets which contains the header. This is
because we do not want to pollute nCache when only the header
of a received packet is accessed by the host processor. We add a
one-bit flag for each cacheline of nCache, that is set when the first
cacheline of a newly arrived packet is stored in nCache. nPrefetcher
checks this flag and prefetches next n cachelines if the flag is not
set. nCache resets the flag after the first access to each cacheline.

When a read request is received from the global memory channel,
nController checks if the requested data is cached in nCache. If it
is a hit, the data is read from nCache and immediately sent to the
host MC. Otherwise, nController creates a read request and sends
it to nMC. Once the data is read from the local DRAM through
nMC, it will be sent to the host using the asynchronous protocol
explained in Sec. 2.2. When a write request is received from the
global memory channel, nController constructs a memory write

2Assuming that nNIC has checksum offloading support
6

704

NetDIMM: Low-Latency Near-Memory Network Interface Architecture MICRO ’52, October 12–16, 2019, Columbus, OH, USA

request and send it to nMC. The write requests do not use nCache as
they are immediately queued in the nMC write queue upon arrival.

nCache is an inclusive, set associative cache structure. nCache is
more like a large data buffer and its data is removed from it once it is
accessed. This is because once the RX packet is read fromNetDIMM,
it is going to be stored in a host processor cache or in another
location in the main memory. In either case, that memory address
is unlikely to be accessed in a near future. Therefore, there is no
value in keeping that data in nCache. We use random replacement
policy to make space in an nCache set if all the blocks in the set are
occupied. Note that all cachelines in nCache are clean and there is
no need for writing a victim cacheline back to nMC. To ensure the
coherency of nCache with local DRAM data, nController snoops
the addresses of write requests received from PHY or nNIC and
invalidates the matching cachelines in nCache.

Conventionally, copying one memory location to another in-
volves a processor to read data over its memory channels into
its cache hierarchy and then write it back through the memory
channels to the destination memory location. This makes mem-
ory copying an expensive operation. For example, copying a 4KB
page over a DDR3 memory channel takes ∼1µs [61]. Because of
the limitation of zero-copy drivers (discussed in Sec. 3), we envi-
sion an in-memory data copy acceleration mechanism to swiftly
clone application buffers to DMA buffers and vise versa on Net-
DIMM. To this extent, we utilize an extended implementation of
RowClone [61] mechanism. RowClone is an in-memory bulk data
copying mechanism that utilizes DRAM internal architecture to
accelerate memory-to-memory copying on a single DIMM. Fig. 8 il-
lustrates a high level overview of in-memory clone-capable DRAM
devices. Depending on the location of the source and destination
addresses, there are three modes for cloning a page: Fast parallel
mode (FPM): source and destination pages share a bank sub-array.
In this case buffer cloning can be done by two back to back activa-
tion of the source and destination pages. FPM mode is highlighted
with green arrows in Fig. 8; Pipeline serial mode (PSM): source
and destination pages are on different banks but on a same DRAM
device. In this case cloning happens by pipelining cacheline copy
operations over the internal bus of DRAM chips. PSM mode is high-
lighted with the red arrow in Fig. 8; General cloning mode (GCM):
otherwise, NetDIMM reads source to the NetDIMM buffer device
and writes them back in pipeline mode to the destination address
(highlighted by blue arrows in Fig. 8). GCM is similar to the opera-
tion of a conventional DMA engine near the memory chips. FPM is
the fastest while GCM is the slowest and most general mechanism.
That being said, it is important to intelligently allocate source and
destination pages to a same sub-array within a DRAM device in
order to extract the maximum benefit from the in-memory page
cloning. In Sec. 4.2.1 we explain how NetDIMM implements an
intelligent memory allocation scheme to efficiently move data from
DMA buffers to application buffers.

4.2 NetDIMM Software Architecture
In this subsection, we explain required software stack changes to
enable NetDIMM. Overall, we try to have the minimum amount of
changes possible in the network software stack and Linux kernel.
The changes in the software stack includes implementation of a

Rows
Row Buffer
Bank I/O

Chip I/O

Bank 0
In-memory clone capable DRAM dev 0

NetDIMM Buffer Device

Rows
Row Buffer
Bank I/O

Bank 0

PSM

Row Buffer
Bank I/O

Chip I/O

Bank 0
In-memory clone capable DRAM dev 1

Rows
Row Buffer
Bank I/O

Bank 0

READ WRITE

NetDIMM

FPM

Figure 8: In-memory buffer cloning acceleration
new Linux memory allocation API, changing the physical memory
address mapping, and implementation of a NetDIMM driver. The
TCP/IP layers remain unchanged except for the API for SKB allo-
cation. Note that we developed a userspace NetDIMM driver for
our evaluations. However, to show the feasibility and generality of
our implementation, we also developed a Linux kernel NetDIMM
driver that runs the full Linux kernel software stack and unmod-
ified userspace applications. We use our Linux kernel driver for
explanation here.

4.2.1 Handling NetDIMM Local Memory Region. Before we talk
about NetDIMMdriver, we first need to discuss howwe use the local
DRAM modules on NetDIMM. To leverage the operating systems
memory management functionality, keep the amount of changes in
the software stack at minimum, and make NetDIMM application-
transparent, we expose the local memory capacity of NetDIMM to
the host processor as if it is part of the host physical memory address
space. The local memory capacity of a NetDIMM can be seen as
a memory node in a NUMA system, and despite different access
timing, NetDIMM’s memory space is part of the host (global) ad-
dress space. We reveal this heterogeneity in the memory system
to Linux by creating a new memory zone called NETi where i is
the NetDIMM number in the system. Note that a system can have
multiple NetDIMMs installed on memory channels and each need
a different memory zone. Defining a memory zone in Linux is not
expensive and new memory zones has been added to Linux when
necessary [2].

In addition to defining new memory zones, it is also important to
intelligently allocate DMA and application buffers on a same bank
and sub-array to extract the maximum performance out of Net-
DIMM’s in-memory buffer cloning capability (cf. Fig 8). To achieve
this, we need to expose the internal memory organization of Net-
DIMM to the memory scheduler. Fig. 9(a) shows our assumptions
about the size and organization of a memory rank in NetDIMM,
which is based on aMicronMT40A512M16 DRAM device [56]. Each
rank consists of eight ×8 DRAM devices, each device consists of 16
banks, each bank is divided into 512 sub-arrays, and each sub-array
consists of 128 rows. The capacity of each rank, device, bank, sub-
array, and row is 8GB, 64MB, 128KB, and 1KB, respectively. Based
on this organization, the physical memory address mapping for
NetDIMM looks like Fig. 9(b). Assuming a page size of 4KB, Fig. 9(c)
illustrates the geometric location of consecutive pages stored in a
memory rank. As shown, the pages that are physically stored on
a same bank and sub-array are spaced every 128KB (or 32 pages).
Thus, it is easy to check if two pages are on a same sub-array and
bank. We implement __alloc_netdimm_pages(zone, hint) that
allocates a page on NetDIMM zone and the same sub-array as hint
address. If hint is set to -1, then the API only considers the zone

7

705

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Alian, et al.

x8

Rank

x8 x8...

8 devices

bank bank

bank bank

Chip I/O

...

Device

16 banks

1GB

64MB x8

Bank

512 subarrays
Bank I/O

sub arr
sub arr

sub arr

...

x8

Sub arr
row
row

row
row buffer

...

row

128 rows

128KB 1KB

8 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 3 2 1 0 9 8 7 6 5 4 3 2 1 0 2 1 0

byte offcol IDbank IDsub arr offsub arr ID

17 bit (addressing 128KB)

0 1 2 3 4 5 ... 32 33 34 35 36 37 ...

bank ID (8KB)

sub arr ID (16MB)
sub arr off (128KB)

page ID (4KB)

0 0 0
0 0 0
0 0 1

0 0 0
1 1 1
0 0 1

0 0 0
0 0 0
1 2 2

0 0 0
1 1 1
1 2 2

...

same bank and sub arr

per rank
address
mapping

(a)

(b)

(c)

change period

Figure 9: (a) Configuration of amemory rank in a NetDIMM;
(b) physical memory address mapping; (c) illustration of the
physical location of pages
requirement. Note that this is a best effort API and it is possible that
the allocated pages is not on the same sub-array as hint address.

Another complexity in handling the local memory area of Net-
DIMM is the memory channel interleaving of physical addresses in
a systems with multiple memory channels. Memory channel inter-
leaving increases the memory throughput by parallelizing memory
accesses over several memory channels. However, we need to dis-
able the memory channel interleaving for the NetDIMM address
space because the global memory channels are not visible to nNIC
(Fig. 6). Therefore, the NetDIMM address space should be exposed
to the host in single channel mode so the host processor sees the
NetDIMM physical address as a continuous memory chunk. We
leverage the Flex channel interleaving mode (cf. Sec. 2.3) to divide
the physical address space into two parts. One part contains all
conventional DDR DIMMs that operate in multi-channel mode and
another part contains NetDIMMs address space operating in sin-
gle channel mode. Fig. 10 depicts the unified address space of the
conventional DIMMs and NetDIMMs and their memory channel
interleaving modes.

4.2.2 NetDIMM Driver. We use Intel e1000 GbE driver as a base to
develop NetDIMM driver. Because NetDIMM is not a PCIe device,
ioremap()API is used to create a configuration space for NetDIMM
similar to the configuration space of a conventional PCIe NIC. Using
this techniques, we can configure all the features of a full-blown
NIC without the need for writing a new driver from scratch.

When a NIC interface is initialized, it creates transmit (TX)
and receive (RX) descriptor ring buffers and initializes their buffer
pointers by allocating DMA buffers. Moderns NICs support scatter-
gather DMA operation, so a DMA buffer can span over multiple
pages that are not physically contiguous. NetDIMM requires that
the physical location of descriptor rings and their corresponding
DMA buffers to be on the memory zone of the corresponding
NetDIMM. To benefit from in-memory cloning acceleration, ap-
plications are also required to allocate their network data buffers
on NetDIMM memory zone. For both TX and RX rings, we use

DIMM 0
&

DIMM 1
Interleaved

N
etD

IM
M

 0

D
D

R
5 D

IM
M

 0

m
em

 ctrl 0

N
etD

IM
M

 1

D
D

R
5 D

IM
M

 1

m
em

 ctrl 1

host

NetDIMM 0

NetDIMM 1

Physical Address Space

Figure 10: Thememory address space and channel interleav-
ing mode for a mixture of DDR5 DIMMs and NetDIMMs

__alloc_netdimm_pages(zonei, -1) to allocate descriptor ring
data structures for NetDIMMi. For RX and TX DMA buffers, we
allocate them on the fly based on the location of application buffers.
However, calling __alloc_netdimm_pages for each packet can de-
teriorate the network latency and bandwidth. As shown on Fig. 9(a)
each NetDIMM rank has 512 * 16 = 8K distinct sub-arrays. To
accelerate the on-demand memory allocation, NetDIMM pre allo-
cates two pages from each distinct sub-array and stores them in a
hash table called allocCache. Considering that NetDIMM has two
memory ranks, each NetDIMM pre allocates 32K pages (i.e. 128MB)
for on-demand DMA buffer allocation. This corresponds to 0.8% of
capacity overhead for a 16GB NetDIMM. allocCache immediately
returns a page allocated on a specific sub-array. NetDIMM driver
refills allocCache concurrently in the background, thus, the on-
demand allocation of DMA buffers are not in the critical path of
packet RX and TX.

One complication here is that an application should have knowl-
edge about the physical layer to know which NetDIMM is serving
its packet streams. To resolve this, we add a flag to the SKB header
(or any other type of network data structure used for network-
ing) called COPY_NEEDED. We allocate the SKBs that belong to the
connection establishment on the regular kernel address space and
set the COPY_NEEDED flag in the SKB header. At the transmit func-
tion of NetDIMM driver, if COPY_NEEDED flag is set, the driver first
copies the SKB data to an allocated TX DMA buffer on the cor-
responding NetDIMM and then initiates the packet transmission.
Each SKB has a pointer to the socket that the packet is associ-
ated with. We add a new field to ”struct sock" called ”struct
zone_struct skb_zone" and set it to NETi in the NetDIMM driver.
Therefore, after the first packet transmission, each connection has
enough information to allocate the SKB and paged buffers of the
TX packets on a corresponding NetDIMM memory zone. Note that
COPY_NEEDED flag is also used as a fallback mechanism in case the
memory space on a NETi zone is exhausted and the SKB and TX
buffers are allocated on different memory zones. This is a rare event
and does not happen frequently.

When receiving a packet from NetDIMM, similar to a PCIe NIC,
once nNIC finished moving a received packet to a DMA buffer, it
needs to notify the host processor. To notify the processor about
newly received packets or packet transmission completions, a NIC
typically uses an interrupt signal or a polling agent. The interrupt
approach is mostly used for high bandwidth network connections
where the network latency is not critical. On the other hand, a
polling mechanism is mainly used by userspace network stacks and

8

706

NetDIMM: Low-Latency Near-Memory Network Interface Architecture MICRO ’52, October 12–16, 2019, Columbus, OH, USA

Algorithm 1: Packet TX and RX handling at NetDIMM driver.
1 TX:
2 txDesc[next].dma = allocCache[txSKB .data] // DMA buffer

allocation
3 if txSKB .COPY _NEEDED then
4 copy txDesc[next].dma ← txSKB .data // slow path
5 set skb_zone to N ET i
6 f lush txDesc[next].dma to memory
7 else
8 f lush txSKB .data to memory // fast path
9 set txDesc[next] size and f laдs // total size is 64 bits

10 f lush txDesc[next] size and f laдs // kick off transmission
11 RX:
12 invalidate rxDesc[next] // to fetch fresh data from NetDIMM
13 rxSKB .data = allocCache[rxDesc[next].dma] //RX buffer

allocation
14 netdimmClone(rxSKB .data, rxDesc[next].dma,

rxDesc[next].size) // in-memory buffer cloning
15 send rxSKB to upper network layers f or processinд
16 Polling Agent:
17 clean TX buf f ers af ter a successf ul transmission
18 if newly arr ived packet then
19 call RX

low-latency networks to prevent interrupt processing and context
switching overheads (cf. Sec. 2.1).

NetDIMM driver implements an efficient polling agent using a
high-resolution kernel timer. Note that polling NetDIMM is more
efficient than polling a PCIe NIC as accessing I/O registers on a
NetDIMM is much faster than a PCIe NIC. After the polling driver
detects a packet arrival, it calls the RX routine of the driver as shown
in Alg. 1. NetDIMM uses memory flush and invalidate instructions
to enforce coherency between processor caches and NetDIMM local
memory. The netdimmClone(dst, src, size) function shown
in Alg. 1 is the API for in-memory buffer cloning. It writes dst,
src, and size values to a set of NetDIMM registers and NetDIMM
clones src to dst buffer inside the memory.

4.3 Physical Feasibility of NetDIMM
One question that yet to be answered by this paper is how feasible
is to integrate a full-blown NIC into the buffer device of a DIMM in
terms of power and thermal specifications. There are products [6,
8, 13, 54, 64] and academic research proposals [19, 30] that add
processing power to the buffer device of conventional DIMMs.
Centaur DIMM (CDIMM) [54] is a buffered DIMM, designed by
IBM to scale the memory capacity of POWER processors. CDIMM
comprises of up to 80 DDR DRAM devices and a Centaur device
that consists of a 16MB L4 cache, four memory controllers, and
other controlling logic. The TDP of an IBM Centaur buffer device
is 20W in 22nm technology. On the other hand, a modern XXV710
Intel PCIe Ethernet controller incorporating 2×40Gbps ports has
a TDP of 6.5W [39]. Therefore, considering the specification of
the current DIMM products, it is feasible to integrate a NIC chip
into the buffer device of a DIMM. Lastly, we always can connect
an external power cable to DIMMs similar to an NVDIMM [13].
Moreover, we can use a similar connector for the network cable in
NetDIMM.

5 EVALUATION
5.1 Methodology
We evaluated NetDIMM using gem5 [25] along with analytical mod-
els for PCIe interconnect [20, 59] and memory controller [37]. Be-
cause the overhead of Linux kernel software stack fades the latency
improvements of NetDIMM, we implement a set of bare-metal dri-
vers for our PCIe NIC, integrated NIC and NetDIMM models using
gem5 that resemble low-latency userspace drivers and use them for
latency evaluations. We configure gem5 as shown in Table. 1.

To model NetDIMM memory access latency, we instantiate an
isolated memory controller that models nMC shown in Fig. 6(c).
nMC model is used to access NetDIMM memory zone. A memory
request from host to NetDIMM is first queued in a host MC. Once it
is chosen to be sent to the DRAM, instead of performing a regular
memory access, after a tCMD delay, the host MC forwards the mem-
ory request to a corresponding nMC. The memory request access is
completed once the nMC sends a response to the host MC. For the
network DMA operations, the memory accesses are directly sent
to the nMC model.

For performance evaluations, we use network traces from three
Facebook production clusters. Each cluster has different packet size
and traffic patters: first cluster is for database applications with
their packet size uniformly distributed between 64 Bytes and 1514
Bytes (MTU is set to 1514 Bytes), second cluster is for webserver
where ∼90% of the packet sizes are smaller than 300 Bytes, and
third cluster is uses for hadoop servers where ∼41% of packet are
less than 100Bytes and ∼52% are 1514 Bytes [60]. The traffic pattern
of database cluster is mostly inter-cluster and inter-datacenter,
webserver is mostly inter-cluster but intra-datacenter, and hadoop
is intra-cluster. The traces are publicly available by Facebook [42].
We randomly pick one node in each cluster and use several dummy
nodes to replay the ingress and egress data traffic to and from the
node under test. We simulate the clos network topology of Facebook
datacenter using dist-gem5 [58] switch model. We assume all the
network devices in the datacenter has a bandwidth of 40Gbps. We
implement an L3 Forwarding (L3F) and a deep packet inspection
(DPI) network functions as two network functions with extremely
different packet processing behaviours to evaluate the impact of
NetDIMM on the performance of server memory subsystem. We
use the Facebook traces to exercises these network functions. L3F
forwards received packets only based on their header information
while DPI process the entire header and payload to make a forward-
ing decision.

Table 1: System configuration.

Parameters Values
Cores (# cores, freq): (8, 3.4GHz)
Superscalar 3 ways
ROB/IQ/LQ/SQ entries 40/32/16/16
Int & FP physical registers 128 & 192
Branch predictor/BTB entries BiMode/2048
Caches (size, assoc): I/D/L2 32KB,2/64KB,2/2MB,16ways
L1I/L1D/L2 latency,MSHRs 1/2/12 cycles, 2/6/16 MSHRs
DRAM DDR4-2400MHz/16GB/2 channels
Network/Switch latency/#NetDIMM 40GbE/100ns/1
PCIe performance ×8 PCIe 4 [59]

9

707

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Alian, et al.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10 60 200 500 1000 2000 8000

L
a

te
n

c
y
 (
μ

s
)

Packet Size (Bytes)

txCopy wire

rxCopy I/O reg acc

rxDMA txDMA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10 60 200 500 1000 2000 4000 8000

L
a

te
n

c
y
 (
μ

s
)

Packet Size (Bytes)

txFlush txCopy

wire rxCopy

rxInvalidate I/O reg acc

rxDMA txDMA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10 60 200 500 1000 4000 8000

L
a

te
n

c
y
 (
μ

s
)

Packet Size (Bytes)

txCopy wire

rxCopy I/O reg acc

rxDMA txDMA

Figure 11: One-way network latency breakdown for packets of various sizes when using a PCIe NIC (left), an integrated NIC
(middle), and NetDIMM (left). X-axis is not drawn to scale.

5.2 Network Latency and Bandwidth
Fig. 11 shows one-way network latency breakdown of various sized
packets between two nodes directly connected together by PCIe
NICs (left), iNICs (middle), and NetDIMMs (right). rxCopy and
txCopy respectively show the overhead of memory copy and allo-
cation at RX and TX drivers, rxDMA and txDMA show the DMA over-
head at NIC hardware, wire shows the physical layer overhead, and
I/O reg acc represents the overhead of CPU/NIC register accesses.
txFlush and rxInvalidate represent cache flush and cache invali-
date overheads of NetDIMM driver, respectively. NetDIMM reduces
the one-way network latency by 46.1%, 52.3%, and 49.6% for 64B,
256B, and 1024B packets compared with a PCIe NIC, which trans-
lates to 0.97µs, 1.33µs, and 1.54µs lower network latency, respec-
tively. As shown in Fig. 11(middle and right), because of eliminating
PCIe interconnect, I/O reg acc is significantly reduced for iNIC
and NetDIMM compared with that of PCIe NIC. NetDIMM adds
txFlush and rxInvalidate overheads to the end to end network
latency. These two components combined add 9.7∼15.8% overhead
to the total network latency. Nonetheless, on average NetDIMM
delivers 26.0% lower latency than iNIC across different packet size.
This shows that the in-memory buffer cloning not only makes up
for the overhead of CPU cache operations, but also improves the
overall network latency compared with an integrated NIC.

One caveat of NetDIMM is that unlike a PCIe NIC, it is siting
on one memory channel and it cannot utilize multiple memory
channels when communicating with the host processor and mem-
ory. However, our simulation results show that NetDIMM delivers
40Gbps bandwidth just like our PCIe and integrated NIC models.
This is not a surprise as the nominal bandwidth of a DDR4 memory
channel is 12.8GBps or 102.4Gbps, which is far more than 40Gbps.
In fact DDR5 memory channel’s projected bandwidth is twice more
than that of a DDR4 channel which can sustain any bandwidth of
what the current or under development PCIe NICs can deliver.

5.3 Performance Evaluation
Fig. 12(a) shows the average per packet network latency for each
cluster with servers using NetDIMM normalized to the latency of
PCIe NIC and iNIC configurations. We set the latency of network
switches inside the simulated clos network to 25ns, 50ns, 100ns,
and 200ns to measure the performance sensitivity of NetDIMM
to different network configurations. On average, across different
clusters, NetDIMM improves the end to end packet latency of PCIe
NIC configuration by 40.6%, 36.0%, 33.1%, and 25.3% when switch

latency is 25ns, 50ns, 100ns, and 200ns, respectively. NetDIMM
improves the average end to end packet latency of different clusters
employing iNIC by 8.1∼15.3% for different switch configurations.
As expected, NetDIMM latency reduction is more highlighted when
lower latency network switches are used. Fortunately, the latency
of network switch products is improving and today’s ultra-low
latency network switches offer port to port latency of less than
6ns [3].

Among all clusters, webserver benefits the most from NetDIMM
because over 90% of its packets are less than 300Bytes and Net-
DIMM is more effective when transferring small packets. In addi-
tion, webserver traffic is intra-datacenter and it traverses lesser
hops to reach a destination compared with database traffic that
is mostly inter-datecenter. Although hadoop traffic is local to the
cluster, its packets are skewed to either small- or MTU-sized pack-
ets, therefore, NetDIMM latency reduction is the lowest for hadoop
amongst the other two clusters.

Fig.12(b) shows the normalized memory access latency observed
by a co-running application when running a DPI and L3F on servers
with NetDIMM. The values are normalized to that of iNIC. Because
DPI make forwarding decisions based on the packet payload, the
processor should fetch the entire packet to its caches and process
both header and payload. Because an iNIC directly brings the re-
ceived packets to the LLC, it does not consume memory channel
bandwidth and if the processor is not congested, each received
packet can be processed and forwarded before it gets evicted to the
DRAM. However, L3F only need packet header to decide where to
forward a received packet, which is naturally done by nCache at
NetDIMM. Based on this packet processing behaviour, DPI and L3F
are two ends of packet processing spectrum and any other appli-
cations falls between these two. Fig. 12(b) shows that NetDIMM
increases the memory access time by 5.7%∼15.4%when running DPI
and improves it by 9.8%∼30.9% when running L3F compared with
iNIC configuration. On average, NetDIMM improves the memory
access latency by 9.3%, 2.4%, and 13.6% for database, webserver,
and hadoop clusters respectively.

6 RELATED WORKS
NovelNetworkArchitecture.Kim et al. [47, 48] proposed a caching
mechanism inside NIC to reduce data communication over PCI
channel. NIC cache is implemented using on-board DRAM devices
and is managed by the operating system. Although this network
architecture reduces PCIe traffic, incoming packets still need to
traverse PCIe interconnect to reach CPU. Furthermore, designing

10

708

NetDIMM: Low-Latency Near-Memory Network Interface Architecture MICRO ’52, October 12–16, 2019, Columbus, OH, USA

0.0

0.2

0.4

0.6

0.8

1.0

2
5
n

s

5
0
n

s

1
0
0
n

s

2
0
0
n

s

2
5
n

s

5
0
n

s

1
0
0
n

s

2
0
0
n

s

normalized to PCIe normalized to iNIC

N
o

rm
a
li

z
e
d

 L
a
te

n
c
y

database webserver hadoop

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o

rm
a
li

z
e
d

 A
c
c
 T

im
e

(a) (b)

D
P

I
D

P
I

L
3
F

g
m

e
a
n

Figure 12: (a) Per packet normalized network latency for dif-
ferent network switching latency; (b) normalized memory
access latency observed by a co-running application when
running deep packet inspection (DPI) and L3 forwarding
(L3F); using servers with NetDIMM and replaying Facebook
cluster traces.

an efficient software managed data cache is challenging. Flajslik et
al. [34] performed a detailed study on different sources of latency
overhead in the network stack and found that minimizing the num-
ber of PCIe transactions is the key in designing a low latency NIC.
They proposed a new NIC architecture called NIQ to reduce the
communication latency, especially for small packets, by employing
techniques such as embedding packets inside the buffer descriptors,
custom polling, and creative use of caching policies. FlexNIC [46]
is a network DMA interface design that reduces the packet process-
ing overhead by enabling NIC to perform simple operations on the
packets while exchanging them with the main memory. Offloading
optimization is orthogonal to NetDIMM design and can be applied
to NetDIMM to further improve the network performance. Liao
et al. [52] proposal decouples the DMA descriptor management
from other NIC functionality and moves it to processor side. This
design aims to reduce the number of PCIe transactions and handle
DMA buffers more efficiently. Larsen et al. [50] also introduced an
integrated DMA engine to minimize the descriptor management
overhead and PCIe transactions. Binkert et al. [26] proposed SINIC,
which integrates a simple NIC into the processor die. SINIC uses
PIO to exchange data between the processor, main memory and
NIC. Although SINIC is effective in reducing the network latency,
it has a high area cost. Furthermore, it does not suite for high
bandwidth communication due to the lack of a DMA engine and
other capabilities of modern NICs. Compared with these works,
NetDIMM completely removes the PCIe link between NIC and
processor, places a full-blown NIC near memory, and implements
in-memory buffer cloning which in turn solve all the overheads of
a conventional network subsystem.

Minnich et al. [57] proposed a memory-integrated NIC called
MINI, that places a NIC behind the main memory DRAM modules.
MINI implements a pseudo dual-port DRAM to share the DRAM
space between host and NIC. This requires arbitration signals be-
tween host and NIC memory controllers. MINI need to redesign
DRAM and memory controller interfaces to port to a new system
architecture. MEMONet [66] and DIMMNET-2 [65] plug a NIC into
a memory channel slot. Although these designs solve the PCIe
bottleneck, they do not share the NIC and host address space and
explicitly copy packets over the host memory channel for packet

transmission and reception. Furthermore, these NICs can be used
on a single memory channel system. On the other hand, NetDIMM
seamlessly exposes its local memory address space to the host, min-
imizes the data movement between host and NIC, supports multi-
channel memory systems, and lastly, NetDIMM does not require
any change to the processor architecture and memory subsystem.
Novel Interconnection Technology. Alian et al. [19] introduced
memory channel network (MCN) concept where they add a general-
purpose mobile processor to a DIMM and expose the near-memory
processors to the host processor as if they are connected through
an Ethernet interface. They use memory channel to interconnect
the remote nodes to the host processor. NetDIMM uses a similar
concept to connect NIC, processor, and memory together. Open
Coherent Accelerator Processor Interface (OpenCAPI), Cache Co-
herent Interconnect for Accelerators (CCIX), and Gen-Z are new
interconnect standards under development that are mainly used to
tightly couple processors and accelerators such as GPUs and FP-
GAs. CCIX is developed based on PCIe specifications and has PCIe
drawbacks. The combination of DDR and such interconnection
technologies provides unprecedented bandwidth and reduces data
movement overhead by directly accessing the memory. Although
CCIX, OpenCAPI and Gen-Z are three different standards, these are
introduced and emerged to solve similar problems and they may
merge into each other or abandoned in the future. However, DDR
standard is maintained and developed for over two decades and is
the standard interconnection technology for memory. Moreover,
the latency of point-to-point serial interconnects such as CCIX,
OpenCAPI and Gen-Z cannot match with that of a DDR memory
channel.

7 CONCLUSION
For decades, the focus of scale-out network system design was to
optimize its bandwidth. However, with the emergence of ultra-low
latency datacenter applications, a need for low latency scale-out net-
works has unfolded. In this paper, building upon the near-memory
processing concept and leveraging the asynchronous memory ac-
cess of NVDIMM-P protocol, we designed and evaluated a near-
memory NIC architecture called NetDIMM. NetDIMM integrates
a full-blown NIC in to the buffer device of an in-memory buffer-
cloning capable DIMM.We developed supporting logic and a device
driver to make the near-memory NIC available to applications run-
ning on a host processor. Finally, we implemented a new memory
zone for NetDIMM’s local memory space and developed Linux ker-
nel APIs to facilitate memory allocation from these memory zones.
Such memory allocation significantly reduced the amount of data
movement when processing network packets. Compared with a
conventional PCIe NIC, NetDIMM improves the network latency
by up to 52.9% without compromising the network bandwidth.

8 ACKNOWLEDGEMENT
This work was in part supported by an NSF grant (CNS-1705047).

11

709

MICRO ’52, October 12–16, 2019, Columbus, OH, USA Alian, et al.

REFERENCES
[1] [n. d.]. A prelude to nonvolatile DIMM technology. Future of NVDIMM-P.

https://gigglehd.com/gg/hard/1893698 Accessed: 06/30/2019.
[2] [n. d.]. Add 4GB DMA32 zone. https://lwn.net/Articles/152337/. Accessed:

2018-11-20.
[3] [n. d.]. Arista 7130 Connect Series Ultra-low latency switches. https://www.

arista.com/en/products/7130-series Accessed: 03/30/2019.
[4] [n. d.]. ConnectX-2 EN with RDMA over Ethernet (RoCE). http://www.mellanox.

com/related-docs/prod_software/ConnectX-2_RDMA_RoCE.pdf. Accessed:
2018-11-28.

[5] [n. d.]. Data Plane Development Kit. http://dpdk.org/.
[6] [n. d.]. Diablo conjures up hell of a DIMM: 128GB NAND pretend-RAM sum-

moned. https://www.theregister.co.uk/2016/07/22/diablos_devilishly_clever_
nandbased_pretend_dram_dimms_now_shipping/ Accessed: 06/30/2019.

[7] [n. d.]. High memory. https://en.wikipedia.org/wiki/High_memory
[8] [n. d.]. Intel announces Optane DC Persistent Memory DIMMs.

https://www.techspot.com/news/79483-intel-announces-optane-dc-persistent-
memory-dimms.html Accessed: 06/30/2019.

[9] [n. d.]. Intel Data Direct I/O Technology (Intel DDIO): A Primer. https://www.
intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html

[10] [n. d.]. Iperf: The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/
[11] [n. d.]. Large Send Offload. https://en.wikipedia.org/wiki/Large_send_offload.

Accessed: 2018-11-28.
[12] [n. d.]. Low-latency Ethernet device polling. https://lwn.net/Articles/551284/.

Accessed: 2018-11-28.
[13] [n. d.]. MicronâĂŹs NVDIMM Delivers Persistent Memory. https:

//www.electronicdesign.com/industrial-automation/micron-s-nvdimm-
delivers-persistent-memory Accessed: 06/30/2019.

[14] [n. d.]. Open Fast Path. https://openfastpath.org/. Accessed: 2018-11-28.
[15] [n. d.]. Overcoming System Memory Challenges with Persistent Memory and

NVDIMM-P. https://www.jedec.org/sites/default/files/Bill_Gervasi.pdf. Ac-
cessed: 2018-12-5.

[16] [n. d.]. Single- and Multichannel Memory Modes. https://www.intel.com/
content/www/us/en/support/articles/000005657/boards-and-kits.html Accessed:
06/30/2019.

[17] [n. d.]. TCP frame. https://en.wikipedia.org/wiki/Transmission_Control_Protocol.
Accessed: 2018-03-25.

[18] [n. d.]. Wall Street’s Quest To Process Data At The Speed Of
Light. https://www.informationweek.com/wall-streets-quest-to-process-data-
at-the-speed-of-light/d/d-id/1054287. Accessed: 2018-12-3.

[19] Mohammad Alian, Seung Won Min, Hadi Asgharimoghaddam, Ashutosh Dhar,
Dong Kai Wang, Thomas Roewer, Adam McPadden, Oliver O’Halloran, Deming
Chen, Jinjun Xiong, Daehoon Kim, Wen-mei Hwu, and Nam Sung Kim. 2018.
Application-Transparent Near-Memory Processing Architecture with Memory
Channel Network. In The 51st Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE.

[20] Mohammad Alian, Krishna Parasuram Srinivasan, and Nam Sung Kim. 2018.
Simulating PCI-Express Interconnect for Future System Exploration. In 2018 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, 168–178.

[21] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data
center tcp (dctcp). ACM SIGCOMM computer communication review 41, 4 (2011),
63–74.

[22] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is more: trading a little bandwidth for ultra-
low latency in the data center. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association, 19–19.

[23] Motti Beck and Michael Kagan. 2011. Performance evaluation of the RDMA over
ethernet (RoCE) standard in enterprise data centers infrastructure. In Proceedings
of the 3rd Workshop on Data Center-Converged and Virtual Ethernet Switching.
International Teletraffic Congress, 9–15.

[24] Theophilus Benson, Aditya Akella, and David AMaltz. 2010. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 267–280.

[25] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture
News 39, 2 (2011), 1–7.

[26] Nathan L Binkert, Ali G Saidi, and Steven K Reinhardt. 2006. Integrated network
interfaces for high-bandwidth TCP/IP. ACM Sigplan Notices 41, 11 (2006), 315–
324.

[27] Eduard Bröse. [n. d.]. ZeroCopy: Techniques Benefits and Pitfalls. ([n. d.]).
[28] Ravi Budruk, Don Anderson, and Tom Shanley. 2004. PCI express system architec-

ture. Addison-Wesley Professional.
[29] Willem de Bruijn and Eric Dumazet. [n. d.]. sendmsg copy avoidance with

MSG_ZEROCOPY. ([n. d.]).

[30] A. Farmahini-Farahani, J. Ahn, K. Morrow, and N. S. Kim. 2015. NDA: Near-
DRAM Acceleration Architecture Leveraging Commodity DRAM Devices and
Standard Memory Modules. In HPCA.

[31] Wu-chun Feng, Pavan Balaji, Chris Baron, Laxmi N Bhuyan, and Dhabaleswar K
Panda. 2005. Performance characterization of a 10-Gigabit Ethernet TOE. In High
Performance Interconnects, 2005. Proceedings. 13th Symposium on. IEEE, 58–63.

[32] Daniel Firestone. 2017. {VFP}: A Virtual Switch Platform for Host {SDN} in the
Public Cloud. In 14th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 17). 315–328.

[33] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: SmartNICs in the public cloud.
In 15th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 18). 51–66.

[34] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design for Low
Latency Request-Response Protocols.. In USENIX Annual Technical Conference.
333–346.

[35] Eric S Fukuda, Hiroaki Inoue, Takashi Takenaka, Dahoo Kim, Tsunaki Sadahisa,
Tetsuya Asai, andMasatoMotomura. 2014. Cachingmemcached at reconfigurable
network interface. In Field Programmable Logic and Applications (FPL), 2014 24th
International Conference on. IEEE, 1–6.

[36] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication. ACM,
29–42.

[37] Andreas Hansson, Neha Agarwal, Aasheesh Kolli, Thomas Wenisch, and Anirud-
dha N Udipi. 2014. Simulating DRAM controllers for future system architecture
exploration. In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 201–210.

[38] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. 2005. Direct cache access for high
bandwidth network I/O. In Computer Architecture, 2005. ISCA’05. Proceedings.
32nd International Symposium on. IEEE, 50–59.

[39] Intel. 2018. Intel Ethernet Controller X710/ XXV710/XL710 Datasheet.
[40] Intel. 2018. Intel Memory Latency Checker v3.5.
[41] Van Jacobson. 1988. Congestion avoidance and control. In ACM SIGCOMM

computer communication review, Vol. 18. ACM, 314–329.
[42] James Hongyi Zeng. [n. d.]. Data Sharing on traffic pattern inside Facebook

datacenter network. https://research.fb.com/data-sharing-on-traffic-pattern-
inside-facebooks-datacenter-network/ Accessed: 03/30/2019.

[43] Hankook Jang, Sang-Hwa Chung, Dong Kyue Kim, and Yun-Sung Lee. 2011. An
Efficient Architecture for a TCP Offload Engine Based on Hardware/Software
Co-design. J. Inf. Sci. Eng. 27, 2 (2011), 493–509.

[44] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A Highly Scalable
User-level TCP Stack for Multicore Systems. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation (NSDI’14). USENIX
Association, Berkeley, CA, USA, 489–502.

[45] Anuj Kalia Michael Kaminsky and David G Andersen. 2016. Design guidelines for
high performance RDMA systems. In 2016 USENIX Annual Technical Conference.
437.

[46] Antoine Kaufmann, SImon Peter, Naveen Kr Sharma, Thomas Anderson, and
Arvind Krishnamurthy. 2016. High performance packet processing with flexnic.
In ACM SIGARCH Computer Architecture News, Vol. 44. ACM, 67–81.

[47] Hyong-youb Kim, Vijay S Pai, and Scott Rixner. 2002. Increasing web server
throughput with network interface data caching. ACM SIGPLAN Notices 37, 10
(2002), 239–250.

[48] Hyong-youb Kim, Scott Rixner, and Vijay S Pai. 2005. Network interface data
caching. IEEE Trans. Comput. 54, 11 (2005), 1394–1408.

[49] Ramana Rao Kompella, Kirill Levchenko, Alex C Snoeren, and George Varghese.
2009. Every microsecond counts: tracking fine-grain latencies with a lossy differ-
ence aggregator. In ACM SIGCOMM Computer Communication Review, Vol. 39.
ACM, 255–266.

[50] Steen Larsen and Ben Lee. 2011. Platform IO DMA transaction acceleration. In
International Conference on Supercomputing (ICS) Workshop on Characterizing
Applications for Heterogeneous Exascale Systems (CACHES).

[51] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Siddharth Kulkarni.
2009. Architectural breakdown of end-to-end latency in a TCP/IP network.
International journal of parallel programming 37, 6 (2009), 556–571.

[52] Guangdeng Liao, Xia Znu, and Laxmi Bnuyan. 2011. A new server I/O architecture
for high speed networks. In High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on. IEEE, 255–265.

[53] Kevin Lim, DavidMeisner, Ali G Saidi, Parthasarathy Ranganathan, and Thomas F
Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for
memcached. In ACM SIGARCH Computer Architecture News, Vol. 41. ACM, 36–47.

[54] P. J. Meaney, L. D. Curley, G. D. Gilda, M. R. Hodges, D. J. Buerkle, R. D. Siegl,
and R. K. Dong. 2015. The IBM z13 memory subsystem for big data. IBM Journal
of Research and Development 59, 4/5 (July 2015), 4:1–4:11.

12

710

https://gigglehd.com/gg/hard/1893698
https://lwn.net/Articles/152337/
https://www.arista.com/en/products/7130-series
https://www.arista.com/en/products/7130-series
http://www.mellanox.com/related-docs/prod_software/ConnectX-2_RDMA_RoCE.pdf
http://www.mellanox.com/related-docs/prod_software/ConnectX-2_RDMA_RoCE.pdf
http://dpdk.org/
https://www.theregister.co.uk/2016/07/22/diablos_devilishly_clever_nandbased_pretend_dram_dimms_now_shipping/
https://www.theregister.co.uk/2016/07/22/diablos_devilishly_clever_nandbased_pretend_dram_dimms_now_shipping/
https://en.wikipedia.org/wiki/High_memory
https://www.techspot.com/news/79483-intel-announces-optane-dc-persistent-memory-dimms.html
https://www.techspot.com/news/79483-intel-announces-optane-dc-persistent-memory-dimms.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://iperf.fr/
https://en.wikipedia.org/wiki/Large_send_offload
https://lwn.net/Articles/551284/
https://www.electronicdesign.com/industrial-automation/micron-s-nvdimm-delivers-persistent-memory
https://www.electronicdesign.com/industrial-automation/micron-s-nvdimm-delivers-persistent-memory
https://www.electronicdesign.com/industrial-automation/micron-s-nvdimm-delivers-persistent-memory
https://openfastpath.org/
https://www.jedec.org/sites/default/files/Bill_Gervasi.pdf
https://www.intel.com/content/www/us/en/support/articles/000005657/boards-and-kits.html
https://www.intel.com/content/www/us/en/support/articles/000005657/boards-and-kits.html
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287
https://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287
https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://research.fb.com/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/

NetDIMM: Low-Latency Near-Memory Network Interface Architecture MICRO ’52, October 12–16, 2019, Columbus, OH, USA

[55] Micron. [n. d.]. 3D XPointTM Technology. https://www.micron.com/products/
advanced-solutions/3d-xpoint-technology.

[56] Micron. [n. d.]. Micron DDR4 SDRAM Datasheet. https://www.micron.com/-
/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_
sdram.pdf

[57] Ronald Minnich, Dan Burns, and Frank Hady. 1995. The memory-integrated
network interface. IEEE Micro 15, 1 (1995), 11–19.

[58] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst, Daehoon
Kim, and Nam Sung Kim. 2017. dist-gem5: Distributed simulation of computer
clusters. In Performance Analysis of Systems and Software (ISPASS), 2017 IEEE
International Symposium on. IEEE, 153–162.

[59] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew WMoore. 2018. Understanding PCIe performance for
end host networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. ACM, 327–341.

[60] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the 2015
ACMConference on Special Interest Group on Data Communication (SIGCOMM ’15).
ACM, New York, NY, USA, 123–137. https://doi.org/10.1145/2785956.2787472

[61] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-
nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry. 2013. RowClone: Fast and Energy-
Efficient In-DRAM Bulk Data Copy and Initialization. In MICRO.

[62] Sameer Seth and M Ajaykumar Venkatesulu. 2009. TCP/IP Architecture, Design,
and Implementation in Linux. Vol. 68. John Wiley & Sons.

[63] Jia Song and Jim Alves-Foss. 2012. Performance review of zero copy techniques.
International Journal of Computer Science and Security (IJCSS) 6, 4 (2012), 256.

[64] Bharat Sukhwani, Thomas Roewer, Charles L Haymes, Kyu-Hyoun Kim, Adam J
McPadden, Daniel M Dreps, Dean Sanner, Jan Van Lunteren, and Sameh Asaad.
2017. Contutto: A novel fpga-based prototyping platform enabling innovation
in the memory subsystem of a server class processor. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture. ACM, 15–26.

[65] N Tanabe, H Nakajyo, H Amano, M Yoshimi, A Kitamura, and T Miyashiro.
2006. DIMMnet-2: A reconfigurable board connected into a memory slot. In
2006 International Conference on Field Programmable Logic and Applications. IEEE,
1–4.

[66] Noboru Tanabe, Junji Yamamoto, Hiroaki Nishi, Tomohiro Kudoh, Yoshihiro
Hamada, Hironori Nakajo, and Hideharu Amano. 2000. MEMOnet: Network
interface plugged into a memory slot. In Proceedings IEEE International Conference
on Cluster Computing. CLUSTER 2000. IEEE, 17–26.

[67] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu Chen. 2010. DMA cache: Using
on-chip storage to architecturally separate I/O data from CPU data for improving
I/O performance. In International Symposium on High Performance Computer
Architecture (HPCA). 1–12.

[68] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argyraki,
Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling SLOs in Network
Function Virtualization. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). USENIX Association.

[69] Wen-FongWang, Jun-YauWang, and Jin-Jie Li. 2005. Study on enhanced strategies
for TCP/IP offload engines. In Parallel and Distributed Systems, 2005. Proceedings.
11th International Conference on, Vol. 1. IEEE, 398–404.

13

711

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://doi.org/10.1145/2785956.2787472

	Abstract
	1 Introduction
	2 Background
	2.1 Network Architecture
	2.2 Asynchronous Memory Access
	2.3 Linux Memory Management

	3 Motivation
	4 Network-Attached DIMM
	4.1 NetDIMM Hardware Architecture
	4.2 NetDIMM Software Architecture
	4.3 Physical Feasibility of NetDIMM

	5 Evaluation
	5.1 Methodology
	5.2 Network Latency and Bandwidth
	5.3 Performance Evaluation

	6 Related Works
	7 Conclusion
	8 Acknowledgement
	References

