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A n E n er g y- ef fi ci e nt Pr o gr a m m a bl e Mi x e d- Si g n al
A c c el er at or f or M a c hi n e- L e ar ni n g Al g orit h m s

Mi n g u K a n g § *, Pr a k al p Sri v a st a v a † *,
Vi kr a m A d v e † , N a m S u n g Ki m† , a n d N ar e s h R S h a n b h a g†

† U ni v er sit y of Illi n oi s, Ur b a n a- C h a m p ai g n; § I B M T J W at s o n R e s e ar c h C e nt er, Y or kt o w n H ei g ht s;

✦

A b str a ct — W e pr o p o s e P R O MI S E, t h e fir st e n d-t o- e n d d e si g n of a

P R O gr a m m a bl e MI x e d- Si g n al a c c El er at or fr o m I n str u cti o n S et Ar c hit e c-

t ur e (I S A) t o hi g h-l e v el l a n g u a g e c o m pil er f or a c c el er ati o n of di v er s e

m a c hi n e l e ar ni n g ( M L) al g orit h m s. W e t a k e a d v a nt a g e of t h e s u p eri or

e n er g y ef fi ci e n c y fr o m a n al o g/ mi x e d- si g n al pr o c e s si n g b y e x pl oiti n g t h e

i n h er e nt err or t ol er a n c e of M L al g orit h m s. W e fir st pr o p o s e a n I S A t o

s u p p ort o p er ati o n s p er v a si v e i n M L al g orit h m s wit h a P R O MI S E ar c hi-

t e ct ur e b a s e d o n sili c o n- v ali d at e d c o m p o n e nt s. S e c o n d, w e d e v el o p a

c o m pil er t h at c a n t a k e a hi g h-l e v el pr o gr a m mi n g l a n g u a g e ( J uli a) a n d

g e n er at e P R O MI S E c o d e wit h a n I R d e si g n. T hir d, w e s h o w h o w t h e

c o m pil er c a n m a p a n a p pli c ati o n-l e v el err or t ol er a n c e s p e ci fi c ati o n f or

n e ur al n et w or k s d o w n t o l o w-l e v el h ar d w ar e p ar a m et er s t o mi ni mi z e

e n er g y c o n s u m pti o n. P R O MI S E a c hi e v e s 2. 3 × d el a y a n d 4. 5 × e n er g y

s a vi n g s, a n d 1 4 % a d diti o n al e n er g y s a vi n g s wit h c o m pil er o pti mi z ati o n,

o n a v er a g e f or di v er s e M L al g orit h m s a s c o m p ar e d t o di git al A SI C s.

1 I N T R O D U C TI O N

E m e r gi n g a p pli c ati o n s s u c h a s i n h e alt h c a r e, s u r v eil-
l a n c e / m o nit o ri n g a n d ot h e r s l e v e r a g e t h e d e ci si o n m a k-
i n g c a p a bilit y b a s e d o n m a c hi n e l e a r ni n g ( M L) al g o rit h m s.
T h o s e al g o rit h m s h a v e d e m a n d e d hi g h c o m p uti n g c a p a-
bilit y t o p r o c e s s l a r g e v ol u m e of d at a wit h li mit e d e n e r g y
b u d g et. I n o r d e r t o i m p r o v e e n e r g y ef fi ci e n c y, r e s e a r c h e r s
h a v e p r o p o s e d a n al o g / mi x e d- si g n al a c c el e r at o r s [ 1], [ 2].
T h e s e r el y o n s m all- si g n al c o m p ut ati o n w hi c h i s l e s s p r e ci s e
b ut m o r e e n e r g y ef fi ci e nt t h a n t r a diti o n al l a r g e- si g n al c o m-
p ut ati o n i n t h e di git al d o m ai n ( S e e Fi g. 1). T h e r ef o r e, t h e y
a r e s uit a bl e f o r M L i nf e r e n c e w h e r e t h e a p pli c ati o n it s elf i s
t ol e r a nt t o s u c h i m p r e ci si o n.

H o w e v e r, t h e s e a c c el e r at o r s l a c k a p r o g r a m m a bl e a r c hi-
t e ct u r e, i n st r u cti o n s et s, o r c o m pil e r s u p p o rt n e c e s s a r y f o r
s u p p o rti n g hi g h-l e v el p r o g r a m mi n g l a n g u a g e s. M o r e o v e r,
t h e s m all- si g n al c o m p ut ati o n s c r e at e e n e r g y v s. a c c u r a c y
t r a d e- off s t h at m u st b e c o nt r oll e d f r o m t h e a p pli c ati o n l e v el
i n o r d e r t o e n s u r e t h at a c c u r a c y g o al s a r e m et. D e si g ni n g
h a r d w a r e a r c hit e ct u r e a n d i n st r u cti o n s et s u p p o rt t o e x p o s e
t h e a v ail a bl e h a r d w a r e k n o b s t o s oft w a r e i n a c o nt r oll a bl e
w a y r e q ui r e c a r ef ul h a r d w a r e, I S A a n d s oft w a r e d e si g n.

T a c kli n g t h e s e c h all e n g e s, w e p r o p o s e P R O MI S E, t h e
fi r st e n d-t o- e n d d e si g n of a P R O g r a m m a bl e MI x e d- Si g n al

* First t w o a ut h ors c o ntri b ute d e q u all y t o t he p a per
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Fi g. 1: Bl o c k di a g r a m s a n d r e a d o p e r ati o n s wit h bitli n e
s wi n g ( ∆ V B L ): ( a) c o n v e nti o n al s y st e m, ( b) C o m p ut e M e m-
o r y ( C M), wit h bit p r e ci si o n of s c al a r w ei g ht w , B = 4 a n d
c ol u m n m u x r ati o L = 4 .

a c c El e r at o r f r o m I n st r u cti o n S et A r c hit e ct u r e (I S A) t o hi g h-
l e v el l a n g u a g e c o m pil e r f o r a c c el e r ati o n of di v e r s e M L al g o-
rit h m s. T hi s a rti cl e m a k e s t h e f oll o wi n g m aj o r c o nt ri b uti o n s:

• We p r o p o s e a n I S A wit h a P R O MI S E a r c hit e ct u r e
b uilt wit h sili c o n- v ali d at e d c o m p o n e nt s.

• We d e v el o p a c o m pil e r t h at t a k e s a hi g h-l e v el p r o-
g r a m mi n g l a n g u a g e (J uli a) a n d g e n e r at e P R O MI S E
c o d e.

• T h e c o m pil e r m a p s a n a p pli c ati o n-l e v el e r r o r t ol e r-
a n c e s p e ci fi c ati o n d o w n t o l o w-l e v el h a r d w a r e p a-
r a m et e r s ( s wi n g v olt a g e s ∆ V B L ) t o mi ni mi z e e n e r g y
c o n s u m pti o n.

• I n t hi s e xt e n d e d a rti cl e, w e s h o w h o w t o m a xi mi z e
t h e t h r o u g h p ut of d e e p n e u r al n et w o r k ( D N N) b y
o pti m all y m a p pi n g t h e al g o rit h m t o a m ulti- b a n k
st r u ct u r e.

• We al s o e xt e n d o u r r e s ult s f r o m [ 3] t o e n a bl e
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the convolutional neural network (CNN) based on
PROMISE ISA and compiler infrastructure.

• Analog kernel data reuse is enabled by employing a
charge-recycling mixed-signal multiplier [4].

2 BACKGROUND

In this section, we identify commonalities across various ML
inference algorithms and describe a mixed-signal accelerator
well-suited for ML algorithms.

2.1 ML Algorithms

yj = f (D(Wj , X)) = f

(
N∑
i=1

d(w[j][i], x[i])

)
(1)

The ML algorithms involve repeated Vector Distance
(VD) computations denoted by D(Wj , X) between N -
dimensional input vector X and weight vector W . Com-
monly used VD computations include the dot product, L1
distance, L2 distance, and Hamming distance.

These ML algorithms have the following three data-
flow properties in common. (P1) A single VD is ob-
tained by first computing N element-wise Scalar Distances
(SDs) (d(w[j][i], x[i])) followed by an aggregation step
such as a sum generating the final scalar VD D(W,X) =∑N

i=1 d(w[j][i], x[i]). (P2) The VD between a single query
vector X and multiple (say No) weight vectors Wjs (j =
1, 2, ...No) needs to be computed. (P3) The VD goes through
a simple decision function f() such as sigmoid or ReLu to
generate the decision yj .

2.2 Mixed-Signal ML Accelerator

The compute memory (CM) [1], [2] deeply embeds energy-
efficient analog computations into the periphery of con-
ventional bitcell array. More specifically, CM stores a B-bit
word in a column-major format (i.e., a word is stored in B
bitcells connected to the same bitline (BL) across B rows),
as shown in the red box of Fig. 1(b)) whereas conventional
memory does in a row-major format (Fig. 1(a)). After BLs
are pre-charged to VPRE for a read cycle, CM simultane-
ously asserts Bw wordlines (WLs). The durations of these
asserted WLs are proportional to the binary weight values
of the corresponding bit positions in a given B-bit word
with a binary Pulse-Width Modulated (PWM) WL signaling
scheme (Fig. 1(b)). Subsequently, each BL develops a voltage
drop (∆VBL) proportional to a binary-weighted sum of B
bits in the corresponding column, which constitutes the first
processing stage of CM: (S1) analog Read (aREAD). aREAD
can not only seamlessly convert digital values stored in
memory into analog values for subsequent analog compu-
tation stages, but also fetches highly condensed B-bit in-
formation per BL, significantly improving energy efficiency
and throughput.

For ML algorithms, CM stores pre-trained Wj in its
bitcells, then it can serve as a very energy-efficient mixed-
signal ML accelerator with the following stages: (S2) analog
Scalar Distance (aSD) implementing scalar distance com-
putations right next to the bitcell array; and subsequent
analog Vector Distance (aVD) performing the aggregation

(
∑N

i=1 in (1)) by simply charge-sharing all the analog out-
puts from aSD blocks in one shot; (S3) Analog-to-Digital
Conversion (ADC) converting the analog output of aVD into
a digital word, and (S4) ThresHold (TH) generating a final
decision from the digital word based on a given decision
function f() in (1). Note that the aSD stage can support
scalar comparison, multiplication, subtraction, addition, and
absolute computation using column pitch-matched analog
circuitry, while the ADC and TH stages consume negligible
portion of total energy as they operate infrequently (once
after ≥128 aSD operations). It has been shown that the CM
[1], [2] offers significantly lower energy consumption and
delay than digital ML accelerators, at the expense of limited
reconfigurability. Furthermore, the absence of an instruction
set limits its use to short sequence of operations with a
single computation kernel, single memory bank, and fixed
parameters such as a vector length.

3 INSTRUCTION SET ARCHITECTURE FOR MIXED-
SIGNAL ACCELERATORS

In this section, we present PROMISE architecture, discuss
challenges in developing ISA, and then propose ISA.

3.1 PROMISE Architecture

Single Bank Architecture: PROMISE is built on CM
(Fig. 2(a)), where the standard SRAM read and write func-
tionalities are preserved (at the bottom) for additional flexi-
bility. Along with (S1) aREAD, (S2) aSD and aVD, (S3) ADC,
and (S4) TH described in Section 2, PROMISE comprises
X-REG and CTRL to transform CM into a programmable
mixed-signal accelerator. The detailed specification is as
follows.

A PROMISE bank consists of 256 (= NCOL) columns.
An 8-bit (= B) word is distributed across four consecutive
rows and two neighboring columns which store 4-bit MSB
and 4-bit LSB to enhances linearity through a sub-ranged
read technique [1]. That is, aREAD reads out a 128-element
vector of digital values and seamlessly converts it to that
of analog values. Furthermore, aREAD can simultaneously
perform element-wise addition or subtraction withX , a 128-
element vector representing the input operand for inference
in (1). aSD and aVD are architected to perform operations
on 128 analog values. ADC consists of eight 8-bit ADCs
which operate in parallel. Note that the aVD output of
each bank is digitized by these ADCs to prevent the noise
from analog operations accumulating over the iterations.
This digitization also enables a multiple-bank architecture,
where reliable data transfers between banks are required.
One of the ADCs operates just once per aVDoperation
for an 128-element vector computation thereby amortizing
the ADC energy across multiple arithmetic operations. TH
implements non-linear operations such as sigmoid not only
to compute the decision functions f() in (1) but also to
aggregate intermediate computed values when the vector
length N is larger than 128.

Lastly, X-REG is a digital block similar to a vector register
file, holding eight 128-element vectors representing eight
X values. CTRL is a controller to generate enable signals
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(a)

(b)

(c)

(d)

(e)

Fig. 2: PROMISE instruction set architecture [3]: (a) a single-bank architecture, (b) instruction set with available operations
of each Class, (c) compiler pipeline, and algorithm mapping of (d) deep neural network (multi-layer perceptron), (e)
convolutional neural network (CNN).

for the aforementioned components based on a given in-
struction and make CM function as a programmable mixed-
signal accelerator. PROMISE can be extended to a multi-
bank structure, which has multiple (up to eight in this
work) PAGEs, each of which includes four banks. Thus, long
(>128) vectors can be distributed across multiple banks for
parallel processing.

3.2 PROMISE Instruction Set

The combination of algorithmic diversity and mixed-signal
operations in PROMISE creates many challenges for ISA
design choices. To support a broad range of ML algo-
rithms, each stage needs to support diverse programmable
operations. The analog processing also imposes intrinsic
sequentiality in a chain of processing stages. Furthermore,
two consecutive stages need to be physically closely placed
to avoid substantial degradation in analog voltage from
one stage to the next. We explore an ISA considering these
constraints.

Instruction Format: We propose a wide-word macro
instruction format, which is referred to as Task. Akin to a
Very-Large Instruction Word (VLIW), a single Task consists
of multiple operations, except that the operations are sequential
and not parallel as in VLIW architectures. As depicted in
Fig. 2(b), the four Class fields specify four operations for
four pipelined stages of PROMISE, while the three other
fields, OP_PARAM, RPT_NUM and MULTI_BANK configure all
or specific Class operations. More specific descriptions of
these seven fields are as follows.

Operating Parameter Field: OP_PARAM configures op-
erating parameters of Class operations in a given Task,
facilitating flexible programmability. This field includes the
source and destination addresses for Class-1/2/4, and
SWING parameter, which controls BL swing ∆VBL, e.g., 111
allows 30 mV/LSB whereas 001 allows 5 mV/LSB. This
parameter is a key knob to control the trade-off between
energy and accuracy under software control.

Class Fields: Class-1 defines five possible memory
operations. READ, WRITE, or aREAD makes CM perform
a digital read, digital write, or analog read operation to
a compute-memory address specified by OP_PARAM. aADD
or aSUB fuses an analog read and an element-wise analog
addition or subtraction into a single operation where two
vector operands come from compute-memory and X-REG,
respectively, whose addresses are specified by OP_PARAM.

Class-2 specifies a composition of one of six possible
aSD operations with aVD operation for aggregation. Specif-
ically, aSD operating on a computed value from Class-1
supports three unary operations: compare, absolute,
and square and three binary operations: sign_mult,
unsign_mult, and cr_mult where the other operand
comes from an X-REG address specified by OP_PARAM.

Class-3 and Class-4 control whether an ADC should
be performed or not and specify one of seven possible TH
operations, respectively, as listed in Fig. 2(b).

Loop and Multi-Bank Control Field: RPT_NUM specifies
how many times the Task should be executed to pro-
cess multiple Wjs. The CM and X-REG addresses are in-
cremented sequentially every iteration. MULTI_BANK com-
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prises 2 bits and specifies the number of banks used to
distribute long (>128) vectors for parallel processing.

3.3 Algorithm Mapping
A ML algorithm sometimes requires several Tasks for
different distance metrics. We present three examples: 1)
template matching, 2) DNN (multi-layer perceptron), 3)
CNN, and 4) kernel data reuse technique in analog domain
for energy saving in neural networks.

3.3.1 Template Matching
Template matching employs L1 distance kernel to find the
closest N -pixel image out of many candidate images (Wj)
to input query image (X) by processing across multiple
banks in parallel. In this example, N = 512, 127 candidate
images, and four banks are chosen. The template matching
is mathematically defined as:

jopt = arg minj

512∑
i=1

|x[i]− w[j, i]| (2)

The corresponding Task instruction consists of: RPT_NUM
= 127 specifying the number of candidate images;
MULTI_BANK = 4 to distribute 512 pixels into four banks
(128 pixels per bank) for parallel processing; Class-1:
aSUBT to perform element-wise subtraction of X with Wj ;
Class-2: absolute with aggregation; and Class-3:
ADC followed by a digital-domain Class-4: min to com-
pute f() = arg minj .

3.3.2 Deep Neural Network (Multi-layer Perceptron)
Multi-layer perceptron (MLP) consists of multiplications
between vector (activation X) and matrix (weight kernels
Wjs). The Wjs do not change during inference whereas
Xs change over streamed inputs. Therefore, weights and
activations are stored in SRAM bitcell array and X-REG,
respectively. For the vector multiplication between X
and Wj to compute the j-th pixel of output activation,
Class-1:aREADs, Class-2:sign_mult, Class-3:ADC,
and Class4:sigmoid are chosen with RPT_NUM to be the
number of pixels in the output layer. To maximize the par-
allelism, multi-bank can be exploited as an example shown
in Fig. 2(d), where MLP with four layers (512-180-120-16) is
processed across eight banks, e.g., the first (X21) and second
(X22) halves of activations in the second layer are computed
in parallel from bank1-4 (where X21 = X1 ·W11) and bank5-
8 (X22 = X1 · W12), respectively, by having two sets of
X1s (copy1 and 2). Similarly, activations in the following
layers are also stored redundantly. To support this, Class-4
should be able to have multiple destination addresses by
OP_PARAM. The optimized bank-level parallelism achieves
more than 7 times better throughput in this example as
compared to naive mapping, where weights are stored
sequentially in bank1-8.

3.3.3 Convolutional Neural Network (CNN)
A convolution operation to compute an output activation
can be transformed as a matrix multiplication as shown in
(3) and (4):

psum[u, v] =
128∑
i=1

wij [v]xi[u] (3)

where wij [v] is the v-th element in the kernel from i-th
(i = 1 − 128 in this example) input channel to j-th output
channel as shown in Fig. 2(e), where pixel index of kernel
v = 1 − 9 for 3×3 kernel size in this example. Similarly,
xi[u] is the u-th pixel of the input feature map in the i-th
channel. Figure 2(e) omits output channel index j for sim-
plicity. For the first Task, Class-1: aREADs, Class-2:
sign_mult, Class-3: ADC, Class4: no operation
are chosen to enable convolution. Here, 128 operands
wi=1:128,j [v] are stored in the same row of bitcell array
whereas xi=1:128[u] are stored in the row of X-REG. The
psum[u, v] with all combinations [u, v] are computed. Then,
the p-th pixel of the j-th output feature map yj [p] is com-
puted as follows:

yj [p] = ReLU

 ∑
u,v∈wid

psum[u, v]

 (4)

where u, v ∈ wid defines the coordinates in input feature
map (u) and weight kernel (v) within the current convo-
lution window, e.g., (u, v) ∈ wid : (2, 1), (3, 2), ..., (14, 9),
which are nine pairs covered by blue box in Fig. 2(e). For
3×3 kernel size, the

∑
u,v∈wid processes the accumulation

over nine psums from (4) requiring RPT_NUM = 9 and
Class4: accumulation, Class1-3: no operation for
the second Task, where the addresses of psums in X-REG
are specified by OP_PARAM. For the third Task, Class-4:
ReLu is chosen. For sub-sampling layers, Class-4: mean or
max are used for average or max pooling, respectively.

3.3.4 Analog Kernel Reuse in Neural Networks
Kernel reuse is widely used in digital accelerators for neural
network algorithms to minimize the cost from data move-
ment. For example, the fetched weight kernel Wj from
bitcell array can be stored in the register and reused over
multiple streamed-in input Xs without re-accessing the
bitcell array in Section 3.3.2, which saves the memory access
energy at the cost of latency and higher register capacity
requirement. The kernel reuse can be also applied in CNNs,
as the fetched wij [v] from bitcell array can be reused for the
multiplications with many operands, i.e., xi[u = 1, 2, ..., 25]
to compute all of psum[u, v]s in (3).

However, the CM needs to repeat Class-1:aREAD
stage every time as the charge-sharing mechanism in
the subsequent Class-2:sign_mult stage destructs the
fetched analog value of wij [v]. To enable the kernel reuse
in analog domain, the charge-recycling multiplier in [4] is
employed (with Class-2:cr_mult), where the fetched
analog level is sampled in the column pitch-matched capac-
itor and reused over multiple streamed-in operands without
being destructed. Measured results in [4] shows that the
sampled value can be reused up to 200 times until the analog
level drops by 10% due to leakage. On the other hand, the
multiplier requires additional training to compensate the
offset α as it generates the output (w + α) ∗ x instead of
w ∗ x.

4 COMPILER

This section describes how PROMISE compiler translates a
given ML algorithm described in a high-level language into
the PROMISE ISA.
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TABLE 1: Benchmarks for PROMISE Simulations.

Algorithm Application Database Data
size (N)

Problem
size

Instructions
(Class 1,2,3,4 )

𝑾 𝑿 Comments
Precisions
(𝑾, 𝑿) for  
CONV-OPT 

Matched
filtering

Event
(gun-shot)
Detection

Gun-shot 
mono
sound

(8-bit)
256
512
1024

100 test vectors

aREAD
sign_mult

ADC
threshold

Filter
weights

Test
samples 5-bits

Template 
matching
(L1 / L2)

Face
Recognition MIT-CBCL

(8-bit)
16×16
22×23
32×33

256
Candidates

aSUBT
L1:abs/L2:sq

ADC
min

Candidate
faces

Test
samples

Nearest candidate
based on either
L1 or L2 distance

6-bits

Linear SVM Face
Detection

MIT-CBCL (8-bit)
16×16

2 categories, 2000 
training samples, 
858 test samples

aREAD
sign_mult

ADC
threshold 

Weights Test
samples

Face data converted into a
vector, linear SVM

applied on it
6-bits

k-NN
(L1 / L2)

Hand-written
character
recognition

MNIST

(8-bit)
16×16
22×23
32×33

10 categories, 54210 
training samples,
200 test samples

aSUBT
L1:abs/L2:sq

ADC
min

Training 
samples

Test
samples

Sorting is done in external
processor after 

processing on MATI
6-bits

Feature 
extraction 
(PCA)

Face
Detection

MIT-CBCL (8-bit)
16×16

2000 samples
aREAD

sign_mult
ADC

Weights Samples Four features used for
face detection based on PCA

6-bits

Linear 
regression

Modeling
linear

predictor

Synthetic
data

(8-bit)
2 dim.

8192 samples
aREAD

sq/sign_mult
ADC

accumulation

T1: 𝑈
T2: 𝑉
T3: 𝑈
T4: 𝑈

T4: 𝑉

2-D linear regression : 
𝑠𝑙𝑜𝑝𝑒 = 𝔼[(./.0)(2/23)]

𝔼[ ./.0 5]
Reformulated as :
𝑠𝑙𝑜𝑝𝑒 = 6.2/6.023

	6.5/6.05

𝑦-𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑣̅ − 𝑠𝑙𝑜𝑝𝑒 A 𝑢3
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4.1 Code Generation

Figure 2(c) shows the PROMISE compiler pipeline for Julia.
There are three parts: (1) a front end to map Julia applica-
tions to the IR, (2) energy optimizations on the IR, and (3)
a back end to translate the IR to the PROMISE ISA. The IR,
energy optimizations and back end are all designed to be
independent of the source-level language, to make it easily
extendable to other languages or DSLs.

Frontend (Julia program to PROMISE compiler IR):
We chose Julia as the source language because it enables
us to easily identify patterns of computations that can be
offloaded to PROMISE (e.g., matrix multiplication) and Julia
also supports several ML libraries.

The Julia frontend translates applications to LLVM IR.
The PROMISE pass runs over each LLVM function and
uses pattern matching to identify computations that can be
offloaded to PROMISE.

Backend (compiler IR to PROMISE ISA): The backend
of the compiler translates the LLVM IR to the PROMISE
ISA by mapping each computation to an appropriate Task.
This involves two parts: (1) compile time code generation for
Class1-4, and (2) computing the OP_PARAM, RPT_NUM,
MULTI_BANK fields at runtime and passing them to the
PROMISE run-time, which runs on the host and launches
the Task.

4.2 Energy Optimization

Many ML applications often tolerate lower accuracy. In our
work, we allow the source-level programmer to express
the tolerable application-level accuracy degradation pm. As
deterministic errors can be tolerated easily by re-training the
parameters in ML algorithms, we focus on spatial random
errors across bitcells from process variations in this section.

The energy optimization in the compiler pipeline in
Fig. 2(c) assigns the SWING field of each Task in the ap-
plication that would ensure that end-to-end error tolerance
is met. Mapping a high-level parameter like pm directly to a
suitable swing voltage is challenging for algorithms such as
neural networks that have multiple Tasks.

We solve this problem by breaking it down into two
parts: (a) determining a minimum bit precisions (B) for the
activations to meet the given target accuracy, which can be
supported by methodologies such as [5]; and (b) mapping
the required bit precision to the hardware swing voltage. To
achieve B-bit precision in the final output, the magnitude
of error introduced must be less than 1/2B+1. The error
magnitude of analog chain in PROMISE is inversely pro-
portional to the SWING parameter. Therefore, the minimum
SWING value is chosen to maximize the energy efficiency
while maintaining the error magnitude is less than 1/2B+1.
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Fig. 3: PROMISE gains: speed-up and energy saving compared to conventional digital implementation, and additional
energy savings by kernel data reuse and compiler-directed energy optimization.

5 EVALUATION

In this section, we present the gains of PROMISE as com-
pared to reference designs, and the additional gains by
compiler-based energy optimization.

5.1 Validation Methodology

To evaluate PROMISE, we take modeling approaches de-
scribed in [3] based on a TSMC 65 nm GP process and
eight ML benchmarks listed in Table 1. The following
two ASICs are considered as our comparison baselines:
(a) CONV-OPT: We build the baseline digital architecture
with the conventional SRAM and computing logic with
the minimum precision as listed in Table 1. The compu-
tational logic is synthesized individually for each specific
benchmark algorithm using the same process technology,
(b) CM: The programmability overhead is estimated via the
comparison to the measured results of CM [1]. The layout
of conventional system was generated in a 65 nm process,
which indicates that PROMISE has a 10% area overhead.

The compiler-based SWING optimization is analyzed by
permitting an accuracy degradation pm < 1%. Energy gains
with analog kernel reuse are also estimated for DNNs and
CNN based on the silicon-measured energy and accuracy
models of charge-recycling multiplier [4]. It is assumed that
CONV-OPT also employs kernel reuse for fair comparison
and that both PROMISE and CONV-OPT reuse the fetched
data 50 times. The first layer of CNN requires short vector
computations, e.g.,≤ 25 elements per vector. AS PROMISE
is aimed for large-scale vector/matrix computations with
128 ≥ elements per vector, we assume that the first layer is
processed externally, but heavy computations in the follow-
ing layers are processed by PROMISE.

5.2 Performance and Energy

Figure 3 shows that PROMISE (SWING=111) provides a
speed-up of 1.4− 3.4× and 3.4− 5.5× energy savings com-
pared to CONV-OPT across the benchmarks leading to an
energy-delay-product (EDP) improvements of 4.7 − 12.6×
compared to CONV-OPT. The key reasons for PROMISE’s

superior throughput and energy efficiency are its column-
wise parallelism and low-voltage swing mixed signal com-
putations in aREAD (Class-1) and aSD/aVD (Class-2)
operations.

Figure 3 also shows further energy savings by the
compiler-directed SWING optimization in the energy opti-
mization pass. Feature Extraction and Linear Regression are
omitted from this evaluation as they are not classification
algorithms. Three benchmarks, DNN-1(784-128-10), DNN-
2(784-256-128-10), and DNN-3(784-512-256-128-10) are vari-
ants of MLP with 3, 4, and 5 layers respectively. We analyze
the energy benefit with optimal SWING values, e.g., DNN-
1(3,6), DNN-2(5,7,7), DNN-3(3,3,4,6), and CNN(4,7,7). Over-
all the benefits of the optimization range from 4%-20% with
geometric mean of 14%.

Note that CONV-OPT also employs kernel reuse for fair
comparison. Thus, the energy gains with kernel reuse are
slightly higher than those without reuse. This is because the
energy consumption of charge-recycling multiplier is lower
than the previously used analog multiplier in [3]. In spite
of the increased complexity of CTRL to support the pro-
grammability, the energy of CTRL takes minor (<10%) por-
tion maintaining the programability overhead of PROMISE
to be negligible as compared to CM.

PROMISE also achieves 1.3× (1.1× ) EDP reduction with
L1 (L2) distance as compared to k-NN accelerator [6], and
22× EDP reduction as compared to DNN accelerator [7].

6 CONCLUSION

This paper presents PROMISE, the first end-to-end design
of a programmable mixed-signal accelerator for diverse ML
algorithms. PROMISE accomplishes a high level of pro-
grammability without losing the benefits of mixed-signal
accelerators for a class of ML algorithms over digital ASICs.
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