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Abstract
We present a linear algebra approach to establishing a discrete comparison principle
for a nonmonotone class of quasilinear elliptic partial differential equations. In the
absence of a lower order term, local conditions on the mesh are required to estab-
lish the comparison principle and uniqueness of the piecewise linear finite element
solution. We consider the assembled matrix corresponding to the linearized problem
satisfied by the difference of two solutions to the nonlinear problem. Monotonicity
of the assembled matrix establishes a maximum principle for the linear problem and
a comparison principle for the nonlinear problem. The matrix analysis approach to
the discrete comparison principle yields sharper constants and more relaxed mesh
conditions than does the argument by contradiction used in previous work.
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1 Introduction

We consider a linear algebra approach to develop a discrete comparison principle for
the equation as follows:

− div(κ(x, u)∇u) + g(x, u) = f, in Ω ⊂ R
2, (1.1)
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with homogeneous Dirichlet conditions u = 0 on ΓD = ∂Ω , where the domain Ω

is either polygonal or a finite collection of polygons. The discrete comparison prin-
ciple implies uniqueness of the discrete solution, in agreement with the comparison
principle and uniqueness for the continuous problem. Here, we develop the discrete
comparison principle for (1.1) by means of a discrete maximum principle for a lin-
earized equation satisfied by the difference of a subsolution and supersolution which
is demonstrated by the monotonicity of the assembled coefficient matrix.

The PDE (1.1) is both nonmonotone and nonvariational (see, e.g., [18, 29]); and,
as demonstrated in [2], uniqueness of solutions to its finite element approximation
can fail if the mesh is too coarse, even when the PDE solution is known to be unique.
Asymptotic error estimates for a finite element approximation as the mesh size h →
0 were first shown in 1975 in [11]. More recently, similar results were shown to hold
under integration by quadrature in [1]. In [2], an argument by contradiction related to
the approach used in the continuous case is used to establish a discrete comparison
principle based on the condition that the mesh partition is globally fine enough. For
the 2D case, the result is presented as an asymptotic estimate and as such does not
yield a verifiable condition for uniqueness. The current authors used similar ideas in
[22, 23] to demonstrate that a local verifiable condition based on the variance of the
solution over each element, rather than a global mesh size condition, is sufficient for
uniqueness of solutions in the absence of a lower order term. Here, we improve the
constant appearing in the a posteriori condition and also relax the angle condition on
the mesh.

The practical outcome of these results is that for the nonlinear diffusion problem
with g(x, u) = 0, if the maximum difference between neighboring nodal solution
values is small enough (less than a given constant), then the discrete solution can be
verified as unique. For the reaction-diffusion problem which includes the nontrivial
term g(x, u), if the mesh is additionally fine enough in a global sense, then the dis-
crete solution can be verified as unique. If these conditions are not met on a given
mesh, then either refinement or remeshing may be used to attain their satisfaction.

The analytical techniques of this paper differ from those in [23] which addresses
the nonlinear diffusion problem and [22] which addresses a nonlinear reaction-
diffusion problem with an additional gradient-dependence in the nonlinear diffusion
term. Both of the above papers develop a proof by contradiction based on element-
wise integration. The current technique considers integration over patches which
allows a certain relaxation on derived a posteriori conditions. Here, we show the
comparison principle for the nonlinear problem can be established by the monotonicity
of the coefficient matrix for a linearized problem. Conditions for this monotonic-
ity are established by first controlling the maximum difference between neighboring
nodal solution values to show the coefficient matrix has nonpositive off-diagonal
entries, followed by a technical lemma which demonstrates two of the many estab-
lished conditions for matrix monotonicity. Two independently developed approaches
to matrix monotonicity are used here, one by J. Bramble and B. Hubbard from 1964
[6, 7] to establish the matrix is of “positive type,” and the second by M. Fielder and
V. Ptàk from 1962 [15]. A secondary result of interest is that based on the structure
of the coefficient matrix, the complete set of conditions for either framework are
automatically satisfied by the conditions under which the off-diagonal entries of the
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coefficient matrix are nonpositive. While sufficient in this case, the nonpositivity of
off-diagonal elements is not a necessary condition for matrix monotonicity.

This manuscript is motivated by the linear algebra approach used to establish a
discrete maximum principle in [8], demonstrated to improve previously established
constants. The current authors also showed in [22] that the maximum principle for the
linear reaction-diffusion equation developed in [8, Theorem 3.8] has a direct applica-
tion to a discrete comparison principle for the semilinear problem, −�u+g(x, u) =
f (x); and, the matrix analysis approach yields an improved constant. Here, we extend
the analysis to quasilinear problems. In the semilinear case, the argument follows by
showing that the assembled matrix in question is monotone by showing it is a Stielt-
jes matrix, meaning it is symmetric positive definite with nonpositive off-diagonal
entries. The particulars of the analysis do not apply in the quasilinear case, as the
corresponding coefficient matrix for the linearization of (1.1) is nonsymmetric.

In this paper, we develop conditions under which the assembled coefficient matrix
A corresponding to the PDE satisfied by the difference between a subsolution and
supersolution of (1.1) is monotone. The main technical challenge is in understand-
ing the monotonicity of the linearized coefficient matrix which resembles one arising
from the discretization of a linear convection-diffusion or a reaction-convection-
diffusion equation. Related ideas on the monotonicity of the coefficient matrix for
a class of linear convection-diffusion problems is found in [30], where the bilinear
form is altered in an edge-averaged scheme that preserves monotonicity. Here, we
use a standard discretization scheme and derive local estimates sufficient to ensure
the convection-like term in the linearization, which is controlled by the difference in
nodal values of the solution across each edge, is controlled by the diffusion.

We proceed by developing conditions under which the assembled coefficient
matrix is a Z-matrix, one with nonpositive off-diagonal entries. While not all mono-
tone matrices are Z-matrices (see, for example [5–7]), the monotone matrices which
may contain some positive off-diagonal entries are generally difficult to recognize.
On the other hand, the theory of monotone Z-matrices in numerical analysis has been
well-studied, largely with respect to the convergence of iterative methods [28, 31].
In [21], a collection of 40 conditions for a Z-matrix to be a nonsingular M-matrix,
hence monotone, is drawn from the literature. We use one of those conditions which
appears earlier in [15] to establish our results. Simultaneously, we also show under
the same conditions the matrix is of “positive type,” as in [6, 7], yielding the same
conclusion. As we find in the sequel, the conditions used to ensure the coefficient
matrix A is a Z-matrix are sufficient to assure it is monotone.

The first main contribution of this work is improving the constants in the local
condition for the discrete comparison principle hence uniqueness to hold. The second
main contribution is establishing the discrete comparison principle holds for prob-
lem (1.1) on meshes with at least some right angles. In previous work by the authors
[22, 23], the mesh was assumed acute, meaning all interior angles were bounded
below π/2. In the current results, interior angles can be no greater than π/2, and
opposite angles across each edge must sum to less that π . It is well-known (see, for
instance [30, Lemma 2.1]), that for the assembled matrix for the Laplacian, mono-
tonicity holds under the condition that the mesh is Delaunay, meaning the angles
opposite each edge sum to no more than π . More general geometric conditions for a
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discrete maximum principle for Poisson’s equation are developed in [13], in which
more obtuse triangles are permitted some distance from the boundary. The stronger
condition on the geometry in this work comes from the variable dependence in the
principal part of the linearized problem, and the need to control the lower order
convection-like terms in the linearization by the principal part.

In two dimensions, acute triangulations (all interior angles less than π/2) can be
generated by standard methods, see for instance [3, 16] and the recent [14]; however,
for irregular domains, the mesh partitions may not be uniform in size. The current
results yield a condition that may be checked once a solution has been computed to
determine whether that solution is unique. In the case that it is not, the mesh can then
be refined, for instance, using a red-refinement algorithm [4] to preserve acuteness.

The remainder of the paper is structured as follows. In Section 2, the discretization
and discrete comparison principle are introduced. Then, the linearized problem used
to investigate the comparison principle is derived. Theorem 3 relates the monotonic-
ity of the assembled matrix for the linearized problem to the comparison principle for
the nonlinear problem. The definitions of Z-, L-, and M- matrices, matrices of “pos-
itive type,”and the relevant theorems on establishing monotonicity are recalled from
the literature. Section 4 contains the technical estimates providing sufficient condi-
tions under which the assembled matrix A is a Z-matrix, and the Appendix contains
the necessary estimates related to diagonal dominance to complete the monotonicity
argument.

2 Preliminaries

We make the following assumptions on the problem data κ(· , ·) and g(· , ·).

Assumption 1 Assume κ(x, η) and g(x, η) are Carathéodory functions, measurable
in x for each η ∈ R, and C1 in η for a.e. x ∈ Ω . Assume there are constants 0 <

kα < kβ with the following:

kα ≤ κ(x, η) ≤ kβ, (2.1)

for all η ∈ R, and a.e. x ∈ Ω . Assume there is a positive Kη with the following:
∣
∣
∣
∣

∂κ

∂η
(x, η)

∣
∣
∣
∣
≤ Kη, (2.2)

for all η ∈ R and a.e. x ∈ Ω . Assume g(x, η) is nondecreasing with respect to its
second argument, and there is a constant Gη with the following:

0 ≤ ∂g

∂η
(x, η) ≤ Gη, (2.3)

for all η ∈ R and a.e. x ∈ Ω .

Under Assumption 1, the PDE is known to satisfy a comparison principle and have
a unique solution, as demonstrated in [12, 26], and [17, Chapter 10]. Additionally,
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the weak form of (1.1) is given as follows for V = H 1
0 (Ω), the closed subspace of

H 1 with vanishing trace on ∂Ω . Find u ∈ V such as the following:
∫

Ω

κ(x, u)∇u·∇v + g(x, u)v dx =
∫

Ω

f v dx, for all v ∈ V . (2.4)

The functional setting of the weak form can be understood in the context of the Leray-
Lions conditions for pseudomonotonicity. We refer interested readers to [9, Chapters
2–3] for further details. We note that the class of problems defined by the assumptions
in this section is called nonmonotone because the inequality as follows:

∫

Ω

(κ(x, w)∇w − κ(x, v)∇v)·∇(w − v) dx ≥ 0,

does not in general hold for all w, v ∈ V , even for κ = κ(u) if κ(u) is nonconstant
[29, Theorem 4.1].

2.1 Discretization

Let T be a conforming simplicial partition of domain Ω that exactly captures the
boundary. Let Q̄ be the collection of vertices or nodes of T , and let Q = Q̄ \ ∂Ω be
the set of nodes that do not lie on the Dirichlet boundary, corresponding to the mesh
degrees of freedom. Let V � V be the discrete space spanned by the piecewise linear
basis functions {ϕj } that satisfy ϕi(qi) = 1 and ϕi(qj ) = 0 for each qj ∈ Q with
qj �= qi . Define the non-negative subset of V by V+ := {v ∈ V | v ≥ 0}.

Let ωi be the support of the basis function ϕi . Define the intersection of support
for any two basis functions with respect to a global numbering by ωij = ωi ∩ ωj .
In terms of the corresponding nodes qi and qj , it follows that ωij is the union of
elements that share both qi and qj as vertices.

ωij =
⋃

{T ∈ T | qi ∈ T and qj ∈ T }.
Additional notation for the discretization is summarized as follows, and illustrated

in Fig. 1.

Fig. 1 Left: schematic of a patch. Right: schematic of an element
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– eij denotes the edge connecting vertices qi and qj .
– δe

ij (v) = |v(qi) − v(qj )| is the absolute difference of nodal values of v across
edge eij .

– δω(v) = max{δe
jk(v) | qj , qk ∈ ω} denotes the maximum difference between

neighboring nodal values of v in ω.
– δ(v) = δω(v) when ω = Ω̄ .
– δ

(i)
ω (v) = max{δe

jk(v) | qj , qk ∈ ω, j, k �= i} is the maximum difference
between nodal values of v in ω, across edges not touching vertex qi .

– θ+
ij and θ−

ij denote the two respective angles opposite edge eij in ωij .
– θj,T denotes the interior angle of triangle T at vertex qj , and θij,T denotes the

interior angle opposite vertices qi and qj in triangle T .
– qT

ij denotes the vertex opposite both qi and qj in triangle T .

– ϕT
ij denotes the basis function associated with qT

ij in triangle T .
– |T | denotes the area of triangle T ∈ T .
– |TT | = maxT ∈T |T |.
– Q̄i = {qj ∈ Q̄ | qj ∈ ωi, j �= i}, denotes the set of vertices neighboring qi ,

including those on ΓD .
– Qi = Q̄i \ ΓD , the set of non-Dirichlet vertices neighboring qi .

We make the following assumptions on the triangulation.

Assumption 2 Any interior angle of the mesh satisfies θ ≤ π/2, and any two angles
opposite an edge sum to less than π . In particular, there is a constant βm > 0 for
which as follows:

cot θ+
ij + cot θ−

ij ≥ βm, for each ωij ⊂ T . (2.5)

The mesh satisfies a smallest-angle condition over each neighborhood ωij . There is
a constant βM > 0 for which as follows:

cot θ+
ij + cot θ−

ij +
∑

T ∈ωij

cot θi,T ≤ βM for each ωij ⊂ T . (2.6)

For example, in an equilateral mesh βm = 2/
√

3 and βM = 4/
√

3.

2.2 Comparison framework

Consider the problems: find ui∈V such as the following:

∫

Ω

κ(x, ui)∇ui ·∇v + g(x, ui)v dx =
∫

Ω

fiv dx, for all v ∈ V, (2.7)

for fi ∈ L2(Ω), i = 1, 2. The discrete comparison principle for (2.7) states that
whenever f1 ≤ f2, (a.e. x ∈ Ω), meaning

∫

Ω
(f1 − f2)v dx ≤ 0, for each v ∈ V+,

then it holds that u1 ≤ u2.
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The comparison principle can be restated in terms of a maximum principle for
w = u1 − u2. The discrete problem satisfied by w can be understood by applying
Taylor’s theorem to the difference of (2.7) with i = 1 and i = 2.

∫

Ω

(κ(x, u1)∇u1 ·∇v + g(x, u1)v) dx −
∫

Ω

(κ(x, u2)∇u2 ·∇v + g(x, u2)v) dx

=
∫

Ω

κ(x, u1)∇(u1 − u2)·∇v − (κ(x, u2) − κ(x, u1))∇u2 ·∇v dx

+
∫

Ω

(g(x, u1) − g(x, u2))v dx

=
∫

Ω

κ(x, u1)∇w ·∇v dx −
∫

Ω

(
∫ 1

0

∂κ

∂η
(x, z(t))w dt

)

∇u2 ·∇v dx

+
∫

Ω

(
∫ 1

0

∂g

∂η
(x, z(t))w dt

)

v dx, (2.8)

where z(t) = tu1+(1−t)u2, for 0 ≤ t ≤ 1. The equation satisfied by w is as follows:

∫

Ω

κ(x, u1)∇w ·∇v dx +
∫

Ω

(
∫ 1

0

∂κ

∂η
(x, z(t)) dt

)

w∇u2 ·∇v dx

+
∫

Ω

(
∫ 1

0

∂g

∂η
(x, z(t))w dt

)

v dx =
∫

Ω

(f1 − f2)v dx, for all v ∈ V . (2.9)

The comparison principle for u1 and u2 in (2.7) is then equivalent to the weak
maximum principle for w = u1 − u2 in (2.9), namely w ≤ 0 whenever f1 − f2 ≤ 0.
We now turn our attention to establishing the weak maximum principle for w.

3 Discrete maximum principle

From (2.9), the linear equation for w is a general second-order elliptic equation with
convection and reaction terms as follows:

∫

Ω

κ(x, u1)∇w · ∇v + b(x, u2)w ·∇v + c(x)wv dx =
∫

Ω

(f1 − f2)v dx, (3.1)

for all v ∈ V , with as follows:

b(x, u2) := b(x)∇u2(x), with b(x):=
∫ 1

0

∂κ

∂η
(x, z(t)) dt, (3.2)

c(x) :=
∫ 1

0

∂g

∂η
(x, z(t)) dt . (3.3)

We now consider the properties of the assembled system (3.1)–(3.3). The discrete
function w ∈ V has the expansion in basis functions w = ∑n

j=1 Wjϕj , where n is
the number of mesh degrees of freedom. Choosing the test functions v = ϕi for each
i = 1, · · · , n in (3.1), we obtain the equivalent matrix problem AW = F. In particular,
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letting � denote transposition, W = (W1, · · · , Wn)
�, F = (F1, · · · , Fn)

� with A =
(aij ) and Fi defined entry-wise by the following:

aij =
∫

ωij

κ(x, u1)∇ϕj ·∇ϕi dx+
∫

ωij

�b(x, u2)ϕj ·∇ϕi dx+
∫

ωij

c(x)ϕjϕi dx (3.4)

Fi =
∫

ωi

(f1 − f2)ϕi dx. (3.5)

The maximum principle for w is established by the monotonicity of matrix A

given by (3.4). For the remainder of the section, A is assumed to be a real-valued
n × n square matrix.

Definition 1 (Monotone matrix) Matrix A is monotone (in the sense of [10, Section
23] ) if for all real vectors v, Av ≥ 0 implies v ≥ 0, where ≥ is the element-wise
ordering.

By this definition, a monotone matrix is nonsingular because if A is a monotone
matrix and x is a vector in its nullspace, then both x ≥ 0 and −x ≥ 0, implying
x = 0. We mention another relevant property of monotone matrices [20].

Proposition 1 Matrix A is monotone iff A is invertible and A−1 ≥ 0.

The next theorem summarizes how monotonicity of the assembled matrix for w

implies the comparison principle, hence uniqueness of the solution.

Theorem 3 Suppose the functions κ(x, η) and g(x, η) are each measurable with
respect to the first argument, and C1 with respect to the second. Let ui∈V solve the
following:

∫

Ω

κ(x, ui)∇ui ·∇v + g(x, ui)v dx =
∫

Ω

fiv dx, for all v ∈ V, (3.6)

for fi ∈ L2(Ω), i = 1, 2, with
∫

Ω
(f1 −f2)v dx ≤ 0, for all v ∈ V+. If the coefficient

matrix A defined by (3.4) is monotone then u1 ≤ u2. Moreover, if f1 = f2, then
u1 = u2.

Proof Let the discrete function w ∈ V be given by w = ∑n
j=1 Wjϕj , with

W = (W1, · · · , Wn)
�, where n = card(Q), the number of mesh degrees of freedom.

The monotonicity of A implies its invertibility. By equations (2.8)–(2.9), the defini-
tion of A, and F given by (3.5), the vector W that solves AW = F uniquely defines
w ∈ V that satisfies w = u1 − u2.

Since A is monotone, F ≤ 0 implies W ≤ 0 which by the nonnegativity of basis
functions implies w ≤ 0 implying u1 ≤ u2. If f1 = f2, it follows that u1 = u2.

The consequence for uniqueness of solutions is once a discrete solution u has been
computed one can determine a posteriori if it is the unique solution. In what follows,
the conditions on the discrete solution to determine monotonicity (hence uniqueness)
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are derived only in terms of the constants introduced in Assumptions 1 and 2, the
mesh size |TT | (if there is a lower order term) and a posteriori properties of u2 = u.
The subsolution u1 does not appear explicitly.

In the remainder of the paper, we develop conditions under which the assembled
matrix (3.4) is monotone. Three related classes of matrices we encounter in the proof
are Z-matrices, L-matrices, and M-matrices, are defined as follows.

Definition 2 (Z-matrix) A = (aij ) is called an Z-matrix if aij ≤ 0 when i �= j (see
[15, Definition 4,1],[21]).

A Z-matrix with positive diagonal entries is called an L-matrix.

Definition 3 (L-matrix) A = (aij ) is called an L-matrix if aii > 0 for all i, and
aij ≤ 0 when i �= j (see [31, Chapter 2, Definition 7.1]).

A monotone Z-matrix is an M-matrix.

Definition 4 (M-matrix) A = (aij ) is called an M-matrix if aij ≤ 0 for all i �= j

and A is nonsingular with A−1 ≥ 0 (see [28, Definition 3.22]).

This definition is equivalent to [31, Definition 7.3], and to a nonsingular M-
matrix, in [21]. If the off-diagonal entries of A are nonpositive (A is a Z-matrix),
then A is monotone if and only if A is an M-matrix. This is clear from Proposition 1,
and the definition of the M-matrix.

In what follows, we will develop conditions under which the coefficient matrix
A given by (3.4) is monotone. We first establish conditions under which A is a Z-
matrix. We will see these same conditions imply A is also an L matrix. We then
present two arguments to establish A is monotone, hence an M-matrix. The first uses
the 1964 result of [6, 7] by which A is a matrix of “positive type,” hence monotone. In
the second (equivalent) approach, we construct a positive diagonal matrix D to estab-
lish A has “generalized diagonal dominance,” which by a 1962 result of [15] implies
A is monotone. We next review some related concepts on diagonal dominance.

Definition 5 An n × n matrix is strictly diagonally dominant (SDD) as follows:

|aii | >

n
∑

j=1,j �=i

|aij |, for all i = 1, . . . , n. (3.7)

A matrix is called diagonally dominant (DD) if equality is allowed for each index i

in (3.7). If matrix A is diagonally dominant with a strict inequality in (3.7) for at least
one index i, we say the matrix has the DD+ property.

If A has the DD+ property and it is irreducible [27, Definition 1.15], meaning the
matrix equation Ax = b cannot be decoupled into two or more smaller problems, it
is called “irreducibly diagonally dominant.” Indeed, an irreducibly diagonally dom-
inant L-matrix is an M-matrix [27, Corollary 3.20]. An equivalent description of
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an irreducible matrix is one whose directed graph is strongly connected [27, Theo-
rem 1.17]; referring to the counterexample of [13], the irreducibility of the Laplacian
stiffness matrix can fail to hold, even on a connected mesh under the orthogonality of
certain basis functions due to right angles in the mesh. The next definition, however,
introduces a substantially weaker condition than irreducibility which can be used to
establish a Z-matrix is an M-matrix.

Definition 6 [6, Definition 2.2] Matrix A is said to be of positive type if the
following conditions hold.

1. A is a Z-matrix.
2. A is DD+. Specifically,

∑n
j=1 aij > 0 for j ∈ J (A) �= ∅.

3. For each i /∈ J (A), there is a sequence of nonzero elements of the form
aik1, ak1k2 , . . . , akr j where j ∈ J (A).

In [6, 7], the last condition is called a “connection,” in A from i to J (A). In [24,
25], this is also called a “chain condition,” and it is used as a sufficient condition to
show a matrix is nonsingular. In those works, matrices satisfying the last two con-
ditions of Definition 6 are referred to as “weakly chained diagonally dominant,” or
“chain diagonally dominant,” (CDD). Our first approach depends on the following
result.

Theorem 4 [7, Theorem 2.2] If A is of positive type, then A is monotone.

For our second approach, we rely on another variant of diagonal dominance, some-
times referred to as “generalized diagonal dominance,” (GDD). Matrix A is said to
have the GDD property if there is a positive matrix D for which AD is strictly diag-
onally dominant. In fact, [19, Theorem 3.3] shows for diagonally dominant matrices
GDD is equivalent to the second two conditions of Definition 6 (GDD is equivalent
to CDD). The concept of generalized diagonal dominance also appears much earlier
in the literature, and we refer to the 1962 paper [15] which presents 13 equivalent
statements which characterize a Z-matrix as monotone. Here, we paraphrase the two
most relevant to our purposes.

Theorem 5 [15, Theorem 4, 3.4],[21, Theorem 1 (N39)] Let A be a Z-matrix. Then,
A is monotone if and only if there exists a diagonal matrix D with positive diagonal
elements such that the matrix AD is strictly diagonally dominant.

In our second approach, we construct a matrix D that satisfies Theorem 5 for
matrix A given by (3.4), under the condtions for which it is a Z-matrix.

4 Properties of the assembledmatrix

In this section, we develop conditions on the meshsize and the supersolution u2
under which A, the coefficient matrix from (3.4), is a Z-matrix. Then, we will see
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A satisfies the conditions of both Theorems 4 and 5, hence is monotone. Our main
comparison and uniqueness result then follows from Theorem 3.

Lemma 1 Let Assumption 1 and Assumption 2 hold. Let A = (aij ) be given by (3.4)
on satisfaction of the condition on δ(u2) and mesh size |TT | as follows:

1

3βm

{

KηβMδ(u2) + Gη|TT |} < kα, (4.1)

it holds that aij ≤ 0 for each i �= j , and aij < 0 whenever vertices qi, qj ∈ Q are
connected by an edge.

Proof For convenience of later calculations, we consider the entry aji . Since aji = 0
if there is no edge connecting qi and qj , we consider only edge-connected qi, qj ∈ Q
for the remainder of the proof. By direct calculation, (see, e.g., [23, Section 3.1]), it
holds for i �= j as follows:

∇ϕi ·∇ϕj |T = −1

2|T | cot θij,T , (4.2)

where θij,T is the angle opposite edge eij in triangle T (see Fig. 1). Equation (4.2)
together with (2.1) and (2.5) implies the following:

∫

ωij

κ(x, u1)∇ϕi·∇ϕj dx ≤ kα

∑

T ∈ωij

∫

T

∇ϕi·∇ϕj dx = −kα

2
(cot θ+

ij +cot θ−
ij ). (4.3)

For the reaction term,
∫

T
ϕiϕj dx = |T |/12. Together with (2.3) and (3.3), this

implies the following:
∫

ωij

c(x)ϕiϕj dx ≤
∑

T ∈ωij

Gη|T |
12

. (4.4)

To bound the nonsymmetric term, the following decomposition is useful. Over
each triangle T with vertices qi, qj , qk and discrete function v ∈ V as follows:

∇v = (v(qi) − v(qj ))∇ϕi + (v(qk) − v(qj ))∇ϕk . (4.5)

Applying (4.2) and (4.5) with v = u2 and qk = qT
ij for each T ∈ ωij yields the

following:
∫

ωij

b(x)∇u2 ·∇ϕjϕi dx = (u2(qi) − u2(qj ))

∫

ωij

∇ϕi ·∇ϕj b(x)ϕi dx

+
∑

T ∈ωij

(u2(q
T
ij ) − u2(qj ))

∫

T

∇ϕT
ij ·∇ϕj b(x)ϕi dx

≤ Kη

6
|u2(qi) − u2(qj )|(cot θ+

ij + cot θ−
ij )

+Kη

6

∑

T ∈ωij

|u2(q
T
ij ) − u2(qj )| cot θi,T , (4.6)
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where the inequality follows from (2.2) of Assumption 1 and (3.2). Then,

∣
∣
∣
∣
∣

∫

ωij

�b·∇ϕjϕi dx

∣
∣
∣
∣
∣
≤ Kη

6

⎛

⎝δe
ij (u2)(cot θ+

ij + cot θ−
ij ) + δ(i)

ωij
(u2)

∑

T ∈ωij

cot θi,T

⎞

⎠ .

(4.7)
Applying (4.3), (4.4), and (4.7) to (3.4), we have the following:

aji ≤ 1

2

(

−kα + Kη

3
δe
ij (u2)

)

(cot θ+
ij + cot θ−

ij ) (4.8)

+1

2

∑

T ∈ωij

(
Kη

3
δ(i)
ωij

(u2) cot θi,T + Gη|T |
6

)

(4.9)

≤ 1

2

{

−kαβm + KηβM

3
δωij

(u2) + Gη|TT |
3

}

, (4.10)

where the last inequality follows from the application of both angle conditions (2.5)
and (2.6) from Assumption 2. The conclusion then follows under condition (4.1).

In the next lemma, we show the diagonal entries of A are positive, under the given
condition which bounds the difference of nodal values across each edge in the mesh.
The local condition (4.11) for each aii to be positive is weaker than (4.1), implying
that matrix A is an L-matrix when it is a Z-matrix.

Lemma 2 Let Assumption 1 and Assumption 2 hold. Let A = (aij ) be given by (3.4).
Then, under the condition as follows:

δ(u2) <
3kα

Kη

, (4.11)

it holds that aii > 0, for each i.

Proof First, consider the diffusion term. Summing integrals over each ωij ⊂ ωi

integrates twice over ωi . Applying the identity ∇ϕi ·∇ϕi = −∇ϕj ·∇ϕi − ∇ϕT
ij ·∇ϕi ,

over each element T ∈ ωi with nodal indices qi, qj , q
T
ij , and combining like terms to

integrate each product once per element, we have the following:
∫

ωi

κ(x, u1)∇ϕi ·∇ϕi dx = 1

2

∑

ωij ⊂ωi

∫

ωij

κ(x, u1)∇ϕi ·∇ϕi dx

= −
∑

ωij ⊂ωi

∫

ωij

κ(x, u1)∇ϕj ·∇ϕi dx

≥ kα

2

∑

ωij ⊂ωi

(

cot θ−
ij + cot θ+

ij

)

, (4.12)
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where the last inequality follows from (2.1) and Assumption 2. Next, consider the
nonsymmetric term. Summing integrals over each ωij ⊂ ωi then combining like
terms as above, we have the following:

∫

ωi

b(x)∇u2 ·∇ϕiϕi dx = 1

2

∑

ωij ⊂ωi

∫

ωij

b(x)∇u2 ·∇ϕiϕi dx

=
∑

ωij ⊂ωi

(u2(qj ) − u2(qi))

∫

ωij

∇ϕj ·∇ϕib(x)ϕi dx

≥ −Kη

6

∑

ωij ⊂ωi

|u2(qj )−u2(qi)|
(

cot θ+
ij +cot θ−

ij

)

,(4.13)

where the last inequality follows from (2.2), Assumption 2, and the integration of ϕi

over each element. From (3.2) and (4.13), we have the following:
∫

ωi

b(x, u2)·∇ϕiϕi dx ≥ −Kη

6

∑

ωij ⊂ω

δe
ij (u2)

(

cot θ+
ij + cot θ−

ij

)

. (4.14)

The lowest order term from (3.4) satisfies
∫

ωi
c(x)ϕ2

i dx ≥ 0, for c(x) ≥ 0 as in
(3.3) under the condition (2.3). Putting together (4.12) and (4.14) into (3.4), we have
under Assumption 1 as follows:

aii ≥ 1

2

∑

ωij ⊂ωi

(

cot θ+
ij + cot θ−

ij

) (

−Kη

3
δe
ij (u2) + kα

)

≥ βm

2

(

−Kη

3
δe
ij (u2) + kα

)

, (4.15)

from which the result follows under condition (4.11).

Based on the results of Lemmas 1 and 2, the matrix A� can be seen to be diago-
nally dominant, with positive row sums corresponding to each vertex that neighbors
the Dirichlet boundary.

Lemma 3 Let Assumption 1 and Assumption 2 hold. Let A = (aij ) be given by (3.4).
Assume condition (4.1) of Lemma 1 holds true. Then,A� has the DD+ property given
in Definition 5, with positive row sums for each index i such that qi neighbors the
boundary.

The proof of Lemma 3 is delayed until after Lemma 4 in the Appendix, from
which it easily follows.

Theorem 6 Let Assumption 1 and Assumption 2 hold. Assume condition (4.1) of
Lemma 1 holds true. Then, matrix A = (aij ) given by (3.4) is monotone.

We prove this in two ways, first by Theorem 4, then by Theorem 5.

Proof For our first proof, we show that A� is of positive type in accordance with
Definition 6, which implies its monotonicity by Theorem 4. The first condition
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that A� is a Z-matrix has been established by Lemma 1. The second condition is
demonstrated in the Appendix argument, Lemma 3, in which it is shown that A� is
diagonally dominant and each vertex ql that neighbors the boundary corresponds to
an index l ∈ J (A�), meaning the lth row sum is positive. The third condition fol-
lows again from Lemma 1 where imposing the strict inequality implies that aij �= 0
for edge-connected nodes qi and qj . Hence, under the Dirichlet boundary condition
even if the mesh is not connected (and it need not be), there is a chain of nonzero
entries aij , aj,k1 , . . . , akp,l , connecting aij that corresponds to edge-connected ver-
tices qi, qj to some akpl where ql neighbors the boundary, meaning l ∈ J (A�). More
simply, the strict inequality in (4.1) implies the connectivity of the directed graph of
A agrees with the connectivity of the mesh.

For our second proof, we show that A� is a GDD Z-matrix, or in other words,
satisfies Theorem 5. Again by Lemma 1, A (hence A�) is a Z-matrix. Then, by the
construction of Appendix argument Lemma 4, there is a positive diagonal matrix D

for which A�D is strictly diagonally dominant.
In both cases, the monotonicity of A follows from the monotonicity of A� by

Proposition 1.

The motivation to establish conditions under which matrix A of (3.4) is monotone
is to establish the discrete comparison theorem and uniqueness result for the piece-
wise linear finite element solution. These results are summarized in the following
corollary.

Corollary 1 Let Assumption 1 and Assumption 2 hold. Assume condition (4.1) of
Lemma 1 holds true for some u2. Then, A given by (3.4) is monotone, and the com-
parison principle of Theorem 3 holds. Moreover, if condition (4.1)— given on the
supersolution u2 is satisfied by any solution u ∈ V to (3.6), then u is the unique
solution to (3.6).

Proof Apply the results of Theorem 6 to Theorem 3.

The conditions given in Lemma 4 which imply the comparison theorem and
uniqueness of the solution improve the conditions found in previous work by the
authors. Other results in the literature [1, 2, 11] regarding uniqueness of discrete
solution to (1.1) yield only asymptotic estimates making direct comparison difficult.

Remark 1 To illustrate the improved constant in the case where g(x, u) = 0, consider
an equilateral mesh. The minimum ratio of sines is equal to one, and the cosine
of each angle is cT = 1/2. To put the result in the current notation, the Lipschitz
constant L0 is taken as Kη. Then, the condition for unqiueness found in [23, Theorem
3.4] for the 2D case reduces to the following:

δ(u) <
3kα

14Kη

.
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The conditions found in this investigation for the same problem (1.1) without the
lower order term on an equilateral mesh are found with βm = 2/

√
3, and βM =

4/
√

3. Then, the requirement for uniqueness given by (4.1) is as follows:

δ(u) <
3kα

2Kη

,

which sharpens the constant by a factor of 7.

5 Conclusion

In this article, we established a discrete comparison theorem for (1.1), a quasilinear
PDE with a solution-dependent lower order term. We established sufficient local and
global conditions for the monotonicity of the assembled coefficient matrix for the
PDE corresponding to the difference of two solutions. The monotonicity then implies
uniqueness of the finite element solution under the given conditions which are seen
to improve upon those in previous work. This argument is also seen to relax the
angle conditions to allow some right triangles in the mesh, so long as the sum of
angles opposite each edge remains bounded below π . Considering the elements of
the assembled matrix rather than the integral over each individual element further
allows a sharper local condition on the maximum difference between neighboring
nodal values of a computed solution. As in previous work, we find the mesh should
be globally fine if the PDE contains a lower order solution-dependent nonlinearity.
Otherwise, the mesh is required to be fine where the gradient of the solution is steep,
as the absolute difference in neighboring nodal values rather than the mesh size itself
requires control. This is a condition that can easily be checked a posteriori once a
discrete solution has been computed.
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Appendix

Here, we include the detailed arguments on the diagonal dominance requirements of
matrix A�, with A given by (3.4). In Lemma 4 we show A� is GDD in accordance
with Theorem 5. From the computations therein, we show in Lemma 3 that A� is
also DD+, in accordance with Theorem 4, with positive row sums for each index i

such that vertex qi neighbors the Dirichlet boundary. Both GDD and DD+ properties
hold on satisfaction of the conditions of Lemma 1.
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We proceed to construct a positive diagonal matrix Dε for which all row sums
of A�Dε are positive. The diagonal elements di of Dε are defined as an increasing
sequence based on their distance from ΓD . First, we require a notion of distance from
the boundary.

Definition 7 Let pi denote the length of the shortest path to a neighborhood of the
Dirichlet boundary from vertex qi . In particular, if Q̄i \ Qi �= ∅, then pi = 0.
Otherwise, pi is defined to be the least number of edges traversed between qi and
any vertex qj with pj = 0.

This notion of distance to the boundary is well-defined regardless of the number
of connected components comprising domain Ω .

Lemma 4 Let Assumption 1 and Assumption 2 hold. Let A = (aij ) be given by (3.4),
and let A� = (αij ). Assume condition (4.1) of Lemma 1 holds true, and for some
ε̄ > 0 it holds as follows:

KηβMδ(u2)

3βm

< kα − ε̄. (6.1)

Let Dε be the diagonal matrix with entries di given by the following:

di = 1 − εpi
, εpi

= εpi−1 − rpi−1δ0, pi ≥ 1, (6.2)

for pi given by Definition 7, fixed 0 < ε0 < 1, and 0 < r, δ0 < 1, to be defined below.
Then, matrix A�Dε is strictly diagonally dominant, and condition (6.1) relaxes to
condition (4.1) for A to be a Z-matrix, as ε̄ → 0.

Proof First, it is noted that the sequence {εj } from (6.2) is a strictly decreasing
sequence. By summing the geometric terms in (6.2), we also see the sequence {εj }
is strictly positive if ε0 > δ0/(1 − r), which will be assured as ε̄ → 0 for fixed ε0.
As a result, the coefficients di are ordered by the distance of each qi to the boundary
according to Definition 7, and di → 1 + δ0/(1 − r) − ε0, for increasing pi .

By the positivity of the diagonals, and the nonpositivity of the off-diagonals, we
require for each row i of the product ADε as follows:

diαii +
n

∑

j=1,j �=i

djαij > 0. (6.3)

By slight abuse of notation, let j ∈ Qi mean index j such that qj ∈ Qi . Let n =
card(Q), the number of mesh degrees of freedom. For conciseness, κ(x, u) will be
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denoted κ(u) in the remainder of the proof. Expanding (6.3) by (3.4) and rearranging
terms yields the following:

diαii +
n

∑

j=1,j �=i

djαij = di

∫

ωi

κ(u1)∇ϕi ·∇ϕi dx +
∑

j∈Qi

dj

∫

ωij

κ(u1)∇ϕi ·∇ϕj dx

+di

∫

ωi

b(x, u2)·∇ϕiϕi dx +
∑

j∈Qi

dj

∫

ωij

b(x, u2)·∇ϕjϕi dx

+di

∫

ωi

c(x)ϕ2
i dx +

∑

j∈Qi

dj

∫

ωij

c(x)ϕjϕi dx. (6.4)

The contribution to the total sum from the last line of (6.4) is strictly nonnegative and
need not be considered further. Each of the first two lines of (6.4) is now considered
with respect to the membership of each qj ∈ Q̄i in one of three sets.

Define the sets as follows:

Q−1
i = Q̄i \ Qi , and Qp

i := {qj ∈ Q̄i | pj = p}, p ≥ 0. (6.5)

A first key observation for the following analysis is for each vertex qj ∈ Q̄i , qj is in

exactly one of Qpi−1
i ,Qpi

i ,Qpi+1
i . A second key observation is at least one qj in Q̄i

is in Qpi−1
i , meaning at least one neighbor of qi is closer in the sense of Definition 6.5

to ΓD . We now partition the terms of (6.4) into sums over each of these three sets.
Again, let j ∈ Qp

i mean index j for which qj ∈ Qp
i , and for simplicity of notation,

let p denote pi . If p = 0, meaning vertex qi neighbors the Dirichlet boundary, the
contribution from the first line on the RHS of (6.4) is as follows:

− di

∑

j∈Q−1
i

∫

ωij

κ(u1)∇ϕi ·∇ϕj dx +
∑

j∈Qi

(dj − di)

∫

ωij

κ(u1)∇ϕi ·∇ϕj dx. (6.6)

For p > 0, meaning vertex qi is without neighbors on ΓD , we have the following:

∑

j∈Qi

(dj − di)

∫

ωij

κ(u1)∇ϕi ·∇ϕj dx. (6.7)

For p = 0, the contribution from the second line of (6.4) can be written as follows:

di

∑

j∈Q−1
i

(u2(qj ) − u2(qi))

∫

ωij

∇ϕj ·∇ϕib(x)ϕi dx

+
∑

j∈Qi

(dj − di)(u2(qi) − u2(qj ))

∫

ωij

∇ϕi ·∇ϕjb(x)ϕi dx

+
∑

j∈Qi

dj

∑

T ∈ωij

(u2(q
T
ij ) − u2(qj ))

∫

T

∇ϕT
ij ·∇ϕjb(x)ϕi dx. (6.8)
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Let KT
ij := (u2(q

T
ij ) − u2(qj ))

∫

T
∇ϕT

ij ·∇ϕjb(x)ϕi dx. The third line of (6.8) can be
expanded as follows:

⎛

⎝di

∑

j∈Q̄i

∑

T ∈ωij

KT
ij

⎞

⎠ +
⎛

⎝
∑

j∈Qi

(dj − di)
∑

T ∈ωij

KT
ij

⎞

⎠ −
⎛

⎝di

∑

j∈Q̄i\Qi

∑

T ∈ωij

KT
ij

⎞

⎠

=
⎛

⎝
∑

j∈Qi

(dj − di)
∑

T ∈ωij

KT
ij

⎞

⎠ −
⎛

⎝di

∑

j∈Q̄i\Qi

∑

T ∈ωij

KT
ij

⎞

⎠ , (6.9)

as the first term in the left of (6.9) is zero because the KT
ij terms cancel pairwise when

summed over the entire patch Q̄i .
For p > 0, the contribution from the second line of (6.4) can be written as follows:

∑

j∈Qi

(dj −di)(u2(qi)−u2(qj ))

∫

ωij

∇ϕi·∇ϕjb(x)ϕi dx +
∑

j∈Qi

dj

∑

T ∈ωij

KT
ij , (6.10)

where similarly to (6.9) but with Q̄i \ Qi = ∅, the last sum over j ∈ Qi can be
written.

∑

j∈Qi

(dj − di)
∑

T ∈ωij

KT
ij . (6.11)

For the case p = 0, applying expansions (6.6), (6.8), and (6.9) to (6.4), we have
the following:

diαii +
∑

j=1,j �=i

djαij ≥ −di

∑

j∈Q−1
i

Jij +
∑

j∈Qi

(dj − di)Jij , (6.12)

with Jij < 0 given by the following:

Jij :=
∫

ωij

(κ(x, u1) + (u2(qi) − u2(qj ))b(x)ϕi)∇ϕi ·∇ϕj dx +
∑

T ∈ωij

KT
ij

≤ 1

2

(

−kαβm + KηβMδωij
(u2)

3

)

< −βmε̄

2
< 0, (6.13)

where the first inequality follows by the angle conditions of Assumption 2 and the
second by condition (6.1), as in (4.7)–(4.8) without the lower order term. It is also
important to note that taking into consideration the upper bound on κ given in (2.1),
we have finite numbers JL,J U for which as follows:

βmε̄

2
≤ JL ≤ |Jij | ≤ J U . (6.14)

For p = 0, the sum over Q−1
i contains at least one term and di = 1 − ε0, whereas

dj − di is either zero or ε0 − ε1. Let m be the maximum number of neighbors of
any given vertex. A fixed maximum m is implied by the smallest-angle condition
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(2.6). Together with theses observations, applying (6.13) and (6.14) to (6.12) yields
the following:

diαii +
n

∑

j=1,j �=i

djαij ≥ (1 − ε0)βmε̄

2
− (m − 1)(ε0 − ε1)J u. (6.15)

From (6.2), ε0 − ε1 = δ0, so setting is as follows:

δ0 := ε̄βm(1 − ε0)

2mJ U
, (6.16)

forces the row sum in (6.15) to be strictly positive for the case p = 0.
For the case p > 0, applying expansions (6.7), (6.10), and (6.11) to (6.4), and

Jij < 0 from (6.13), we have the following:

diαii +
∑

j=1,j �=i

djαij =
∑

j∈Qp−1
i

(dj − di)Jij +
∑

j∈Qp+1
i

(dj − di)Jij

=
∑

j∈Qp−1
i

(εp − εp−1)Jij +
∑

j∈Qp+1
i

(εp − εp+1)Jij

≥ (εp−1 − εp)JL − (m − 1)(εp − εp+1)J U , (6.17)

where the first sum must be nonempty because at least one vertex qj ∈ Qi must be
closer to the boundary than qi . From the construction (6.2), (6.17) then implies the
following:

diαii +
∑

j=1,j �=i

djαij ≥ rp−1δ0JL − (m − 1)rpδ0J U > 0, (6.18)

for r < JL/((m − 1)J U). In particular, inequality (6.18) is satisfied for the
following:

r := JL

mJ U
< 1. (6.19)

It is finally noted for the sequence {εi} given by (6.2) as follows:

εi > ε0 − δ0

1 − r
= ε0

(

1 + ε̄βm

2(mJ U − JL)

)

− ε̄βm

2(mJ U − JL)
> 0,

for ε̄ small enough.
These arguments together show the matrix A�Dε is strictly diagonally dominant

for diagonal matrix Dε defined by (6.2) with δ0 given by (6.16) and r given by (6.19).
The remainder of the result follows by sending ε̄ → 0.

Finally, we note that setting di = 1 for each i in the proof of Lemma 4 rather than
rescaling the row sums as performed above provides a proof of Lemma 3 that A� has
the DD+ property required for Theorem 4, with positive row sums for each index i

such that qi neighbors the boundary.

Proof (Lemma 3) Indices i of A� for which qi neighbors the Dirichlet boundary are
seen to have positive row sums by setting di = dj = 1 in (6.12), and noting Jij < 0
under the given hypotheses. Indices i of A� for which qi does not neighbor the
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boundary are seen to be zero by setting di = dj = 1 in the first line of (6.17). This
establishes A� is DD+ under the conditions that A (A�) is a Z-matrix.
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2. André, N., Chipot, M.: Uniqueness and nonuniqueness for the approximation of quasilinear elliptic
equations. SIAM J. Numer. Anal. 33(5), 1981–1994 (1996)

3. Baker, B.S., Grosse, E., Rafferty, C.S.: Nonobtuse triangulation of polygons. Discrete Comput. Geom.
3, 147–168 (1988)

4. Bank, R.E., Sherman, A.H., Weiser, A.: Refinement algorithms and data structures for regular local
mesh refinement. In: Scientific Computing, pp. 3–17. IMACS/North-Holland Publishing Company,
Amsterdam (1983)

5. Bouchon, F.: Monotonicity of some perturbations of irreducibly diagonally dominant M-matrices.
Numer. Math. 105(4), 591–601 (2007)

6. Bramble, J.H., Hubbard, B.E.: New monotone type approximations for elliptic problems. Math.
Comp. 18(87), 349–367 (1964)

7. Bramble, J.H., Hubbard, B.E.: On a finite difference analogue of an elliptic boundary problem which
is neither diagonally dominant nor of non-negative type. J. Math. Phys. 43(1–4), 117–132 (1964)

8. Brandts, J.H., Korotov, S., Kr̆ı́z̆ek, M.: The discrete maximum principle for linear simplicial finite
element approximations of a reaction-diffusion problem. Linear Algebra Appl. 429(10), 2344–2357
(2008). Special Issue in honor of Richard S. Varga

9. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth variational problems and their inequalities: com-
parison principles and applications. Springer monographs in mathematics New York: Springer
Science+Business Media (2007)

10. Collatz, L.: Functional Analysis and Numerical Mathematics. Translated from the German by
Hansjörg Oser. Academic Press, New York (1966)

11. Douglas, J., Dupont, T.: A Galerkin method for a nonlinear Dirichlet problem. Math. Comput. 131,
689–696 (1975)

12. Douglas, J., Dupont, T., Serrin, J.: Uniqueness and comparison theorems for nonlinear elliptic
equations in divergence form. Arch. for Ration. Mech. Anal. 42(3), 157–168 (1971)
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