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A PROOF THAT ANDERSON ACCELERATION IMPROVES THE
CONVERGENCE RATE IN LINEARLY CONVERGING
FIXED-POINT METHODS (BUT NOT IN THOSE CONVERGING
QUADRATICALLY)*
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Abstract. This paper provides theoretical justification that Anderson acceleration (AA) im-
proves the convergence rate of contractive fixed-point iterations in the vicinity of a fixed-point. AA
has been used for decades to speed up nonlinear solvers in many applications. However, a rigorous
mathematical justification of the improved convergence rate has remained lacking. The key ideas of
the analysis presented here are relating the difference of consecutive iterates to residuals based on
performing the inner-optimization in a Hilbert space setting, and explicitly defining the gain in the
optimization stage to be the ratio of improvement over a step of the unaccelerated fixed-point itera-
tion. The main result shown here is that AA improves the convergence rate of a fixed-point iteration
to first order by a factor of the gain at each step. While the acceleration reduces the contribution
from the first-order terms in the residual expansion, additional superlinear terms arise. In agreement
with the theory, numerical tests are given which illustrate improved linear convergence rates, but for
quadratically converging fixed-point iterations the rate is slowed. Our tests further illustrate how
AA can perform similarly to damping in enlarging the domain of convergence.

Key words. Anderson acceleration, fixed-point iterations, nonlinear iterations, convergence
theory, damping

AMS subject classification. 65J15

DOI. 10.1137/19M1245384

1. Introduction. We study an acceleration technique for fixed-point problems
called Anderson acceleration, in which a history of search-directions is used to im-
prove the rate of convergence of fixed-point iterations. The method was originally
introduced by Anderson in 1965 in the context of integral equations [3]. It has re-
cently been used in many applications, including multisecant methods for fixed-point
iterations in electronic structure computations [8], geometry optimization problems
[16], various types of flow problems [15, 17], radiation diffusion and nuclear physics
[2, 19], molecular interaction [18], machine learning [9], improving the alternating
projections method for computing nearest correlation matrices [11], and on a wide
range of nonlinear problems in the context of generalized minimal residual (GMRES)
methods in [21]. We further refer readers to [12, 14, 15, 21] and references therein for
detailed discussions on both practical implementation and a history of the method
and its applications.

After a long history of use and a strong recent interest, the first mathematical
convergence results for Anderson acceleration (for both linear and nonlinear problems)
appear in 2015 in [20], under the usual local assumptions for convergence of Newton
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iterations. However, this theory does not prove that Anderson acceleration improves
the convergence of a fixed-point iteration, or in other words accelerates convergence
in the sense of [6]. Rather, it proves that Anderson accelerated fixed-point iterations
will converge in the neighborhood of a fixed-point; and an upper bound on the con-
vergence rate is shown to approach from above the convergence rate of the underlying
fixed-point iteration. While an important stage in the developing theory, this does
not explain the efficacy of the method, which has gained popularity as practitioners
have continued to observe an often dramatic speedup and increase in robustness from
Anderson acceleration over a wide range of problems.

The purpose of this paper is to address this gap in the theory by proving an
estimate for Anderson acceleration that shows, in the vicinity of the solution, an im-
provement in the convergence rate for fixed-point iterations (for general C! functions
with Lipschitz derivatives) that converge linearly (with rate ); or to a damped iter-
ation where & is replaced by ((1 — Bk—1) + Bk—1k), for damping (mixing) parameter
0 < Bx—1 < 1. By explicitly defining the gain of the optimization stage at iteration k
to be the ratio 6 of the optimized objective function compared to that of the usual
fixed-point method, the residual norm at step k is shown to be reduced approximately
by 0 ((1 — Br—1)+ Br—1k), near the solution, where ;1 = 1 produces the undamped
iteration. The key ideas to the proof are an expansion of the residual errors, developing
expressions relating the difference of consecutive iterates and residuals, and explicitly
factoring in the gain from the optimization stage. A somewhat similar approach is
used by the authors to prove that Anderson acceleration improves Picard iteration
convergence for finite element discretizations of the steady Navier—Stokes equations in
[17] (without the Lipschitz assumption on the derivative of the fixed-point operator),
and herein these ideas are extended to more general fixed-point iterations.

Consistent with the presented analysis which indicates that Anderson accelera-
tion introduces higher-order error terms, our numerical results illustrate Anderson
acceleration slowing the convergence of quadratically convergent Newton iterations.
In the first part of the theory presented below we consider the damped Anderson iter-
ation (in the literature the damping parameter for Anderson is often called the mixing
parameter). This is motivated by the observation that for noncontractive fixed-point
iterations, the Anderson accelerated iteration is more robust with respect to choice of
damping (mixing) parameter than the unaccelerated iteration [10, 19], but may still
require some degree of damping for convergence.

This paper is arranged as follows. In section 2, we review Anderson acceleration,
describe the problem setting, and give some basic definitions and notation. Section 3
gives several important technical results to make the later analysis cleaner and simpler.
Section 4 gives the main result of the paper, showing how the linear convergence rate
is improved by Anderson acceleration, although additional higher-order error terms
arise. Section 5 gives results from numerical tests, with the intent of illustrating the
current contributions to the theory. Conclusions are given in the final section.

2. Anderson acceleration. In what follows, we will consider a fixed-point op-
erator g : X — X, where X is a Hilbert space with norm || and inner-product
(-, ). The Anderson acceleration algorithm with depth m applied to the fixed-point
problem g(z) = x reads as follows.

ALGORITHM 2.1 (Anderson iteration). The Anderson acceleration with depth

m > 0 and damping factors 0 < By, <1 reads as follows:
Step 0: Choose xp € X.
Step 1: Find &1 € X such that &1 = g(xg). Set x1 = Z1.
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Step k+ 1: For k=1,2,3,... set my = min{k, m}.
(a) Find T11 = g(x).
(b) Solve the minimization problem for {a?“}’g_mk,

k

. k ~
(2.1) . min Z aj+1(xj+1 — ;)
j=k—my %j =1 j=k—my

(¢) For damping factor 0 < B <1, set
k
(2.2) o= (1=8) Y o lai+ 8 Y i
j=k—my j=k—my

Throughout this work, we will use the stage-k residual and error terms

(23) € =T — Tk—1, ék = f}c — i‘k,h Wy = :i‘k — XL—1-
Define the following averages given by the solution o**! = {a§+1 K k_m, to the

optimization problem (2.1) by

(2.4)
k k k

wp= Y Ty, = Y o TEn, wi = Y ol (glry) —ay).

Jj=k—my

j=k—mi j=k—m
Then the update (2.2) can be written in terms of the averages ® and ¢,
(2.5) 1 = (1= Br)oy + Br¥iiq,
and the stage-k gain 6 can be defined by
(2.6) [wi | = O llwkl|-

The key to showing the acceleration of this technique defined by taking a linear
combination of a history of steps corresponding to the coefficients of the optimization
problem (2.1) is connecting the gain 6 given by (2.6) to the differences of consecutive
iterates and residual terms in (2.4). As such, the success (or failure) of the algorithm
to reduce the residual is coupled to the success of the optimization problem at each
stage of the algorithm. As ozﬁ“ =1, af“ = 0,7 # k, is in the feasible set for (2.1), it
follows immediately that 0 < 0 < 1. As discussed in the remainder, the improvement
in the contraction rate of the fixed-point iteration is characterized by 0.

The two main components of the proof of residual convergence at an accelerated
rate are the expansion of the residual wy11 into wj and error terms ey_y,, ..., €x;
and control of the e;’s in terms of the corresponding wj;’s. In the next section, the
first of these is established for general m, and the second for the particular cases of
depth m = 1 and m = 2, with the result then shown for general m.

3. Technical preliminaries. There are two main technical results used in our
theory. The first is an expansion of the residual, and the second is a set of estimates
relating the difference of consecutive iterates to residuals. These are shown in sections
3.1 and 3.2, respectively. The main results which depend on these estimates are then
presented in section 4.
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For the bounds in section 3.2 relating the difference of consecutive iterates to
residuals, the operator g : X — X is assumed to be Lipschitz continuous and contrac-
tive, as in [17]; see Assumption 3.2 below. The results of section 3.1 do not require the
contractive property, but require the assumption that g is continuously differentiable
with a uniformly Lipschitz derivative to allow for Taylor expansions leading to bounds
on the error terms. We denote the derivative of g by ¢'(-; ), and employ the standard
notation that form ¢'(+;-) is linear with respect to the argument to the right of the
semicolon.

Assumption 3.1. Let X be a Hilbert space and let g : X — X. Assume g has a
fixed-point =* € X, and there are positive constants x and & with
1. g € CY(X),
2. ||¢'(y;w)|| < K ||u|| for each y and all u € X,
3. 19 (x5 u) — ¢’ (y,w)|| < & ||z —y|| ||ul| for each z,y and all u € X.

Assumption 3.2. Let X be a Hilbert space and let g : X — X. Assume ||g(y) — g(z)||
< k|lx — yl| for every x,y € X, with x < 1.

By standard fixed-point theory, Assumption 3.2 implies the existence of a unique
fixed-point z* of g in X. In a slight abuse of notation, the difference of consecutive
iterates, ey = rp — Tk_1, is loosely referred to in this manuscript as an error term.
As shown carefully in [17], the true error xy — z* is controlled in norm by e;, j =k —
mg, ..., k, for the depth m algorithm so long as the coefficients from the optimization
remain bounded. In the results of section 4, the residual wy is shown to converge to
zero under Assumption 3.2. This is sufficient to establish convergence of the error
T, — x* to zero as

ek — &Il < ok — gl + lg(ar) — g(a®)| < il +  llz — 2],

by which ||z — 2*|| < (1= #)~" [|wypa .

3.1. Expansion of the residual. Based on Assumption 3.1 the error term €y, 1
of (2.4) has a Taylor expansion

1
(3.1) Srer = glan) — 9(zon) = / g (alt);ex) dt,

where zx(t) = xp_1 + tex. Using (3.1) we next derive an expansion of the residual
w41 in terms of the differences of consecutive iterates ey, ..., ex_m,_,. We start with
the definition of the residual by (2.4) and the expansion of iterate z; by the update
(2.5),

(3.2) w1 = g(wx) — xp = (1= Br—1)(g(zr) — v5_1) + Br—1(g(zx) — 7).
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Expanding the first term on the right-hand side of (3.2) yields

k—1
k
glar) —zp = > af(glwk) - x;)
j=k—mp_1-1
k—1
k
= Y. dglay) —ay)
j=k—mp_1—-1

k j—1

DY S ok (gley) - glz0)

j=k—mpr_1 \n=k—-mp_1—1
k
a -
(3.3) = wy, + E Vi€i+1
j=k—myp_1
where

Jj—1

(3.4) v = Z ok,

n:kfmkflfl

It is worth noting that v, = 1. Expanding the second term on the right-hand side of
(3.2), we get

k-1 !
(3.5) glar) =y = Y ofgla) —gl=) = D vEi
j=k—mp_1—1 j=k—mk_1

Reassembling (3.2) with (3.3) and (3.5) followed by (3.1), we have

K
wit1 = (1 = Br—1)wy + Z Vi€j+1

j=k—mp_1
k 1
(3.6) —-Geup > [ g dt
j=k—my_r 70

We now take a closer look at the last term of (3.6). For each j = k —mg_1,...,k—1,
adding and subtracting intermediate averages allows

(3.7)

1 1 k—=1 1
/Og(Zj(t);ej)dtZ/o g(zk(t);ej)dﬂr;/o g (zn(t)iej) — g (zns1(t);e5) dt.

Summing over the j’s the sum on the right-hand side of (3.6) may be expressed as

k 1 1 k
> %‘/ g’(zj(t);ej)dt:%»/ g'(Zk(t); > €j> di
j=k—mp_1 0 0 Jj=k—mg_1

k—1 k—1 1
(3.8) Y Yo / 7 (n(t):e) — o (zapa (£); ;) 2.
Jj=k—mg_1n=j
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The next calculation shows that Z?:k—mk,l v;je; is equal to Br_jwj . First, observe
that v; —vj—1 = 04?—1 and Ye—m, , = a,’i_mkil_l. Separating the first term of the
sum and using v, = 1,

k k—1
Y owe = —mea+ Y, vl —a)
j=k—mg_1 j=k—mg_1
k—2
k
=Tk — Th—1 T Ve—1Tk—1 — E o5 T
j=k—mp_1—1
k—2
k k
(3.9 =TE — O)_1Th—1 — E QT =) — TR_q.

j=k—mp_1-1
From (3.9) and the decomposition of z in terms of update (2.2), we have that

k
(3.10) > v =ak—apoy = (1= Be1)afoy + Beadiy — 2,

j=k—mp_1

= Br—1(Tf — h_1) = Br—1wy -

Putting (3.10) together with (3.8) and (3.6) then yields

1

(3.11) wH¢:/(Lﬁ%4Wg+m4j@Mmedt
0
k—1 k—1

Y Y[ gGtie) - d i) ar

j=k—mi_1n=j

=L+H,

where £ = fol(l — Br—1)wy + Br—19'(zx(t);wy) dt, so that £ and H contain the
respective lower- and higher-order parts of the decomposition. Taking norms in (3.11)
and applying Assumption 3.1 followed by triangle inequalities to the terms inside the
sums of H yields

(3.12) 1L < ((1 = Br—1) + £Bx—1) [lwii]l,
k—1

k—1 1
IHI<& > byl H%IIZ/() [=tent1 — (1 = t)en| dt
n=j

j=k—mp_1

~ k—1 k—1
K
(3.13) <3 S bl Ulensall + lenll) -
j=k—mi_1 n=j

Based on the expansion of wy; provided by (3.11) and the bounds (3.12)—(3.13) we
now proceed to bound the higher-order terms to establish convergence of Algorithm
2.1 at an accelerated rate.

3.2. Relating the difference of consecutive iterates to residuals. We now
derive estimates to bound (in norm) the e;’s from the right-hand side of (3.11) by
the corresponding w;’s. The bounds in this subsection hold under Assumption 3.2,
namely g is a contractive operator.
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Under Assumption 3.2 we have the inequality
(3.14) (L= r)llenll < llenll = llentall < lléns1 — enll = [[wn41 — wall -

The next lemma establishes a bound for e;_; in terms of w; and w;_; in the case
of depth m = 1. The subsequent lemma generalizes the same idea for general m.

LEMMA 3.3. Under the conditions of Assumption 3.2, the following bounds hold:

; 1
(3.15) lajalllej—1ll < 7= llwjall,

1

(3.16) ool llej—1ll < —— llwjll.

Proof. Begin by rewriting the optimization problem (2.1) in the equivalent form

. 2
n = argmin |lw;—1 + n(w; —w;-1)[",

where o, =7 and 04;_2 =1 —n. The critical point 7 then satisfies n ||w; — wj_1H2

= (wj_1,w; — w;_1). Applying Cauchy-Schwarz and triangular inequalities yields
In| lw; —wj_1|| < ||wj—1||. Applying (3.14) with n = j — 1 yields the result (3.15).
Next, rewrite the optimization problem (2.1) in another equivalent form,

(3.17) y = argmin w; —y(w; —w;-1)|*,

where the equivalence follows with aj_Q =~ and aJ:_l = 1 — v. Following the same
procedure as above yields |y| [|[w; — wj—1]| < ||w;||. Applying (3.14) at level n—1 then
yields the second result (3.16). O

The use of 7 as the second parameter in the proof above is not purely coincidental,
as this v agrees with y;_p,,_, used in section 3.1 with & = j and my_1 = 1. The
same essential technique yields the necessary bounds for m > 2. The estimate for
general m is given in Lemma 3.4, with the particular estimate for m = 2 given as a
proposition.

As in the m = 1 case above, two forms of the optimization problem are used. The
y-formulation is used to bound the terms |v;| |le;|| that appear from the expansion
(3.11); whereas, the n-formulation is used to bound the term ||| as it appears
in the numerator without leading optimization coefficients. It is then of particular
importance that estimates of the form c¢ ||e;|| < Xk, [jw,|| have the property that c is
bounded away from zero. This is a reasonable assumption on the leading coefficient
c= 0‘113—1 for each k, as some nonvanishing component in the latest search direction
is necessary for progress. The bounds below should be understood under the usual
convention that the sums are zero if the lower index is greater than the upper.
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LEMMA 3.4. Under the conditions of Assumption 3.2, the following bounds hold:

(3.18) lesll < 7= (lwyeall + sl
; 1 i2 .
(319) Jag_lllejrll < 7= | Inj—al llwj—1ll + > ol ] lwal
n=j—m;—i
1 p2 -
p-1lllep-1ll < 37— > lad alllwall + 2l llwp—1 | + [yl lwyll

n=j—m;_1

(3.20) + ) ai_llllwnH)-

n=p+1

with n;—1 = a;_l + a§_2 as in (3.21), and vp,Yp—1,7p—2, given below by (3.22).

As discussed above, each bound plays a different role in the final result. The
first, (3.18), is used for any ||e;|| with j < k —1 that does not appear multiplied by a
corresponding coefficient |y;|. The second, (3.19), is used to bound ||eg||. The third,
(3.20), is used to bound terms of the form |y,—_1]|lep—1]|, as appearing in each outer
sum of (3.13). Relating these estimates to the my_; = 1 case of Lemma 3.3, (3.19)
reduces to (3.15) and (3.20) with p = j reduces to (3.16), noting from (3.22) that
Vi1 = a;_g and v; = aj_2 + a;_l =1.

Proof. The first bound (3.18) follows directly from (3.14) and a triangle inequality.
For the second two bounds, we recall the optimization problem (2.1) at level j is to
minimize

Jj—1 Jj—1
E o) wn41|| subject to E o) =1.
n=j—m;_1—-1 n=j—m;j—_1—1

Differencing from the left and right, respectively, this can be posed as the following
unconstrained optimization problems:

J j—1 ,
. . . _ j
(3.21) minimize ||w;_m,_, + E D (We — Wn—1)|| , Tn = E aj,
n=j—m;_1+1 1=n—1
. 2
J n—1
(3.22) minimize ||w; — E Yn—1(Wp — wp—1)| , Y = E a.
n=j—m;_1+1 i=j—mj_1—1

Note that (3.22) coincides with (3.4), which agrees with the unconstrained form of the
optimization problem in, for instance, [8]. To help reduce notation, denote m = m;_q
for the remainder of the proof.

Starting with estimate (3.19) we are concerned with bounding-in-norm the leading
difference term w; — w;_;. Expanding the norm squared (3.21) as an inner product
and seeking the critical point for n; yields

j—1

nj llwy = wia|® + (w5 —wi—t, wimm) + Y Ma(wy — w1, wn — wpy) = 0.
n=j—m-+1
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Recombining the terms inside the sum, noting 7,_1 — n, = afL_Q and 7; = 0151717 we
obtain
j—2
. 9 . , .
oy lwy —wia)|* = —=(od g +ad ) (wi—wi 1, wi1)— Y ody (wj—wj1,wy).
n=j—m
Applying Cauchy—Schwarz and triangle inequalities then yields
oy lwy = wima || < oy + @ ol il + Y oy Jwall-
n=j—m
Applying (3.14), the result (3.19) follows.

Similarly for (3.20), expanding the norm of (3.22) as an inner product and seeking
the critical point for each v,_; yields
) J
Vo1 lwp — wp—1[|” = (wp — wp—1,w;) — Z Yn—1(Wp — Wp—1, Wn — Wn—1).
n=j—m+1,n#p
Recombining the terms inside the sum using ~v,, — yp—1 = afl_l and vj_;m = oz;;mfl,
we obtain
p—2
5 ,
o1 lwp — wp—1” = Z o1 (Wp — Wy—1,Wy) — YVp—2(Wp — Wp—1,Wp—1)
n=j—m
+ Yp(wp — Wp—1, wp)
j .
+ O‘%—1(“’p _wp*lawn)-
n=p+1

Applying now Cauchy—Schwarz and triangle inequalities,

p—2
p-1lllwp = wp—rl <D lad i Hlwall + vp—al llwp—1ll + ol 1wy
n=j—m
j .
+ > gl wall-
n=p+1
Applying (3.14), the result (3.20) follows. d

For the convenience of subsequent calculations, the bounds (3.21) and (3.22)
used to bound ||wg41]| for the case of depth m = 2 are summarized in the following
proposition.

PROPOSITION 3.5 (depth m = 2).  With depth m = 2 the estimates (3.19) and
(3.20) reduce to

(3.23) legill < 3= (gl + g,

(3.24) o™ leell < =2 (lak™ + alt] onl + g3 )
(325) byl llesall < = (gl + lod gl oyl + fod gl oyl )
(326)  yoalllesall < 7 (lod_yl gl + 11 — 0y oy ] )
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The second two bounds (3.25) and (3.26) follow from (3.20) noting from (3.22),

that for m = 2 we have ;2 = o 3, 71 =1—«aj_; and 75 = 1.

3.3. Explicit computation of the optimization gain. The stage-k gain 6
has a simple description assuming the optimization is performed over a norm |- ||
induced by an inner product (-, -), in other words in a Hilbert space setting.

Consider the unconstrained y-form of the optimization problem (3.22) at iteration
k with depth m: Find vx—y 41, ..., 7% that minimize

k 2

Wk+1 — E ’Yn(wnﬂ - wn)
n=k—m-+1

(3.27) — [Jwrgs — PR,

where F* is the matrix with columns w11 —wp, n =k —m+1,...,k, and 7* is the
corresponding vector of coefficients Vg—_m+1,--.,7- Indeed, (3.27) (or equivalently
reindexed) is the preferred way to state the optimization problem [21], particularly in
the case where || - || is the ls norm and a fast QR algorithm can be used.

This is also the preferred statement of the problem to understand the gain 0y, 1
from (2.6), which satisfies ||wg || = Ox+1 |wk+1]|. Define the unique decomposition
Wri1 = wr + wy with wr € Range (F*) and wy € Null (F¥)T). Then wy is the
least-squares residual satisfying |wn| = ||wes1 — F**|| = ||wiyy ]| = Orsr lwrsa ||
meaning

2
(3.28) Oppr = 1|1 — ”L“Q
(Y|

and, 011 has the interpretation of the direction-sine between wy1 and the subspace
spanned by {w,4+1 — wn}ﬁ:k_mﬂ. This is particularly clear in the case m = 1, where
solving for the critical point y of (3.17) yields

(W, Wy — wi)

wpsr — wil?

Expanding 607 wis1]]® = Jwps1 — Y(wrs1 — we)||” and using the particular value
of v above yields
(Wht1, Wet1 — wk)?
w1 = wrll* wgsa|*
1/2

1 _ei-&-l =

with the clear interpretation that (1 — 67, ;)
and wy41 — wyg; hence 44 is the direction-sine.
If, indeed, an (economy) QR algorithm F* = Q;R; is used to solve the opti-

is the direction cosine between wg1

mization problem, then 6,1 = \/1 — (|QT wrs1| / lwks1)?, which can be used to
predict whether an accelerated step would be (sufficiently) beneficial. This explicit
computation of ;1 is used in section 5.2 to propose an adaptive damping strategy
based on the gain at each step. Finally, it is noted that the improvement in the gain
Ox+1 as m is increased depends on sufficient linear independence or small direction
cosines between the columns of F'*, as information from earlier in the history is added.
This is discussed in some greater depth in [21].

4. Convergence rates. We next analyze convergence rates for depths m =1
and m = 2, followed by the corresponding analysis for general m. The two simpler
cases are included as they show how the analysis fits together with less technicality.
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4.1. Convergence rates for depths m = 1 and m = 2. First, we put the
expansion (3.11) together with the bounds (3.15)—(3.16) for a convergence proof for
the simplest case of m = 1.

THEOREM 4.1 (convergence of the residual with depth m = 1). On the satis-
faction of Assumptions 3.1 and 3.2, if the coefficients a,’j“,a’,ﬁ_l remain bounded
and bounded away from zero, the following bound holds for the residual wy41 from
Algorithm 2.1 with depth m = 1:

ksl € 00((1 = Be1) + £By-1) wnll + O (Junl*) + O (Jleog-r?)

Remark 4.2. The assumptions on the coefficients a? arising from the optimiza-
tion problem are similar to those of [20]. These assumptions could be eliminated by
solving instead a constrained optimization problem that enforces boundedness of the
parameters, resulting in a modified gain 6 which satisfies 8, < 6 < 1. This, along
with two other options for enforcing boundedness of the optimization coefficients, can
be found in [20, section 2.2].

Proof. In this case the expansion found for ||wg41]| in (3.11)—(3.13) reduces to

R
2

(A1) fwrrall  0((1 = Bes) + w1 Tl + = el + lex—1 D1 llex—ll.
The preceding bound (4.1) holds regardless of whether g is globally contractive (As-
sumption 3.2); hence for error terms ||eg|| and ||ex—1 || small enough, contraction of the
error may be observed depending on the search direction, particularly if a damping
factor 0 < B < 1 is applied, and if the gain 6} is sufficiently less than one. This
justifies the observation that Anderson acceleration can enlarge the effective domain
of convergence of a fixed-point iteration.

For the remainder of the calculation, we consider the case of a contractive op-
erator, meaning Assumption 3.2 is satisfied. Applying (3.16) with j = k to the
|vk—1] lex—1]|, recalling by (3.4) we have v,_1; = af_,; and applying (3.15) with
j=k+1and j = k, respectively, to the remaining ||ex|| and ||ex—1]| allows

& [wpll okl
Jwkpr ]| < Ok((1 = Br—1) + £Br—1) [lwr]l + + [k |
21 —=w)2 \ ot af_,

(42) = 0((1 = Bror) + kBeo) ]l + O (el + O (Jwn ). 0

As discussed in section 3.2, oz,’i"H and a£71 are each the leading coefficients in

their respective optimization problems, multiplying the most recent iterate. As such,
these coefficients may be reasonably considered to be bounded away from zero.

The case of m = 2 follows similarly, combining (3.11) with (3.24)—(3.26). Here
we make explicit use of the decomposition wi41 = L + H.

THEOREM 4.3 (convergence of the residual with depth m = 2). On the satisfac-
tion of Assumptions 3.1 and 3.2, if the coefficients 0273,0#2, j =k, k+1 remain
bounded, and aﬁ“ remains bounded away from zero, the following bound holds for
the residual wiy1 from Algorithm 2.1 with depth m = 2:

(4.3) llwksa | < O6((1 = Ber) + £Bx1) fwnll + O (Jlwi )

+ 0 (lwe-a]*) + O (Jlunall®)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/20 to 128.227.122.186. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PROOF OF ACCELERATION FOR FIXED-POINT ITERATIONS 799

Proof. For depth m = 2 the residual expansion (3.11)—(3.13) reduces to

(4.4)
lwell < L]+ 1A
(4.5)

I£]] < 0x((1 = Br—1) + K£Bk—1) lwkll,
(4.6)

I#]| < (Hek||+|\€k D=1l llex—1ll + A(llex—2ll + 2 lex—1ll + llex ) lvn—2l les—2|l -

Applying (3.25) and (3.26) to (4.6) yields
i
IH] < m(\lekll +ller—1ll) (llwll + lok_s| wp—1l + g _s] [[wi—2l])

K
47+ m(llek\\ +2|ler—1l| + len—2ll) (Jak—y llwrll + 1 — g | [lwg-]]) -

Applying (3.24) to |lex|| and (3.23) to ||ex—1]| in (4.7) then yields

[+ < 20— r)

x (lwrll + ksl llwr—1]l + ek _s] llwr—2])

<|wk||+||wk 1||+| | (log ™ + 1] wnll + a3 w— 1||)>
Qy

R
— 2 3 _ _
+ g (2l 3 Jukal + o

1
M (1okt kAol lot 1 )
ap

x (Jodioa | lwnll + 1 = ag_y | [lwe—1])
(4.8)

= O (Jluel*) +0 (- [*) + O (Jlwe—2]?)

where each term has bounded coefficients under the hypotheses of the theorem.
Putting together (4.8) with (4.4) and (4.5) yields the result (4.3). 0

4.2. Convergence rates for depth m > 2. Finally, we consider the result for
general m.

- THEOREM 4.4. On the satisfaction of Assumptzons 3 1 and 3.2, if the coefficients
QL e ozj 9, J = k, k41, remain bounded, and ozk remains bounded away from
zero, the following bound holds for the residual w11 from Algorithm 2.1 with depth
m > 2, assuming k > m:

(49) s <061 = Byor) + wB) llwgll + 3 O (w117 -

Jj=0

Remark 4.5. Using the same damping factor and without acceleration, the resid-
ual norm at step k + 1 would be bounded by ((1 — Bk—1) + Bx—1K)||wk|. With
acceleration, Theorem 4.4 demonstrates that ||wg+1]| is bounded by 65 ((1 — Br—1) +
Br—1#)|wk ||, plus an additional higher-order contribution > 7, O (|lwi—;1?). Hence,
so long as this additional error does not offset the gain from the first-order term,
improvement in convergence from Anderson acceleration will be attained.
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Proof. We proceed by a direct argument on the lower-order terms and an inductive
argument on the higher-order terms. From (3.11) we have wgy1 = £ + H, where

L= [} (1= Bro1)wf + Bro1d (z(); w) dt.
For k£ > m, the depth is constant, m; =m, j > k — 1. Now define

k-1 k-1

(4.10) H@ = Z Z'yj/ (zn(t)ie;) — ¢ (zn41(t);e5) dt, 1 < g <m.

j=k—qn=j

Then H™ = H from (3.11), and |lwy11]| < | L]+ ||%™||. To bound the lower-order
part we have from (3.12) and (2.6) that

(4.11) 1] < 0k (1= Br—1) + £Bk—1) [lwll -

Proceeding with the inductive part of the argument, we seek to show HH(m) H
Z;ﬂ 0 O( ||wk il ). For the base step, consider ¢ = 1. From (4.10), we have H) =

fo (2e—1(t); ve—1€x-1) — 9'(2k(t); Yh—1€£-1) d, and

IN

R
(4.12) 1O < Sl llew-1ll Qlewll + llew-all)

While this looks similar to the expression in (4.1) from the m = 1 proof, here y_1
is a coefficient from the depth-m rather than the depth-1 algorithm. Expanding
[Ve—1] [lex—1]| by (3.20) with p = j =k, [lex[| by (3.19) with j = k+1, and |lex—1| by
(3.18) with j = k — 1 yields

o k—2
KR
[ SM( > |aiil||wn+|vk2||wk1||+|vk|||wk||>
n=~k

=k—m
k—1
|nk‘ 1 k41
| okl + D B a4 ekl + ksl
jof | of
m
2
(413) =0 (o)
j=0

From the hypotheses of the theorem, and 7, = af ™ + af*] from (3.21) with n = &
and j = k + 1, each coefficient in (4.13) is bounded, by which the base step of the

induction is satisfied. Assume now for each [ =1,...,q — 1, for ¢ < m, the inductive
hypothesis
(4.14) HHU)H <Y o (|\wk_j||2) .

§=0

Proceed with the inductive step, for ¢ < m. From (4.10) we have

k—1

HD = Z Z’Y]/ n(t);ej) = g (zny1(t)ie;) dt

Jk(ql)nj

+7k q Z / Zn ek q) g/(zn+1(t);ek7q) dt

n=k—q

— 3(a- 1)_‘_% q Z / (Zn(t); ex—q) — 9 (Zn41(t); €x—q) dt.

n=k—q
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Taking norms and applying Assumption 3.1 as in (3.13) allows

o k—1
_ K
79| < |2 + Sh-allex=all 3> Ulensall+ leal)
n=k—q
i k—1
(415) < A+ Shncallewall { el +2 [ D2 lleall | + llex—l
n=k—q+1

Now |vk—q| ||ex—q|| can be bounded by (3.20) with j = k, and ||ex|| can be bounded
by (3.19) exactly as it is in (4.13). The remaining terms can be bounded by (3.18).
Specifically,

1
(4.16) ie—gl llex—qll < 37— (I%—«ml [wk—qtill + [Vh—g—1] [[wr—qll

k—q—1 k
k k
+ et llwnll + D Oén_llllwnH),

n=k—m n=k—q+2

where from (3.22), the coefficient y_q4+1 = Zf;,f_m_l of and y,_g-1 = Zi:,g:fn_l ak,
which is zero for k = m. The last sum in (4.16) is either zero for ¢ > 2 or |af_,|||wg]|

for ¢ = 2. From (3.18) we have

k—1
2 > llenll | + llex—ll
n=k—q+1
1 k—1
(4.17) < 7 | 2 lwell +4 Y lwall | + 3 llwr—geall + llwi—ql
n=k—q+1

Putting (4.16), (4.17), and (3.19) with j — 1 = k together into (4.15) yields

] < =]

I3

+ 2(1 — r)2 <|'qu+1| wk—q+1ll + [Vr—g—1] [lwi—q]l

k—q—1 k
+ Y o lllwall+ D |aﬁ_1|||wn||>

n=k—m n=k—q+2

|nk‘ 1 k—1 . k—1
x 2wkl + g okl + — D (b wall +4 | D0 [lwal
|ak ‘ |ak |n:k—nH4 n=k—q+1

+ 3 [lwk—grall + [[wr—qll }

(4.18)

= io (Ihws117)
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Together with the inductive hypotheses (4.14) and the boundedness of the optimiza-
tion coefficients from the hypotheses of the theorem, this establishes the inductive
result for ¢ = 2,...,m. Putting the inductive result on the higher-order terms with
g = m together with the direct result (4.11) on the lower-order terms establishes (4.9),
the result of the theorem. O

As discussed in section 3.3, even as the higher-order terms accumulate, there
may still be an advantage to some extent to considering greater depth m, due to the
improved gain from the optimization problem.

5. Numerical tests. We now give results of several numerical tests that illus-
trate the theory above. In particular, we illustrate that Anderson can speed up linear
convergence but slows down quadratic convergence. Additionally, although our the-
oretical results do not rigorously justify it, our tests will also show that Anderson
acceleration can expand the domain of convergence. Results from [15], a numerical
study on Richards’ equation governing flow in partially saturated media, also show
this, and, in particular, that Anderson accelerated Picard-like iterates converge over a
wider range of material parameters than do the corresponding unaccelerated versions
of Picard or damped Newton iterations. We display our results to provide additional
numerical evidence. It is not our purpose in this section to show how well Anderson
acceleration works on a wide variety of problems; for this, see the references in the
introduction.

5.1. Numerical tests for steady incompressible Navier—Stokes equation.
Here we present numerical experiments to show the improved convergence provided
by Anderson acceleration for solving the steady incompressible Navier—-Stokes equa-
tions (NSE). In particular, we will illustrate how Anderson can improve the linear
convergence rate of Picard iterations and expand the domain of convergence for both
Picard and Newton iterations, but how Anderson acceleration can lower the order of
convergence in Newton iterations.

The NSE are given in a domain 2 by

(5.1) u-Vu+Vp—vAu=f,
V-u=0,

where v is the kinematic viscosity, f is a forcing, w and p represent velocity and
pressure, and the system must be equipped with appropriate boundary conditions.
The L?(2) norm and inner product will be denoted by ||-|| and ( -, -) in this subsection.

The tests we consider are for the two-dimensional lid-driven cavity problem, which
uses a domain Q = (0,1)2, no-slip (v = 0) boundary conditions on the sides and
bottom, and a “moving lid” on top which is implemented by the Dirichlet boundary
condition u(z,1) = (1,0)T. There is no forcing (f = 0), and the kinematic viscosity
is set to be v :== Re™ !, where Re is the Reynolds number, and in our tests we use
Re varying between 1000 and 10, 000. Plots of the velocity streamlines for the steady
NSE at Re = 2500 and 6000 are shown in Figure 5.1.

We discretize with (Xp,,Qp) = ((P2)?, P1) Taylor-Hood finite elements on a iz
uniform triangular mesh that provides 592,387 total degrees of freedom, and for the
initial guess we used u% = 0 but satisfying the boundary conditions. Define the
trilinear form b* by

b* (u, v, w) := (u- Vo,w) + %((V “u)v,w).
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Re=2500 Re=6000

Fic. 5.1. Streamline plots of the steady NSE driven cavity solutions with varying Re.

The discrete steady incompressible NSE problem (with skew-symmetrized nonlin-
ear term) reads as follows: Find (u,p) € (Xp, Qp) satisfying for all (v,q) € (Xn, Qn),

(5.3) —(p,V - v) + v(Vu, Vo) + b*(u, u,v) = (f,v),
(5.4) (V-u,q)=0.

Since this problem is nonlinear, we need a nonlinear solver. We consider two common
nonlinear iterations, Picard and Newton, which are defined as follows.

ALGORITHM 5.1 (Picard iteration for steady NSE).
Step 1: Choose uy € Xp,.
Step k: Find (ug,pr) € (Xn, Qr) satisfying for all (v,q) € (Xpn, Qn),

(5.5) b* (ug—1, Uk, v) — (P, V - v) + v(Vug, Vo) = (f,v),
(5.6) (V- uk,q) = 0.
ALGORITHM 5.2 (Newton iteration for steady NSE).

Step 1: Choose ug € Xp,.
Step k: Find (ug,pr) € (Xn, Qr) satisfying for all (v,q) € (Xpn, Qn),

(5.7)
b* (urk—1, Uk, v) + 0" (Up, ur—1,v) — b (up—1, uk—1,v) — (P&, V - v) + v(Vug, Vv) = (f,v),
(5.8) (V- g, q) = 0.

For sufficiently small data, the steady NSE and these iterations are well posed [13].
Hence we can consider both the Picard and Newton iterations as fixed-point iterations
ug+1 = g(ug), where g is a solution operator of (5.5)—(5.6) for Picard or (5.7)—(5.8) for
Newton. In this way, we can apply Anderson acceleration to both methods. Below, we
test both the Picard and Newton iterations with Anderson acceleration. The linear
systems are solved with a sparse direct solver.

5.1.1. Results for Anderson accelerated Picard iterations. For Picard
iterations, we observe in Figure 5.2 that Picard without Anderson acceleration is
converging linearly (although slowly) for Re = 2500, but is not converging for Re =
6000. With Anderson acceleration, however, we observe the convergence is improved
for Re = 2500, and for Re = 6000 Anderson acceleration allows convergence (in this
sense Anderson acceleration improves the domain of convergence). Hence a significant
improvement of m = 1 over m = 0 is observed in both cases, and further improvement
is observed by increasing to m = 3.
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Fic. 5.2. Convergence of the Anderson accelerated Picard iterations with Re = 2500 (left) and
Re = 6000 (Tight).

Box-plots of the 6’s from the Picard iterations are shown in Figure 5.3. For
Re = 2500 (left side), there is a clear decreasing trend in distribution of 6’s as m
increases, while for Re = 6000 the box-plots look rather similar but with m = 1
seemingly a little lower overall compared to m = 2. However, the lower values and
outliers in these plots are critical, since one multiplication of a small factor takes many
multiplications of larger factors to achieve the same residual decrease.
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F1G. 5.3. Boz-plots of 0 values for the Picard iterations with Re = 2500 (left) and Re = 6000
(right).

As afinal part of this test, we compare the number of iterations needed to converge
the residual for the Picard iteration in the H' norm to a tolerance of 1078, for
varying Re and varying m. Results are shown in Table 5.1, and again we observe
a substantial improvement from Anderson acceleration. Even m = 1 is enough to
provide convergence up to Re = 10000, although additional gain is made by increasing
to m = 2 and to m = 3. It is interesting that convergence of the steady NSE is
achieved for Re = 9000 and 10000 since the bifurcation point transition to transient
flow is around 8000 [4]. F in Table 5.1 denotes failure in the table, which we define
as not converging within 500 iterations (but we note that inspection of the last few
iterations of each of these that failed indicates the iterations are nowhere near, or
even approaching, convergence).

5.1.2. Results for Anderson accelerated Newton iterations. We next con-
sider Anderson acceleration applied to Newton iterations for this same test problem,
using Re = 1000 and Re = 2500. For the Newton iteration without Anderson accel-
eration, we ran with and without a line search (following the step 57 tutorial from
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TABLE 5.1
Shown below are the number of Picard iterations needed to converge the nonlinear residual for
the steady NSE up to 1078 in the H' norm, for varying Re and m. F denotes a failure to reach

convergence by 500 iterations.

Re / m 0 1 2 3
1000 36 32 29 26
2000 48 41 40 34
3000 86 49 45 37
4000 158 59 46 40
5000 363 55 48 44
6000 F 62 55 49
7000 F 65 61 53
8000 F 78 70 58
9000 F 94 83 68
10000 F 105 97 71

[5], and turning the line search off once the nonlinear residual reached 1072). For
Newton with Anderson acceleration, we tested m = 1, 2, 3, without a line search (for
Re = 1000, the results with and without a line search are the same). We used u) =0
(and satisfying boundary conditions) as the initial guess, but also took two steps of
Picard (m = 0) before beginning the Newton iterations.

Results are shown in Figure 5.4. For Re = 1000 (shown on the left) Newton
converges quadratically without damping. The Newton—Anderson iterations with m =
1,2, and 3 all display a lower (superlinear) order of convergence, which is particularly
apparent toward the beginning of the iterative process. For Re = 2500 (shown on the
right), Newton without a line search fails, and the remaining tests—Newton—Anderson
with m = 1,2,3 and Newton with a line search—each show superlinear convergence.
The observed convergence is not strictly monotonic in norm with respect to m, but
is noticeably worse for m = 3 than for m = 1 or m = 2. The divergence for Newton
without a line search demonstrates that the domain of convergence is expanded when
Anderson acceleration is used, similar to the implemented line search.

100} ey —»—Newton
3 —e—Newton-Anderson(1) 5
—v—Newton-Anderson(2) 10
Newton-Anderson(3)
- 0 . -
= 5 _— 10
< 10 =
T =
5 5 10°
= -10 ——Newton
10 —e—Newton-Anderson(1)
1 0—1 0 —v—Newton-Anderson(2)
Newton-Anderson(3) \
—a—Newton (with line search)
A
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12
k k

F1G. 5.4. Convergence of the Anderson accelerated Newton iterations with Re = 1000 (left) and
Re = 6000 (right).

5.2. Numerical tests of Anderson accelerated and damped iterations
applied to the p-Laplacian. As is well known, the damping (also called mixing)
parameter § of Algorithm 2.1 may become important for convergence in the case of a
fixed-point operator that is not contractive. The purpose of this test is to show how
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explicit knowledge of the gain 041 can be used to automatically choose a damping
factor 8 to improve convergence stability and robustness with respect to depth m
for noncontractive operators. The tests below show iterations converging well for
depth m < 2, but at best with difficulty for m > 2, when 8y = B is sufficiently
small. For 8, = f sufficiently large, the tests show efficient convergence for m > 2,
no convergence for m < 2, and eventual but slow convergence for m = 2. Finally,
when S is chosen by a simple heuristic strategy based on the gain 6y, the iterations
converge efficiently for each m = 1,2, 3, 4.
We consider the p-Laplace equation, given in strong form by

1 (r—2)/2
(5.9) —div <2Vu2> Vu | =e¢,

with ¢ = 0.1 and p = 5. For p > 2, (5.9) is a degenerate elliptic equation in which the
nonlinear diffusion coefficient goes to zero as |Vul| goes to zero, creating a challenging

problem for nonlinear solvers. A regularized version, —div ( (e2 + %|VU,|2)(]D_2)/2 Vu)
= ¢, with e = 107° and ¢, p as above, is used as a benchmark test in [7, section 6.5] on
the composition of nonlinear solvers, comparing additive Schwarz and quasi-Newton
methods with left and right preconditioning. We did not use the regularization term
in our tests as it had little effect on the results.

The P; finite element approximation of (5.9) subject to homogeneous Dirichlet
boundary conditions is the function u € V}, that satisfies

) (b-2)/2
(5.10) / <2|Vu|2) Vu-Vuvde = / cv dax forall v eV,
Q Q

where V}, is the space of continuous piecewise linear functions that vanish on the
boundary. The simulations shown below were run on a 385 x 385 uniform left-crossed
triangulation of [0,2] x [0,2] with 148,996 total degrees of freedom using a Python
implementation of the FEniCS [1] finite element library. Each simulation was started
from initial iterate ug = zy(x — 1)(y — 1)(x — 2)(y — 2) (cf. [7]) and run to a residual
tolerance of 10~7 in the Iy norm, or stopped after a maximum number of iterations.
The optimization problem is solved in the l; norm with an economy QR decompo-
sition, and 6 is computed as described in section 3.3. We consider accelerating the
Picard iteration for this problem, defined as follows.

ALGORITHM 5.3 (Picard iteration for the p-Laplacian).
Step 1: Choose ug € V.
Step k: Find uy, € Vi, satisfying for all v € Vp,

1 (p—2)/2
(5.11) / <|Vuk_1|2> Vug - Vo da = / cv dx.
o \2 Q

The Picard iteration is not contractive, but does converge from the given initial
iterate with a sufficiently small damping factor. In our tests, it converged in less
than 100 iterations for a uniform choice of 5, = /8 in the range (0.13,0.47). As seen
by the expansion (3.11), the damping factor S;_1 explicitly alters the lower-order
terms in the error expansion. If the solution operator for (5.11) is not contractive
near the solution, then (3.12)—(3.13) still provides a bound for ||wg41| in terms of
|wg|| and higher-order terms involving differences of consecutive iterates ||wg41] <
O(1 — Br—1+ KBr—1) |lwe| + O(Jlex]|”) + -+ + O(|lex—m|* ). However, the bounds
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(3.18)—(3.20) controlling the differences of consecutive iterates by residuals are no
longer valid, so the theory is not complete.

Figure 5.5 on the left shows the convergence of the residuals for Picard and Picard—
Anderson with m = 1,2, 3,4, with uniform damping factor 5y = 8 = 0.2. Shown here,
the Picard iteration converges smoothly with g = 0.2, albeit with a slowing down of
the convergence rate around iteration 35. The accelerated iterations with m = 1 and
m = 2 show consecutive improvement. However, the m = 3 and m = 4 cases stagnate
starting around iteration 40. From Figure 5.6 (left), the optimization gains 6y overall
improve after iteration 40, suggesting the higher-order terms, whose magnitude can
be seen from Figure 5.5 (right) to vary between 1072 and 1 over those iterations, are
interfering with convergence. The iteration with m = 4 does eventually converge after
129 iterations. However, this example illustrates how a damping factor chosen too
small can interfere with convergence for larger values of m.
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“‘Q —o— Picard-Anderson(1) 1071 —6—Picard-Anderson(1)
Q —v— Picard-Anderson(2) —v— Picard-Anderson(2)
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— 10 dt_‘{, Picard-Anderson(4) — 10 0 Picard-Anderson(4)
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k k

Fi1G. 5.5. Convergence of the residuals ||w|| (left) and difference of consecutive iterates ||ek||
(right) for damped iterations for the p-Laplace problem with damping parameter 8 = 0.2.
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Fic. 5.6. Optimization gains 0y for damped iterations for the p-Laplace problem with damping
parameter B = 0.2 (left) and 8 = 0.75 (right).

In contrast, Figure 5.7 shows the history of residuals (left) with 8 = 0.75, well
outside the regime where the Picard iteration converges. Indeed, the residual for the
Picard iteration develops oscillatory behavior then stagnates around iteration 20, with
the residual greater than one. The residual for m = 1 shows a more stable decrease at
first, but it then also develops cyclic behavior, with ||wg| stagnating just below the
level of the Picard iteration. Anderson with m = 2 is more stable but also appears
to stagnate with |lex|| = O(107!) and |Jwi| = O(1072), and the corresponding gain
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factors 0y, settling into a narrow band around 0.35 (Figure 5.6, right). Anderson with
m = 3 and m = 4, however, both converge with an approximately linear rate.

It is useful to take a closer look at the borderline case m = 2, which as shown
in Figure 5.7 (top right), does eventually converge in 230 iterations as ||ex||> drops
below the level of |Jwg|. Comparing the top and bottom right plots of Figure 5.7,
while ||wy|| maintains its oscillatory behavior to the end, the oscillations in the gain 6
subside by iteration 220 as the contribution from the higher-order terms diminishes.
This example, with f = 0.2 and g = 0.75, illustrates that, while in agreement with
results reported in [10, 19], the Picard—Anderson is more robust with respect to choice
of the damping factor than Picard alone, a uniform damping factor may not be the
most efficient choice, and the range of effective damping factors can depend on m.
The adaptive strategy proposed next is illustrated here to reduce that dependence.

L
- . . 102k
10 —=— Picard ¥
10 —6— Picard-Anderson(1)
—v— Picard-Anderson(2) 5| |7 lw il
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Fic. 5.7. Left: Convergence of residuals ||wg| for m = 1,2,3,4 for damped iterations for the
p-Laplace problem with damping parameter = 0.75. Right: The last 100 iterations to convergence
of residuals ||wg|| for m =2 (top right), and corresponding gain factors 0y (bottom right).
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F1G. 5.8. Convergence of residuals |[wi|| (left) and difference of consecutive iterates ||ey|| (right)
for damped iterations for the p-Laplace problem with adaptively set damping parameter B = 0.9 —

Opy1/2.

Finally, in Figure 5.8, results are shown with an adaptively set damping factor
Br = 0.9 — 0r11/2, based on the gain 01 computed as described in section 3.3. The
heuristic choice of damping yields 0.4 < £ < 0.9, and leads to fewer iterations to
convergence than with the uniform damping factors tested for each of m =1,2,3,4,
without stagnation. In comparison with cases of § = 0.2 with m = 3,4, and 8 = 0.75
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F1G. 5.9. Damping factors B, = 0.9—0x/2 (left), and optimization gains 6y, (right) correspond-
ing to the error reduction shown in Figure 5.8.

with m = 1,2, this suggests using explicit knowledge of ;1 at each iteration to set
B can help prevent the residual reduction from stalling.

The adaptively chosen damping factors Sj corresponding to optimization gains
0k are shown in the left and right respective plots of Figure 5.9. For m = 1 the gains
0 level off to nearly one between iterations 20 and 25, and convergence continues at
a steady rate with a nearly constant damping factor of 5 =~ 0.4. For m = 2,3,4, the
0r gains and Sy damping factors are more varied throughout the iteration. Notably
the damping factor for m = 2 is above 0.75 for a good part of the first half of the
simulation but takes lower values when higher values of the gain are encountered
particularly towards the second half, which is apparently sufficient to stabilize the
iteration. Unlike the results shown above in Figures 5.5 and 5.7, Picard—Anderson
with m = 1,2, 3,4 all show similar convergence behavior using this damping strategy.

6. Conclusion. This paper shows for contractive fixed-point iterations how An-
derson acceleration decreases the contribution to the total residual arising from first
order terms; however, additional higher-order terms are introduced. In agreement
with decades of experimental results, this shows that the method improves the first-
order convergence rate for linearly converging fixed-point iterations in the vicinity of
a fixed-point, in comparison to the fixed-point iteration run with the same damping
factor. Our analysis reveals that the reduction in the contribution to the residual from
the first-order terms depends at each step on the gain from the optimization problem,
but that additional higher-order error terms arise. So long as the resulting modifica-
tion to the first-order terms is not offset by these higher-order terms, the convergence
rate will be improved. In particular, for linearly convergent fixed-point methods,
an improved convergence rate from Anderson acceleration is expected; however, for
methods converging quadratically, the convergence may be slowed. Additionally, the
presented numerical results provide evidence for noncontractive fixed-point iterations
that, while robustness of convergence with respect to choice of a uniform damping
factor may be improved for the accelerated algorithm, robustness with respect to
depth m as well as overall efficiency may be improved by using an adaptive damping
factor based on explicit knowledge of the optimization gain 8y, which can be easily
computed at each iteration.
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