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1. Introduction

The purpose of this paper is to present some standard benchmark tests, including both degenerate and nondegenerate
problems, for Anderson acceleration applied to Newton iterations, referred to as the Newton-Anderson method. The
motivation behind studying this method stems from the results of [1], where it was shown how Anderson acceleration
can locally improve the convergence rate of linearly converging fixed-point iterations for nondegenerate problems, and
from the numerical results of [2], where Anderson acceleration applied to Newton’s method was demonstrated to allow
convergence for a finite element discretization of the steady Navier-Stokes equations with a Reynold’s number high
enough to cause standard Newton iterations to diverge. In that setting, the convergence history for Newton-Anderson
was similar to that of a damped Newton method.

A further investigation in [3] proved that in one dimension, Anderson(1), Anderson acceleration with an algorithmic
depth of m = 1, applied to Newton provides higher order (superlinear) convergence to nonsimple roots of scalar equations.
Newton alone is known to only provide linear convergence for such problems [4, Chapter 6], at the rate 1 — 1/p, where
p is the multiplicity of the root. Generalizing to higher dimensions, it is reasonable to ask whether Newton-Anderson
also provides superlinear convergence for degenerate systems: those whose Jacobians are singular at a solution. The
convergence of Newton’s method for such systems has been shown to be locally linear, in the intersection of a ball and
a star-shaped domain about the solution [5,6]. The numerical results in Section 2.2 indicate that Newton-Anderson can
provide such locally superlinear convergence, and that an algorithmic depth of m = 1 can be sufficient to accomplish
this.

Results for the first accelerated Newton method of [7], which has been shown both theoretically and numerically to
provide superlinear convergence for degenerate problems [7-9], are shown alongside Newton and Newton-Anderson. This
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method, which can be viewed either as a predictor-corrector or an extrapolation method applied to every other iteration,
is similar in form to Anderson(1) (particularly when considered from the extrapolation viewpoint), but has convergence
properties that are sensitive to the tuning of two parameters. This method will be referred to as accelerated-Newton (or
KS-acc. N,, in the tables of results). The advantage of Newton-Anderson(1), is that, to the present authors’ knowledge,
there is not a robust method of determining a priori the two parameters, C > 0 (C € R as originally presented in [7])
and @ € (0, 1), of the accelerated-Newton method. A brief discussion of convergence theory for Newton-Anderson in
the nondegenerate setting is included in Section 1.1. The analysis of the convergence properties of Newton-Anderson
however, particularly in the degenerate setting, remains pending.

In Section 2, the Newton-Anderson method is first tested on problems from the standard benchmark problem set
of [10] to identify further problem classes on which Newton-Anderson is either advantageous or disadvantageous; and,
to identify problems or problem classes where Newton-Anderson(m), with m > 1, is preferable to Newton-Anderson(1).
The only problem identified from this set that falls in the last category is the Powell badly scaled function. Another such
example designed to demonstrate that there exist problems where depth m > 1 is preferred is (19) shown in Section 2.2.
That degenerate problem was purposely designed to demonstrate Newton-Anderson(m) converging at iterate x,1, for a
problem f(x) = 0, of the form f;(x) = [(Ax — b);]”}, where f : R" — R", and there are m < n distinct exponents p;.

Next, the iterative schemes tested on the problems of Sections 2 and 3 are specified. Each one is given below in terms
of a uniform damping parameter 8 € (0, 1], as is standard practice for all but Algorithm 4. Damping (8 # 1) was only
used here for one problem, the Brown almost-linear function on R", with n = 20. In that case the damping factor 8 = 0.8
improved the convergence of all methods tested.

Algorithm 1 (Newton’s Method). Set 8 € (0, 1]. Choose xo.
Fork=0,1,...
Set X1 = X — BLf ()]~ f (%)

Algorithm 2 (Newton-Anderson(1) from [11]). Set 8 € (0, 1]. Choose xo. Compute wy = —[f(xo)]~'f(xo). Set x; = xo+ Bwy
Fork=1,2,...

Compute wiy1 = —[f'(x)] (%)

Compute ¥ = (wyp1, wer1 — wi)/ lwes1 — wiell?

Set X1 = X + Bwirr — ¥ (% — xe—1) + Blwigr — wi))

Algorithm 3 (Newton-Anderson(m) from [11]). Set B € (0, 1] and m > 0. Choose xo. Compute w; = —[f"(x9)]~'f(xo0). Set
X1 = Xo + Bwn

Fork =1, 2, ..., set my = min{k, m}
Compute wyqq = —[f'(xi)] ™ f(xk)
Set F = ((wip1 —wi)  +-. (Wiemg2 — Weemy1)), and By = (X — Xe—1) - (Xeme1 — Xeem))
Compute y*™! = argmin, cgm [|wes1 — Fey |

Set X1 = Xk + Bwi1 — (Ex + BFy) y**!

Algorithm 4 (Accelerated Newton from Theorem 1.3 of [7]). Set B € (0, 1] and parameters C > 0 and « € (0, 1). Choose xo.
Fork=1,2,...

Compute Wi1 = —[f'(xe)] ™ f ().

Set Yip1 = Xk + Bk

Compute wiy1 = —[f' Wis 1)1 f Wis1)

Set X1 = Yir1 — (2 = C [l wig1 1% )wig

In accordance with [12], results are shown for Algorithm 4 with parameter choices C = 1 and ¢ = 0.9. In the cases
where the iteration with those parameters failed to converge, results are additionally shown with parameters C = 0.35
and o = 0.1. In [7], where Algorithm 4 is introduced, the given parameter range for C is R; however, C > 0 appears to
be standard in presented demonstrations of the method [7-9,12], and C < 0 is not considered here.

If the norm || - || used in the optimization step of Algorithm 3 is induced by an inner product ( -, - ), Algorithm 3 reduces
to Algorithm 2, for m = 1 (and reduces to Algorithm 1, for m = 0). See [13,14] for the equivalence of this form of the
Anderson algorithm to that originally stated in [11], and [15] for results on optimization in norms not induced by inner
products. Throughout the remainder, the norm || - || will denote the I, norm over R".

The remainder of the paper is structured as follows. In Section 1.1, superlinear convergence is shown theoretically for
the accelerated algorithm. In Section 2, the first set of benchmark problems is presented in 2.1, then results are shown
and discussed in 2.1.1-2.1.2. Additional degenerate problems are then presented in Section 2.2, for which results are
shown and discussed in 2.3. Finally in Section 3, the domain of convergence for certain degenerate problems and small
perturbations thereof are compared for the standard and accelerated algorithms.
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1.1. Convergence theory

Convergence and acceleration theory for Anderson acceleration applied to fixed-point iterations has been recently
been studied under assumptions that the underlying fixed-point operator is contractive (linearly converging) [1,2,15-17],
nonexpansive [18], or nondegenerate [1]. Here, a small contribution to the theoretical understanding of the method is
introduced for the particular case of applying Anderson acceleration to Newton iterations. The first lemma shows for
nondegenerate problems that Newton-Anderson(m) displays superlinear convergence under the assumption that the
optimization coefficients are bounded. The second lemma shows for Newton-Anderson(1) that if the direction cosine
between consecutive update steps is bounded below unity (the update steps do not become parallel), then the resulting
optimization coefficient is bounded. This result is applied to the first lemma in Theorem 3 to show superlinear convergence
of the error for Newton-Anderson(1). The results that follow in this section do not show that Newton-Anderson is an
improvement over Newton (and where Newton converges quadratically, it generally is not), but they do show that the
technique is reasonable.

While the underlying theory behind the superlinear convergence in degenerate settings is of interest to the authors, it
is only demonstrated numerically here. The first part of the next assumption is a nondegeneracy condition which requires
that the singular values of f’ are uniformly bounded away from zero.

Assumption 1. Let f : R" — R", be continuously Frechét differentiable, and suppose there exist positive constants o and
L such that

o lxl < ||, forall xyeR", (1)
[F'@) —fm) <Lix-yl. forallxyeR" (2)

Based on Assumption 1, f’ is invertible on R", and since o provides a lower bound on the smallest singular value of
f’, its inverse satisfies

1
IF'x)~y| < p lyll, forallx,yeR"

For the remainder of the section, suppose f(x) = 0 has solution x*. The error in iteration k will be denoted by
ey = Xx — X*.

Lemma 1 (Convergence Assuming Bounded Coefficients). Let Assumption 1 hold, and let x* be a solution to the problem f(x) = 0.
Then the errors {e;_}x>1 generated by Algorithm 3 with 8 = 1, satisfy

Ly
lefo < 250 3 [ where s = max (2[4 1+ ) ®)
j=k—m

For the simple but useful case of depth m = 1, y**1 is a scalar coefficient and

||6k+1||_2 (11 =71 el + 1 et ]) - B

The results of Lemma 1 show superlinear convergence if 741 (or y**! for m = 1) can be shown to be bounded. In
Lemma 2, a condition is found on the direction cosines between w1 and wy to guarantee this bound for the particular
case of depth m = 1. While the more general result for depths m > 1 is not presented here, it can likely be obtained
through an application of the machinery developed in [1] in which a QR decomposition is used to analyze the defect
introduced by the matrix F; of Algorithm 3 having columns that are not orthogonal.

Proof. For an arbitrary index | > 1, the usual estimates for Newton’s method hold under Assumption 1. In particular

expanding f(x;) about 0 = f(x*) for an arbitrary index [ > 0 allows f(x;) fo (x* + te} )e; dt. The error in X; + w4 then
satisfies

X+ wir —x = ef — f'(x)7 () = Fx) 7 xef — fx)) = f(x)” / (f'(x1) = f(x* + te]))ey dt.
Under the two conditions of Assumption 1, the usual bound holds

L
-+ i =] < 5 Jef | (5)
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Expanding the update step of Algorithm 3, with my denoted by m, and the entries of y**! denoted y1, ..., ym, for
simplicity
k
X1 = X + W1 — Z (% = Xj—1) + (Wit 1 — W))Vk—j+1

Jj=k—m+1
= (X + Wit 1)1 — y1) + K1 F wid(ys — v2) + - - - + Kk—mt1 + Wkemt2)(Vin—1 — VYm) + Kk—m + Wk—m+1)Vm
k—1
=+ wer)T =)+ Y 6+ W)Yy — Vejen) + Kem + Weomy1 Win-
Jj=k—m+1

Writing e* = e*((1 — y1) + (y1 — y2) + - -+ + (¥m—1 — ¥m) + vm), the error e;_; is represented by
k—1

€1 =+ wier =X 1= y)+ Y %+ w1 — X)Wy — V1) + Kem + Wiompr — X m, (6)
Jj=k—m+1

Taking norms and applying (5) to each term of (6), yields the result (3).
For the simple case of m = 1, letting y = y**1, the estimate (5) is applied to the expansion

Xer1 — X' =X+ W1 — X — ¥ (X — Xpe—1) + (Wi — wi)) = (1= y )Xk + wieg1 — X°) + y (X1 + wie — X7),
to produce the result (4).
The next lemma is specific to the algorithmic depth of m = 1, and produces a simple verifiable condition under which

the optimization coefficient **! for depth m = 1 is bounded in magnitude by 1.

Lemma 2 (Boundedness Conditions for y**1 for Newton-Anderson(1)). The coefficient y**! produced by Algorithm 2 (or
Algorithm 3 with m = 1) is bounded, so long as cos(wg+1, wy) < @, for some & < 1. Specifically, for & = 0.942, it holds that
lyl <2

Proof. For depth m = 1, y = y**! is given by

2
(e, wir —wi) [ = o ow) il /1wl — cos(wiesr, wi)
it — wil? w2 4 lwiel? = 2(wieer, we)  Nwlleer /lwill + Twill /llweg | — 2 cos(wyeqr, wi)’
(7)

where cos(u, v) is the direction cosine between vectors u, v € R". For w1, wy # 0, the right-hand side of (7) is of the
form

. r—o
Tr4+1/r—2a’

Clearly v4(r) has a singularity as r — 1; however for « < 1, there are no singularities. Hence, so long as
cos(wi+1, wi) < & < 1, the coefficient y remains bounded.

To be more precise and determine a value of &« for which |y| < 2, for instance, it is first noted that |,(r)| < 1 for
a €[—1,0] and r > 0, and ¥,(1) = 1/2. So, it remains to investigate o € (0, 1) for r > 0, r # 1. The extreme values of
V(1) can first be found for each fixed value of « € (0, 1), by setting 0 = /(r) = (—ar? 4+ 2r — «)/(r? — 2ar + 1)%. The
numerator yields a quadratic equation in r to which the solution for r < 1isr, = (1 — +/1 — @2)/a. Plugging this into
(8) yields

Y = Yu(r) r>0, —1<a<l1. (8)

2/ —1)(1-V1—a?)—1
21/ — 1)1 —1—-0a2)

which is a decreasing function of «, for « > 0. Investigating this function numerically, it is seen, for example, that
Yo(r) > —0.990 for o < 0.942.
For r > 1, the extremum of ,(r) occurs at r, = (1+ +/1 — @?)/«, for which

_ @2/ =11+ V1—a?) -1
T 21—+ VI—a)

which is an increasing function of «, for « > 0; and, for which v, (r) < 1.99 for « < 0.942.

V(o)

V(o)

Theorem 3 (Superlinear Convergence for Newton-Anderson(1)). Let Assumption 1 hold, and let x* be a solution to the problem
f(x) = 0. Then the errors {e} ,}k=1 generated by Algorithm 2 (or Algorithm 3 with m = 1) and B = 1 converge superlinearly
to zero if the direction cosines between update steps satisfy cos(wy.1, wi) < @, for some constant & < 1.
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Proof. The result follows immediately from applying the results of Lemma 2 to the result (4) of Lemma 1.

This shows that if consecutive update steps are not parallel (anti-parallel is harmless), then convergence is locally
better than linear. The superlinear convergence for nondegenerate problems agrees with the numerical results shown
below. Consistent with the theory, the convergence is also observed to be subquadratic. While it is not demonstrated
here, superlinear convergence for degenerate problems (which violate Assumption 1) is also observed.

2. Benchmark results

The first set of problems considered are the systems of nonlinear equations that map f : R" — R", from the standard
test set of Moré et al. [10]. The problems and results are stated in Section 2.1. Section 2.2 that follows specifically considers
additional degenerate problems.

Throughout this section, each method was terminated on the residual reduced below the tolerance ||f(x,)|| < 107%. In
Section 3 discussing the domain of convergence to particular solutions, iterations were terminated based on error dropping
below tolerance ||x; — x*|| < 1078, where x* is a given (known) solution. All computations were done in Matlab on an 8
core Intel Xeon W-2145 CPU @ 3.70 GHz, with 64 GB memory. Timing was performed using Matlab’s tic/toc commands.
Each algorithm/problem pair was run 100 times, and the results were averaged to produce the time displayed in the
tables of results.

Problems from the Systems of Nonlinear Equations test set of [ 10] for which all methods converged in no more than four
iterations, in addition to the Chebyquad function, are excluded from the test set below. In a slight (but standard) abuse of
notation, subscripts are used in the algorithms above to indicate iteration counts, and in the problem descriptions below
to denote components of x € R".

2.1. Problems f : R" — R" from [10]

B1. Powell badly scaled function, [10, (3)] and [19], n = 2.

B 10%%1x, — 1 ) B T
U <exp(—x1)+exp(—xz) - 1.0001)’ with x = (0.1)". ®)
B2. Helical valley function, [10, (7)] and [20], n = 3.
10(x3 — 108(x1, x2)) ]
f@)y =1 10(,/x> +x2—1) |. where6(x;,x;) = . arctan(xy/x1),  with xo = (—1,0, O)T, (10)
7
X3

where arctan(-) is the four-quadrant arctangent function.
B3. Powell singular function, [10, (13)] and [21], n = 4
x1 + 10x,
V5(x3 — x
Fx) = (s ‘;) , with x = (3, -1,0,1)". (11)
(%2 — 2x3)

V10(x; — x4)?

B4. Watson function, [10, (20)] and [22], n = 31.

ZU — 1% Zx] — 1, where t; =i/29, 1 <i <29,

Fro®) = X1, fr(0) =%, —x2 =1, with xo = (0,...,0)". (12)

B5. Trigonometric function, [10, (26)] and [20], n = 100, 1000, 10 000.

n
filx)=n— Zcosxj +i(1—cosx;) —sinx;,  with xo = (1/n,..., 1/n)T ) (13)
j=1

B6. Brown almost-linear function, [10, (27)] and [23], n = 5, 20.

_x,—i—Zx] (n+1), 1<i<n,

[1x] -1 with xo=(1/2.....1/2)". (14)
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Table 1
Results for problems from [10] where Newton-Anderson(1) converges.
Problem Method Iterations (k) If (xi)ll [[will qx Time (s)
Newton 10 1.325e—14 4.161e—08 2235 9.655e—05
B2. (10) N. Anderson(1) 10 5.485e—13 1.001e—08 1.794 0.0001249
n=3 KS-acc. N. (1.0, 0.9) F - - - -
KS-acc. N. (0.35,0.1) 11 1.042e—16 6.591e—18 2.391 0.0001292
B3. (11) Newton 16 2.954e—-09 3.743e—05 1.076 0.0002417
n - 4 N. Anderson(1) 3 4.163e—17 0.2157 40.27 0.0001412
- KS-acc. N. (1.0, 0.9) 3 5.964e—10 0.003071 2.638 0.0001279
B4, (12) Newton 5 6.004e—14 135 171 0.01759
n - 31 N. Anderson(1) 7 2.863e—10 3.341 1.73 0.02455
- KS-acc. N. (1.0, 0.9) 4 2.215e—13 9.818 2.807 0.02716
B5. (13) Newton 10 1.892e—11 6.137e—07 1.726 0.003895
n - 100 N. Anderson(1) 8 9.565e—13 1.159e—08 1518 0.003095
- KS-acc. N. (1.0, 0.9) 7 3.568e—12 3.571e—12 1.741 0.003868
B5. (13) Newton 13 9.906e—11 4.454e—07 1.575 0.4408
" - 1000 N. Anderson(1) 11 1.653e—11 2e—08 1.4 0.3734
- KS-acc. N. (1.0, 0.9) 6 1.302e—09 1.308e—09 1534 0.3695
B7. (15) Newton 4 1.065e—09 4.555e—05 2312 0.01596
n - 1000 N. Anderson(1) 6 1.59e—14 6.612e—09 1.788 0.02284
- KS-acc. N. (1.0, 0.9) 4 1.904e—13 6.395e—14 2.187 0.02831
BS. (16) Newton 8 5.669e—09 2.419e—-08 1.24 0.09291
n = 1000 N. Anderson(1) 9 3.668e—10 1.768e—09 1.2 0.1056
- KS-acc. N. (1.0, 0.9) 9 3.204e—10 6.07e—11 1.19 0.1814
Newton 18 3.14e—15 6.481e—08 2.058 0.0002524
B6. (14) N. Anderson(1) 24 5.031e—12 2.935e—07 1.555 0.0003786
n=>5 KS-acc. N. (1.0, 0.9) F - - - -
KS-acc. N. (0.35,0.1) 9 3.397e—15 2.334e—16 1.963 0.0002039
Newton, § = 0.8 368 4.743e—09 4.854e—07 1.092 0.02743
B6. (14) N. Anderson(1), 8 = 0.8 52 7.394e—10 3.853e—-09 1.088 0.004206
n=20 KS-acc. N. (1.0,0.9), 8 = 0.8 F - - - -
KS-acc. N. (0.35,0.1), 8 =0.8 147 1.931e—09 4.224e—08 1.602 0.02054
B7. Broyden tridiagonal function, [10, (30)] and [24], n = 1000.
. T
fix) = (3= 2x% — Xii1 — 2Xip1 + 1, (X0 = Xpp1 =0),  with xo = (—1,...,—1)". (15)

B8. Broyden banded function, [10, (31)] and [25], n = 1000.

fl) =x2+58)+ 1= x(1+x), Ji={ :j#i max(1,i—5) <j < min(n, i+ 1)},
J€li
with xo = (=1,...,—1)". (16)

2.1.1. Results

The first set of results, those for which Anderson(1) was preferred over Anderson(m), with m > 1, are summarized in
Table 1. Here, results are given for Newton, Newton-Anderson(1), and accelerated-Newton. An entire predictor-corrector
step is counted as a single iteration for the accelerated-Newton method. For each problem and method, the number of
iterations (k), terminal residual ||f(x,)||, norm of the final update step | wy||, the terminal approximate order of convergence
qx = log |If (x)|l /log |If (xk—1)ll, and the (average) time in seconds, are displayed.

2.1.2. Discussion

In accordance with the expected results, for the Powell singular function (11), whose Jacobian is singular at the solution
(with rank 2), Newton converges linearly, and both accelerated and Anderson methods yield faster convergence, as seen
in the convergence histories shown in Fig. 1, on the right. In terms of timing, Newton-Anderson(1) is advantageous over
accelerated-Newton as the problem dimension n increases, as Newton-Anderson(1) solves a linear system plus computes
two additional inner products to set the optimization parameter, whereas accelerated-Newton solves two linear systems.
This difference is illustrated by comparing the results of problem (11) with n = 4 to problem (16) with n = 1000, where
both methods converge in the same number of iterations.

Newton-Anderson(1) was found disadvantageous compared to Newton in terms of timing for the Watson function
(12), with n = 31, and the Broyden tridiagonal function with n = 1000 (15), taking respectively 1.40 and 1.44 times as
long as Newton to converge (but only two additional iterations). It was found nominally disadvantageous for the Broyden
banded function (16), with n = 1000, taking 1.14 times as long to converge as Newton, with one additional iteration.
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Fig. 1. Left: convergence history for the trigonometric function (13), with n = 10,000, for Newton and Newton-Anderson(m), m = 1, 2. Right:
convergence history for the Powell singular function (11), illustrating the high terminal order of convergence for Newton-Anderson(1).

Table 2
Results for problems from [10] where Newton-Anderson(1) fails to converge.

Problem Method Iterations (k) IIf (xi)I [lwgll qx Time (s)
Newton 12 1.573e—11 3.987e—05 1.769 0.0001241

B1. (9) N. Anderson(1) F - - - -

n=2 N. Anderson(2) 12 4.058e—09 0.0001451 1518 0.0003492
KS-acc. N. (1.0, 0.9) 8 5.773e—15 5.886e—16 1.818 7.731e—05

Newton-Anderson and Newton both converged in 10 iterations for the Helical valley function (10), with n = 3. In each
of the above cases, Newton-Anderson converged faster than accelerated-Newton. In agreement with the results of [1,2],
these results indicate that Anderson slows the convergence of quadratically-converging iterations, and should not be used
on problems for which Newton is known to converge robustly and quadratically.

For the Brown almost-linear function (14), Newton-Anderson converged in 1.5 times as long as Newton (6 additional
iterations) with n = 5 and no damping, but 0.15 times as long as Newton (316 fewer iterations), for the problem with
dimension n = 20 with a damping factor of 0.8. In both cases, accelerated-Newton failed to converge with parameters
(C,a) = (1.0,0.9), and succeeded with parameters (0.35, 0.1). Taken together, these results indicate that Newton-
Anderson can be useful for problems where convergence of Newton is locally quadratic but less stable as the dimensions
of the problem increases.

For the trigonometric function (13), as n increases, the Newton method has an extended preasymptotic regime of
linear convergence. Both accelerated methods, which display superlinear (but subquadratic) convergence, attain residual
tolerance in fewer iterations. Newton-Anderson(m) for m = 1, 2 are illustrated for n = 10,000, in Fig. 1 on the left. On
the right of Fig. 1, the residual history for the Powell singular function is shown. The plot illustrates the curiously high
approximate order of convergence for Anderson(1). The accelerated-Newton method is shown for comparison, with both
sets of tested parameters, along with Newton.

Results for the Powell badly scaled function (9) are shown in Table 2. For this problem, Newton-Anderson(m) converges
for m > 1, but not m = 1. Tests (not shown) were run for m = 1, ..., 20. However, as n = 2 for this problem, the
optimization problem reduces to a solvable linear system for depth m = 2, and results with greater depths are not
shown. Convergence can be restored for m = 1 by applying a safeguarding strategy based on Lemma 2. If a Newton step
is taken whenever cos(wy41, wr) > 0.942, and the Anderson(1) step otherwise, then Newton-Anderson(1) converges,
essentially tracking the Newton iteration.

2.2. Additional degenerate problems

Based on the results of [3], which show superlinear convergence of Newton-Anderson(1) to nonsimple roots of scalar
equations, it is conjectured that Newton-Anderson also provides superlinear convergence to solutions of degenerate prob-
lems. Three such problems (in addition to the Powell singular function above) are collected in this section. The first two
are standard problems from the literature and the third was chosen to demonstrate a case where Newton-Anderson(4)
converges faster than Newton-Anderson(m), for m = 1, 2, 3. (See Table 3.)
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Table 3
Results for degenerate problems.
Problem Method Iterations (k) I1f (i)l [lwgl qk Time (s)
D1 Newton 14 3.991e—09 6.903e—05 1.077 0.000129
n _ 3 N. Anderson(1) 5 1.656e—10 1.349e—05 1.493 7.152e—05
KS-acc. N. (1.0, 0.9) 3 2.396e—09 0.0001877 1.993 4.476e—05
Newton 16 2.628e—09 0.000382 1.075 0.9698
D2 N. Anderson(1) 6 1.236e—11 0.001947 1.663 0.3671
" _ 1000 N. Anderson(2) 6 1.912e—11 2.595e—06 1.399 0.3658
KS-acc. N. (1.0, 0.9) F - - - -
KS-acc. N. (0.35,0.1) 4 3.986e—09 0.002449 1.461 0.4772
Newton 46 4.339e—09 0.07587 1.057 0.001038
N. Anderson(1) 17 7.899e—09 0.01347 1.45 0.0008288
N. Anderson(2) 26 6.781e—11 0.0003507 1.404 0.002012
D3. N. Anderson(3) 6 3.964e—10 0.09431 5.87 0.000219
n=10 N. Anderson(4) 5 7.289e—25 0.1056 23.05 0.0001861
KS-acc. N. (1.0, 0.9) F - - - -
KS-acc. N. (0.35,0.1) F - - - -
KS-acc. N. (0.7,0.3) 20 1.758e—09 0.07474 1.165 0.0007143

D1. From [6], f : R® — R®
X1 + X1z + X3
fx1,%0,%3) = [ 22— 2%, +22 | with xp = (0.1,0.5,1.0)" . (17)
X1 +x3

D2. Chandrasekhar H-equation from [16]. The Chandrasekhar H-equation from radiative transfer (see [16,26,27] and
the references therein), is given by

1 -1
F(H)() = H(p) — (1 - 9/ "”(")d”> o,
0

2 nw—+v
Discretizing the equation (as described in [16, Example 2.10]) by the composite midpoint rule with n subintervals,
yields the discrete system in f : R" — R" given componentwise for h € R* = (hy, ..., h,)', by
0 o ih
=h—-|1-—>S —2 |, 1<i<n withx=(1....1)". 18
fith) = h; Zn;i—i-j—l <i< o= ) (18)

D3. Problem designed to demonstrate Newton-Anderson(4).

2 -1
-1 2 -1
fi(x) = [(Ax = b)]P, A= ,b:(—11,—7,—5,—3,—2,2,3,5,7,11)T,
-1 2 -1
-1 2
p=1(2.44.2,288,21212), with xp=(0,...,0) . (19)

2.3. Discussion

In problems (17), (18), and (19), Newton-Anderson(1) converges faster than Newton by respective factors of 0.55,
0.38, and 0.8. Newton-Anderson(4) outperforms Newton-Anderson(1) by a factor of 0.22, and accelerated-Newton by a
factor or 0.26, in the last problem. The approximate convergence order gy is close to one for Newton in each case, and
greater than one (generally above 1.4) for each of the accelerated methods, when they converge. The accelerated-Newton
method was run with an additional parameter pair for (19) as the method did not converge under either of the other two
parameter-pairs used in the rest of the tests. The varied nature of these problems in terms of both problem dimension,
and the dimension of the nullspaces at their respective solutions, indicates consistent behavior of Newton-Anderson on
degenerate problems, which is worth a theoretical investigation.

The first problem (17) has a Jacobian featuring a two-dimensional nullspace at the solution. For the Chandrasekhar H-
equation (18), the rank of the Jacobian at the solution is n — 1. For the degenerate polynomial problem (19), the Jacobian
has rank zero at the solution. The problem was designed to solve exactly for m = 4 after the first full optimization. It is
shown here to illustrate that there exists a class of problems for which m > 1 is preferable. It is not yet clear what this
problem class is.
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Fig. 2. Domain of convergence to x, = x_
with C =0.5 and « = 0.35.

100

80

160

40

20

Fig. 4. Domain of convergence to x_ for (20) with & = 107°. Left: Newton iterations; center: Newton-Anderson(1); right: accelerated-Newton.

3. Domain of convergence

In this section, the domains of convergence for Newton, Newton-Anderson(1), and accelerated-Newton are compared
on standard benchmark degenerate and nearly degenerate polynomial systems.
The first investigated problem is the polynomial system f : R> — R? from [8, section 5].

_ (x1 — 1)+ (x, — 3)?
[, %) = (8(X2 34 (321 — e — )+ (k= 3P 4 (o 3>3> ' (20)

As presented in [8], for ¢ > 0 there are two distinct roots in the vicinity of x, = (1, 3)", the second being
x_ =1 —=n%3+n)T, forn =1— /14 2¢. For ¢ = 0, the degenerate case, the two roots coincide; and, for ¢ < 1
but ¢ > 0, the near-degenerate case, the two roots are distinct but close. For Figs. 2-4, each algorithm is run from the
initial iterate (xo, yo) for xo € [—1, 3] and yo € [1,5] over a grid of 40,000 equally spaced points, and the number of
iterations to convergence to a particular solution is displayed. The maximum of 100 iterations indicates not converging to
the specified solution. As demonstrated in Fig. 2, Algorithm 2 has a similar domain of convergence to Newton (Algorithm 1)
and accelerated-Newton, (Algorithm 4); but, as illustrated in Figs. 3-4, as ¢ is varied away from zero, the Anderson method
has substantially different domains of attraction to the roots x_ and x.. For this example, Algorithm 4 was run with
parameters C = 0.5 and « = 0.35, presented as optimal for ¢ = 107 in [8].
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100
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3, 80 80
1 .
\
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._‘.
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Fig. 5. Domain of convergence to x* = (0,0,0)" for (17), with x, = (a, b, 1073)". Top left: Newton iterations; top right: Newton-Anderson(1);
bottom left: accelerated-Newton with C = 1.0, « = 0.9; bottom right: accelerated-Newton with C = 0.1, « = 0.35.

The second system investigated for domain of convergence is (17), from Section 2.2. In this system, the Jacobian
degenerates for coordinates x3 = 0, and also for x; = x, = 0. Here the domain of convergence is investigated for
Xo = (a, b, 1073), as the first two components are varied, again over a grid of 40,000 equally spaced initial iterates. This
example points out that the domains of convergence are similar for the three algorithms, but the accelerated-Newton
method is sensitive to parameter choice. With « and C chosen small enough, the convergence is similar to Newton and
Newton-Anderson, but with the parameters chosen too large (C = 1, « = 0.9), the star-shaped domain of convergence
is considerably smaller. (See Fig. 5.)

4. Conclusion

This results of this numerical benchmarking investigation of the Newton-Anderson method indicate a superlinear but
(usually) subquadratic order of convergence on both degenerate problems and nondegenerate problems. The superlinear
convergence for nondegenerate problems is also shown theoretically. Collectively, the numerical results presented here
show the main advantage of the Newton-Anderson method, and Newton-Anderson(1) in particular, is robust superlinear
convergence for degenerate problems. The increase in performance for these problems is obtained with minimal additional
computational effort per iteration, plus the requirement of storing 2m additional vectors. The secondary advantage
of the method is improved performance for nondegenerate problems featuring an extended preasymptotic regime,
such as the trigonometric function (13) considered here, if a good initial iterate for Newton’s method is not available.
Further investigations show the method can show a similar domain of convergence to the standard Newton iteration for
degenerate problems; however, under small perturbation of a problem parameter, the Newton-Anderson method may
be attracted to a different solution than the Newton iteration.
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