MIXED MULTIPLICITIES OF FILTRATIONS
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ABSTRACT. In this paper we define and explore properties of mixed multiplicities of (not
necessarily Noetherian) filtrations of mpg-primary ideals in a Noetherian local ring R,
generalizing the classical theory for mpg-primary ideals. We construct a real polynomial
whose coefficients give the mixed multiplicities. This polynomial exists if and only if the
dimension of the nilradical of the completion of R is less than the dimension of R, which
holds for instance if R is excellent and reduced. We show that many of the classical
theorems for mixed multiplicities of mg-primary ideals hold for filtrations, including the
famous Minkowski inequalities of Teissier, and Rees and Sharp.

1. INTRODUCTION

The theory of mixed multiplicities of mp-primary ideals in a Noetherian local ring R
with maximal ideal mp, was initiated by Bhattacharya [2], Rees [28] and Teissier and Risler
[33]. In this paper we extend mixed multiplicities to arbitrary; that is, not necessarily
Noetherian, filtrations of R by mpg-primary ideals and explore their properties.

An account of the history of the Minkowski inequalities of mixed multiplicities is given
in [12]. This article explains the origins of this subject in Teissier’s work on equisingularity
[33], and gives many important references. A survey of the theory of mixed multiplicities
of ideals, with proofs, can be found in [32, Chapter 17]. We refer to this book for references
to many important results in this area. We particularly mention Sections 17.1 - 17.3 of
[32] which develops the theory of joint reductions, including discussion of the results of
the papers [29] of Rees and [31] of Swanson. A further development is by Katz and Verma
[19] , who generalized mixed multiplicities to ideals which are not all mpg-primary. Trung
and Verma [36] computed mixed multiplicities of monomial ideals from mixed volumes of
suitable polytopes. Mixed multiplicities are used by Huh in the analysis of the coefficients
of the chromatic polynomial of graph theory in [14].

The starting point of our investigation is the following theorem which allows one to
define the multiplicity of a filtration of R by mpg-primary ideals. As the theorem shows,
one must impose the condition that the dimension of the nilradical of the completion R
of R is less than the dimension of R. Let A(M) denote the length of an R-module M.

Theorem 1.1. (7, Theorem 1.1] and [8, Theorem 4.2]) Suppose that R is a Noetherian

local Ting of dimension d, and N(R) is the nilradical of the mg-adic completion R of R.
Then the limit

(1) lim
exists for any filtration T = {I,,} of R by mg-primary ideals, if and only if dim N(R) < d.
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The nilradical N(R) of a d-dimensional ring R is
N(R) ={x € R| 2™ = 0 for some positive integer n}.

We have that the dimension of the R-module N(R) is dim N(R) = d if and only if there
exists a minimal prime P of R such that dim R/P = d and Rp is not reduced.

The problem of existence of such limits (1) has also been considered by Ein, Lazarsfeld
and Smith [11] and Mustata [25]. In the case when the ring R is a domain and is essentially
of finite type over an algebraically closed field k with R/mp = k, Lazarsfeld and Mustata
[22] showed that the limit exists for all filtrations of R by mp-primary ideals . All of these
assumptions are necessary in their proof.

The following is a very simple example of a filtration of mpg-primary ideals such that
the above limit is not rational. Let k be a field and R = k[[z]] be a power series ring over

k. Let I, = (m(”‘/ﬂ) where [a] is the round up of a real number « (the smallest integer
which is greater than or equal to ). Then {I,,} is a graded family of mpg-primary ideals

such that
lim AL 5
n—oo n

is an irrational number.

There are also irrational examples determined by the valuation ideals of a discrete
valuation. In Example 6 of [10] an example is given of a normal 3 dimensional local ring
R which is essentially of finite type over a field of arbitrary characteristic and a divisorial
valuation v on the quotient field of R which dominates R such that the filtration of mpg-
primary ideals {I,,} defined by

satisfies that the limit
o A1)
n—o00 n

is irrational.

Non-Noetherian filtrations (®,>0l, not Noetherian) occur naturally in commutative
algebra. The filtration of ideals determined by a divisorial valuation which dominates
a normal local ring is generally not Noetherian. For instance, the condition that a two
dimensional normal local ring R satisfies the condition that this filtration is Noetherian
for all divisorial valuations dominating R is the condition (N) of Muhly and Sakuma [24].
It is proven in [5] that a complete normal local ring of dimension two satisfies condition
(N) if and only if its divisor class group is a torsion group.

The existence of mixed multiplicities of (not necessarily Noetherian) filtrations Z(1) =
{I(1);},...,Z(r) = {I(r);} of mp-primary ideals is established in Theorem 6.1 of this
paper. Let M be a finitely generated R-module. In Theorem 6.1 and Theorem 6.6, it is
shown that the function

AM/I(D)mny - L(1)mn, M)

(2) P(ny,...,n.) :Tr}gnoo "
is equal to a homogeneous polynomial G(n1,...,n,) of total degree d with real coefficients
for all nq,...,n, € N. This limit always exists if and only if the dimension of the nilradial

N(R) of the mp-adic completion of R is less than d = dim R, as follows from Theorem

~

1.1 stated above. We must thus impose the condition that dim N(R) < d. This condition

holds if R is analytically unramified; that is, R is reduced. We may then define the
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mixed multiplicities of M from the coefficients of GG, generalizing the definition of mixed
multiplicities for mp-primary ideals. Specifically, we write

1 d

G(ni,....ny) = Z m@%(z(l)[dl]wwaI(T)[dT]QM)nll g
di+-+dr=d

We say that ep(Z(1)[], ... Z()l4]; M) is the mixed multiplicity of M of type (d1, ... ,d,)

with respect to the filtrations Z(1),...,Z(r). Here we are using the notation

er(Z(), . Z(r)l]; M)

for the coefficients of G(nq,...,n,) to be consistent with the classical notation for mixed
multiplicities of M for mp-primary ideals from [33]. The mixed multiplicity of M of type
(dy,...,d,) with respect to mp-primary ideals Iy, ..., I, denoted by eR(I{dl], .. ,LLdT]; M)
([33], [32, Definition 17.4.3]) is equal to the mixed multiplicity e (Z(1)I], ..., Z(r)l*]; M),
where the filtrations Z(1),...,Z(r) are defined by Z(1) = {I! }ien, - - -, Z(r) = {I: }ien-

We write the multiplicity er(Z; M) = er(ZI9; M) if r = 1, and T = {I;} is a filtration
of R by mp-primary ideals. We have that

er(Z; M) = lim d!w

m—0o0 md

We have by Proposition 6.5, that for 1 <¢ <r,
er(Z(); M) = er(zY,..., 2 — DO 20, (i + DO, ... () A,

generalizing the equality for mpg-primary ideals by Rees in [28, Lemma 2.4].

We show that many of the classical properties of mixed multiplicities for mg-primary
ideals continue to hold for filtrations, including the famous “Minkowski inequalities”,
proven in Theorem 6.3, and stated below. The Minkowski inequalities were formulated
and proven for mp-primary ideals by Teissier [33], [34] and proven in full generality, for
Noetherian local rings, by Rees and Sharp [30]. We prove the strong inequality 1) from
which the inequalities 2), 3) and 4) follow. The fourth inequality 4) was proven for filtra-
tions of R by mp-primary ideals in a regular local ring with algebraically closed residue
field by Mustata ([25, Corollary 1.9]) and more recently by Kaveh and Khovanskii ([18,
Corollary 7.14]). The inequality 4) was proven with our assumption that dim N(R) < d
n [8, Theorem 3.1]. Inequalities 2) - 4) can be deduced directly from inequality 1), as
explained in [33], [34], [30] and [32, Corollary 17.7.3] .

Theorem 1.2. (Minkowski Inequalities) Suppose that R is a Noetherian d-dimensional
local ring with dim N(R) < d, M is a finitely generated R-module and (1) = {I(1);} and
Z(2) ={1(2);} are filtrations of R by mpg-primary ideals. Then
1) er(ZWW,Z(2)1; M)? < er(Z()FH, 2211 M)ep(Z(M)F1, Z(2)1+1; M)
forl1<i<d-1.
2) For0<i<d,

er(Z(1),Z(2)17; M)e
3) For0<i < d, ep(T(1)"),2(2)0%; M)? < ep(T(1); M)*ep(Z(2): M) and
4) en(Z()Z(2)): M)F < en(Z(L): M) + en(Z(2); M)%,

where T()I(2) = {1(1);1(2);}.

RZMY, 221 M) < er(Z(1); M)er(Z(2); M),
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In Section 7, we give an example showing that Theorem 6.1 does not have a good ex-
tension to arbitrary multigraded non Noetherian filtrations Z = {I,, ., } of mp-primary
ideals, even in a power series ring in one variable over a field. In our example (d = 1)

P(nl,ng):n}i_r)noo—( / ml’ ) _ [\/n% + nZ]

for ni,n2 € N, where [z] is the round up of a real number x. The function P(ni,ng) is
far from polynomial like.

We will show however that the function P(nq,...,n,) is polynomial like in an impor-
tant situation. We show that the multigraded filtration of mpg-primary ideals measuring
vanishing along the exceptional divisors of a resolution of singularities of an excellent,
normal, two dimensional local ring is such that the function

P(ny,...,n,) = lim AR/ Irn,,...;mn,)

m—oo m2

is a piecewise polynomial function (a polynomial with rational coefficients when restricted
to a member of an abstract complex of polyhedral sets whose union is Q>¢). The function
P(nqy,...,n,) is in fact an intersection product on the resolution of singularities. These
formulas hold, even though the filtration {I,,, . .} is generally not Noetherian.

The first step in the construction of mixed multiplicities for mpg-primary filtrations
is to construct them for Noetherian filtrations. In this case the associated multigraded
Hilbert function is a quasi polynomial, whose highest degree terms are constant, rational
numbers, as we show in Proposition 3.5. We next restrict in Section 4 to the case M = R
and assume that R is analytically irreducible. Using methods of volumes of Newton-
Okounkov bodies adapted to our situation, we show in Proposition 4.3 and Corollary 4.4
that the coefficients of the polynomials P,(ni,...,n,) of (2) for successive Noetherian
approximations Z,(1),...,Z,(r) of Z(1),...,Z(r), all have a limit as a — oco. We then
define G(z1,...,2,) to be the real polynomial with these limit coefficients, and show in
Theorem 4.5 that for ni,...,n, € Zy, G(ny,...,n,) is the function P(ni,...,n,) of (2)
for the filtrations Z(1),...,Z(r). In Section 5, we obtain the reductions necessary to prove
Theorem 6.1, allowing us to define mixed multiplicities for filtrations of mg-primary ideals
in Section 6.

We will denote the nonnegative integers by N and the positive integers by Z.,. We will
denote the set of nonnegative rational numbers by Q>¢ and the positive rational numbers
by Q4. We will denote the set of nonnegative real numbers by R>q.

The maximal ideal of a local ring R will be denoted by mgr. The quotient field of a
domain R will be denoted by Q(R). We will denote the length of an R-module M by
Ar(M) or A(M) if the ring R is clear from context.

A filtration Z = {I,, }nen of ideals on a ring R is a descending chain

R=Iy,>oL1D>IL>---

of ideals such that I;I; C I;1; for all 4,5 € N. A filtration Z = {I,,} of ideals on a local
ring R is a filtration of R by mg-primary ideals if I; is mpg-primary for j > 1. A filtration
T = {In}nen of ideals on a ring R is said to be Noetherian if @, -, I, is a finitely generated
R-algebra. -

2. POLYNOMIALS, QUASI POLYNOMIALS AND MULTIPLICITIES [

A map o : N” — Q is said to be periodic if there exists a € N such that

ony,ne,...,n;+a,...,n.) =0c(N1,N2, ..., Niy...,Ny)
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for all (ni,...,n,) € N" and 1 < i < r. If this condition holds, then « is said to be a
period of o.

In this section we suppose that (R,mp) is a Noetherian local ring, M is a finitely
generated R-module and {I(j);} are Noetherian filtrations of R by mp-primary ideals
for all 1 < j < 7. Then for all 1 < j < r, there exists an integer @ > 1 such that

Rg-a) = @D I(j)an are Noetherian standard N-graded rings (by [3][Proposition 3, Section
n>0
1.3, Chapter III]). Therefore

S = @ I(V)an, - 1(r)an,

N1,e,nr >0
is a Noetherian standard N"-graded ring where S, n,) = I(1)an, -+ I(7)an,. For all
1 < j <, consider the ideals
Kj = @ I(l)OHM e I(] - 1)Omj—1I(j)omj+1I(j + 1)Omj+1 e I(T)ocnr,-

ni,...,nr >0

of § where (Kj)n,,..n,) = I(Dany = 17— Dan;_ L(F)an;+11(F+Van, s == () an,- Then
forall 1 <j<r,

Gg-a) = S/Kj

I()an, - 'I(j)omj - I(1)an,
@ [(1)om1 e I(] - 1)anj—1I(j)omj+II(j + 1)Oé7lj+1 o 'I(r>anr

are standard graded algebras over R/I(j);.

N1yeenr >0

)

For all 1 < j <r and integers 0 < b; < a — 1, we have finitely generated G§a -modules

—— @ I(l)anl-‘rbl"'[(j)anj-‘rbj"'I(T)anr+brM
T I(l)aﬂ,1+b1 "‘I(j_l)anj_1+bj_1 I(j)an]-+bj+11(j+1)anj+1+bj+1 "'I(T)anr-ﬁ-me '

Nnyy...,yp >0
By [13][Theorem 4.1], for all 1 < j < r and integers 0 < b; < « — 1, there exist poly-
()

nomials P(b1 br)(Xl’ .., X)) € Q[X1,...,X,] and an integer m € Zy such that for all
ni,...,Nr > M, we have

©)
H(bl,...,br)(nl’ ceey )
. )\ [(1)an1+b1"'I(j)anj+b]-"'I(r)anrerTM )
T ( .)I(l)anl#»bl "'I(jfl)anjil#»bjflI(j)anj+bj+1I(j+1)anj+l+bj+1 "'I(r)unr+brM
=P/ (n1 n)
(b1, sbp) VL5 5 Tl )

Proposition 2.1. Let Q1(X1,...,X;),...,Qp(X1,..., X;) € Q[Xq,...,X,] be numerical
polynomials and 1 <1 be a fized integer. Then for any integer t > 1 and j € {1,...,r},

t k
Z Z Qm(nl)' . 'anj—17l+n)nj+l7° . 'anr)

n=0m=1
is a polynomial Q(ni,...,nj_1,t,Njq1,...,Np) N N1, ..., Nj—1,t, 011, ..., Ny with coeffi-
cients in Q.

Proof. Fix j. For all m € {1,...,k}, we have

Qm(ni,...,n.) = Z egl (nl,ﬁtﬁl) (nrg;ﬂr)

B=(B1,...Br)EN"
1B]<dm
5



where d,,, is the total degree of @),,. Then

k
Q(nla"wnﬂ“):WLZ:lQm(nh“"nT): Z uﬁ<n1,;161><nT;:“6r>

62(517"'67‘)€NT
|Bl<d

is a numerical polynomial of total degree less than or equal to d with d = max{dy,...,dx}
k
and ug = > eff for all 8= (B1,...6;) € N" with |3] < d (note that ey =0 if [8] > din).
m=1

Let Ag := u_g ("1+’81) e (”jfﬁﬁj*l) ("j“Jrﬁj“) ("TﬂtﬂT). Then for any integer ¢ > 1,

B1 i1 Bit1
t k
Z Z Qm(nlv'”7nj—17l+n7nj+17"-7n7“)
n—Ogn:l
= ZQ(nl7"‘7nj—17l+n7nj+17"‘7n7’)
n=0

_ Z l+n+p5;
_ng() Aﬂ( Z)j ])
B=(B1,...6r)EN
18I1<d

- Tl ()
B=(B1,...6r)EN" n=0 B;
I81<d

t+1+ 85 +1 L+ 5
= 2 Aﬂ[( Bj+1 >_<ﬂ-+1)]
B=(B1,...0r)EN" / /
181<d
:Q(n1>"'7nj—17t7nj+17'"anr)'

For all 1 < j <r and integers 0 < b; < o — 1, we define

(a;b1,...,b,) ={(n1,...,n,) € N :nj; = bj(mod a) for all 1 < j <r}.

Proposition 2.2. Suppose that R is a Noetherian local ring, M 1is a finitely generated
R-module and Z(1) = {I(1);},...,Z(r) = {I(r);} are Noetherian filtrations of R by mp-
primary ideals. Consider the function N\(M/I(1)y, -+ 1(r)n, M) of ni,...,n, € N where
A is the length as an R-module. Then there exist ¢ € Z, s € N and periodic functions
Oiy iy (N1, ..., ny) such that whenever ny,...,n, > ¢, we have that

AM/I() 1), M) = D oiy i (na, ey me)nding - onyr
i1+ tin<s
Proof. (We use the integer o and the polynomials P((b.l) ) mentioned in the above dis-

cussion.)
For all 1 < j <r and integers 0 < b; < a — 1, we define the polynomials

)
Qby,....0,..,0) (M- > 1r)
0 if b; = 0
b; .
= () .
'(? 1 P(lfl,...,bj,l,z’(j)—l,o,...,()) (n1,...,my) if1<bj<a—-1.
i(5)=



Let « <t = al € N be such that H(j)

_ pW
&) ) = PE) L om.

m,) for

all my,...,m, > 1 with 0 < by,...,b, < a—1. Let (n1,...,n,) € (a;b1,...,b,) with

n; >c=t+aforall 1 <j<r Then

)‘(M/I(l)nl . I(T)nTM) »
=ANM/I(1)s---I(r)M) +”1Z )\(1(( YeriI(2)e--I(r)e M )

Detit1L(2)¢I(r)eM
no—t—1
T(D)ny 1(2) 44 1(3)¢ - I(r)tM
+ Z )\( ()n11(2)t+1+11(3)t I(r): M>

n—t 1
" ()n1[(2)n2 I(T_l)vbrflf(r)t+iM
teoet X A<1(1> @y --I<r71>nr,11<r>t+i+1M>

1=0
=ANM/I(1)s---I(r)iM)
=21 "
+ Y Y Py e oML D QY o+ B L)
p(1)=0 i(1)=1
|22t -1

+ > X P(bl,z(z) 10,..0 (Z+L”17_tJ,l+p(2),l,...,l)
=1

p(2)=0 i(2)
2 n
+Qb ooy LB L+ (227 0,0

+ > > P((gl),..,,br,l,i(r)—l)(l+ {m— [ Lm_Tl_tJJ‘FP(T))

p((r)):O i(r)=1
+Q 217 7br)(l + Vna— J l—i— Lnr_tj)

= A(M/Ifl)t : "I(T)tM)

[0} ( .

r . 1 na
Y| S S R o U B p(),
e I E E
j ny— n;—t
+Q§Z37...7bj,0,...70) (l + |~ 1a tJ’ e 7l + L Ja J?lv s al):|
Using Proposition 2.1, we have a multigraded polynomial
Ty, ) (X1, Xi) 1= Z egfllf:))Xil X e Q[Xy,. .., X,]
il“r""i’i'rgu(bla“-,br)
such that
T,,...p0) (M1, ,my)
=AM/I(1)s---1(r)eM)
G (4) :
+]§1 [p(jz):o (Z.(jz):lp(bhm:bjhi(j)1:07~--’0)(l +my,..., [+ TYLj_l,l —I—p(]), l..., l))

+Qg3,...,bj,o,...,0)(l +ma, .l my )

and for all (ny,...,n,) € (a;by,...,b) with nj > cfor 1 < j <r, we get
)‘(M/I(l)nl T I(T)RTM) = T(bl,-..,br)(a(nl)v s 7a(nT))

. 10)

where a(n;) := |t = nj*(i*bj for all 1 < j <7 and let u(by,...,b,) be the total degree

«

of Toy,.. b
7



Now for all (ni,...,n,) € (a;by,...,b,), we have

Tioy,...b(a(na), -, a(r(zr)) |
- b1 i, .. ir
e g(bl b )e(“’--vir)“("l) a(ny)

> yeensOp

_ ) (b1,e-,br) (ng—t—b1 )1 o (ny—t—b,.)ir

- ] j i1+ tir .
i1+ +ir<u(bi,...,br) (i1,000sir) a’l @

Let Jg’ll ’.'_""Z")) (n1,...,n,) denote the coefficient of nlf ---n¥ in the above equation.

Let e; = (0,...,0,1,0,...,0) € N” with 1 at the j-th position where j € {1,...,7}. Note
that

(n1,...,ny) + e € (a;b1,...,by) anda(nj+a):Lnj+aa J:nj—i-a L
a
Thus for all 1 < j < r, we have
bi,.o,by by,....by
gi11:~~~:ir)) (n1,...,ny) = 0((z‘11,.4.,ir)) (n1,...,nj—1,nj +a,njqi1 ..., ny.).
For all (mq,...,m;) € (a;b1,...,b,), we define
(b1yeeesbr) e
1) = | S e me) S Sl )
0 if iy + -+ +dp > ulby,...,by).
Therefore for all ny,...,n, > cand s = max{u(by,...,b;): 0 <by,...,b, < a—1}, we get
AMM/I(L)p, - I(r)n, M) = Z O-i17~-~7ir(nl""7n7")nlf n?“
i1 tetin<s

3. PoLYNOMIALS, QUASI POLYNOMIALS AND MULTIPLICITIES 11

Lemma 3.1. Suppose thatr,d > 1 and a = (T;:Fd). Then there exist ny(i),...ny(i) € Z4
for 1 < i < a such that the set of vectors consisting of all monomials of degree d in
ny(i),...,n.(i) for 1 <i<a,

{(ni (D)%, n (1) ng(1), .., (1)), . (na (), ma (@) ng(a), . ., mp(a)?)}
15 a Q-basis of Q°.
Proof. Let A : (Q4)" — Q% be defined by A(sy,...,s,) = (54,59 sy, ..., s%). We will first

show that the image of A is not contained in a proper Q-linear subspace of Q. Suppose
otherwise. Then there exists a nonzero linear form

L(Yd,0,.00 Yd1,10,0005 - 2 Y0,0d) = D Qiyoig Vi iy
on Q% such that L(s¢,s¢ 'sy,...,s%) =0 for all (sq,...,s,) € (Q4)". The degree d form
G(zy,... ) = L(xf, 29 xy, ..., x?) vanishes on (Q4)". Since Q is an infinite field, this
implies that G(x1, ..., z,) is the zero polynomial (as follows from the proof of Theorem 2.19
[15]). But G(z1,...,x,) is a nontrivial linear combination of the monomials in z1, ..., z,

of degree d, so it cannot be zero. So Image(A) is not contained in a proper linear subspace
of Q%. Thus there exist (s1(7),...,5-(7)) € (Q4)" for 1 <4 < a such that

{(s1(1)%, 51(1)% Lsa(1), ..., 5-(1)D), ..., (s1(a)?, s1(a)? Lsa(a), ..., s.(a)?)}
8



is a Q-basis of Q. There exists a positive integer u such that n;(j) = us;(j) € Z4 for all
1,7, and since

(n1()% () n2(h), - ne (D) = u(s1(), s1()* ' s2(4), - - sr () %)

for 1 < j < a, we have that

{(nl(l)d, nl(l)dflng(l), .. ,nr(l)d), . (nl(a)d, nl(a)dflng(a), . nr(a)d)}

is a Q-basis of Q. O
Lemma 3.2. Let g = (T;iﬁd). There ezist ny(i),...,n.(i) € Zy for 1 < i < g and
cj(it,...,ip) € Q for 1 < j < g and iy,...,i, € N with iy + --- + i, = d, such that if
F(z1,...,2y) € Qlx1,...,z,] is a polynomial of total degree d, with an expansion
(3) F(zy,...,2,) = Z Qiyiy @zl € Qs ..., 2]

i1+ +ir<d

with a;, .. ;. € Q, then foriy,... i, € N with iy +--- +1i, = d,

g
(4) Qiyq,... iy = Z Cj (il, - ,ir)bj
j=1
where
<5) bj B nlgnoo md .

Proof. By Lemma 3.1, we can choose n;(j) € Z4 for 1 <i <r and 1 < j < g so that

nm(D)? (1) ng(1) o n(1)?
B = : :

ni(g)? na(g)™ tnalg) oo ne(g)?
has rank g. Write

c1(d,0,...,0) ce(d,0,...,0)

c1(d—1,1,0,...,0) -+ ¢4(d—1,1,0,...,0

" R e R )

c1(0,...,0,d) cg(0,...,0,d)

Suppose F(x1,...,2,) € Q[x1,...,x,] has the expression (3). By (3) and (5),

P, .. tn,(5)) . o
by = Jim A= anam ) )
i1t tir=d
for 1 < j < g. We thus have that
ad,....0 b
a4—1,1,0,...,0 by
B . == )
ao,...,0,d by
so that (4) holds by (6). O



Suppose that R is a Noetherian local ring of dimension d, M is a finitely generated
R-module and J is an mp-primary ideal in R. Recall that the multiplicity er(J; M) is
defined by the expansion of the Hilbert polynomial of M, which is equal to A(M/J™M)
for m > 0,

er(J; M)
d!

m® + lower order terms in m,

so that
M/J™M
er(J; M) = lim d!M

m—o0 md )

Lemma 3.3. Suppose R is a Noetherian local ring of dimension d, M is a finitely generated
R-module and

Z() = {I(D)i}, ..., Z(r) = {I(r):}

are Noetherian filtrations of R by mp-primary ideals. Let a € Zy be such that 1(§)ia =
I(3), for 1 <j<r andi> 0. Suppose ni,...,n, € N. Then

AWy T M) 1
m—00 md dlad

R(I(l)anl o 'I(r)anT;M) S Q+.
Proof. For m € Z, write m = ua + v with 0 < v < a. Then we have a short exact

sequence of R-modules

0 = I(Duany - - L()uan, M/T(D)mny -+ L(r)mn, M — M/I(1)n, -+ L(1)mn, M
— M/I1(1)uan, -+ L(r)uan, M — 0.

We have that for m > 0,

A (Duany = (M) uan, M/I(D)mny = L(1) g, M)
< )‘(M/I(l)(qul)am T 'I(T)(qul)tmrM) — AMM/I(V)uan, - L(r)uan, M)

= eR(I(l)”&;{)(IT)a"”M u?! + lower order terms in u.
So
limy,_, A(I(l)uanl---I(T)uanrMc/ll(l)mnl---T(T)mnrM)
m o m
) eR(I(l)“"(ld:f)%”“"T;M)ud*1+ lower order terms in u
< limy 00 (uatv)? =
Thus
. MM/ Iy I ) mny M . MM/ TV wans I wany M
T 00 (M/I(1) L (r) ) lulnu—>oo (M/I( )(ual«kv)‘gr) )
= meR(I(l)am - I(M)an,; M).
O
Define the total degree of a quasi polynomial Zail,m,ir(nl,...,nr)nzf nff to be

the largest t such that there exists 41,...,%, € N with ¢; +--- 4+ 4, = ¢, such that
Oy ....ip(n1,...,ny) is not (identically) zero.

Proposition 3.4. Let

P(ny,...,n,) = Zaih_,_,ir(m, e nr)ni1 . ~nff

be the quasi polynomial of the conclusions of Proposition 2.2. Then the total degree of
P(ny,...,n,) ts dim M, and oy, . ;. (n1,...,n,) is a constant function if iy + -+ + i, =
dim M.

10



Proof. Let t be the total degree of P(ni,...,n,) and let a € Z be such that I(j)s =
I(7), for all i > 0 and 1 < j < r, so that a is a common period of the coefficients
Oiy iy (n1,...,ny) of P(ni,...,n,) (by the proof of Proposition 2.2). Suppose that
bi,...,b, € Nwith 0 < b; < a for all . Suppose ny,...,n, € Z. Then for ny,...,n, > 0,
AM/I(D)any+by - L(M)an,+6, M) = P(any + by, ..., an, +b;).

Define

P50y (01, snp) == Pany + by, ..., an, + by) ‘ '

- Zi1+---+ir§t Oiyip(ang + b1, ... an, + br)(am + b)) e (an, + by)"r

= Zi1+~~~+ir§t i,y (bl, . ,br)(cml —+ bl)ll - (anr + br)%'

= Ei1+"‘+ir:t Oi1,.ir (blv v 7b7")atnlll e ni’r
+ lower total order terms in nq,...,n,.
We have that Pg,,  p.)(n1,...,n:) € Q[ny,...,n,] is a polynomial. For fixed n1,...,n, €

Zy and m >> 0, we have
P(O,..,O)(mnla coymng) = MM/I(Vamn, - L(r)amn, M) = MM /(I(1)an, -+ I(7)an, )" M).
Thus by [32][Lemma 11.1.3],

. P(O,.,.,O) (mnl, ceey mn,«)
Jim Iy dim € Q4.
Therefore the total degree of P . o)(n1,...,n;) is dim M.
Fix nq,...,n, € Z4 and b; € N with 0 < b; < a for 1 <i <r. For m € Z,, we have

short exact sequences of R-modules,

0 = I(D)many = L") man, M/ T(1)many +5, = L") man,+6, M — M/T(1)many+b1 -+ - (") man, +b, M
— M/I(1)man, -+ L(7)man, M — 0.

Now for m > 0,
A (D many « = L) man, M/ (D) many +, = L7 many+6, M)

< )‘(I(l)mam e I(T)manrM/I(l)(erl)anl T [<T)(m+1)anrM)
= Po,.o((m+1)ny,...,(m+1)n,) — Py, o(mni,...,mn;)

is a polynomial of degree less than dim M in m. Thus

by) (MN1,...; mnr) AM/I(V)many = I(r)many M)

limyy, 00 —2 im0 = limy, -0 mdim M
— 1 Po,... 0)(mna,....,mn;,)
= Mmoo mdim M

and
Oi1,..ir (b1> SRR bT) = O-il,m,ir(o’ cee 70)
if i1 + -+ + 4, = dim M by Lemma 3.2.
O

Proposition 3.5. Suppose that R is a Noetherian local ring, M is a finitely generated
R-module and Z(1) = {I(1);},...,Z(r) = {I(r);} are Noetherian filtrations of R by mp-

primary ideals. Then there exist a positive integer ¢ and periodic functions o, .. ;. (n1,...,ny)
such that whenever nq,...,n, > ¢, we have that
MM/ I0) M) = S oii (1m0 e

11441 <dim M

is a quasi polynomial of total degree equal to dim M, and the coefficients o, .. i, (n1,. .., ny)
are constants whenever i1 + --- + 1, = dim M.
11



Proof. This follows from Propositions 2.2 and 3.4. O

4. VOLUMES ON ANALYTICALLY IRREDUCIBLE LOCAL DOMAINS

Definition 4.1. Suppose that T = {I;} is a filtration of ideals on a local ring R. For
a € Z, the a-th truncated filtration I, = {I,;} of T is defined by I, = I, if n < a and
if n>a, then Iop, =Y 14l ; where the sum is overi,j > 0 such that i + j = n.

We give an algebraic proof of the following lemma. A geometric proof is given on page
9 of [7].

Lemma 4.2. Suppose that R is an excellent d-dimensional local domain. Then there
exists an excellent reqular local ring S of dimension d which birationally dominates R.

Proof. Let d = dim R. Let z1,...,24 be a system of parameters in R and let Q =
(#1,...,24), which is an mp-primary ideal in R. Let T be the integral closure of B =
R[z—f, cee z—‘li] in Q(R). The ring T is an excellent ring and is a finitely generated R-algebra
by [23, Theorem 78, page 257].

We will now show that z; is not a unit in B, using an argument from [1, (1.3.1) on
page 15]. Suppose that z; is a unit in B. Then there exists y € B such that 21y = 1, so
there exists a nonzero polynomial f(Xo,..., X,) of some degree n with coefficients in R
such that y = f <j—f, cel j—‘f) Then 2] = zi”ly = z19(21,-..,2q) where g(X1,...,Xg) is
a nonzero homogeneous polynomial of degree n with coefficients in R. Thus 2] € mrQ",
which is a contradiction by [37, Theorem 21 on page 292]. We further have that z; is not
a unit in T since T is finite over B. Now QT = z1T and z; is not a unit in 7" and so
ht(P) =1 if P is a minimal prime of mzT by Krull’s principal ideal theorem.

We next show that 7' has dimension d. The ring R is universally catenary since R is
excellent, so the dimension formula holds between R and T (the inequality (*) on page 85
[23] is an equality). Let n be a maximal ideal of 7" which contains z;. Then n N R = mpg.
We have that T'/n is a finitely generated algebra over the field R/mpg and T'/n is a field,
so that T'/n is a finite R/mp-module by [20, Corollary 1.2, page 379]. By the dimension

formula, we have that
ht(n) = ht(mpg) + trdegqr)Q(T) — trdegp )y, ,, T'/nT = ht(mp) = d.

Since the dimension formula gives us that ht(m) < d for all maximal ideals m in T, we
have that dim7" = d. Let

NR(T') = {P € Spec(T') | Tp is not a regular local ring}.

The set NR(T') is a closed set since T is excellent. Let I be an ideal of T such that
NR(T) = Spec(T/I). If P is a minimal prime of I then ht(P) > 1 since 7" is normal
(Serre’s criterion for normality). The Jacobson radical of T'/mgT (the intersection of all
maximal ideals of T/mgT) is the nilradical of T/mgT by [23, Theorem 25, page 93], since
T/mgT is a finitely generated algebra over the field R/mpg. Let I = I(T/mgT). There
exists a maximal ideal 7 of T/mgT such that I ¢ 7 since otherwise I C /mgT which is
impossible, since all minimal primes of I have height larger than 1 and all minimal primes
of mgrT have height equal to one. Let n be the lift of 7 to a maximal ideal of T. Then
S :="1T, is a regular local ring of dimension d which birationally dominates R. 0

In this section, we suppose that R is a Noetherian local ring of dimension d which
is analytically irreducible. Suppose that Z(1) = {I(1);},...,Z(r) = {I(r);} are (not
12



necessarily Noetherian) filtrations of R by mpg-primary ideals. Define a function F': N™ —
R by

(7) F(ny,...,n,) = lim )\(R/I(l)mm; A (T)mn, )
m—r0o0 m
for nq,...,n, € N where the limit is over m € Z,. This limit exists by Theorem 1.1.
For a € Z, let {I,(j):} be the a-th truncated filtration of {I(j);} for 1 < j < r (defined
in Definition 4.1). By Proposition 3.5, for a € Z,, there is a homogeneous polynomial
Fy(xy,...,z,) of total degree d in Q[z1,...,z,], such that

AR/ a(L)mny - La(1)mn,)

n}i_r)rloo " =F,(n1,...,n.)
if nq,...,n, € Z,. Expand
Fo(zy,...,zp) = Z bi,...., ir(a)xzf . 'xﬁ
iy tetin=d

with bily---ﬂ‘?" (a) € Q.
Proposition 4.3. For fired ny,...,n, € Z4,

lim F,(ni,...,n,) = F(ni,...,n.).

a—r o0

Proof. Define filtrations of ideals {J;} and {J(a);} by J; = I(1)in, - - L(7)in, and J(a); =
La(V)in, -~ La(r)in, -

We use a construction and method from the proof of [7, Theorem 4.2]. We begin by
reviewing the construction in the context of this proposition. Since A(R/J;) = A R(R/ j,)
and AM(R/J(a);) = )\R(R/J(a)ilfi) for all 7 and a and R is a domain, we may assume that
R is complete and thus is excellent. By Lemma 4.2, there exists a regular local ring S
of dimension d which birationally dominates R. Choosing a regular system of parameters
Yi,---,Yqin S and Aq, ..., Ay € R which are rationally independent real numbers such that
A; > 1 for all i, we define a valuation v on the quotient field of R such that v dominates S
by prescribing v(yy' -+ y5?) = a1 + -+ +aghq for a1,...,ag € Nand v(y) =0if y € S
is a unit. Let k = R/mp and k' = S/mg.

We will show that the residue field V,,/m, = k’. Given an element h € V,,, let [h] denote
the class of f in the residue field V,,/m,,. Suppose h € V,, and v(h) = 0. Write h = g with

f,yg € S. There exist a unit o € S, i1,...,iq € N and a € S such that fzayi*--’gﬁf%—a
and v(a) > v(f) = i1\ + -+ + igA\g. Similarly, there exist a unit 5 € S, j1,...,jqa € N
and b € S such that g = ﬁy{l . -yff + b with v(b) > v(g) = j1A1 + -+ + jarAa. We have
that g;" -y = yi' -y since v(f) = v(g). Now [rL—] = [a] and [L+] = [3] so

i1, 0d i1,
vty vty

[h] = 5 € S/ms =K.
For A € R>(, define ideals K and K;f in the valuation ring V,, of v by
Ky={f€QR)|v(f) = A}
and
K ={f € Q(R) [ v(f) > A}
For t > 1, define semigroups
IO = {(mi,...,mq,1) € N | dimy, J; 0 Kopyayoopmgrg/Ji N K
and my + -+ +mg < Bi},

1A 1+ +mgAg 21

13



F(a)(t) = {(ma,...,mgq,i )ENd+1 | dimy, J(a)i N Ky agtmgrg/J (@) NK*
and my + -+ +mg < Bi}

and

r® = {(my,...,mg,i) € Nt | dimy RN Kpya, 4. dmgrg/ RN K
and my + -+ + my < Bi}.

T)’L1)\1+ +md)\d 2 t

Here 8 = ac where ¢ € Z, is chosen so that m% C J1 = J(a)1 = I(1)y, ---I(7)p, and
a € Z4 is such that Ko, N R C mf for all n € N. Such an « exists by [6, Lemma 4.3].
Define T'{Y) = TW (N9 x {m}), T(a)!) = T(a)® N (N?x {m}) and I'Y = IO A (N x {m})
for m € N.

The Newton-Okounkov body of a (strongly nonnegative) sub semigroup S of Z? x N is
defined as

A(S) = con(S) N (R x {1})
where con(S) is the closed convex cone which is the closure of the set of all linear combi-
nations Y A;s; with s; € S and \; a nonnegative real number. This theory is developed

in [27], [22] and [17] and is summarized in [7, Section 3.
By [7, Lemmas 4.5 and 4.6] and [7, Theorem 3.2],

0
(8) lim L™ — Vol(AD®)),

m—oo md

N0
(9) Tim PO oA (a) )
and

#f‘(t)
(10) lim = Vol(A(T'®))

m— oo md

all exist (where #7 is the number of elements in a finite set T').
By [7, (19) on page 11],

(11) Fy(ny,...,ny) = limpy, o0 %( , / .
_ [k k} limy e #Tg Ztk lk] lim,, o #Fr(nad)m
with a similar formula
(12) F(ny,...,n,) = limy, o Mj’") » ) .
= Z[k k] lim,y, 00 #mL;" [k k] lim,y, 00 #771;;" .
Let
a = |a/max{ny,...,n,}|

where |x] is the greatest integer in a real number x. We have that
(13) 1 =1()" fori<a
and so

”*F( ={x1 4+ Fxy|21,... anF }CF( )(gforallnzl.
14
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By [22, Proposition 3.1] (recalled in [7, Theorem 3.3]) and since @ — oo as a — 00, given
€ > 0, there exists ag > 0 such that for all a > ag we have

(t) (t
(14) VOI(A(F(t))) > VOI(A(F(Q)(U) = limy, 00 #l’;(;)n = limy, 00 %
(t)
> limy_yeo 2058) > Yol(A(TM)) — ¢

(na)?

By (11) - (14), the proposition holds.

The following corollary now follows from Lemma 3.2 and Proposition 4.3.

Corollary 4.4. For all iy,...,i € N withi; +---+ 1, =d,
(15) biy,..i, = lim by, ; (a)

a—00
exists (in R).
Now define a homogeneous polynomial
G(z1,...,2p) = Z b,y - xy € Rlxy, ..., 2,
i1+ tir=d

where the b;, ;. are defined by (15).

Theorem 4.5. For allny,...,n, € Z4,
F(ni,...,ny) =G(ny,...,n,.).
Proof. For fixed ny,...,n, € Z', and a € Z,
|F(ni,...,ny) —Gny,...,n)| < |[F(ni,...,n.) — Fo(na,...,ng)
+’Fa(n1>"'7nr) _G(nlv"wn?")’
which is arbitrarily small for a > 0 by Proposition 4.3 and Corollary 4.4. 0

5. REDUCTION TO LOCAL DOMAINS

Lemma 5.1. Suppose R is a Noetherian domain and M is a torsion free finitely generated
R-module. Then there exists a short exact sequence of R-modules

0O—-R -M—F—=0
where s = rank(M) and dim F' < dim R.

Proof. Let K be the quotient field of R and {e1,...,es} be a K-basis of M ®r K. Since M
is torsion free, we have a natural inclusion M C M ® K. For all ¢, there exists 0 # x; € R
such that z;e; € M, so after replacing e; with x;e;, we may assume that e; € M. Let
¢ : R® - M be the R-module homomorphism ¢ = (ej,...,es). Let L be the kernel of ¢
and F' be the cokernel. We have a commutative diagram

0 - L — R 2 M — F — 0

4 4
K¢ 5% MorK — ForK — 0

where the vertical arrows are injective and the rows are exact. By our construction of ¢,
K* % M @g K is an isomorphism. Thus L = 0 and dim F < dim R.
O
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Lemma 5.2. Suppose R is a Noetherian local ring of dimension d and M is a finitely
generated R-module. Let T be a submodule of M such that dimT < d, so that there is a
short exact sequence of R-modules

0—-T—M— M/T:=M — 0.

Suppose Z(1) = {I(1)i},...,Z(r) = {I(r)i} are filtrations of R by mpg-primary ideals.
Then for fized ny,...,n, € N,
lim AM/I(V)mny = L(r)mn, M) — lim AM/T(1)mn, - - 'I(T)mnrM)‘

m—00 md m—00 md

Proof. Define a filtration of R by mp-primary ideals by Jn, = I(1)mn, - L(")mn,. We
have short exact sequences of R-modules
0—T/TN(JnM)— M) M — M/ Jm M — 0.

There exists a positive integer ¢ such that m$% C Ji. Thus m@*T C T'N (J,, M) for all m
and
NT/T N Ty M) < XNT/mZ"T).
Since dim T < d,
MNT/m@G*T
g A/mET)
m—>o0 m

=0

and the lemma follows.

O

Lemma 5.3. Suppose that R is a Noetherian local domain of dimension d and M 1is a
finitely generated R-module. Suppose (1) = {I(1);},...,Z(r) = {I(r);} are filtrations of
R by mp-primary ideals. Let s = rank(M). Suppose ni,...,n, € N. Then

m AM/T(V)mn, - - - L(r)mn, M) — < lim AR/I(D) i, - I(T)mnr)) .

m—o0 md

m—o0 md

Proof. Define a filtration of mg-primary ideals by J, = I(1)mn, - - - L(7)mn,. By Lemma
5.2, we may assume that M is torsion free, so there exists by Lemma 5.1, a short exact
sequence of R-modules

0—>R —-M—>F—=0

where dim ' < d. There exists ¢ > 0 such that m% C J;. There exists 0 # x € R such
that M C R®. We have exact sequences for all m € Z,

0— RN (JM)/JnR* — R°/J, R®

— M/JpyM — Np, — 0
where N, is defined to be the cokernel of the last map, and we have an exact sequence

X

(16) 0— A, = R*/J,R®° = R°/J,R* = W,, = 0
where A, is the kernel of the first map and W, is the cokernel of the last map. We have

A = [(Jm )/ I]”
We have that

z(R°NJp,M) C JnR®
so that

MR N (I M) ) T R?) < M An).
We have that
Wi = [(R/(2))/ Jm(R/(2))]®

16



AWn) < M(R/(2))/mE" (R/(x)))®
for all m. Thus

AAn, AW,
lim ( 7 ) = lim (M; ) =0
m—oo M m—oo M
by (16) and so
A(R? mM [ Iy R®
lim (Rn‘]d/‘]R):o.
m—oo m

Now zM C R?® implies
Np & M/R? + JyM = M /(R + JM + zM).
Thus
A(Nm) < M(M/xM) /mE" (M/zM)
and so
lim 7)\(]\[;1)
m—oo  Mm
since dim M /zM < d, and the lemma follows.

=0

O

Lemma 5.4. Suppose that R is a d-dimensional reduced Noetherian local ring and M is
a finitely generated R-module. Let {P,...,Ps} be the minimal primes of R and S =
@D;_ R/P;. Suppose I(1) = {I(1);},...,Z(r) = {I(r)i} are filtrations of R by mp-

primary ideals. Suppose that ni,...,n, € Zy are fized. Then
iy AT Do T _ N 0 /T L D, M ©105)
m—00 m m—0o0 m

Proof. Define a filtration of R by mpg-primary ideals by Jp, = I(1)mn, - - - I(7)mn,.. There
exists ¢ € Z4 such that m$% C Jj. Since S is a finitely generated R submodule of the total
ring of fractions T = €@;_; Q(R/F;) of R, there exists a non zerodivisor z € R such that
xS C R. Tensoring the short exact sequence

0—+R—-S—S/R—0
of R-modules with M, we have a natural short exact sequence of R-modules,
ML M®rS— Mg (S/R) — 0.

Let K = kernel v and U = Image 7y. We have that (Kernel v)p, = 0 for 1 < i < s since
Rp, = Sp, for all 7. Thus dim Kernel v < d, and by Lemma 5.2,

lim AU/ JRU) ~ im ANM /Ty M)

m—00 md m—oo md

Let V = M ®gr S. We have short exact sequences of R-modules,
0—-UNJ,V/J U —-U/JyU —V/J,V — Ny — 0

where N,,, = V/U + J,,,V. We also have short exact sequences

(17) 0= Ay = U/JpU S U/JU = Wy =0

where A,, is the kernel of multiplication by x and W,, is the cokernel. Now z(U N
InV) C J,U, so UNJ,V/J,U C Ay, for all m. Now W,,, = (U/2U)/Jm(U/2zU) and
dimU/zU < d. We have that
AWnm) < AMU/2U)/mg“(U/2U))
17



and thus

tim 2Wm)
m—00 m
From (17), we have
A
lim AUN Jm;//Jmm < lim Al ;”) = lim A(M;’”) =0.
m—0o0 m m—oo M m—o0 m
Since V' C U, we have
Ny, 2V/U+ J,V =V/(U + J,V 4+ zV).
Thus
ANm) < M(V/xV)/mEe(V/2V))
for all m, so
AN,
lim ( p ) =0
m—oo M
since dim V/zV < d. O

6. MIXED MULTIPLICITIES OF FILTRATIONS

The following theorem allows us to define mixed multiplicities for arbitrary (not nec-

N

essarily Noetherian) filtrations of mp-ideals in a Noetherian local ring with dim N(R) <
dim R. By Theorem 1.1, if the assumption dim N (R) < d is removed from the hypotheses
of Theorem 6.1, then the conclusions of Theorem 6.1 will no longer be true. Theorem 6.1
generalizes a theorem of Bhattacharya [2] and Teissier and Risler [33] (also proven in [32,

Theorem 17.4.2]) for mp-primary ideals to filtrations of mpg-primary ideals.

Theorem 6.1. Suppose that R is a Noetherian local ring of dimension d such that

~

dim N(R) < d

and Z(1) = {I(1);},...,Z(r) = {I(r)i} are (not necessarily Noetherian) filtrations of R by
mpg-primary ideals. Suppose that M is a finitely generated R-module. Then there exists

a homogeneous polynomial G(z1,...,x,) € Rlxy,...,z,] which is of total degree d if G is
nonzero, such that for allny,...,n, € Z4,
AM/ IV =+ L) ym, M
lim (M/1(1) ramy 5 ("), M) =G(ni,...,n.).
m—o0 m
We will see in Theorem 6.6 that the conclusions of the theorem hold for all ny,...,n, €
N.

Proof. Replacing R with R, 1(j); with I(j)ZR and M with M ®p R, we may assume that
R is complete. By Lemma 5.2 (taking 7' = N(R)M) we reduce to the case where R is
analytically unramified. By Lemma 5.4, we reduce to the case where R is analytically
irreducible. By Lemma 5.3, we reduce to the case where R is analytically irreducible and
M = R. Theorem 6.1 now follows from Theorem 4.5. 0

Let assumptions be as the statement of Theorem 6.1. Generalizing the classical defini-
tion of mixed multiplicities for mpg-primary ideals ([2], [28], [33], [32, Definition 17.4.3])
we define the mixed multiplicities of M of type (d,...,d,) with respect to the filtrations
Z(1),...,Z(r) of R by mp-primary ideals

er(Z()M, .. Z(r)l]; M)
18



from the coefficients of the homogeneous polynomial G(n,...,n,). Specifically, we write

1
Glnnoon) = S e, T My i
ditdp=d T

We write the multiplicity er(Z; M) = er(Z\9; M) if r = 1, and T = {I;} is a filtration
of R by mg-primary ideals. We have that
er(T; M) = lim d'w.
m—00 m
Proposition 6.2. Suppose that R is a d-dimensional Noetherian local ring with dim N(R) <
d. Suppose Z(j) ={I1(j)i} for 1 < j <r are filtrations of R by mpg-primary ideals and M
s a finitely generated R-module. Then for all dv,...,d, with di + --- + d, = d, we have

that
lim er(Z (D), Zo (M) M) = ep(z) D Z(r)4 ) M.

a— 00

Proof. The proof of Theorem 6.1 gives a reduction to the case that R is analytically
irreducible and M = R. The proposition now follows from Corollary 4.4. O

The following theorem extends to filtrations of R by mpg-primary ideals the Minkowski
inequalities of mp-primary ideals of Teissier [33], [34] and Rees and Sharp [30]. The
inequality 4) of Theorem 6.3 was proven for graded families of mp-primary ideals in a
regular local ring with algebraically closed residue field by Mustata (Corollary 1.9 [25])
and more recently by Kaveh and Khovanskii ([18, Corollary 7.14]). The inequality 4) was
proven with our assumption that dim N(R) < d in [8, Theorem 3.1]. Inequalities 2) - 4)
can be deduced directly from inequality 1), as in the proof of [32, Corollary 17.7.3], as
explained in [34], [30] and [32].

Theorem 6.3. (Minkowski Inequalities) Suppose that R is a Noetherian d-dimensional
local ring with dim N'(R) < d, M is a finitely generated R-module and T(1) = {I1(1);} and
Z(2) ={I1(2);} are filtrations of R by mp-primary ideals. Then
1) er(Z(U,2(2)% M)? < ep(T(L)F, Z(2)1 1 M)er(Z(1)F1, Z(2)1 41 M)
for1 <i<d-1.
2) For0<i<d,
er(Z(V)I, Z(2)1; M)er(Z(1), Z(2)1; M) < ep )
3) For 0 <i<d, eg(Z(1)l4-1 7(2)l1; M)d < ep(Z(1); M)? e (I(Q),M)’ and
4) er(Z(D)I(2)); M) @ < er(Z(1); M) + ep(Z(2); M) 4,
where Z(1)Z(2) = {I(1);1(2);}.
Proof. By the reduction of the proof of Theorem 6.1, it suffices to prove the theorem for
R an analytically irreducible domain and M = R. We first will show that for all a € Z,,
the Minkowski inequalities hold for the a-th truncated filtrations Z,(1) = {I,(1),,} and
Z4(2) = {1,(2)n} (defined in Definition 4.1).
Given a € Z, there exists f, € Zy such that 1,(7) f,m = (La(i),)™ for all m > 0 and
i = 1,2. Define filtrations of R by mp-primary ideals b Ja(?)m = 14(%)f,m- Then for
niy,noe € Zy,

MR/ Ja(1)mng Ja(2)mns)

A.\H

. 1 [d1] [da].
lim = er(Ja(l yJa Rn n s
mM—00 md dl—%:d dl'dQ' R( ( )1 ( ) ) 1 2
MR/ J (k)T 1
Jim 20D  enutis )
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for k=1 and 2 and

tim M/ aWla@)™) S er(Ja(D)1a(2)1: )

m—00 md !

where er(J, (1)), J,(2)92); R), er(J.(1)1; R), er(Ja(2)1;: R), er(Ja(1)Jo(2)1; R) are the
usual mixed multiplicities of ideals ([32, Theorem 17.4.2, Definition 17.4.3]).
Now the Minkowski inequalities hold for the mixed multiplicities of ideals

er(Ja(D, 1.2 R), er(Ja(1)1; R), er(Ja(2)1; R) and er(Jo(1)1Ja(2)1; R)
by [30] or [32, Theorem 17.7.2 and Corollary 17.7.3]. By Lemma 3.3,

MBIy, Fa@n) 1 (1 MBMW(DP (27™)
m—o0 md fg m—oco mé
for all ny,ne € N,
g AR/ aB) _ 1 NGRS
m—o00 m fa m—o00 m
for k=1 and 2 and
A 1I,(1)pda(2)m 1 .. A W(1)1J4(2)1)™
g AR Unla(Zn) 1 AR/ Ua(Dia(20)")
m—o00 m fa m—00 m
By Lemma 3.2,
1

en(Ta(), a2 B) = en(JuD™, a2 R)

for all dl, dg,

mmmm=immmammwmm=#muma>

a

and
en(T()T(2); R) = ;eR(Ja(l)lja(Z)l;R).

Thus the Minkowski inequalities hold for the er(Z,(1)I%1], Z,(2)l%2]: R), er(Z,(1); R),
er(Za(2); R) and er(Z4(1)Z4(2); R). Now the Minkowski inequalities hold for the
er(Z(1)"), Z(2)1]; R), er(Z(1); R), er(Z(2); R) and er(Z(1)Z(2); R)
by Proposition 6.2. O

Remark 6.4. (Minkowski equality) Teissier [35] (for Cohen Macaulay normal complex
analytic R), Rees and Sharp [30] (in dimension 2) and Katz [16] (in complete generality)
have proven that if R is a d-dimensional formally equidimensional Noetherian local ring
and 1(1), I(2) are mp-primary ideals such that the Minkowski equality

er((I(1)I(2)); R)a = ep(I(1); R)7 + ep(I(2); R)

holds, then there exist positive integers r and s such that the complete ideals 1(1)" and
1(2)% are equal, which is equivalent to the statement that the R-algebras @, ~,1(1)™ and
D,,~01(2)°" have the same integral closure. -

This statement is not true for filtrations, even in a reqular local Ting, as is shown

by the following simple example. Let k be a field and R be the power series ring R =
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kl[z1, ... z4]]l. Let Z(1) = {I(1);} where I(1); = miy and I(2) = {I(2);} where 1(2); =
mgl. Then the Minkowski equality

1 1 1
er((Z(1)Z(2)); R)4 = er(Z(1); R)4 + er(Z(2); R)4
is satisfied but @,;~¢I(1); and @, 1(2); do not have the same integral closure.
The following proposition generalizes an identity of Rees, [28, Lemma 2.4].

Proposition 6.5. Suppose that R is a Noetherian local ring of dimension d such that

~

dim N(R) < d and Z(1) = {I(1);},...,Z(r) = {I(r);} are filtrations of R by mp-primary
ideals. Suppose that M is a finitely generated R-module. Then for 1 <i <,

er(Z(D)] ... T — DIl 701 705 4 1)l o Z(r)le]: Ar)
= ep(Z(D] .o T(i — 1)ldi-1) T(i 4 D)ldina] oo ()] D)

whenever dy + -+ +dj—1 +djy1--- +d, =d.
In particular,

er(Z(i); M) = er(zWO, ..., 2 — ) 2z 2 + 1), .., 2(m); ).

Proof. By the proof of Theorem 6.3, we need only show that the identities hold for
mp-primary ideals I(1),...,I(r). We may assume that i = r. Let G(z1,...,2,) €

Q[z1,...,x,] be the homogeneous polynomial of degree d such that
M/I(1ymm . I(r)mnr M
lim AM/I() 7 () ):G(nl,...,nr)
m—oo m
whenever ny,...,n, € Z, and let Q(z1,...,2,-1) € Q[x1,...,2,_1] be the homogeneous

polynomial of degree d such that
AM/I(1)™ . [(r — 1)™ =1 M)

lim ! =Q(ny,...,np—1)
m—oo m
whenever ny,...,n.—1 € Z4. Then for all ny,...,n._1 € Z4,
. G(mny,...,mn,_1,1) . G(mnq,...,mn,_1,0)
lim v = lim v
m—0o0 m m—r00 m
and for o € Z,
. Q(mnlv"'amnr—l +()é) . Q(mnla "7mnr—1)
lim ] = lim ]
m—00 m m—r00 m

There exists a € Zy such that I(r —1)* C I(r). Thus for ny,...,n,—1 € Z4,
Qnns.. . 1) < Glnn, . ey, 1) < Q11 .- 11ry + 1)

and thus we have equality of polynomials

_ 1 Q(mna,...,mny_1
Qs 1) = gy Q)
- 1 G(mny,...,mn,—1,0)
= My oo md

= G(nl,. . .,anl,O)

and the theorem holds (for mp-primary ideals). O

As a consequence of the above proposition, we extend the conclusions of Theorem 6.1

to all ny,...,n, € N.
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Theorem 6.6. Suppose that R is a Noetherian local ring of dimension d such that

~

dim N(R) < d

and Z(1) ={I(1);},...,Z(r) = {I(r):} are (not necessarily Noetherian) filtrations of R by
mpg-primary ideals. Suppose that M is a finitely generated R-module. Then there exists

a homogeneous polynomial G(x1,...,z,) € Rlx,...,x,] which is of total degree d if G is
nonzero, such that for allmny,...,n, € N,
M/I(1D)mn, - L(r)pm,. M
lim AWM/ T, y ("), M) =G(ni,...,n.).
m—»00 m

The proof of the following proposition is by the same method as the proof of Theorem
6.3, starting with the fact that the identities of Proposition 6.7 hold for mgz-primary ideals
by [32, lemma 17.4.4].

Proposition 6.7. Suppose that R is a Noetherian local ring of dimension d such that
dim N(R) < d and Z(1) = {I(1);},...,Z(r) = {I(r);} are filtrations of R by mg-primary
ideals. Suppose that

0— M — My — M3z —0
is a short exact sequence of finitely generated R-modules. Then for any dy,...,d, € N
with di + - - - + d, = d, we have that

er(Z()d, . Z(r)ld]: M)
= er(Z(D) ], Z(r)] M) + ep(Z(1)A] L Z(r)d; M),

The following Associativity Formula is proven for mpg-primary ideals in [32, Theorem
17.4.8].

Theorem 6.8. (Associativity Formula) Suppose that R is a Noetherian local ring of di-
mension d with dim N (R) < d. Suppose Z(j) = {I(j);} for1 < j < r are filtrations of R by
mpg-primary ideals and M s a finitely generated R-module and Z(1) = {I(1);},...Z(r) =
{I(r)i} are filtrations of R by mp-primary ideals. Let P be a minimal prime of R. Then

dim N(R/P) < d. For any dy,...,d, € N withdy +---+d, =d,
er(@MM T M) =Y Arp (Mp)eg,p(Z()R/P), . (Z(r)R/P)\*); R/ P)

where the sum is over the minimal primes of R such that dim R/P = d and Z(j)R/P =
{1(5)iR/P}.

Proof. Let R = R/N(R). We have that N(R) = N(R)R so dim N(R) < d = dim R.

Let Pi,..., Ps be the minimal primes of R and S = @;_, R/P;. As in the proof of
Lemma 5.4, we have a natural inclusion R — S, and there exists a non zero divisor € R
such that S C R. Further, z is a non zerodivisor on S since S is a subring of the total
quotient ring of R. Since completion is flat, we have an induced inclusion

~ ~

S —
i=1
We have that 2N (S) ¢ N(R). Now x is a non zero divisor on S since it is on S and

~ =

completion is flat. Thus dim N(S) < dim N(R) < d, and so dim N(R//E) < d for all i.
By Theorem 6.1 and Lemmas 5.2 and 3.2, we have that

er(Z(V)A] L T(r)ld); M) = (T, ... T(r)14); 21)
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where Z(j) = {I(j);R} for 1 <j <rand M = M/N(R)M.
By Theorem 6.1 and Lemmas 5.4 and 3.2,

ex(Z(V)4], . T(r) ] 0) ZeR/p (OR/PHL . (Z(r)R/P) ), M/ PiM).

Now for 1 <i<r,

er/p,(Z(LR/P), ... (Z(r)R/P)l]; M/PM)
= Arp, (Mp)er/p,(Z(1)R/ P, ... (Z(r)R/ )™ R/ F)

by Lemma 5.3, since Rp, = Q(R/P;). O

The following theorem generalizes [32, Proposition 11.2.1] for mpg-primary ideals to
filtrations of R by mp-primary ideals.

Theorem 6.9. Suppose that R is a Noetherian d-dimensional local ring such that
dim N(R) < d
and M is a finitely generated R-module. Suppose ' = {I]} and T = {I;} are filtrations
of R by mp-primary ideals. Suppose ' C T (I} C I; for all i) and the ring D50 In is
integral over @ I),. Then
er(Z; M) = er(Z'; M).

The converse of Theorem 6.9 is false. Taking R to be a power series ring R =
k[[z1,...,24]] over a field k, let I; = m% and I, = m'y'. Then eg(Z;R) = er(Z'; R)
but @n>0 I, is not integral @n>0 I',. This is in contrast to a theorem of Rees, in [28] and
[32, Theorem 11.3.1], showing that if R is a formally equidimensional Noetherian local
ring and I’ C I are mp-primary ideals then €D, " is integral over €, ~,(I')" if and
only if eg(I; R) = er(I'; R). - -

Proof. (of Theorem 6.9) Step 1). We first observe that if I’ C I are mpg-primary ideals
and €,,~, I" is integral over @, ~(I')", then, by [32, Theorem 8.2.1, Corollary 1.2.5 and
Proposition 11.2.1], eg(I; R) = er(I'; R).

Step 2). Suppose Z = {I[;} and 7' = {I]} are Noetherian filtrations of R by mpg-
primary ideals and 7/ C Z. Suppose b € Z. Define (V) = {I( } where Ii(b) = Iy; and
() = {(I’)gb)} where (I’)Eb) = (I')p;. Then from Lemma 3.3 we deduce that

er(Z; R) = er(Z'; R) if and only if egr(Z"; R) = er((Z")"); R).

Step 3). Suppose Z' C Z are filtrations of R by mpg-primary ideals. Suppose a € Z;..
Let Z, = {I,} be the a-th truncated filtration of Z defined in Definition 4.1. Then there
exists @ € Z such that every element of @n>0 I, (considered as a subring of @,,~q In) is
integral over €@ where 7 = } is the @-th truncated filtration of 7' defined in
Definition 4.1.

Define a Noetherian filtration A, = {A,;} of R by mpg-primary ideals by

Aa,i: Z Ia,aléﬁ

a+pB=i

n>0 an?

Recall that I = I, o = R. We restrict to «, B > 0 in the sum. Thus we have inclusions

of graded rings @n>0 an C D> Aan and @5 Aa,n is finite over P, 5o I, By Steps
2) and 1),
er(Zo; R) = er(Aq; R).
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By Proposition 4.3,
lim er(Z3; R) = er(Z; R)
a—r o0
and thus
lim GR(Aa; R) = eR(I’; R)
a—r o0
Step 4) Let notation be as in the proof of Proposition 4.3, but taking J; = I; and
J(a)l = 1q- Define
F(.Aa)(t) = {(ml, e, My, Z) € Na+l ’ dimg Ag s N Kml)\lJr"'erd)\d/A%i N KT—:—L1>\1+"~+md>\d >t
and my + - - +mgq < [i}.

Now I'(a)® C T(A,)® c T'® for all ¢, so
A(T(a)") € AT(A)Y) C ATD)

for all a. By (14),
lim Vol(A(T'(a)®)) = Vol(A(T®)),

a—0o0
and so

lim Vol(A(I'(Aq)")) = Vol(A(L)).
Thus

ILm er(Aqg; R) = er(Z; R)

by (12) of the proof of Proposition 4.3 applied to A,.

Step 5). We have that er(Z; R) = er(Z’; R) by Steps 3) and 4). Now er(Z; M) =
er(Z'; M) by Theorem 6.8 (with r = 1). O
Corollary 6.10. Suppose R is a Noetherian d-dimensional local ring such that

dim N(R) < d

and M is a finitely generated R-module. Suppose that Z(j) = {1(j);} and Z(j) = {I(j):}
are filtrations of R by mp-primary ideals for 1 < j <r. Suppose Z(j) CZ(j) for1 <j<r
and the ring

1s integral over

ni,...,np >0

Then
(18) er(Z(q)!™),Z(2)12) ... Z(r)l#); M) = ep((Z(1)) ), (z(2))®], ... (Z(r)")l*]; br)
foralldy,...,d, e Nwithdy +---+d. =d.

Proof. For ny,...,n, € Zy, the ring @,,50L(1)mniL(2)mny - L(r)mn, is integral over
@mzo [(1);’nnll(2);nn2 U I(r);nnw S0

. )‘(M/I(l)mmI(Q)mnz i "I(T)mnrM) . )‘(M/I(l);nnlf(m;nng ’ "I(T)Imn M)
lim = lim A
m—oo ma m—o0 mé

by Theorem 6.9. Thus we have the equalities (18) by Lemma 3.2 and Theorem 6.1. O
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7. MULTIGRADED FILTRATIONS

We define a multigraded filtration Z = {1, n, }n,....n.en of ideals on a ring R to be a
collection of ideals of R such that R = I_... o,

In1,~~.,nnj,1,nj+17nj+17-~7nr - Inl7~--,nj717nj»nj+1»~~-7"r

for all nq,...,n, € Nand Iy, a1y, 0. C Loi4b1,....ar+b. Whenever aq,...,a,,b1,...,b. €
N.
A multigraded filtration Z = {I,,,, .} of ideals on a local ring R is a multigraded
filtration of R by mpg-primary ideals if I,,, . 5, is mg-primary whenever ny +---+n, > 0.
If R is a Noetherian local ring of dimension d with dim N(R) <dandZ ={I,,, . n.}1is
a multigraded filtration of R by mpg-primary ideals, then we can define (by Theorem 1.1)

the function

A Irn mn
(19) P(nl, ey nr) — lim (R/ Ly, T)

m—o0 md

and ask if it has polynomial like behavior. The following example shows that it can be
far from polynomial like, so Theorem 6.1 does not have a good generalization to arbitrary
multigraded filtrations of mpg-primary ideals.

Let R = k[[t]] be a power series ring over a field k. For (ny,ns) € N2, define o : N> — N

by
a(ni,ng) = [/nf + n3]

where for a real number z, [z] is the smallest integer a such that z < a.
Define Iy, n, = (t*072)) and Z = {I,,, n, }. Then T is a multigraded filtration of R by
mpg-primary ideals. For (n1,n2) € N2, we have that

2 2
P(n1,ns) = lim AB/ Ly mng) _ -, Myt + 03] V”1+”21:[ /2 +n3].
m—»0o0 m m—o0 m

We now show that the function (19) is polynomial like in an important situation. Let
R be an excellent, normal local ring of dimension two, and let f : X — Spec(R) be a
resolution of singularities, with integral exceptional divisors FE1,..., E.. A resolution of
singularities of a two dimensional, excellent local domain always exists by [21] or [4]. If
ni,...,np € N, let Dy, n = > . n;E;, and define

Inlv---7n’r = F(X7 OX(_Dnla---vnr))7

which is an mp-primary ideal in R. Then {I,, . .} is a multigraded filtration of R by
mp-primary ideals. By Theorem 4 of [5], if the divisor class group CI(R) is not a torsion
group, then there exists a resolution of singularities f : X — spec(R) and an exceptional
divisor F' on X such that @, -, (X, Ox(—nF)) is not a finitely generated R-algebra, so
that ®n1,...,nr>0 In,...n, is not a finitely generated R-algebra, and thus the multigraded
filtration {Inl’i’nr} is not Noetherian. In Proposition 6.3 [9], it is shown that there exists
an abstract complex of polyhedral sets P whose union is Q>o (Definition 4.4 [9]), such
that for P € P and (nq,...,n,) € PNN",

MR/ Iy, ,..n,) =Qp(n1,....,ny) + Lp(ny,...,ny) + ®p(n1,...,n,),

where Qp(n1,...,n,) is a quadratic polynomial with rational coefficients, Lp(n1,...,n,) is
a linear function with periodic coefficients (a linear quasi polynomial) and ®p(nq,...,n,)
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is a bounded function (|®p(ni,...,n,)| is bounded). Thus the function defined in (19) is
piecewise polynomial, with

)\(R/Imnh,..,mnr)

P(nl,...,nr)zéi_rgloo = =Qp(ni,...,n,)
if (n1,...,n,) € P. We have the further interpretation of P(n1,...,n,) as the intersection
product
L 2
P(”l? cey nr) = _i(Anl,...,nr)
where Ay, ., is the Zariski Q-divisor associated to —n1Ej —--- —n, E, [9, Formula (7)].
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