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ABSTRACT. We give a simple algorithm showing that the reduction of the multiplic-
ity of a characteristic p > 0 hypersurface singularity along a valuation is possible if
there is a finite linear projection which is defectless. The method begins with the al-
gorithm of Zariski to reduce multiplicity of hypersurface singularities in characteristic
0 along a valuation. This gives a simple demonstration that the only obstruction to
local uniformization in positive characteristic is from defect arising in finite projections
of singularities.

1. INTRODUCTION

In this paper, we give a simple algorithm showing that the reduction of the multiplicity
of a characteristic p > 0 hypersurface singularity along a valuation is possible if there is a
finite linear projection which is defectless. The method begins with the algorithm of Zariski
to reduce multiplicity of hypersuface singularities in characteristic 0 along a valuation.
This gives a simple demonstration that the only obstruction to local uniformization in
positive characteristic is from defect arising in finite projections of singularities.

Definition 1.1. Local uniformization holds in dimension m (LU holds in dimension m)
if for every algebraic function field K over an algebraically closed field k of dimension m
and for every valuation v of K/k, there exists an algebraic local ring R of K such that R
is reqular and v dominates R.

An algebraic local ring R of a function field K/k is a local domain which is essentially
of finite type over k with quotient field K. A valuation v of an algebraic function field
K /K is required to be trivial on k. A valuation v of K dominates R if R C V,,, where V,
is the valuation ring of v, and m, N R = mpg where m,, is the maximal ideal of V, and
mp is the maximal ideal of R. We will denote the value group of v by ®,. Foundational
results on valuations can be found in Chapter VI of [35], [2], [14] and [27].

If X is a variety (which is assumed to be separated) with function field k(X) = K,
then there is at most one point p € X such that v dominates the local ring Ox ,. We
will say that v dominates p, or that the center of v on X is p. If X; — X is proper and
birational and v has a center on X, then v has a center on X; (by the valuative criterion
for properness).

Zariski, [34], found a clever patching argument (which has been extended to positive
characteristic and to other situations by Abhyankar [3] and Piltant [26]) which proves that
local uniformization in dimension < 3 implies resolution of singularities in dimension < 3.
However, there still is not a direct proof (even in characteristic zero) that a set of local
uniformizations can be birationally modified so that they patch together to form a global
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(proper) resolution of singularities, unless you start out with such a strong local version
of resolution of singularities that patching becomes unnecessary.

Since k is assumed to be algebraically closed, K is a primitive extension of a rational
function field, so we can assume initially in seeking to establish LU that there is a hy-
persurface singularity whose local ring has K as its quotient field and is dominated by
v.

Local uniformization has been proven in all dimensions over characteristic zero ground
fields k by Zariski [33] and local uniformization has been proven in dimension < 3 over
ground fields k of characteristic p > 0 by Abhyankar [3] (in characteristic p > 5) and Cos-
sart and Piltant [7] and [8] (in all characteristics). A reasonably short proof of Abhyankar’s
result can be found in [11].

The existence of resolutions of singularities implies local uniformization, so Hironaka’s
proof [15] of resolution of singularities in all dimensions over fields of characteristic zero
implies local uniformization (in characteristic zero) in all dimensions.

All of the above proofs of local uniformization in dimension m > 3 (or resolution of
singularities in dimension m > 3) require that embedded local uniformization (or embed-
ded resolution of singularities) be true for hypersurfaces embedded in Spec(A) where A is
a polynomial ring in m variables over k (or for hypersurfaces embedded in a nonsingular
variety of dimension m).

Suppose v is a valuation whose center is a nonsingular point p on a variety X, and
f € Ox is the germ of a hypersurace on X through p. Embedded local uniformization
holds if there exists a birational morphism X; — X such that X; is nonsingular at the
center p; of v and f is a unit times a monomial in (suitable) regular parameters in Ox, p, .

There are proofs of resolution of singularities (or local uniformization) after taking a
suitable finite extension of K (an alteration). Some of these proofs are by de Jong [13]
(giving resolution of singularities after a finite extension of fields), Knaf and Kuhlmann
[18], Temkin [30] and Gabber [17] (giving local uniformization after a finite extension). A
situation where LU is known in positive characteristic is for Abhyankar valuations, [19]
and [29].

Suppose that L — K is a finite field extension and w = v|L. An important invariant
of this extension of valued fields is the defect, 6(rv/w) (Section 3). If the defect §(v/w) is
zero, then the extension can be understood by knowledge of the quotient group ®,/®,,
and the field extension V, /m, of V,,/m,. The part of the field extension which comes
from nontrivial defect is extremely complicated and not well understood. In characteristic
zero, the defect is always zero, which is one explanation for why local uniformization is
much simpler in characteristic zero.

The fact that defect is an obstruction to local uniformization in positive characteristic
was observed by Kuhlmann in [20], and other papers such as [21]. The role of defect
as an obstruction to local uniformization in characteristic p > 0 is not readily visible in
the proofs of local uniformization or resolution in characteristic p > 0 in dimension < 3
([1], 3], [22], [6], [7], [8], [11]) and it does not appear in the approaches to resolution of
singularities in higher dimension and positive characteristic in [16], [4] and [5].

In this paper, we show (as follows from Theorem 7.1) that if embedded local uni-
formization is true within nonsingular varieties of the dimension of K, and a suitable
linear projection of a hypersurface singularity with function field K which is dominated
by a given valuation v can always be found such that if L is the function field of the linear
projection and w = v|L then the defect 6(v/w) = 0, then local uniformization holds in K.



A valuation v of an algebraic function field K/k is said to be zero dimensional if the
transcendence degree of the residue field of the valuation ring of v over k is zero. This
is equivalent to the statement that for every projective variety X with algebraic function
field k, if g is the center of ¥ on X, then dimOx 4 = dim X (¢ is a closed point of X).
The essential case of local uniformization is for 0-dimensional valuations ([33], [25]). For
simplicity, we will assume that this condition holds. Further, we will assume that we are
in the essential case of a hypersurface singularity in a polynomial ring. We now state some
definitions, within the context which we have just established.

An extension of domains R — S is said to be birational if R and S have the same
quotient field.

Definition 1.2. Embedded local uniformization holds in dimension m (ELU holds in di-
mension m) if the following is true: Suppose that A = k[x1,...,xn] is a polynomial ring
i m variables over an algebraically closed field k and v is a zero dimensional valua-
tion of the quotient field K of A which dominates Ay where m = (x1,...,xy). Then if
0 # f € A, there exists a birational extension A — Ay where A1 is a polynomial ring
Ay = klz1(1),...,2m(1)] such that v dominates (Ai)m, where my = (x1(1),...,zm(1)),
there ezists n < m such that {v(z1(1)),...,v(zn(1))} is a rational basis of ®, ® Q and
f=ai()P 2, () f with by,...,by, €N and f € Ay \ my.

Definition 1.3. Local reduction of multiplicity holds in dimension m (LRM holds in di-
mension m) if the following is true: Suppose that A = k[z1,. .., Tm, Tm+1] i a polynomial
ring in m + 1 variables over an algebraically closed field k, f € A is irreducible and K s
the quotient field of A/(f), with f € m = (x1,...,Zms+1) and r = ord(f(0,...,0,Tm41))
satisfies 1 < r < oo. Suppose that v is a zero dimensional valuation of the quotient
field of A/(f) which dominates (A/(f))m . Then there exists a birational extension
A — Ay where Ay is a polynomial ring Ay = klx1(1),...,Zmy1(1)] such that v domi-
nates (A1/ f1)m, where fi is a strict transform of f in Ay, my = (x1(1),...,2m+1(1)), and
1<ri=o0rd(f1(0,...,0,2m+1(1)) <.

Now ELU in dimension m immediately implies LU in dimension m—1 for hypersurfaces,
which implies LU in dimension m — 1. This is since there exists a separating transcendence
basis x1,...,xm_1 of K over k as k is perfect, and thus there exists a primitive element
T of K over k(x1,...,Tm—1).

Consider the following statements:

(1) LRM in dimension m implies ELU in dimension m + 1.

(2) ELU in dimension m implies LRM in dimension m.

If statements (1) and (2) are true, then we could immediately deduce that ELU in
dimension m implies ELU in dimension m + 1, and we would then know that LU holds in
all dimensions.

All of the above cited proofs of local uniformization and resolution of singularities in
characteristic zero involve proving the two statements (1) and (2). The proofs of resolution
in dimension three and positive characteristic cited above involve tricks to obtain a proof
that ELU in dimension 3 and LRM in dimension 3 in the special case r = p = char k
implies LU in dimension 3. The problem is that we do not know ELU in dimension 4, so
we are unable to proceed to LU in dimension 4.
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Now (1) is not so difficult. In fact, induction on r in LRM in dimension m almost gives
ELU in dimension m + 1. So the really hard thing that needs to be proven (to obtain LU)
is (2). Now there are methods, for instance in [33] and [25], to reduce LRM to the case
of rank 1 valuations, so we see that the really essential problem is to prove (2) for rank 1
valuations (the value group @, of v is order isomorphic to a subgroup of R).

Zariski’s original characteristic zero proof of (2) for rank 1 valuations from [33] is sum-
marized after Theorem 6.1. The key statement that fails in positive characteristic is the
validity of equation (20) in our summary of the characteristic zero proof, as we have that
in characteristic p > 0,

( " >:0ifpdividesr.
r—1

In other words, the problem is the failure of the binomial theorem in positive characteristic,
or put more positively, the fact that the Frobenius map is a homomorphism in positive
characteristic.

We show in this paper, how starting with Zariski’s analysis, a simple proof can be given
of (2) in characteristic p > 0 for a valuation v, if the field extension k(z1,...,zm) = K
where K is the quotient field of k[z1,...,Zm+1]/(f) is without defect with respect to v
and the restriction of v to k(z1,...,%y). The final statement of this is given in Theorem
7.1.

We thank a reviewer for bringing the paper [28] of San Saturnino to our attention, from
which our Theorem 7.1 also follows.

2. ASYMPTOTIC PROPERTIES OF FINITE EXTENSIONS

Suppose that K — K* is a finite field extension, R is a local domain with maximal ideal
mpg and quotient field K and S is a local domain with maximal ideal mg and quotient
field K*. We say that S dominates R if R C S and mg N R = mgr. We say that S lies
over R if S dominates R and S is a localization of the integral closure of R in K*.

An extension of local rings R C R is said to be a birational extension if R; dominates
R, Ry is essentially of finite type over R and R and R; have the same quotient field.

Suppose that R and S are normal local rings such that R is excellent, S lies over R, v*
is a valuation of the quotient field K* of S which dominates S, and v is the restriction of
v* to the quotient field K of R. Suppose that K* is finite separable over K.

We let V,, be the valuation ring of v, with maximal ideal m, and ®, be the value group
of v. We write e(v*/v) = [®,« : ®,] and f(v*/v) = [V /my : V,/m,].

Lemma 2.1. (Lemma 5.1 [10]) Suppose that Sy is a local ring which is a birational
extension of S and is dominated by v*. Then there exists a normal local Ting R’ which is
a birational extension of R and is dominated by v, which has the property that if R” is a
normal local Ting which is a birational extension of R’ and is dominated by v, and if S” is

the normal local ring of K* which lies over R” and is dominated by v*, then S” dominates
So.

If K* is a Galois extension of K with Galois group G(K*/K) and A is a normal local
ring whose quotient field is K and is dominated by v and B is the normal local ring with
quotient field K* which lies over A and is dominated by v*, then the splitting group of B
over A is defined as

G5(BJA) = {0 € G(K*/K) | 0(B) = B}.
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The splitting field of K* over K is the fixed field
(3) KS — (K*)GS(VV*/V,,).
The following lemma follows from Lemma 3.4 [10].

Lemma 2.2. Suppose that K* is Galois over K. Then there exists a birational extension
R’ of R, where R is a normal local ring which is dominated by v, such that if R" is a
normal local ring which is a birational extension of R’ which is dominated by v, then

GS(C///R//) — GS(VV*/VV)

where C" is the normal local ring with quotient field K* which lies over R" and is domi-
nated by v*.

Suppose that A is a subring of V,,. Then the center of v on A is the ideal A N'm,. An
inclusion A — B of domains is said to be a birational extension if A and B have the same
quotient field and B is essentially of finite type over A.

3. DEFECT

In this section we define the defect of an extension of valued fields, and discuss some
basic properties. More details can be found in [35], [14], [20] and [27].

Let K be a field and v be a valuation of K. Let K* be a finite extension of K and v*
be an extension of v to K*. The defect §(v*/v) is the natural number defined on pages
58 and 78 of [35].

If K* is a finite extension of K and v* is the unique extension of v to K*, then we have
Ostrowski’s lemma (Theorem 2, page 236 [27]),

(4) (K2 K] = e(v* /o) f(v" [v)p™t

The definition of the defect §(v*/v) for an arbitrary finite and separable extension K*
of K is obtained by taking a Galois closure L of K* over K, choosing an extension o of
v* to L, and defining (formula (26) [12])

S Jv) = 8(ir/v) — 8(5/v*) > 0.

From multiplicativity of the ramification index, residue degree and degree of field exten-
sions, we have that the formula is well defined. By the formula before Definition 7.1 on
page 36 of [12] and 3,

(5) (%) K] = e(* /v) f(v* [v)p™

Let v® be the restriction of 7 to K® and (v*)® be the restriction of ¥ to (K*)*. Since
e(v/v®) =e(v/v) and f(v/v°®) = f(7/v) (Theorem 23, page 71 [35] and Theorem 22, page
70 [35]), we have that 0(7/v®) = §(v/v), and

o((we)*/v*) = o
(6) =
i
5

1%
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(v")%) — o(v/v?)
V') —6(v/v)

/
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4. PERRON TRANSFORMS

Suppose that K* is a field with a valuation v* and there is a field k£ which is contained
in V,» such that V,«/m,« = k and v* has rank 1.

Suppose that we have a polynomial ring k[z1,..., 2] and an irreducible element f €
klx1,...,zn] such that K* is the quotient field of k[z1,...,zy]/(f), and the center of v*
on klxy,...,zp]/(f) is the maximal ideal (71, ...,T,,) where T; are the residues of x; in
klxi,...,zm]/(f). We can extend v* to a pseudo valuation which dominates k[z1, ..., zp]
by prescribing that for g € k[x1,..., 2],

“(g) = v*(g) if the residue g of ¢ in k[x1,...,zy]/(f) is nonzero,
YT if f divides g in k[x1,...,zy).

Suppose that the natural map k[z1,...,Zm-1] = k[z1,...,2m]/(f) is an inclusion and T,
is nonzero. Further suppose that v*(x1),...,v*(z,) is a rational basis of ®,+ ® Q (so that
n < trdeg, K* =m — 1).

In Section B of [33], Zariski uses the “Algorithm of Perron” to define two types of
Cremona transforms, (7) and (8) below.

We construct a Perron transform

Iz if1<i<n

where a;; € N satisfy Det(a;;) =1 and 0 < v*(z;(1)) < oo for 1 <i <m
We now construct another type of Perron transform. We have that v*(z,,) is rationally

dependent on v*(z1),...,v*(x,). There exists a Perron transform
(LT 5 (1)) (2 (1) + )t if1<i<n
(8) zi = ([Ij=y (1) +19) (@n (1) + )ttt if i =m
x;(1) ifn<i<m

with ¢ € k nonzero, a;; € N and Det(a;;) = 1 such that 0 < v*(z;(1)) < ooforl <i <m—1
and v*(z1(1)),...,v*(x,(1)) is a rational basis of ®,+ ® Q. Further, 0 < v*(x,,(1)). We
have that v*(x,,(1)) < oo, unless x,,(1) is a local equation of the strict transform of f in
Elr(D), .., ()]

In (7) and (8), the a;; are not random, but are constructed by Zariski’s algorithm. For
Perron transforms of type (7) or (8), k[zi(1),...,zm(1)] is the ring of regular functions
of an affine neighborhood of the center of v* on a sequence of blow ups of nonsingular
subvarieties above the affine m-space with regular functions k[x1,...,zy,]. This follows
directly from Zariski’s construction of Perron transforms. The maximal ideal of the center
of v* on klx1(1),..., 2z, (1)] is (z1(1),...,2n(1)). We have an expression

f=z1(1) -z (D) fi
where f1 € k[z1(1),...,2m(1)] is irreducible. The ring k[zi(1),...,zn(1)]/(f1) is the

ring of regular functions of an affine neighborhood of the center of v* on a birational
transformation of the affine variety with regular functions k[z1,. .., zmy]/(f).

dy

Lemma 4.1. Suppose that My = x{" - - - x% and My = 25" - -z with

dl,...,dn,el,...,enZO

and v(My) < v(Ma). Then there exists a Perron transform of type (7) such that M
divides My in k[z1(1),...,xm(1)].
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This lemma is proved in Theorem 2 [33] of Lemma 4.2 [9].
Suppose that we have a Perron transform of type (8). Let A = (a;;)!, an (n+1) x (n+1)

matrix. Suppose that dy,...,dn11,€1,...,€en,41 € N and
(9) y*(xtlil N mi"l'g?“'l) — V*(l'il e x;nx:;;_'.l).
We have that

d1 dn .dn+1
Ty T Ty

= [Tl 5 (%) @ (1) 4 %11 | (T (1) 419) (@ (1) + )t |

= (T (S e ) (1) 4 )50 e

Similarly, we have

dn+1

€1 .. €n €n+1
T T T,
ntl
3

= (o my (FET 050) (1) EE o

By (9), we have that
n+1 n+1

Zaijdi = Zaijei for 1 S] <n.
=1 i=1

Let
n+1 n+1

v = E @i 1€ — g i nt1d;.
=1 i=1

We have that

d1 — €1 0

d2 — €9 0

(10) A : =1 :
dy, — en 0

dn+1 — €nt1 g

By Cramer’s rule,
(11) di —e; = (—1)" " iaDet(Apy 1) for 1 <i<n+1

where A,11; is the submatrix of A obtained by removing the (n + 1)-st row and i-th
column from A.

5. ADMISSIBLE FAMILIES OF VALUATIONS AND DEFECT

Let K be a field and v be a valuation on K. Let K* = K(z) be a finite primitive
extension of K with z ¢ K and v* be an extension of v to K*. Let f(z) € KJz| be
the minimal polynomial of z over K. As explained in [31] and [32] (which extend work
of MacLane in [23] and [24]), we may represent v* by an admissible family of valuations
A = (pua)1er of K[z] whose restriction to K is v, and are successive approximations to v*,
whose final element is a pseudo valuation which gives v* on K* = Klz|/(f). There is a
decomposition (Section 2.1 [31])

A:S(l)U---US(N)

where N > 1 and each S® is a simple admissible family (Definition, page 3471 [31]).
Here I is a totally ordered set, and except for the last element of I, which is a pseudo

valuation, each p; is either an augmented valuation or a limit augmented valuation. In
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the first case, of an augmented valuation (Definition on page 3443 [31]), we have that
wy = [p—1; (o) = vi] where ¢y is a key polynomial (page 3442 [31]), defining y; in terms
of w;—1, and in the second case, of a limit augmented valuation (Definition on page 3466
[31]), we have that p; = [(fa)aca; i(@r) = Y] where ¢; is a limit key polynomial (page
3465 [31]) defining the valuation v; in terms of the continuous family (11q)acA-

Each SU) = (ugj),...,M%);(MS))%AU)) for 1 < 57 < N. We have that deg%@ >
deggpgj_)l if 2 < i < nj and degcp(aj) = degcp%) for all & € AY). Each (,ug))aeA(j) is
a continuous, exhaustive family of iterated augmented valuations (Definition, page 3464
[31]). In particular, AY) does not have a maximum.

The first valuation ,ugl) of the family S() is an augmented valuation of the form ugl) =

[10; ugl) (cpgl)) = 1] where p is the valuation v of K and gogl) is a polynomial of degree 1 in

K|[xz]. For t > 2, the first valuation ,ugt) of 8®) is a limit augmented valuation for the family

(,ug 71))ae A-1). S (N) has a largest element, which is either an augmented valuation, or a

limit augmented valuation p; associated to the polynomial p; = f with value v = co.
For 1 < j < N — 1, we have associated rational numbers S (A) called jumps, and the

total jump of the extension is (page 861 [32])
N
St A) = [ sV (A).
j=2

The jump SU—1(A) is defined (Definition 2.7, page 870 [32]) by

deg o) = ST (A) deg
where gpgj ) is the limit key polynomial defining the valuation ng ) and gag Vs a key

polynomial associated to the continuous family (pgj _1)) acAG-1)-

By Lemma 2.11 [32]

(12) SUD(A) >1for2<j< N

and by Corollary 2.10 [32],

(13) (K™ K] = e(v* /v) f(v" /1) S (A).

Thus if v* is the unique extension of v to K*, then by Ostrowski’s lemma, equation (4),
(14) PP (v Jv) = §*(A).

Proposition 5.1. Suppose that
vVi(z—K)={v'(2—a)|ac K}
does not have a largest element. Then N > 2.

The set v*(z — K) determines the distance of z from K, investigated by Kuhlmann in
[21].
Proof. Since v*(z — K) does not have a largest element, we calculate from Proposition 2.3
and Theorem 2.4 [31] that

s — p®) M
where D) = (1/%1)) and ¢V = (uél))aeA, with 1/%1) = [v; V%l)(gogl)) = ﬂl)] with <p§1) =z
and 1\ = p*
v ' =v*(z) and

A={aevi(z—K)|a>y"1,
8



and for o € A,

o = D (1) = o,

where go&l) = z — h,, for some h, € K such that V*((p&l)) = a. We have that S begins
with the augmented limit valuation

IJ?) — lim v,
acA «

Thus N > 2. O

Lemma 5.2. Suppose that K contains a field k such that k C V,« and Vi« /m,~ = k.
Further suppose that v*(z — K) has a largest element . Then v & ®,.

Proof. Suppose that v € ®,. Let h € K be such that v*(z — h) = . Since v € ®,,
there exists g € K such that v(g) = . Let ¢ be the class of % in Vi« /my~ = k. Then
v*(z — h —cg) > v*(z — h) = v, a contradiction. O

6. AN ALGORITHM FOR REDUCTION OF MULTIPLICITY

Let k be an algebraically closed field, T be a polynomial ring 7' = k[x1,...,xn], f €T
be irreducible and monic in x,, and S = T/(f). Let K* be the quotient field of S. Let
z be the class of x,, in S C K*. Let R = k[x1,...,2ym—1] and K be the quotient field
of R, so that K* is a finite extension of K. Assume that K* is separable over K. Let
r = ord f(0,...,0,2,,). Let v* be a valuation of K* with restriction v to K. Suppose
that v* has rank 1 and V,«/m,+« = k. Suppose that S C V,-.

We can regard v* as a pseudo valuation on 7', where for g € T', v*(g) = oo if f divides
g. Suppose that the center of v* on T is (z1,...,Zm).

The first part of the algorithm of Theorem 6.1 (through equation (19)) is the same as
in [33].

Theorem 6.1. Let assumptions be as above, and suppose that embedded local uniformiza-
tion (Definition 1.2)) is true in dimension m — 1. Suppose that r > 1 and v*(z) & ®,.

Then there exists a birational extension along v*, T — T' = k[z},...,z],], such that
T C Vg= and (2y,...,x,) is the center of 7* on T', and if f' is the strict transform of

finT', so that " = T'/(f’) is a birational extension S — S’ along v*, we have that
ord f'(0,...,0,2},) <r.

Proof. Let n be the rational rank of v*. Since K* is a finite extension of K, we have that
rank v = 1 and rat rank v* = rat rank v = n. By embedded local uniformization in R,
there exists a birational transform R — Ry = k[z1(1),...,2m—1(1)] such that the center
of von Ry is (x1(1),...,2m—1(1)) and v(z1(1)),...,v(x,(1)) is a rational basis of ¢, ® Q.
Let z,,(1) = z,, and T be the polynomial ring 77 = k[z1(1),...,2m,(1)]. We have that
the center of v* on T} is (z1(1),...,zm(1)). Since f is monic in x,,, f is irreducible in 77,
and is monic in x,,(1). Thus S; = T1/(f) is a domain with quotient field K*, so S — S
is a birational extension.

Expand
(15) f=2m(1)+ ae12,m(1) + -+ ag
with a; € Ry for 0 <i <e—1. Let a. = 1. By embedded local uniformization in R, there
exists a birational extension Ry — Ry = k[z1(1),...,zm—_1] along v such that the center

of v on Ry is (21(2),...,2m-1(2)),
V(371(2))’ SRR V(xn(Q))
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is a rational basis of ®, ® Q and if a; # 0, then
= 21(2)10 .. g, (2)4 (g,

with dy(i),...,dn(i) € N and @; ¢ (x1(2 ) xm 1(2)). Let z,(2) = zpy(1) and Tp =
klx1(2),. ,a:m( )]. We have that dj(e) = dn(e) = 0. Let
(

p = min{v*(a;z,,(2)") | 0 <i < e}.
There exist ¢t natural numbers o; with
0<oi <o < <o <r

such that v*(a,, 7, (2)7) = p for 1 < i <t and v*(a;2,,(2)") > p if | # o; for some i with
1 <4 <t. Since v*(f) = oo, we have that

(16) 1<t
We now perform a Perron transform Th — T3 = k[z1(3),...,2m(3)] of type (8) along v*,
(Tl 25 (3)%9) (2 (3) + ¢)®imtt fl1<i<n
£(2) =4 ([T, 25(3)19) (@m(3) + inst if i = m
x;i(3) ifn<i<m.

Let A= (aij)t.
For1<i<rand1<j<n,let

Til = <Z aijdi(l)> + (@nt1,5)!
i=1
and for 1 <[ <r, let
N =" aint1di(l) + (anp1nt)l.
Then
azm(1)! = a ﬁ 2 (3)7 | (2 (3) 4+ )™
j=1

for 0 <1 < e and if a; # 0. We have
Tjos = Tjo1

for 1 <j<nand1l<i<tsince v(z1(3)),...,v(z,(3)) is a rational basis of ®, ® Q. By
Lemma 4.1, after possibly performing a Perron transform of type (7) in z1(3),...,z,(3),

we have an expression
n
_ (T4,
- Hxa(?’) »1 fy
Jj=1

where
t
(17) 1= o, (2m(3) + ) i+ h
=1

with h € (21(3),...,2,(3))T3 is a local equation of the strict transform of f in T3. Let
d = Det(Ant1,n+1)- By (11),

(18) Mo, = Agy)d =0; —oy for 1 <i <t
10



By (16), t > 1 so d # 0. Suppose d > 0. Then
fi = (zm(3)+ c)>‘°1 (Zle G, (Tm(3) + c))‘UFAUl + h)
0;,—01

= (@n(3) + P (ST (@n(3) + )T +h).
Let r1 = ord(f1(0,...,0,2,(3)). We have that

o — O
rlgtTlgr.

Suppose that ;1 = r. Then
(19) or=r,00=0and d=1.

So far, the proof has been as Zariski’s in [33]. The remainder of his proof requires char-
acteristic zero, and is not valid in characteristic p > 0. We provide a different analysis from
here on. After this proof, we give an outline of the conclusion of Zariski’s characteristic
zero proof.

By (10),
dl(O'l) — dl(O't) dl(dl) 0
4 : N IR B
dp(o1) — dn(oy) dn(0o1) 0
o1 — Oy —r ot

where 7 = Ay, — As,. By (18) and since d = 1,

= -

Further, by (11), di(o1) = (—1)"*rDet(Ap+1,) for 1 < i < n. Thus r divides d;(o1) for
1 < ¢ <n. Since

v (@) = Vi (2),) = v (@m(2)") = v(@ ()1 (2)0) = 3 di(on)v((2)),
i=1

we have that v*(x,,) € ®,, giving a contradiction.
If d < 0, we have a similar argument, writing

o, —0¢t

fr=(@mB3) + (O o (xm(3) +¢) T +h).
=1

g

Zariski’s proof of reduction of singularities in characteristic zero in [33] (or Theorem 8.4
[3]), proceeds after (19) as follows. If we have r; = r in the above algorithm, we have that

i%i 0,...,0)(zm(3) + )7 =a,(0,...,0)zn(3)"
=1
in k[x,(3)]. Set z
g(u) = zt:agi((), o 0)u’ =a,.(0,...,0)(u—20)".
=1
The binomial theorem tells Zus (since we are in characteristic zero) that

(20) o1 =r—1
11



so v*(xm(1)) = v*(ar—1). There thus exists w € k = V,» /m,~ such that
v (xm (1) —wapr—1) > v (2 (1)).

We now make a change of variables in 77, replacing 2, (1) with x,, (1) = 2, (1) — wa,—_;.
After a finite number of iterations of the algorithm from (15), we must obtain a reduction
r1 < 1, since otherwise we construct an infinite increasing sequence of values in R; which

is bounded above by v* <%f(l)), which is impossible since R; is Noetherian,

7. REDUCTION OF MULTIPLICITY UNDER A DEFECTLESS PROJECTION

The following Theorem 7.1 is also a consequence of Theorem 6.5 [28].

Theorem 7.1. Let assumptions be as in Section 6 and suppose that embedded local uni-
formization (Definition 1.2) is true in dimension m — 1,

r=ord f(0,...,2my) >1

and the defect 6(v*/v) = 0. Then there exists a birational transform along v*, T —
T = klx),...,x},], such that (2),...,x],) is the center of v* on T', and if f' is the strict

transform of f in T', so that S" = T'/(f') is a birational extension S — S’ along v*, we
have that ord f'(0,...,0,z),) <.

Proof. Let L be a Galois closure of K* over K and © be an extension of v* to L. With
notation as in formula (6), we have that §((v*)*/v®) = §(v*/v) = 0. Further, (v*)® is the
unique extension of v° to (K*)* by Proposition 1.46 [2]. We have that ®,s = ®,,, ®(,-)s =
®,+ by Theorem 23, page 71 [35] and V,s /mys = Vi, /my, =k, Viyeys /meys = Vi /- = k
by Theorem 22, page 70 [35], so by (5) or (4),

[(K7)": K°] = e((v7)*/1°) = e(v" V).
First suppose that (K*)® # K®. Recall that z is the class of x,, in § C K*. Since

(K*)® = K*K*® = K*(2), we have that (v*)*(2— K?) has a largest element y € ®(,«)s = @,
by (12), (14) and Proposition 5.1. Further,

(21) Y ¢ D, =9,

by Lemma 5.2. Let h € K*® be such that (v*)°(z — h) = v. We have that v > v*(z) > 0
and v*(h) > v*(z) > 0.

Let U be the localization of the integral closure of R in K* at the center of v*. There
exists a birational extension U — Uy where Uj is a normal local ring which is dominated
by v* such that h € Uy (just take Uy to be the localization of the integral closure of U[h| at
the center of v*). By Lemma 2.2 and Lemma 2.1 and by embedded local uniformization,

there exists a birational extension R — R; = k[z1(1),...,zm—1(1)] along v such that the
center of v on Ry is my = (z1(1),...,Zm-1(1)) and
(22) G*(Wi/(B1)my) = G*(V5/V2)

where W7 is the localization of the integral closure of R; in L at the center of 7 and h € U;
where Uj is the localization of the integral closure of R; in K® at the center of v*. By
(22) and Theorem 1.47 [2], we have that m;U; is the maximal ideal of U; and the residue
field of Uy is k = R1/my, so Uj is a regular local ring with completion [71 = Rl, where the

completion of R is at the maximal ideal my. Thus h € R;.
12



Now v < v((myRy)?) for some t € Z, since v has rank 1, and thus there exists b’ € Ry
such that h — k' € (m1Ry)!. Thus

V(2= 1) = () ((z = h) + (h = 1)) = " (= = h) = .

We have that + is the largest element of v*(z — K) since v*(z — K) C (v*)*(z — K*). Thus

vi(z = h') =~ &P, by (21).
Let (1) = xp, and T1 = k[x1(1),..., 2, (1)] so that the center of 7 on T is

(x1(1),...,zm(1)).
Now Ri[z] 2 T1/(f), and regarding f as a polynomial in 77, we have that
ord f(0,...,0,z,(1)) =1

Making the change of variable in T} replacing x,,(1) with z,,(1) — A" and z with z — 1/, we
have that v*(z) € ®,. Then the reduction of r in the conclusions of the theorem follows
from Theorem 6.1.

Now suppose that K® = (K*)*. Then z € K®. As in the above case, there exists
a birational transformation R — R; along v such that Ry = k[zi(1),...,zm—1(1)], the
center of v on R; is mp, = (z1(1),...,2m-1(1)) and z € Uy, where U; is the normal local
ring of K® which is dominated by v*, and Uj is a regular local ring with U, = Ry where
the completion of R; is with respect to the maximal ideal m; = (x1(1),...,zm—1(1)) of
Ry. Letting z = z, and writing f(z) = f(z1(1),...,2m-1(1),z) € Up[z], we have a
factorization f(z) = (x — z)fi(z) with fi(z) € Ui[z]. Since K* is separable over K, we
have that f(z) € K is nonzero, and has nonnegative value. Let 7 = v*(f1(2)) > 0. Since
®,« = &, (by Theorem 23, page 71 [35]) and v has rank 1, we may replace z with z — h
and z with z — h for suitable h € Ry so that v*(z) > 7. Then writing

(23) fl(l‘) = ad:L'd—l—ad_lmd_l + - 4ag

with a; € U; and d € N, we have that v*(z%a;) > 7 for i > 0 and v°(ag) = 7. Let
G = G(L/K) be the Galois group of L over K and for 0 <1i < d — 1 such that a; # 0, let
bi = [I,cq 0(ai) € Ry and let ¢ = [[,c0(2) € R1.

By embedded local uniformization in Ry, applied to ¢ ][] b;, there is a birational exten-
sion Ry — Ry along v such that Ry = k[z1(2),...,2m-1(2)], the center of v on Ry is
my = (21(2),...,2m-1(2)) and each b; and ¢ is a monomial in z1(2),...,x,(2) (where
v(x1(2)),...v(zn(2)) is a rational basis of ®, ® Q) times a unit in (R2)m,. Let Us be
the normal local ring of K*® which is dominated by v* and lies over (R2)m,. Then Us is
a regular local ring with Uy = Ry (by Lemma 2.2). In particular, z1(2),...,2zm,_1(2) are
regular parameters in Us and each nonzero

(24) a; = 21(2)20 ..z, (2) D,
is a monomial in x1(1),...,2,(2) times a unit o; in Uy and z = x1(2)" - -- 2,,(2)’" ) is a
monomial in z1(2),...,2,(2) times a unit A in Us.

Let To = k[z1(2), ..., 2m—1(2), 2], a birational extension of T', such that the center of
v*on Ty is (21(2),...,2m-1(2),2m). Now perform the Perron transform 75 — T3 along
v* defined by z;(2) = z;(3) for 1 <i<m —1 and
(25) T = 21(3)" - 2 (3)" (2 (3) + )

where 3 is the residue of A in Vs /my,s = k. Thus

T — 2 = 21(3)" - 2 (3)" (@, (3) — (A = B))
13



in Uz, (3)]. After substituting z = z,, (24) and (25) into (23), we have an expression

fi= 218D 2,8 Dpan(3) + B 4+ 01(3)7O 2 (3 Oy
where each ; is a unit in Us or is zero (and x;(3) = x;(2) for 1 <i <m —1). Since

v(f) =7 < v¥(aia’) = vl (3)1 V-2, (3) 1)
for ¢ > 0, we have that
v(z1(3) O (3)0 ) < p(a (3)1 D gy, (3)n 1))
for 1 < 4. Thus by Lemma 4.1, there exists a Perron transform along v of type (7),
Ry — Ry = k[z1(4),...,xm-1(4)],

such that z1(3)1© ...z, (3)) divides z1(3)*® - .- 2,(3)*»(® in Ry for all i > 0. Now
let Uy be the normal local ring of K*® which lies over (R4)m, and is dominated by v*,
where my = (z1(4),...,2,m-1(4)), so that Uy is a regular local ring with Uy = Ry where
the completion of Ry is with respect to the maximal ideal my of R4 (by Lemma 2.2). We
then have that the strict transform f; of f1 in Uz, (3)] is f1 = eg + e12m(3) + -+ +
eqzm(3)? with e; € Uy for 1 < i and eg a unit in Uy. Letting f be the strict transform
of f(xm) in Ty = Ry[z,(3)], we have that f = (2,,(3) — (A — 8))f1 in Us[z,,,(3)], so that

ord f(0,...,0,2,,(3)) =1, since A — € myUy.
O
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