
1534-4320 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2020.2979033, IEEE
Transactions on Neural Systems and Rehabilitation Engineering

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. , NO. , MARCH 2020 1

Wearer-Prosthesis Interaction for Symmetrical Gait:
A Study Enabled by Reinforcement Learning

Prosthesis Control
Yue Wen, Minhan Li, Jennie Si, Fellow, IEEE, and He(Helen) Huang, Senior Member, IEEE

Abstract—With advances in robotic prostheses, researchers
attempt to improve amputee’s gait performance (e.g., gait sym-
metry) beyond restoring normative knee kinematics/kinetics. Yet,
little is known about how the prosthesis mechanics/control influ-
ence wearer-prosthesis’ gait performance, such as gait symmetry,
stability, etc. This study aimed to investigate the influence of
robotic transfemoral prosthesis mechanics on human wearers’
gait symmetry. The investigation was enabled by our previously
designed reinforcement learning (RL) supplementary control,
which simultaneously tuned 12 control parameters that deter-
mined the prosthesis mechanics throughout a gait cycle. The
RL control design facilitated safe explorations of prosthesis
mechanics with the human in the loop. Subjects were recruited
and walked with a robotic transfemoral prosthesis on a treadmill
while the RL controller tuned the control parameters. Stance time
symmetry, step length symmetry, and bilateral anteroposterior
(AP) impulses were measured. The data analysis showed that
changes in robotic knee mechanics led to movement variations
in both lower limbs and therefore gait temporal-spatial symmetry
measures. Consistent across all the subjects, inter-limb AP
impulse measurements explained gait symmetry: the stance time
symmetry was significantly correlated with the net inter-limb
AP impulse, and the step length symmetry was significantly
correlated with braking and propulsive impulse symmetry. The
results suggest that it is possible to personalize transfemoral
prosthesis control for improved temporal-spatial gait symmetry.
However, adjusting prosthesis mechanics alone was insufficient
to maximize the gait symmetry. Rather, achieving gait symmetry
may require coordination between the wearer’s motor control of
the intact limb and adaptive control of the prosthetic joints. The
results also indicated that the RL-based prosthesis tuning system
was a potential tool for studying wearer-prosthesis interactions.

Index Terms—Wearer-prosthesis interaction, robotic knee
prosthesis, reinforcement learning, gait asymmetry, anteropos-
terior impulse

I. INTRODUCTION

TO restore locomotion for people with transfemoral am-
putations, research efforts in the last decades have been

devoted to the design and control of robotic prostheses [1]–
[10] that mimic biological knee (and ankle) function. These
advanced robotic knee prostheses enable transfemoral am-
putees to negotiate uneven terrains (such as stairs and ramps)
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with normative patterns [9]–[13], reduce asymmetry in muscle
activation [14] or temporal-spatial gait symmetry [15], [16],
and perform non-rhythmic tasks (e.g., backward walking) [16].
However, all these benefits rely on fine-tuned and personalized
control settings [9]–[11], [13]–[16]. Currently, robotic knee
prostheses are either manually tuned by clinicians [1], [17]
or automatically tuned by intelligent controllers [18], [19] in
order to generate normative knee kinematics, which has been
widely used as the goal or evaluation criterion of powered knee
prosthesis control [2], [5]. However, the robotic prosthesis
wearer’s gait performance (e.g., gait symmetry, stability, and
energy expenditure) has not consistently improved [7]–[11].
In order to improve the gait of prosthesis wearers beyond
knee kinematics through prostheses tuning, it is critical to un-
derstand the physical wearer-prosthesis interaction, including
how the mechanics of prostheses influence human wearers’
movement and dynamics in locomotion.

To date, there are only a handful of studies about the
influence of robotic prosthesis control/mechanics on gait per-
formance [20], [21]. Among these, most focus on a robotic
ankle device, studying one control variable such as push-off
timing [20] or push-off power [21] in one gait phase at a time;
and they use metabolic cost as the main performance outcome.
Another study investigated the effect of a control gain on the
kinematics/kinetics symmetry of ankle prostheses [22]. These
studies are inadequate to understand how complex robotic
knee mechanics, which are usually determined by 12 or more
parameters during an entire gait cycle [1], [2], [5], [23], affects
the prosthesis wearer’s gait. Additionally, although metabolic
cost is an important metric for gait evaluation, other gait
metrics, such as symmetry, are equally critical in amputee
clinics. For example, temporal-spatial gait symmetry is one of
the common gait evaluation metrics for lower limb amputees
[24]. It reveals the fundamental timing and position informa-
tion of a person’s gait [25]. Asymmetrical gait is frequently
reported in people with unilateral lower limb amputation [26]–
[29], and is associated with many secondary issues, such
as osteoarthritis of unamputated joints [30] and lower back
pain [31]. Theoretically, reduction of push-off impulse/work
(namely propulsive impulse or work) from one leg leads to
gait temporal-spatial asymmetry [27], [32]. Many experimental
studies on pathological gait have shown evidence to support
this mechanism [32], [33], including cases of amputees walk-
ing with energetically passive prostheses due to inadequate
push-off impulse from prosthetic limb [28], [29]. However,
when walking with robotic prostheses, which are capable of
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providing positive work at prosthetic joints for increased push-
off force, gait asymmetry persists [19]. The open questions
are whether and how the mechanics of the robotic prosthesis
influence the wearer-prosthesis gait performance reflected by
impulses and gait symmetry.

Addressing these open questions is inherently challenging
partly because there lacks a practical method to safely explore
high-dimensional prosthesis control. Usually, robotic knee
prostheses use a finite-state machine (FSM) to adjust the
impedance of prosthetic joints in each gait phase (defined as
the state in FSM) [2], [5], [23], [34]. Therefore, the mechanics
of a robotic knee prosthesis are determined by 12 or more
individual control parameters [1], [2], [23]. In order to study
wearer-prosthesis interactions, a method that can facilitate the
safe and practical exploration of high-dimensional prosthesis
control with the human in the loop is necessary. Manual explo-
ration by a clinician is inefficient and impractical since there
are too many control parameters. Linearly scanning through
the control parameter spaces can be unsafe and inefficient
because we do not know the safe control parameter spaces,
and the combinations of the control parameters are tremendous
and redundant [35].

Reinforcement learning (RL) based prosthesis tuning [18] is
a natural candidate to address the aforementioned challenge.
The RL tuning system was previously designed to personalize
prosthesis control. It adjusted the mechanics of the robotic
knee prosthesis through changing the 12 impedance parame-
ters simultaneously in order to achieve the desired knee move-
ment pattern in walking. It can be readily applied as a practical
and safe method to study the effects of high-dimensional
prosthesis control on the wearer’s gait. First, our RL algorithm
is within a basic actor-critic framework where the actor
produces control actions and the critic provides evaluations
of the control action [36]. Here, we used neural networks to
represent/approximate the control actions and the cost function
which evaluates how effective the actions are. As such, our
design approach is scalable to high-dimensional control inputs
and it could introduce opportunities for exploration: some
actions may result in an increase in the cost value but as learn-
ing progresses, the approximated cost value is minimized to
provide optimal control. This is unlike those search algorithms
[38], [39] that only explore the parameters for improving
gait response monotonically. Our RL approach allows probing
parameters in non-deterministic directions which resulted in
better or worse performance. Second, we have shown that RL
can sample a limited number of parameter combinations to
approximate the value function and the control policy [18],
[40]. Finally, the RL tuner by design ensures a human-like
locomotion pattern and the wearer’s upright walking stability
and safety by maintaining the basic knee kinematic pattern
and allowing variations of knee motion within a range [18].

Empowered by the RL prosthesis control, the goal of this
study is to investigate the influence of changes in the mechan-
ics (the impedance control) of the robotic knee prosthesis on
the inter-limb impulses and gait temporal-spatial symmetry.
We quantified 1) the influence of the robotic prosthesis me-
chanics on ground reaction force/impulse, and gait temporal-
spatial symmetry, and 2) the relationship between the inter-

limb impulses and temporal-spatial gait symmetry. To our best
knowledge, limited studies have been conducted to investigate
the influence of robotic knee prosthesis mechanics on the
human wearer’s gait symmetry. The study will contribute to
important knowledge in wearer-robot interactions and guide
the future design and control of robotic knee prostheses for
symmetrical gait.

II. METHODS

A. Wearer-prosthesis system

1) Experimental knee prosthesis: The robotic knee pros-
thesis used in this study was equipped with a motor, an
angle sensor at the rotating knee joint, and a load cell in the
pylon [23]. The robotic knee prosthesis was controlled by a
commonly-used finite-state machine impedance controller [2],
[34]. The finite-state machine cyclically transitioned through
four finite states corresponding to four gait phases of one
gait cycle: stance flexion, stance extension, swing flexion,
and swing extension. Within each finite state, the prosthetic
knee joint torque τ was regulated by an impedance controller
(Eq. 1), which depends on three impedance parameters (i.e.
equilibrium position θe, stiffness coefficient k, damping coef-
ficient b), and two real-time measurements from the prosthetic
knee joint (angle θ, angular velocity ω).

τm = km(θ − θem) + bmω (1)

where subscript m is the phase index (m = 1, 2, 3, 4).
Therefore, the mechanics of the robotic knee prosthesis were
determined by a total of 12 impedance parameters.

2) Knee kinematics: Typically, the knee joint angle trajec-
tory in one gait cycle has a local maximum during stance
flexion and swing flexion, and a local minimum during stance
extension and swing extension (Fig. 1). Therefore, we repre-
sented the knee kinematics in one gait cycle with four pairs
of peak angle values P and their respective duration values
D: [Pm, Dm], where m = 1, 2, 3, 4. Similarly, we extracted
the same features from normative knee kinematics as target
features, denoted as [P̄m, D̄m].

3) Tuning/exploration process: The impedance parame-
ter tuning process included parameter updates and human-
prosthesis evaluation. For the ease of discussion without
causing any confusion, we drop the phase index m hereon.

At iteration n, the impedance parameters were denoted by

I(n) = I(n− 1) + ∆I(n− 1)

= [k(n), θe(n), b(n)]T ,
(2)

where ∆I(n − 1) denote the adjustments to the impedance
parameters by auto-tuner.

The states of the wearer-prosthesis system were defined as

X(n) = γ � [xT (n)− x̄T , xT (n)− xT (n− 1)]T , (3)

where x are the measured features [P,D], x̄ are the target
features [P̄ , D̄]T , and γ ∈ R4×1 is a vector of scaling factors
to normalize the states to [−1, 1]. � is the Hadamard product,
which is an element-wise multiplication of two vectors with
the same dimension.
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Fig. 1. Framework of the human-in-the-loop automatic impedance parameter tuning by reinforcement learning control (auto-tuner). (A and F) The wearer-
prosthesis system, where the torque τ of the robotic knee prosthesis is regulated by the finite-state machine impedance controller. (B) Evaluation module, the
bridge between the wearer-prosthesis system and RL auto-tuner, which takes in measurements from the robotic prosthesis (joint angle θ, angular velocity ω,
and vGRF Fz L) and generates the RL state Xn. (C) Generate RL reinforcement signal rn from the wearer-prosthesis system according to [18]. (D) RL
auto-tuner, which consists of 4 blocks, implemented with direct heuristic dynamic programming (dHDP) [36], [37], corresponding to the prosthesis controllers
in four gait phases. (E) Update the impedance parameters to get In with the auto-tuner outputs Un and reinforcement signal rn. The subscript n represents
the iteration index.

B. Reinforcement learning based auto-tuner

We applied an RL-based auto-tuner to explore the
impedance parameter space of a robotic knee prosthesis con-
trol while ensuring the safety of the wearer-prosthesis system.
The auto-tuner was implemented using the direct heuristic
dynamic programming (dHDP) (Fig. 1), as used in [18], [40].
The auto-tuner adjusted the three impedance parameters in
each phase iteratively to minimize accumulated future error
based on the two features of the corresponding gait phase.
Each auto-tuner block was implemented using direct heuristic
dynamic programming (dHDP) [36], [37], which consisted of
an action neural network (ANN) and a critic neural network
(CNN). With our previously demonstrated successes of ap-
plying dHDP to solving optimal learning control problems
such as the stabilization, tracking, and reconfiguration control
of Apache helicopters [41]–[43], and oscillation damping in
a large power system [44], dHDP is readily applicable to
impedance parameter tuning to enable safe walking of a human
wearing a robotic prosthesis knee device.

The ANN represented the impedance parameter control pol-
icy which mapped the states of the wearer-prosthesis system
(X) to action (U ) which was the adjustment to the impedance
parameter of the robotic knee prosthesis. Specifically,

U(n) = ϕ(Wa2(n)ϕ(Wa1(n)X(n))), (4)

where Wa1 ∈ R7×4 and Wa2 ∈ R3×7 were the ANN weight
matrices, and ϕ(·) was the activation function. The adjust-
ments of impedance parameters were calculated according to

∆I(n) = β � U(n), (5)

where β ∈ R3×1 represents scaling factors to assign physical
magnitudes to the actions.

The CNN approximated the discounted total cost-to-go as
an evaluation function of the performance of the human-
prosthesis system and the decisions from the ANN.

Ĵ(n) = Wc2(n)ϕ(Wc1(n)[XT (n), UT (n)]T ), (6)

where Wc1 ∈ R7×7 and Wc2 ∈ R1×7 are the weight matrices,
and X and U are the state input and action output of the ANN.

In this study, the primary reinforcement signal r, or the
stage cost, of the wearer-prosthesis system was the same as
those in [18] where safety bounds were taken into account in
order to ensure wearer-prosthesis system upright stability. The
total cost-to-go was then defined as

J(n) = r(n+ 1) + αr(n+ 2) + ...

= r(n+ 1) + αJ(n+ 1),
(7)

where α is a discount rate (0 < α < 1).
The CNN weights were updated so that the following

Bellman equation was optimized, the solution of which was
an optimal estimate of the total cost-to-go.

Ec(n) =
1

2
(αĴ(n)− (Ĵ(n− 1)− r(n)))

2
. (8)

The ANN weights were updated in order for the total cost-
to-go to reach an ultimate goal level, i.e.,

Ea(n) =
1

2
(Ĵ(n)− J̄)2

=
1

2
(Ĵ(n))2,

(9)

where J̄ was the desired ultimate objective and was 0 cor-
responding to “success”. A detailed weight update algorithm
can be found in [40].

For each tuning iteration, the RL auto-tuner followed four
steps: 1) collected state inputs from the wearer-prosthesis
system as the sample mean of the previous 7 gait cycles, 2)
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updated CNN and ANN based on the reinforcement signal,
3) updated the impedance parameters according to Eq. 4,
and Eq. 5, and 4) allowed the subject to walk with the new
impedance parameters for 7 gait cycles. After each tuning
iteration, the RL auto-tuner updated any combination of the
12 total impedance parameters across the 4 blocks.

C. Experimental protocol

With IRB approval and signed consent, six subjects (3
able-bodied subjects and 3 transfemoral amputees; Table I)
walked on an instrumented treadmill with an experimental
knee prosthesis while reinforcement learning tuned the control
parameters (Fig. 1). Amputee subjects wore their daily socket
and were fitted with the experimental powered knee prosthesis
by a prosthetist. Able-bodied subjects wore a L-shape adapter
to walk with the powered knee prosthesis. All subjects were
trained to walk with the powered knee prosthesis on a treadmill
at a speed of 0.6 m/s for more than six sessions, until
they felt comfortable and confident enough to walk with the
experimental prosthesis without holding the handrail.

We conducted this study with each subject over four exper-
imental sessions, each session beginning with a different and
naı̈ve RL auto-tuner (i.e., randomly initialized knowledge or
network weights) and a different initial impedance parameter
set for the robotic knee prosthesis. The initial impedance
parameter sets were randomly selected from a database of
prosthesis control parameter sets, applied in our previous
study and validated to meet three criteria: 1) the subject was
subjectively able to walk without severe difficulty as visually
observed by the researcher (e.g., tight grip on the handrails)
or verbally expressed by the subject, 2) the root-mean-square
error of the prosthetic knee joint kinematics with respect to the
normative knee kinematics was greater than 4 degrees (i.e., the
initial impedance parameter set did not generate the normative
knee kinematics), and 3) the features of the prosthetic knee
joint kinematics were within the allowed safety ranges [18].

Once we selected an appropriate initial impedance param-
eter set, we used the RL auto-tuner to tune the impedance
parameters over multiple 3-minute trials with 3-minute breaks
between each trial to prevent fatigue from confounding our
results. At the start of each trial, the subject walked for 30
seconds to acclimate to the testing environment. We then
activated the RL auto-tuner, which evaluated the prosthetic
knee kinematics performance and updated the impedance
parameters every 7 strides for 2.5 minutes. The 7-stride per
iteration setting was to attenuate the effects of stride-to-stride
variance in walking. We did not observe adaptation with
moderate parameter changes in the pilot study. We terminated
the tuning procedure if either of 2 criteria was met: 1) the
tuning iteration numbers reached 70 iterations (in order to
prevent subject fatigue); 2) the feature errors of prosthetic
knee kinematics remained in the tolerance range for 3 of the
previous 5 tuning iterations.

Prosthetic knee joint angle was recorded through the angle
sensor on the prosthetic joint and the ground reaction forces
were recorded through the instrumented treadmill (1000 Hz;
Bertec Corp., Columbus, OH, USA) during the experiments.

Spatial gait performance metrics used data from two markers
on each calcaneus, which were recorded by an 8-camera
motion caption system (100 Hz; VICON, Oxford, UK).

D. Data processing and analysis

1) Preprocessing: All kinematics and ground reaction force
data were segmented and aligned for each tuning iteration,
which included 7 gait cycles during which the prosthetic knee
was controlled by the same impedance parameters. We filtered
the ground reaction force data and knee kinematics using a
low-pass filter with a cutoff frequency of 20Hz. Then we
identified the gait events (heel strike and toe off) using vertical
ground reaction force with an threshold of 30N . With the
gait events, we calculated the features of knee kinematics,
stance time symmetry index, and step length symmetry index.
Additionally, we normalized the ground reaction forces with
each subject’s body weight and calculated the ground reaction
force impulses.

2) Spatial-temporal parameters: Stance time of each leg
was calculated with the heel strike and toe off events of the
same leg. The step length of each leg was measured by the
anteroposterior distance between two calcaneus markers at the
corresponding heel strike.

For both variables, a symmetry index (SI) was calculated to
quantify asymmetries between the prosthetic leg and the intact
leg:

SIV =
Vi − Vp

1/2(Vi + Vp)
(10)

where Vi is the stance time or step length measurement from
the intact limb, and Vp is the respective measurement from the
prosthetic limb. SI was negative when a measurement from the
prosthetic side was greater than that from the intact side.

3) Impulse: To capture the dynamic interaction between the
wearer-prosthesis system and the environment, we calculated
the braking and propulsive impulses for each leg based on the
method from [45]. The braking and propulsive impulses of
each leg were defined as the time integral of the positive and
negative range of the anteroposterior ground reaction of each
leg.

The method for computing the impulses based on that of
[45] was implemented as follows. To account for variations
in the ground reaction force by the prosthesis wearers, we
divided the stance phase into three time bins: 1) initial double
limb support (IDS), 2) single limb stance (SS), 3) terminal
double limb support (TDS). Accordingly, we computed the
impulses generated during each respective time period in
a gait cycle. The ground reaction force during single limb
stance was separated into two portions: integration of the
negative portion as braking impulse and integration of the
positive portion as propulsive impulse. The braking impulse
was calculated by adding the integration of ground reaction
force during initial double limb support and that of the negative
portion of ground reaction force during single limb stance. The
propulsive impulse was calculated by adding the integration
of ground reaction force during terminal double limb support
and that of the positive portion of ground reaction force during
single limb stance. Specifically,
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TABLE I
SUBJECT INFORMATION

Subject Gender Body
weigh Height Age Since

amputation
Amputated
side

Prescribed
device

Cause of
amputation

TF1 Male 66 kg 1.83 m 21 years 6 years Right Ottobock Genium Cancer
TF2 Male 91 kg 1.80 m 58 years 46 years Left Ottobock C-Leg Cancer
TF3 Male 95 kg 1.88 m 30 years 30 years Left Freedom Innovations Plié 2 Congenital
AB 1-3 Male 68 ± 5 kg 1.78 ± 0.01 m 33 ± 8 years N/A N/A N/A N/A

Fig. 2. Range of impedance parameters for each subject explored by reinforcement learning.

IsB =

∫
IDS

Fsydt+

∫
SS−

Fsydt,

IsP =

∫
TDS

Fsydt+

∫
SS+

Fsydt,

(11)

where s is the side indicator of each leg, where p indicates
prosthetic side and i indicates intact side. B denotes braking
impulse, P denotes propulsive impulse, and Fsy is the antero-
posterior ground reaction force from corresponding limb.

We calculated the braking symmetry index (SI) and propul-
sion symmetry index (SI) between the prosthetic side and
the intact side, which was respectively equivalent to the
contribution of impulse from each leg.

SIB =
IiB − IpB

1/2(IiB + IpB)

SIP =
IiP − IpP

1/2(IiP + IpP )

(12)

In addition, the net inter-limb impulse was calculated by
adding the braking impulse of the prosthetic limb (leading
limb) and the propulsive impulse of the intact limb (trailing
limb): IiP + IpB .

E. Data exclusion criteria

We excluded data in the following cases: 1) a subject
tripped during walking, i.e., the vertical ground reaction force
during the swing phase was greater than 80N , 2) the feature
extraction procedure failed to detect stance flexion and/or
stance extension, 3) the number of gait cycles was less than
4, i.e., insufficient gait cycles for the auto-tuner to compute
an new impedance parameter update, and 4) the swing flexion
angle was less than 45 degrees. The above criteria ensured
fairness and completeness of the data to ensure the RL-
based auto-tuner functioned under reasonable conditions for
the control of the wearer-prosthesis system.

Fig. 3. Stance time SI and step length SI changed significantly during the
control parameter exploration for all six subjects. The mean and standard
deviation of the iterations with maximum and minimum values are compared.
A paired t-test revealled significant difference for all measurements (p <
0.01). a) and b) The temporal-spatial gait symmetry indexes covered a wide
range relative to variances without control change (3% for stance time SI, 5%
for step length SI). No subject could generate perfect stance time symmetry,
but some could generate perfect step length symmetry.

F. Statistical analysis

A one-way ANOVA was conducted to compare the effect
of the different control/mechanics of the robotic knee pros-
thesis on the prosthetic knee kinematics, temporal-spatial gait
symmetry, and AP impulses, with significance set at p < 0.01.
Pearson correlation coefficient analysis was used to evaluate
the relationship between the inter-limb impulse measurements
(propulsion SI, braking SI, and net inter-limb impulse) and
the gait symmetry measurements (i.e., stance time SI, and step
length SI), with significance set at p < 0.01. All statistics were
conducted using MATLAB (MathWorks, Natick, MA).

III. RESULTS

A. Changes in prosthetic knee kinematics, temporal-spatial
symmetry indices, and bilateral AP impulses caused by
changes in prosthesis control/mechanics

The RL-based prosthesis tuning procedure resulted in test-
ing an average of 155 (±10) different combinations of the
12-dimensional control parameters (Fig. 2), which determined
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the mechanics of the robotic knee prosthesis, on each subject.
RL induced changes in prosthesis control parameters led to
changes in prosthesis knee kinematics, bilateral AP impulses,
and temporal-spatial gait symmetry.

1) The control parameters (mechanics) of the robotic knee
prosthesis influenced the prosthetic knee kinematics signifi-
cantly (p < 0.01). They elicited wide ranges of responses
in peak stance flexion angle, peak stance extension angle,
peak swing flexion angle, and peak swing extension angle.
Averaged across human subjects, the respective ranges were
12.5 degrees, 15.6 degrees, 11.3 degrees and 14.8 degrees.
The average standard deviation of the peak angles when using
the same control parameters was 1.2 degrees across all tested
control settings and subjects. The angle variations caused by
parameter changes were significantly larger than those due to
the intrinsic variation of human walking with fixed prosthesis
control (p < 0.01).

2) A change in the robotic knee prosthesis control elicited a
change in the braking impulse and propulsive impulse on both
lower limbs. The braking impulse and propulsive impulse of
the prosthetic limb changed in the range of 1.95 %BW · s
and 1.73 %BW · s, respectively. The braking impulse and
propulsive impulse of the intact limb changed in the range of
2.42 %BW · s and 1.85 %BW · s, respectively. The average
standard deviation of the impulse measurements was 0.35
%BW ·s across all control settings and subjects. Note that the
positive impulse was aligned with the walking direction. There
was a significant effect of prosthetic knee control/mechanics
on impulses at the 0.01 level for all subjects.

3) Similarly, changes in the prosthesis control led to sig-
nificantly greater variations in stance time symmetry and step
length symmetry than the variations of amputees walking with
a fixed prosthesis control. Measuring within each set of control
parameter, the average standard deviations of stance time SI
and step length SI across human subjects and different control
parameters were 3.3% and 5.7%, respectively. Compared to
these values, changes of the prosthesis control led to a much
greater variation of gait symmetry in stance time and step
length (Fig. 3). An analysis of variance showed that the effects
of prosthetic knee control/mechanics on stance time SI and
step length SI were statistically significant (p < 0.01).

B. Correlation between inter-limb impulse measurements and
temporal-spatial symmetry indices

As shown in Table II, the propulsion SI and braking
SI were correlated with stance time SI, but they were not
consistent across subjects. Instead, the net inter-limb impulse
was consistently and significantly correlated with the stance
time SI across all subjects (p < 0.01) and yielded the
highest correlation coefficient (R = 0.7± 0.08). Fig. 4 shows
amputees’ data as an example. The stance time SI decreased,
indicating improved stance time symmetry, with decreased net
inter-limb impulse.

Both propulsion SI and braking SI were consistently and
significantly correlated with the step length SI for all subjects
(Table II). This observation was consistent with previous
studies on stroke patients [27], [46]. The net inter-limb impulse

was not consistently correlated with step length SI across
subjects. The positive step length SI indicated a longer intact
side step length, measured by the anteroposterior distance
between two calcaneus markers at intact side heel strike.

Upon further examination of the kinetic coordination be-
tween prosthetic limb and intact limb, we found that the
cause of gait temporal asymmetry varies across subjects. Using
the results derived from TF2 and TF3 as examples, TF2
generated symmetrical braking impulse, but showed asym-
metrical propulsion with weak propulsive impulse from the
prosthetic limb (Fig. 5(a)). TF3, on the other hand, gener-
ated symmetrical propulsion impulse, but showed asymmet-
rical braking impulse with lower braking impulse from the
prosthetic limb (Fig. 5(b)). Both cases resulted in temporal
asymmetry. In addition, the change of impulse SI resulted
from opposite impulse changes from both limbs, i.e., increased
braking/propulsive impulse from prosthetic side accompanied
by decreased braking/propulsive impulse from intact side
(Fig. 5(a) and Fig. 5(b)).

C. Prosthetic knee kinematics with best stance time SI

We also checked the knee kinematics of subjects at their
best stance time SI (Fig. 6). Although the kinematics varied
across subjects, it demonstrated that the stance flexion from
the robotic knee prosthesis at the loading response seems to
be necessary for wearer-prosthesis system to exhibit the best
stance time symmetry observed in this study.

IV. CONCLUSION AND DISCUSSION

Optimizing wearable robots to maximize each individual
wearer’s biomechanical performance is an emerging and im-
portant research topic in the field. Our research contributes
to the important knowledge of wearer-prosthesis interaction.
Although optimizing exoskeleton control has been reported to
minimize the metabolic cost of able-bodied wearers in walk-
ing [38], [39], optimizing prosthesis mechanics to maximize
human gait performance has not been demonstrated because
it is unclear whether and how prosthesis mechanics influences
the human’s overall gait, balance, and energy expenditure.
To fill this knowledge gap, in this study we investigated the
effects of complex robotic knee prosthesis control, consisting
of 12 control parameters, on gait temporal-spatial SI and inter-
limb AP impulses. Enabled by a novel application of the
RL-based prosthesis tuning, which allows for exploration of
different control parameter combinations with the human in
the loop, we found that the wearer’s gait temporal-spatial SI
was sensitive to the mechanics of prosthetic knee. Adjusting
prosthesis mechanics alone elicited changes in stance time and
step length on both limbs; the bilateral changes were generally
in an opposite direction, which led to significant variations in
the symmetry indices (Fig. 5). The observed modification of
motion in the human’s intact limb was likely caused passively
or involuntarily since we neither instructed the subjects to alter
their gait voluntarily nor informed them when the prosthesis
control was adjusted. Appropriate prosthesis control could
yield step length symmetry in some subjects, though none
of the prosthesis controls tested on our subjects led to stance
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TABLE II
CORRELATION ANALYSIS BETWEEN IMPULSE MEASUREMENTS AND GAIT SYMMETRY

R Stance Time SI (%) Step length SI (%)
TF1 TF2 TF3 AB1 AB2 AB3 TF1 TF2 TF3 AB1 AB2 AB3

Propulsion SI (%) 0.03 0.07 0.33 0.79 0.45 0.74 -0.65 -0.56 -0.48 -0.60 -0.82 -0.52
Braking SI(%) 0.44 0.56 0.38 0.16 -0.03 -0.10 0.82 0.77 0.67 0.47 0.79 0.56
Net inter-limb impulse (I) -0.76 -0.75 -0.58 -0.79 -0.59 -0.75 -0.51 -0.18 -0.60 0.03 -0.32 0.00
Net inter-limb impulse (P) 0.79 0.71 0.62 0.79 0.62 0.65 0.52 0.17 0.54 -0.06 0.26 0.05

Bold indicating p < 0.01.

Fig. 4. Correlations between impulse measurements and gait symmetry from TF subjects. (a)-(c) Correlation between net inter-limb impulse (normalized
to body weight) and the stance time SI. (d)-(f) Correlation between braking impulse SI and step length SI. The net inter-limb impulse was the net impulse
(summation of propulsive impulse of the intact limb and braking impulse of the prosthetic limb) during the transition from intact limb to prosthetic limb. A
red line is the least squares fit to the data.

time symmetry (Fig. 3). These results indicated that optimizing
prosthesis control to improve temporal-spatial symmetry is
possible, although adjusting prosthesis control alone seems
to be limited to maximize normative gait temporal-spatial
symmetry. A previous study demonstrated that human active
adaptation could also improve gait symmetry even with fixed
control/mechanics of the robotic knee prosthesis [47]. Thus,
it might be necessary to combine rehabilitation training and
prosthesis optimization to further improve the gait symmetry
in the wearer-prosthesis system.

Directly using the 12 prosthesis control parameters to
explain gait temporal-spatial symmetry is inadequate as the
symmetry measurements also involve motor behavior of the
intact limb, which varies greatly across humans. Instead, we
examined propulsive and braking AP impulses of both the
prosthetic limb and the intact limb because AP impulses in
walking are the results of interactions between both lower
limbs and the environment. Furthermore, these impulses have
previously explained gait characteristics, such as temporal-
spatial symmetry [27], [32] and walking speed [48]. In ad-
dition, the propulsive and braking impulses on the prosthetic

Fig. 5. Propulsive impulse and braking impulse of two TF subjects as
examples.
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Fig. 6. The knee kinematics of all subjects at their best stance time SI. Each
of knee kinematics as averaged across a few control parameter conditions
whose stance time SI lies in the top 5 among all (∼500) control parameter
conditions.

side are directly related to the prosthesis control. Our study
showed that the net inter-limb impulse, which reflects coor-
dinated propulsive and breaking impulses between the intact
and prosthetic limbs during limb transition, were associated
with temporal asymmetry (Table. II). Balancing the leading
limb braking impulse and trailing limb propulsion improved
temporal symmetry. This observation was consistently ob-
served across all subjects in this study and can be explained
biomechanically. During transition from the mid-stance of one
limb to the mid-stance of the other, the net inter-limb impulse
is proportional to the change of forward velocity of center
of mass. If the net AP inter-limb impulse is balanced to
zero, the center of mass velocities of each limb are the same
(i.e., symmetrical) at mid-stance. Otherwise, unbalanced net
AP inter-limb impulse accelerates or decelerates the center
of mass, causing one side of the limbs to produce shorter or
longer stance time on that limb [27]. Interestingly, almost all
previous studies have mainly attributed the gait asymmetry
in lower limb amputees to an insufficient propulsive force or
impulse from the prosthetic limb [27], while our study showed
that insufficient braking in the prosthesis limb could also elicit
temporal gait asymmetry. For example, TF2 had insufficient
propulsive impulse while TF3 had insufficient braking im-
pulse; both generated asymmetrical stance time in walking.
Moreover, our study showed that the SI of the propulsive
or braking impulse was associated with the step length SI,
which is consistent with previous findings on pathologic gait
[32]. Therefore, it is critical to understand the cause of gait
asymmetry for each individual in order to produce optimal
prosthesis control and/or guide rehabilitation to improve gait
symmetry.

In addition to our major findings on the relationship between
symmetry and impulses, our results (Fig. 6) may also shed
light on a long-standing question in the field of prostheses:
is stance flexion necessary for a prosthetic knee? In able-
bodied humans, the knee joint generates small flexion during
early stance (i.e., loading response period), which serves two
functions: shock absorption and hip height maintenance [49].
However, many previous studies on powered knee prostheses

ignored stance flexion [50], [51] due to the wearer’s pref-
erence. This was because the wearers might have already
adapted to their previous daily passive devices, which usually
locked the knee joint to a full extension for weight support
during stance. In addition, some wearers reported a sense of
instability when the prosthesis knee flexed during stance [52].
In our study, training of the subjects helped them to become
confident and comfortable with the prosthesis knee stance
flexion in walking. More importantly, we noted knee stance
flexion during early stance across all subjects from those tests
that rendered the best stance time symmetry (Fig. 6). Since
shock absorption after foot contact is pertinent to breaking
impulse, the observation further confirmed the importance
of prosthesis knee control in early stance. Generating knee
stance flexion with eccentric torque in early stance might be
necessary for prosthesis control to improve gait symmetry.
However, there is no clear relationship between the prosthesis
features and the gait symmetry index, and the target knee
kinematics in this study cannot guarantee the best stance time
symmetry for each participant. Hence, personalizing the target
knee features may be necessary in order to minimize gait
asymmetry.

Our research method based on reinforcement learning
may transform the study of physical wearer-robot interac-
tion. Advanced wearable machines, such as neuroprostheses,
robotic prostheses, and exoskeletons, typically involve high-
dimensional control parameters that need to be tuned for
personalized gait assistance. In order to study the influence
of wearable machines on the human’s physical performance,
two methods are usually adopted: computer simulation and
empirical study. Computer simulation allows for a system-
atic investigation of wearable machine controls with high-
dimensionality, but it often ignores or simplifies the human
neural reactions and pathological conditions, leading to con-
clusions that do not match experimental observations [53]. The
empirical approach allows study of the wearer-robot system
directly, but it is extremely difficult, if possible, to investigate
more than 3 parameters at a time. To address this challenge,
we introduced a novel application of a powerful RL-based
prosthesis tuning system. The RL-based prosthetic control
enabled the human wearers to walk safely via safety con-
straints, and generated variant control parameter settings that
yielded significant changes in the wearer-prosthesis system,
including ground reaction force/impulse and temporal-spatial
symmetry. With the flexible neural network structure, this RL-
based control framework can be extended to exoskeletons and
other complex, wearable assistive devices to potentially benefit
patient populations other than lower limb amputees. More
work is needed to validate the generalizability of this frame-
work with different controllers for different wearable devices
and the effectiveness of this framework through comparison
with other exploration methods.

Finally, the nature of our research has a limiting effect
on the number of subjects. We included three able-bodied
subjects in this study because able-bodied subjects could reveal
the control performance of prosthesis and had been recruited
in wearer-prosthesis studies [20], [34]. Despite the inter-
human variation, all subjects yielded consistent and statistic
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significant correlation between the net inter-limb impulse and
the stance time SI, as well as between propulsion/braking
impulse SI and step length SI. Another limitation is that the
evaluation criteria were designed for immediately changed
performance measurements (e.g., knee kinematics). To study
slow responding measurements (e.g., metabolic cost), this
method will need more time to get reliable and representative
performance. Additionally, this study limited its scope to gait
performance measurements by temporal-spatial symmetry, and
to treadmill walking test condition. It would be interesting
as future work to 1) use RL-based control to understand the
influence of prosthesis mechanics on other gait metrics (e.g.,
stability, intact joint loading, or human cognitive responses)
in a realistic context (e.g., level-ground walking with varied
speed), and 2) utilize the propulsion and braking impulse
observations as feedback to personalize the control parameters
so as to improve gait symmetry.
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