MIXED MULTIPLICITIES OF DIVISORIAL FILTRATIONS

STEVEN DALE CUTKOSKY

ABSTRACT. Suppose that R is an excellent local domain with maximal ideal mpg. The
theory of multiplicities and mixed multiplicities of m r-primary ideals extends to (possibly
non Noetherian) filtrations of R by mr-primary ideals, and many of the classical theorems
for mg-primary ideals continue to hold for filtrations. The celebrated theorems involving
inequalities continue to hold for filtrations, but the good conclusions that hold in the
case of equality for mpr-primary ideals do not hold for filtrations.

In this article, we consider multiplicities and mixed multiplicities of R by mg-primary
divisorial filtrations. We show that some important theorems on equalities of multiplic-
ities and mixed multiplicities of mpg-primary ideals, that are not true in general for
filtrations, are true for divisorial filtrations. We prove that a theorem of Rees showing
that if there is an inclusion of mg-primary ideals I C I’ with the same multiplicity
then I and I’ have the same integral closure also holds for divisorial filtrations. This
theorem does not hold for arbitrary filtrations. The classical Minkowski inequalities for
mp-primary ideals I1 and I hold quite generally for filtrations. If R has dimension two
and there is equality in the Minkowski inequalities, then Teissier and Rees and Sharp
have shown that there are powers I{ and I3 that have the same integral closure. This
theorem does not hold for arbitrary filtrations. The Teissier-Rees-Sharp theorem has
been extended by Katz to mg-primary ideals in arbitrary dimension. We show that the
Teissier-Rees-Sharp theorem does hold for divisorial filtrations in an excellent domain of
dimension two.

We also show that the mixed multiplicities of divisorial filtrations are anti-positive
intersection products on a suitable normal scheme X birationally dominating R, when
R is an algebraic local domain (essentially of finite type over a field).

1. INTRODUCTION

The study of mixed multiplicities of mp-primary ideals in 2 Noetherian local ring R
1ith ma; 'anl ideal mp was initiated by Bhattacharya%ﬁ, Rees [34] and Teissier and Risler
%2] Inﬁ%ﬁf] the notion of mixed multiplicities is extended to arbi%%sry, not necessarily
Noetherian, filtrations of R by mpg-primary ideals. It is shown in [I4] that many basic
theorems for mixed multiplicities of mg-primary ideals are true for filtrations.

The development of t%subject of mixed viplicities and its connection to Teissier’s
work on equisingularity can be found 1nr?§0]. A survey of the theory of mixed mul-
tiplicities of i qals can be found in ﬁ%ﬂ, Chapter 17], including discussion of the results
of the pap of Rees and [40] of Swanson, and t%‘ztheory of Minkowski inequa%y;jes
of Teissier , Rees and Sharp [38] and Katz [22]. Later, Katz and Verma [23],

gnerahzed mlxed multlphcmes to ideals that are not all mp-primary. Trung and Verma
%5] computed mixed multiplicities of monomial ideals from mixed volumes of suitable
polytopes.
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TheoremI20

We will be concerned with multiplicities and mixed multiplicities of (not necessarily
Noetherian) filtrations, which are defined as follows.

Definition 1.1. A filtration T = {1, }nen of a ring R is a descending chain
}%:::]oj) L DI, D---

of ideals such that I;1; C Iy for all i,j5 € N. A filtration T = {I,} of a local ring R
by mp-primary ideals is a filtration T = {I,}nen of R such that I, is mpg-primary for
n > 1. A filtration T = {I,}nen of a ring R is said to be Noetherian if @,,~qIn is a
finitely generated R-algebra. -

The following theorem is the key result needed to define the multiplicity of a filtration
of R by mp-primary ideals. Let /(M) denote the length of an R-module M.

2 3
Theorem 1.2. (Ff‘g, Theorem 1.1] and Fr'[l, Theorem 4.2]) Suppose that R is a Noetherian
local ring of dimension d, and N(R) is the nilradical of the mp-adic completion R of R.
Then the limit

(1) lim

exists for any filtration T = {I,,} of R by mpg-primary ideals, if and only if dim N(}A%) <d.

The problem of existeyce of such limits (% has been considered by Ein, Lazarsfeld and
Smith [I8] and Mustata P?’JZ] When the ring R is a domain and is essentially o 1,;fimte type
over an algebraically closed field k£ with R/mp = k, Lazarsfeld and Mustatg, [28] showed
that the limit exists for all filtrations of R by mp-pri ary_ 1(} BLlS Cutkosky [T1] proved it
in the complete generality stated above in Theorem E 2

As can be seen from this theorem, one must impose the condition that the dimension
of the nilradical of the completion R of R is less than the dimension of R. The nilradical
N(R) of a d-dimensional ring R is

N(R) ={z € R | 2" = 0 for some positive integer n}.

We have that dim N(R) = d if and only if there exists a minimal prime P of R such that
dim R/P = d and Rp is not reduced. In particular, the condition dim N(R) < d holds if

R is analytically unramified; that is, R is reduced. We define the multiplicity of R with
respect to the filtration Z = {I,,} to be

The multiplicity of a ring with respect to a non Noetherian ﬁ}%%ation can be an irrational
number. A simple example on a regular local ring is ven in ].

Mixed multiplicities of filtrations are defined in %] Let M be a finitely generated
R—module Where R is a d- dimensional Noetherian local ring with dim N(R) < d.
(1) = gL (1) = {I(r)n} be filtrations of R by mpg-primary ideals. In [14,
Theorem 6 1 and h Theorem 6.6], it is shown that the function

eRU”/I(Umm < L), M)

(2) P(nla s 7n7“) = 77’}23100 md
is equal to a homogeneous polynomial G(n1,...,n,) of total degree d with real coefficients

for all nq,...,n, € N.



We define the mixed multiplicities of M from the coefficients of G, generalizing the
definition of mixed multiplicities for mp-primary ideals. Specifically, we write

1
(3) G(n,...,ny) = Z m@%(z(l)[dl]a---7I(7“)[dr]§M)nih "'ngr'

d1++d7‘:d

We say that ep(Z(1)[], ... Z(r)l4]; M) is the mixed multiplicity of M of type (d1, .. .,d,)
with respect to the filtrations Z(1),...,Z(r). Here we are using the notation

(4) er(T(LM),... . Z(r)); 1)

to be consistent with the classical notation for mixed multiplicities of M with respect to

mp-primary ideals from [42]. The mixed multiplicity of M of type (dq, . o d gwith respect

to mpg-primary ideals Iy,...,I., denoted by eR([{dl], .. ,LLdT];M) (142], 141, Definition

17.4.3)) is equal to the mixed multiplicity eg(Z(1)1%1]), ... Z(r)l4); M), where the Noether-

ian I-adic filtrations Z(1),...,Z(r) are defined by Z(1) = {I! }ien, ..., Z(r) = {I'}ien.
We have that

(5) er(T; M) = er(T; M)
if r =1, and Z = {I;} is a filtration of R by mp-primary ideals. We have that

er(Z; M) = lim d!w.
m—»00 m

1The Itiplicities and mixed multiplicities of mg-primary ideals are always positive
(%FZ] or [41, Corollary 17.4.7]). The multiplicities and mixed multiplicities of filtrations are
al nonnegative, as is clear for multiplicities, and is established for mixed multiplicities
in [[I5, Proposition 1.3]. However, they can be zero. If R is analytically irreducible, then
all mixed multiplicities are positive if apd only if the multiplicities er(Z(j); R) are positive
for 1 < 7 <r. This is established in [[I5, Theorem 1.4].

Suppose that R is a d-dimensional excellent local domain, with quotient field K. A
valuation v of K is called an mp-valuation if v dominates R (R C V,, and m, N R = mpg
where V), is the valuation ring of v with maximal ideal m, ) and trdegp/,,, Vi /m, = d—1.

Suppose that I is an ideal in R. Let X be the normalization of the blowup of I,
with projective birational morphism ¢ : X — Spec(R). Let E, ..., E; be the irreducible
components of ¢~ 1(V(I)) (which necessarily have dimension d — 1). The Rees valuations
of I are the discrete valuations v; for 1 <14 <t with valuation rings V,, = Ox g,. If R is
normal, then X is equal to the blowup of the integral closure I of an appropriate power
I% of I.

Every Rees valuation v that dominates R is an m r-valuation and every mp-valuation
is a Rees valuation of an mp-primary ideal by [37, Statement (G)].

Associated to an mpg-valuation v are valuation ideals

(6) W) ={f € R|v(f) = n}

for n € N. In general, the filtration Z(v) = {I(v),} is not Noetherian. In a two-

dimensional normal local ring R, the condition that the filtration of valuation ideals of

R is No%erian for all mp yaluations dominating R is the condition (N) of Muhly and

Sakuma [31]. It is proven in %] that a complete normal local ring of dimension two satisfies

condition (N) if and only if its divisor class group is a torsion group. An example is given

in%%kof an mp-valuation of a 3-dimensional regular local ring R that is not Noetherian.
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Definition 1.3. Suppose that R is an excellent local domain. We say that a filtration T
of R by mp-primary ideals is a divisorial filtration if there exists a projective birational
morphism ¢ : X — Spec(R) such that X is the normalization of the blowup of an mp-
primary ideal and there exists a nonzero effective Cartier divisor D on X with exceptional
support for ¢ such that T = {I(mD)}en where

(7) I(mD) = Ir(mD) = I'(X, Ox(—mD)) N R.
If R is normal, then I(mD) = I'(X,Ox(—mD)). If D = >'_, a;E; where the a; € N
and the F; are prime exceptional divisors of ¢, with associated mpg-valuations v;, then
I(mD) = I(Vl)tnm N---N I(Vt)atm'

Suppose that Z(1),...,Z(r) are divisorial filtrations of an excellent local domain R. We
then have associated mixed multiplicities

(8) er(T(D, . T(r)d); R)
for dq,...,d, e Nwithdy +---+d, = d. caX20
If RE%% %glytically irreducible, then all mixed multiplicities (%) are positive by Propo-

sition 2.T.

We show in%%f and (%%%of Section Eg%lsiat if R has dimensjon two, then the mixed
multiplicities (B) are positive rational numbers. In Example 6 of [16], an example is given
of an mp-valuation v dominating a normal excellent local domain of dimen iop, fhree
such that er(Z(v); R) is an irrational number. Thus the mixed multiplicities (TB%EH be

irrational if d > 3. ss S
The following theorem in Fﬁ?[] generalizes H.[Il, Proposition 11.2.1] for mp-primary ideals
to filtrations of R by mpg-primary ideals.

SS
Theorem 1.4. (Fﬁ?, Theorem 6.9]) Suppose that R is a Noetherian d-dimensional local
ring such that
dimN(R) < d
and M s a finitely generated R-module. Suppose thatZ' = {I!} and T = {I,} are filtrations
of R by mp-primary ideals. Suppose that ' C I (I] C I; for all i) and the ring D50 In

is integral over @, I, Then
er(Z; M) = er(Z'; M).

We give a proof of Theorem E%i%lflh% Appendix.

Rees has shown ini%&l] that if R is a formally equidimensional Noetherian local ring
and I C I' are mp-primary ideals such that er(I;R) = er(I’; R), then @, ~(I')" is
integral over ®n20 I (I a (é I’ have the same integral closu %) An exposition of this
converse to the above cited [41, Proposition 11.2.1] is given in [[41, Proposition 11.3.1], in
the section entitled “Rees’s Theorem”. Rees’s theorem is not true in general or filtrations
of mp-primary ideals (a simple example in & regnlar local ring is given in ]) but it is
true for divigorial filtrations. In Theorem B.5, we show that Rees’s theorem (the converse
of Theorem }LZH is true for divisorial filtrations of an excellent local domain. TheorenGRT

An analogue gsthe Rees theorem for projective varieties is proven in Theorem %27

We prove in %7{, Theorem 6.3] that the Minkowski inequalities hold for filtrations of
mpg-primary ideals.

SS
Theorem 1.5. (Minkowski Inequalities for ﬁltmtions}fﬂ, Theorem 6.3]) Suppose that

A

R is a Noetherian d-dimensional local ring with dim N(R) < d, M is a finitely generated
4



R-module and Z(1) = {I(1);} and Z(2) = {I(2);} are filtrations of R by mpg-primary
ideals. Then
1) er(ZMWM, 2210 M)? < ep(Z(1)FH], Z(2)1 1 M)er(Z(1)F 1, Z(2)l+1; M)
for1<i<d-1.
2) For0<i<d,

er(Z(,Z(2)1; M)er(Z(1)!, 2(2)%; M) < er(Z(1); M)er(Z(2); M),

3) For 0 <i<d, eg(Z(1)l4=1, 7(2)[; M)? < er(T(1); M)4"er(Z(2); M)* and
1) er(ZI@)): M)} < er(Z(1): M)} + en(Z(2): M),
where T(1)I(2) = {I(1);1(2);}.

The Minkgwgski inequalities were formulated and proven for mp-primary ideals by
Teissie ],%3] and proven in full generality, for Noetherian local rings, by Rees and
Sharp [38]. The fourth inequality 4) was proven for filtrations of R by mpg- rimary ideals
in a regular local ring with algebraically closed residue field by Mustata ([32, Corollary
1.9]) and more recently by Kaveh and Khovanskii ( Corollary 7.14]). The 1nequallty
4) was proven with our assumption that dim N(R) < d in [T1, The em equal

2) - 4) can be deduced directly from inequality 1), as explained in and

@.l»—‘

Corollary 17,7.3]
Teissierll%g (for Cohen-Macaulay norm atwo—dimensional complex analytic R), Rees
and Sharp [38] (in dimension 2) and Katz [22] (in complete generality) have proven that
if R is a d-dimensional formally equidimensional Noetherian local ring and I(1), I(2) are
mpg-primary ideals such that the Minkowski equality

=

er((I(1)I(2)); R) = er(I(1); R)d + er(I(2); R)

holds, then there exist positive integers r and s such that the integral closures I(1)" and
I(2)® of the ideals I(1)" and S(2)° are equal, which is equivalent to the statement that
the R-algebras €P,,5 I(1)™ and D, (2)*" have the same integral closure.
The Teissier-Rees-Sharp-Katz theore g%not true for filtrations, even in a regular local
ring, as is showp in a simple example 1:%7{]

In Theorem we show that the Teissier-Rees-Sharp theorem is true for divisorial
filtrations of 1 ggﬁellen‘c two-dimensional local domain.
In Section B, we mterpret the mixed multiplicities of divisorial filtrations Z(1),...,Z(r)

as mtersectlon multiplicities. We assume that R is an algebraic local domain; that is,
a domain that is essentially of finite type over an arbitrary field k& (a localization of a
finitely generated k-algebra), and that ¢ : X — Spec(H) is the normalization of the
blowup of an mpg-primary ideal. We define in Section ? anfi-positive intersection products
(F1, ..., Fy) of anti-effective Cartier divisors Fi, ..., F; on X with exceptional support for
p, generalizine the positive intersection product of Cartier divisors defined o  projective
varieties in %]%over an algebraically closed field of characteristic zero and in l%ﬂ)] over an
arbitrary field.

Suppose that D(1),...,D(r) are Cartier divisors on X with exceptional support. Let
Z(j) = {I(nD(j))} for 1 < i < r.De divisorial filtrations of R, where the mp-primary
ideals I(nD(j) Egggrglne&clned by Zl%%*

In Theorem K.3, we show that, when R is normal, the mixed multiplicities

er((DI),.. Z(r) ) R) = —((=D(1))™, ..., (=D(r)™)
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are the negatives of the corresponding anti-positive intersection multiplicities for all
di,...,d. €N

L. X Theoreml0Q
such that d; + - -- 4+ d, = d. A related formula is given in Theorem %.ZI 1T K 1s not normal.
When R has dimension 2, the anti-positive intersection product

(=D()™, (~D(2))") = (AT - AF?)

is the ordinary intersection product of the anti-nef parts A1, As of the respective Zariski

decompositio eg§ D7 and Ds.
In Section g, we develop the theory of mixed multiplicities of divisorial filtrations in

a two-dimensional excell t c)lggn%(lldomain using the theory of Zariski decomp sition, We
give a proof of Theorem §5 in di ension 2 using this method in Proposition %.8 and use
this method to prove Propositionr%g}ﬁthe Minkowski equality.

We use the met (?'1d of volymes of convex bodies associated to appropriate semigroups
introduced in %‘B],}%ZB] and [25].

We will denote the nonnegative integers by N and the positive integers by Z,. We will
denote the set of nonnegative rational numbers by Q> and the positive rational numbers
by Q4. We will denote the set of nonnegative real numbers by R>g. For a real number z,
[x] will denote the smallest integer that is > x and |z | will denote the largest integer that
is <z. If Fy,..., E,. are prime divisors on a normal scheme X and aq,...,a, € R, then
|> > a;E;] denotes the integral divisor »_|a;|E; and [a;E;] denotes the integral divisor
>_lail E;.

The maximal ideal of a local ring R will be denoted by mgr. The quotient field of a
domain R will be denoted by QF(R). We will denote the length of an R-module M by

Cr(M).

2. FIRST PROPERTIES OF MIXED MULTIPLICITIES OF DIVISORIAL FILTRATIONS

In this section we prove some basic facts about mixed multiplicities of valuation ideals
an divisorial filtrations that will be useful.

Proposition 2.1. Suppose that R is an excellent, analytically irreducible d-dimensional
local domain and vy, ..., are mg-valuations of R.
1) Suppose that ay,...,a; € N are not all zero. Let I, = I(v1)pa; N+ N I(V4)na, and
Z=A{I,}. Then
E}gCZ;}%) > 0.
2) Suppose that r € Z4 and a;(j) € N for 1 <i <t and 1 < j <r and for each j,

not all a;(j) are zero. Let 1(j)n = I(V1)na,(j) N+ N L (Vi)nay(j) for 1 < j <7 and
Z(j) =A{1(j)n} for 1< j <r. Then

er(Z) M, Z(m R) >0
foralldy,...,d e Nwithdy +---+d, =d.

Proof. We first prove 1). By statement (G) of %7], for each mp-valuation v; of R, there

exists an mp-primary ideal J; such that v; is a Rees valuation of J;. Now letting J =

Ji1Jo - - Jy, we have that vy, . . ., vy are amongst the Rees valuations of J. We can if necessary

increase the set v1,...,1 and set a; = 0 for each new ¢ to assume that v4,...,v; are the

entirety of the Rees valuations for J. By Rees’s Izumi theorem [37], the topologies of the
6



eqR6

v; are linea%equivalent. Let 7; be the reduced order. By the Rees valuation theorem

(recalled in [37)),
- 25

for x € R, so the topology induced by 7 is linearly equivalent to the to glogy induced
by the v;. We have that 7y is linearly equivalent to the J-topology by [36] since R is
analytically unramified.

Thus there exists o € Z such that

(9) I(Vi)an CJ" Cmlg for alln € Z..

Let a = max{ay,...,a;}. Then o, C MY for all n. So Lr(R/mY,) < lr(R/Ihaa) for all
n and so

1
— ;R) > 0.
We now prove 2). Statement 1) implies that er(Z(j); R) > 0 for 1 < j < r. Thus all
mixed multiplicities are positive by [I5, Theorem 1.4].

er(Z; R) >

g

2.1. Divisors and sections on blowups. Suppose that R is an excellent d-dimensional
local domain. Let S be the normalization of R, which is a finitely generated R-module,
and let my,...,m; be the maximal ideals of S. Let ¢ : X — Spec(R) be a birational
projective morphism such that X is the normalization of the blowup of an mpg-primary
ideal. Since X is normal, ¢ factors through Spec(S). Let ¢; : X; — Spec(Sy,,) be the
induced projective morphisms where Xj = X Xgp ¢ Spec(Sm,). For 1 <i <t let {E;;}
be the irreducible exceptional divisors in ¢; ! (m;).

Suppose that D is an effective exceptional Weil divisor on X. Write D = ZZ j a; ;B j
with a;; € N. Define D; = Z]. a; jE; j for 1 <14 <t. The reflexive coherent sheaf Ox(—D)
of Ox-modules is defined by Ox(—D) = i.Oy(—D|U) where U is the open subset of
regular points of X and i : U — X is the inclusion. We have that dim(X \ U) < d =
since X is normal. The basic properties of this sheaf are developed for instance in %2
Section 13.2]. We have that S C Ox,, for all p € X, since Ox ) is normal. Now I'(X, Ox)
is a domain with the same quotient field as R, and is a finitely generated R-module since
¢ is proper. Thus I'( X, Ox) = I'(X,0x(0)) = S.

Let
(10) J(D;) = T'(X;, Ox,(—Dy)),
I(D) = J(D)NR,
I(D;) = J(D;)) N R

We have that

(11) S/J(D EB Sy /T (X, Ox, (— @sz/J

=1

and so
t

(12)  €r(S/J(D ZfR Smi/J(Di) =) _[S/mi : R/mp]es,, (Sm,/ T (Dy)).
i=1
We have that [S/m; : R/ mp] < oo for all i since S is a finitely generated R-module.

Let D(1),..., D(r) be effective Weil divisors on X with exceptional support in ¢! (mg).
7



Lemma 2.2. Forni,...,n, € N,
lim lr(R/I(nn1D(1))---I(nn,D(r))) ~ lim ER(S/J(nnlD(l))--~J(nnTD(r))).

n—00 nd n—00 nd

Proof. Fix nq,...,n, € N. Let C be the conductor of R (which is a nonzero ideal in both
R and S), and choose 0 # x € C. We then have short exact sequences of S-modules

0— A, = S/J(nn1D(1))--- J(nn,.D(r)) N S/J(nni1D(1))---J(nn.D(r)) — C,, — 0
where A,, and C,, are the respective kernels and cokernels of multiplication of
S/J(nnyD(1)) - J(nn,D(r))
by x". We have that
Cn = S/(z"S+J(nn1D(1))--- J(nn,D(r))) = (S/x"S)/(J(nn1D(1)) - - - J(nn,D(r))(S/z"S)).

Thus lim,,— o 655172") = 0 since dim S/z"S = d — 1. Now
t
S/J(nniD(1))--- J(nn,D(r)) = @ Smj/J(nnlD(l)j) < J(nn.D(r);)).

J=1
TheoremI20
By Theorem 1.2, The Timit

ls(S/J(nm D(1)) - - J (nn, D(r))) _ z’*: - €Sy, (Smy [T (nna D(1);) - - - J(nny. D(r)))

lim
nd

n—o0 nd

j=1
exists and so lim,, s %7’3") = 0. Let F,, and B,, be the respective kernels and cokernels
of the homomorphisms of R-modules

S/J(nn1D(1))--- J(nn,D(r)) 7 R/I(nniD(1))---I(nn,D(r))).
Then we have short exact sequences of R-modules
0— F, = S/J(nn1D(1)) - J(nn,.D(r)) N R/I(nn1D(1))---I(nn,.D(r))) = B, — 0.
We have natural surjections of R-modules
(R/x"R)/I(nn1D(1))---I(nn,.D(r))(R/2"R) = R/(z" R+1(nn1D(1)) --- I(nn,D(r))) — By.
Now dimR/2"R =d — 1 so
i (R(B/2"R)/I(nni D(L)) - - I(nn, D(r)) (R/2"R))

n—o00 nd - O’
and so
lr(B
tim “(5n) d”) =0.
n—o00 n
Since the support of the S-module A,, is contained in the set of maximal ideals {m, ..., m;},

we have that A, = @§:1(An)mj and lg(A,) = Z§:1 ls,, ((An)m;). Thus

lr(An) = 354[S/mj: R/mp)ls,, ((An)m,)
< MKS(AH)
where p = max;{[S/m; : R/mpg]}. We then have that

(r(A, ls(A,
Lt soc Rr(zd )Sﬂnlgn;o Sfld )

=0.
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There are natural inclusions F,, C A, for all n, so

KR(Fn)

et O
and thus
I KR(R/I(nnlD(l)Bl'--I(nnTD(r))) ~ lim ER(S/J(an(l))d J(nn,D(r)))

3. REES’S THEOREM FOR DIVISORIAL FILTRATIONS

In this section, suppose that R is a d-dimensional normal excellent local ring. Let
¢ : X — Spec(R) be a birational projective morphism that is the blowup of an mpg-

primary ideal such that X is normal.

Let Ey, ..., E, be the prime exceptional divisors of ¢ (which all contract to mp), and let
pi be the discrete valuation with valuation ring Ox g, for 1 <i < r. Let D be a nonzero

effective Cartier divisor on X with exceptional support. For 1 <¢ < r and m € N, let

I(pi)m = {f € R | pi(f) = m},
as defined in (%%nd define
TE,m(D) = min{p;(f) | f € I(X,Ox(—mD))}.

Let 7y, = 7g, m(D). Then since Tpp; < N7y i, we have that

Tmn,i Tm,i Tni
13 < .
(13 Tt Ty

Now define

vE,; (D) = inf T
mom

Expand D = Y";_, a;E; with a; € N. We have that

['(X,0x(—mD)) ={f € R| pi(f) > ma; for 1 <i <r}.

Thus 7g, m (D) > ma; for all m € N, and so
(14) vE,; (D) > a; for all 1.

Lemma 3.1. We have that
[(X,0x(—mD)) = T(X,Ox(— Zm'yE

for all m € N.
Proof. We have that

(X, 0x(— mey,; ) € (X, Ox(—mD))

eqAR12
by (

Suppose that f € I'(X,Ox(—mD)). Then p;(f) > 75, m(D) > myg, (D) for all i, so

that p;(f) > [myg,(D)] for all i since p;(f) € N.
9
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We now define a valuation that we will use to compute volumes of Cartier divisors D,
:ﬁl&) ljzema&ivvill allow us to extract some extra information that we need to prove Theorem
b.zl below.

Let ¢ be any fixed index with 1 <4 < r. Suppose that p € F; is a closed point that is
nonsingular on X and F; and that is not contained in F; for j # 7. Let

(15) X=YyOV1=E D> ---DY;={p}

be a flag; that is, the Y} are subvarieties of X of dimension d— j such that there is a regular
system of parameters by, ...,bq in Ox ) such that by = --- = b; = 0 are local equations of
Yjfor 1 <j<d.

The flag determines a valuation v on the quotient field K of R as follows. We have a
sequence of natural surjections of regular local rings

(16) Oxp = Oyyp % Oy1p = Oypp/(b1) 3. Ovy_1p = Ovyop/(ba-1).-
Define a rank-d discrete valuation v on K (an Abhyankar valuation) by prescribing for
S € OX’p,

v(s) = (ordy, (s),ordy, (s1), - - ,ordy,(54-1)) € (Z%)1ex

where

_ s _ s1 _ Sd—2
s1=01 ordy, (s) 182 = 02 ordy,(s1) | 7777 »8d—1 = Od—1 ordy, ,(sa-2)
by by by 1"

and ordy, ,, (s;) is the highest power of b; 1 that divides s; in Oy, ,. We have that

-]

where w is the rank-(d — 1) Abhyankar valuation on the function field k(E;) of E; deter-
mined by the flag

Ei=Y1D---DYy={p}
on the projective k-variety F;, where k = R/mp.

Consider the graded linear series L,, := I'(E;, Ox (—nE;) ®0 Op,) on E;. Let g = by, so
that g = 0 is a local equation of E; in Ox p. Then for n € N, we have natural commutative
diagrams

I'X,O0x(—nkE;)) — TI'(E;,Ox(—nE;) ® Og,)

{ {
Ox(-nE;), — Ox(—nE)p®oy, Or.p
= OX,pgn = OEM? ®0X,p OX,Pgn

where we denote the rightmost vertical arrow by s — &,(s) ® g™ and the bottom horizontal
arrow is
f

g

where [gin} is the class of gin in O, p.

Let = be the semigroup defined for our fixed index ¢ by

E={(n,w(en(s))) |neNand s € I'(E;, Ox(—nE;) ®0o, OFf,)} C Z8,
10



and let A(E) be the intersection of the cloged convex cone generated by Z in R? with
{1} x R¥=L. By the proof of Theorem 8.1 [9] or the proof of [28, Theorem A], A(Z) is
compact and convex. Let

Z, = {(n,w(en(s))) | s € D(E;, Ox(—nE;) @0y OF,)}

be the elements of = at level n. Suppose that § is a positive integer. Let I's(D) be the
semigroup

Ts(D) = {(v(f),n) | f € I(nD) and p;(f) < né} € N*L.

Let As(D) be the intersection of the closed convex cone generated by I's(D) in R with
RY x {1}.
We have that the elements of I's(D) at level m are

Ls(D)m = {(w(f),m) | f € I(mD) and p;(f) < md} C (Uo<j<msZ;) x {m}.
For t € Ry, let tA(E) = {to | 0 € A(E)}. For (o,m) € I'5(D), we have that

o Jo— _
— € Ug<s A=) CcU tA(S).
7 € Unejeom - A(E) € ot AE)

The continuous map [0,d] x A(Z) — R? defined by (t,z) + tx has image Uselo,o]tA(Z)
which is compact since A(Z) is. The closed convex set As(D) is thys, compact since As(D)
is contained in this image, and so I's([)) satisfies condition (5) of [9, Theorem 3.2].

Now we verify that condition (6) of %, Theorem 3.2] is satisfied; that is, I'5(D) generates
7%+ as a group. Let G(I's(D)) be the subgroup of Z4*! generated by I's(D). We have that
the value group of v is Z¢, and e; = v(b;) for 1 < j < d is the natural basis of Z?. Write

bj = g—j with f;,9; € R for 1 < j < d. There exists 0 # h € I(D). Thus hf;, hg; € I(D).
There exists ¢ € Z4 such that hf;, hg; & I(p;)e for 1 < j < d. Possibly increasing § in
the definition of I's(D), we then have (v(hf;),1), (v(hg;),1) € T's(D) for 1 < j < d. Thus
(ej,0) = (v(hf;) — v(hg;),0) € G(I's(D)) for 1 < j < d. Since (v(hf;),1) € I's(D), we
then have that (0,1) € G(I's(D)). Thus we have that

. #F(S(D)n .
it - Vel
2 M
by fg, Theorem 3.2] or %28, oposition 2.1].
By Rees’s Izumi theorem [37], we have that there exists A € Z4 such that if f € R and

wi(f) > nA, then p;(f) >n for 1 <j <r. Thus I(p;i)nr C I(pj)n for all n € N, so that
I(,U/i)na)\ C I(ﬂi)na1 n---N I(,U/r)nar = P(X, OX(_nD))

where a = max{ai,...,a,}.
Take § to be greater than or equal to a) in the definition of I's(D). Let

p=[0xp/mp: R/mpg).

Consider the Newton-Okounkov bodies As(Q)) and As(D) constructed from the semigroups
I's(0) and I's(D) with this 6. Then, as in [T1, Theorem 5.6],

(a7) i EEIODY) ot as(0)) — Vol(as(D)).

In fact, we have that

n—0o00 nd
11




TheoremAR1

Lemma 3.2. Suppose that Ay and Ao are compact, convex subsets of R, Ay C Ay and
VOI(Al) = VOI(AQ) > 0. Then A1 = As.

Proof. Suppose that Ay # Ay. Then there exists p € Ay \ A;. Since A; is closed in R,
there exists an epsilon ball B.(p) centered at p in R? such that B.(p) N A; = (). Now A,
has positive volume, so there exist wy,...,wg € Ay such that v1 = w; —p,...,v3 = wg—p
is a real basis of R, Since Ay is convex, there exists ¢ > 0 such that letting W be the
hypercube

W={p+av1+-+agug|0<a; <6 for 1 <i<d},
we have that W C Ay N B.(p). But then
Vol(Az) — Vol(A1) > Vol(W) > 0.
a contradiction. Thus A; = As. O
Lemma 3.3. For 0 > 0, we have that Vol(As(D)) > 0.

PropP
Proof. By ( bi in the proof of Proposition bro there exists o € Zy such that I(i;)an C mp
for all n € Z; (since an excellent normal local ring is analytically ireducible). Further,
there exists ¢ € Zy such that m§, C I(D), so that m}y C I(nD) for all n. Choosing
§ > 2ac so that I(p;)sn C m%™ for all n, we have that
Vol(Ag(D)) = i lim,, e fR(nD)/I(ui)an)

(s e

> 0.

O

Theorem 3.4. Let Dy, Dy be effective Cartier divisors on X with exceptional support,
such that D1 < Dy and er(Z1, R) = er(Z2, R), where Ty = {I(mD1)} and Ty = {I(mD3)}.
Then

NX,0x(—mD;)) =T(X,O0x(—mD>))

for all m € N.

Proof. Write Dy = ik and Dy = >oi 1 biE; with a;,b; > 0 for all i. For each ¢ with
1 <4 <7 choose a flag (I5) with Y7 = E; and p a closed point such that p is nonsingular
on X and E; and p ¢ E; for j # i. Let my : R — R be the projection onto the first
factor.

By the definition of vg, (D2) and since (for ¢ sufficiently large) g, (D2) is in the closure
of the compact set 71 (As(D2)),

T (78 (D2)) N As(D2) # 0
and
7 (a) N As(Dy) = 0 if a < vg,(D2).

We h ‘e/%mﬂﬂﬁﬁ Dy < Dy implies As(D1) C As(D2). We have that Vol Ag D1 ) >0 by
Lemma 3 3 (taking d sufficiently large). Since we are assuming that eg(Z;; R %GL
by (II 7 ;, we have that Vol(D;) = Vol(Dz), and so A(D;) = A(D2) by Lemma aking
0 sufficiently large). Thus

vE;(D1) = vE;(D2)
12



TheoremX1

egX1

eqX2*

eqX3

eqX4

for 1 <i <r. We obtain that
' '
= VB,(D2)E; = =) g, (D1)E;.
i=1 i=1

LemmaAR1
By Lemma kfmml, afor all m > 0,

L(X,0x(—mD1)) = T(X,0x(=[>myE,(D1)Ei]))
= I'(X,O0x(=[XmvE,(D2)E;]))
— T(X,O0x(—mDy)).

O

S
We now show that 'Rees’s th.eorem'fo.r mp-primary ideals, %34], H{%}éoligg?é)s?tior} 11.3.1],
generalizes to divisorial filtrations, giving a converse to Theorem [I.4 for divisorial filtra-
tions.

Theorem 3.5. Suppose that R is a d-dimensional excellent local domain. Let ¢ : X —
Spec(R) be the normalization of the blowup of an mg-primary ideal. Suppose that D(1) and
D(2) are effective Cartier divisors on X with exceptional support such that D(1) < D(2)
and er(Z(1); R) = er(Z(2); R), where Z(1),Z(2) are the filtrations by mpg-primary ideals
Z(i) ={I(nD(i))} and Z(2) = {I(nD(2))}. Then

I(mD(1)) = I(mD(2))
for all m € N.

Not
Proof. We use the notation introduced in Subsection boT Let D(1);, D(2); be the divisors
induced by D(1) and D(2) on X;. Since D(1) < D(2), we have that

(19) D(1); < D(2); for all i.
Thus
(20) es,,, ({J(mD(1)i)}; Sm,) < es,,, ({J(mD(2):); Sm,) for all i.

LemmaR1 15
Now Lemma b??mmana (el 5) imply
t

(21)  er(Z(j); R) = er({I(mD(j)}: R) = ) _[S/m; : R/mples,,, ({J(mD(5):)}: Sm,)

i=1
for j =1,2. oaX 2% o
Now the assumption eg(Z(1); R) = er(Z(2); R), (bﬁ%nd (b%%imply
(22) €S, {J(mD(1)i)}; Sm,) = es,, ({J(mD(2)i)}; Sm;)

for all i. Now (F:F%g% (E%%and Theorem %%wﬁfll—g\l%
J(mD(1);) = I'(Xi, Ox,(—mD(1);)) = T'(Xi, Ox,(—mD(2))) = J(mD(2):)
for all m € N and all ¢. Thus
J(mD(1)) = (X, Ox(~mD(1))) = (X, Ox(~mD(2))) = J(mD(2))
for all m € N by (E%% Thus
I(mD(1)) = J(mD(1))NR = J(mD(2)) N R = I(mD2)

for all m € N. O
13



4. A GEOMETRIC REES THEOREM
Let X be a d-dimensional normal projective variety over a field k. Suppose that D is
an effective Cartier divisor on X. The volume of D is
dimg I'( X, O D
Vol(D) = lim S TX, Ox(mD))

m—00 md/d!

Let E be a codimension one prime divisor on X. We now define 75, and ve(D) anal-
ogously to our definitions at the beginning of Section g Here we use slightly different
language, since we (following tradition) work with divisors of sections. For m € N, define

Tm,g(D) = min{ordgA | A € |mDI|}.

Then since Ty,n, g < N7, E, we have that

Tmn,E . (™Tm,E Tn,E
(23) mn < min{ m n }
Now define
ve(D) = inf ~2E

Expand D = Y7, a;F; with E; prime divisors and a; € Z;..
Lemma 4.1. We have that

D(X, Ox(mD)) = L(X,0x(mD=) [myg,(D)]E;)) = [(X, Ox(lmD—) myg,(D)Ei]))
i=1 i=1

for allm e N.
Proof. Suppose that A € /mD|. Then A=, 7g, m(D)E; > 0 so that A=) myg, E; > 0.
Thus A — >0, [myg,(D)]E; > 0. O

M
e now recall the method of %2"8] to compute volumes of Cartier divisors, as extended
in [9] to arbitrary fields. Suppose that p € X is a nonsingular closed point and

(24) X=YoY1D - DY;={p}

is a flag; that is, the Y; are subvarieties of X of dimension d — i such that there is a regular
system of parameters b1, ...,bq in Ox p such that by = --- = b; = 0 are local equations of
Y, in X for 1 <i<d.

The flag determines a valuation v on the function field k(X) of X as follows. We have
a sequence of natural surjections of regular local rings

O0d—1

(25) Oxp = Ovyp = Oy1,p = Oyyp/ (b1) 3.5 Ovy 10 = Ovysp/(ba-1).
Define a rank d discrete valuation v on k(X) by prescribing for s € Ox ),
v(s) = (ordy, (s), ordy,(s1),- -+ ,ordy,(sq4—1)) € (Zd)lex

where

81 = _5 So = o S = __Sd=2
1= ordy, (s) | 772 7 72 ordy, (s1) | 70 74T 9d—1 ordy, ,(sa—2)
by by by 1"

Let g = 0 be a local equation of D at p. For m € N, define

®,,p : T(X,0x(mD)) = {f € k(X) | (f) + mD >0} — 2¢
14
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TheoremGRT

by ®,,p(f) = v(fg™). The Newton-Okounkov body A(D) of D is the closure of the set
1
Unen—@mp(I'(X, Ox (mD)))
M
%Rd. This is a compact and convex set by %28, Lemma 1.10] or the proof of Theorem 8.1

: 2 3
Modifying the proof of Ffvg, Theorem 8.1] and of %1, Lemma 5.4] we see that

. dim I'(X, Ox(mD))
o) Vo) = iy SECCT

= d[Ox p/myp : E]Vol(A(D)).

Suppose that D; < Ds are effective Cartier divisors on X. Let g1 = 0 be a local
equation of Dy at p, go = 0 be a local equation of Dy at p, so that h = Z—f is a local
equation of Dy — Dy at p. We have commutative diagrams

['X,0p(mDy)) — T'(X,0x(mD>))
4 (I)le X {m} 4 (I)sz X {m}
Zd+1 — Zd+1

where the top horizontal arrow is the natural inclusion and the bottom horizontal arrow
is the map

(o, m) = (a+mv(h),m).
These diagrams induce an inclusion A : A(Dq) — A(D3) defined by a — o + v(h).

Theorem 4.2. Suppose that X is a normal projective variety over a field k and D1, Dy
are effective Cartier divisors on X such that Dy is big, D1 < Da and Vol(D;) = Vol(Ds).
Then

I'(X,0x(nDy)) =T(X,Ox(nD2))
for all n € N.

Proof. Write Dy = Z::]EC%& and Dy = ., b;E; with a;,b; > 0 for all 7. For each ¢ with
1 < < r choose a flag ( with Y7 = F; and p a point such that p € X is a nonsingular
closed point of X and E; and p ¢ E; for j # i. Let 7y : R? — R be the projection onto the
first factor. Then with the notation introduced above, v(h) = (b; — a;,0,...,0). By the
definition of vg,(D2) and since yg,(D2) is in the closure of the compact set m1(A(Dz)),
we have that
w1 (v, (D2)) N A(D2) # 0
and
™ (@) N A(D2)) = 0 if a < v, (D2).
wrther, A(A(D1)) C A(D2) and Vol(D1) = Vol(Ds3), so A(A(D1)) = A(D2) by Lemma
us
Ve, (D1) = vE,(D2) — (bi — a;)

for 1 <4 <r. We obtain that

Dy = vg(D2)Ei= D1 =Y vg,(D1)E;.
i=1 i=1

L. GR1
By Lemma &I?mml, Tor all m >0,

I'(X,0x(mDy))

I'(X, Ox ([mDy = > myg,(D1)Ei]))
= I'(X,0x([mDy = > myg,(D2)Ei]))
I'(X,Ox(mD3)).

15



5. MIXED MULTIPLICITIES OF TWO DIMENSIONAL EXCELLENT LOCAL RINGS

5.1. 2-dimensional normal local rings. In this subsection, suppose that R is an excel-
lent, normal local ring of dimension %7007 SO %@t R is analytically irreducible. Resolutions
of singularities of Spec(R) exist by [30] or [6]. Let ¢ : X — Spec(R) Vé}g a resolution of
singularities with prime (integral) exceptional curves Ej,..., Es;. By [29, Lemma 14.1],
the intersection matrix of F1,..., F, is negative definite. Thus there exists an effective
(necessarily Cartier) divisor B on X with exceptional support such that Ox(—B) is very
ample, and so (pis the blowup of the mp-primary ideal ¢,O x(—B).

We refer to 1?29] for background material for this section. A Q-divisor on X with ex-
ceptional support is a formal linear combination of prime exceptional curves with rational
coefficients. A Q-divisor C' is anti-nef if (C'- E) < 0 for all exceptional curves £ on X.
Suppose that f € QF(R) is nonzero. Then (f) will denote the divisor of f on X.

Lemma 5.1. Let D be an effective divisor on X with exceptional support. Then there is
a unique minimal effective anti-nef Q-divisor A on X with exceptional support such that
D <A.

The Q-divisor A is the unique effective Q-divisor A on X such that

1) A =D + B is anti-nef and B is effective.
2) (A-E)=0if E is a component of B.

The first conclysion of the lemma follows from the proof of the existence of Zariski
decomposition in ;FE] The second c¢onclusion is the local formulation [13, Proposition 2.1]
of the classical theorem of Zariski [47].

We will say that the expression 1) is the Zariski decomposition of D and that A is the
anti-nef part of the Zariski decomposition of D.

Remark 5.2. From the first conclusion of the lemma, we deduce that if D1 < Dy are
effective divisors with exceptional support and respective anti-nef parts of their Zariski
decompositions A1 and Ao, then Ay < As.

Corollary 5.3. Suppose that D1 < Dy are effective divisors with effective support, and
respective anti-nef parts of their Zariski decompositions A1 and Ap. Then (A3) < (A2)
with equality if and only if A1 = As.

Proof. If A is an anti-nef divisor with exceptional support, and E is a nonzero effective
Q-divisor with exceptional support, then

(A+E)? = (A% +2(A-E) + (E% < (A?)

since (E?) < 0 as the intersection form on exceptional divisors on X is negative definite.
O

Let v; be the discrete valuation with Valuat'ecn%zring Ox g, for 1 <i <r, and I(v;), be
the associated valuation ideals (as defined in (%[)Lfor neNand1<i<r.

For D =a1E1 + - - + a,E, an effective integral divisor on X with exceptional support
(a; € N for all i), define

I(D) =T(X,0x(=D))={f € QF(R) | (f) — D > 0}.

30
This is in agreement with the notation of (elii%. In fact, we have that I(D) = J(D) since
R is normal.
16



We have that I(0) = I'(X,Ox) = R since the ring I'(X, Ox) is a finitely generated R-
module with the same quotient field as R and R is normal. Thus (D) is an mp-primary
ideal if D # 0. For n € N, we have that

I(mD) =I(1)nay N NI (Vy)na,

is an mp-primary ideal in R, and {I(nD)} is a filtration of mp-primary ideals in R. By
Theorem [T.2; the Timit

. Ar(R/I(nD)) '

Vol(D) := nh_}nolo Tz er({I(nD)}; R)

H
exists. In fact, by formula (7) and Lemma 2.5 on page 6 of H, we have
(27) Vol(D) = —(A?)
where A is the anti-nef part of the Zariski decomposition of D.

Remark 5.4. We deduce from Corollary %%‘%hat if D1 < Dy are effective divisors with
exceptional support on X and respective anti-nef parts of their Zariski decompositons Aq
and Ao, then

Vol(D;) < Vol(Ds)

with equality if and only if Ay = As.

Int
We recall some notation introduced at the end of Section I. Let [a] denote the smallest
integer that is greater than or equal to a real number a. If D = )" a;E; with a; € Q is a
Q-divisor, let [D] = > [a;|E;.

Lemma 5.5. Suppose that D is an effective divisor on X with exceptional support and
A = D+ B is the Zariski decomposition of D. Then for alln € N, I(nD) = I([nAl]).

Proof. Suppose that f € I([nA]) = I'(X,Ox(—[nA])). Then (f) — [nA] > 0. Writing
nA = [nA] — G with G > 0, we have —nA = G — [nA]. From

—nD = —nA +nB = —[nA] + (G +nB)

and the fact that G +nB > 0, we have that (f) —nD > 0 so that f € I'(X,Ox(—nD)) =
I(nD).

Let S be the set of irreducible curves in the support of B. Suppose that f € I(nD) =
I'(X,0x(—nD)). Then (f) —nD > 0. Write (f) —nD = A+ C where A and C are
effective divisors on X, no components of A are in S and all components of C' are in S.
We have that (f) —nA =A+ (C —nB). If E € S then

(E-(A+(C=nB)))=(E-((f) —nA)) =0

which implies (£ - (C —nB)) = —(E - A) < 0. The intersection matrix of the curves in S
is negative %ﬁnite since it is so for the set of all exceptional curves, so C' —nB > 0 (for
instance by [T, Lemma 14.0]). Thus (f) —nA > 0 which implies (f) — [nA] > 0 since (f)
is an integral divisor (that is, has integral coefficients). Thus f € I'(X,Ox(—[nAl])) =
I([nAl). O

Proposition 5.6. Suppose that D1 and Dy are effective divisors with exceptional support
on X. Let Z(1) = {I(nD1)} and Z(2) = {I(nD3)}. Suppose that D1 < D3 and

er(Z(1); R) = er(Z(2); R).

Then I(nDy) = I(nDs3) for alln € N.
17



Proof. Let A1 and AE be the respective anti-nef parts of the Zariski decompositions of Dy

and Dy. By Remark 5.4, D1 < Dy and Vol(D;) = Vol(D2) implies A; = Ag. Thus
I(nDy) = I([nA1]) = I([nAz]) = I(nD3)

for all n € N by Lemma %%%VQ g

Proposition 5.7. Suppose that D1,..., D, are effective divisors on X with exceptional

support. For ny,...,n, € N, let
G(ni,...,ny) = lim (r(R/I(nn1Dy)- - I(nnrDT)).

n—00 n2

Then for ni,...,n, € N,

1
G(nl, - ,nr) = —5((n1A1 +nolg + -+ HTAT)Q)

where Ay, ..., A, are the respective anti-nef parts of the Zariski decompositions of D1, ..., D,.

Proof. Fixny,...,n, € N. Given e > 0, there exist effective Q-divisors Fi ¢, ..., F.., A1, .
with exceptional support such that —A; . are ample for 1 < i < r (that is, (4, - F) <0
for all exceptional curves E and (AZ%E) >0), nidj=—-Ai .+ Fi.for1<i<r,
(AL + -+ 1A% = (Are + -+ Ar)?)| < e

and

[(n;A2) — (A?€)| <efor1<i<r.
Let Ac=A1 .+ 4+ A, F: =Fi.+ -+ F,. so that

—(mAy+ - +nA)=—A. + F..

There exists s, € Z such that s.A; . and s.A; are effective integral divisors (that is,

have integral coefficients) for 1 < i < r. Since the —s.A; . are ample integral divisors on

X, there exists o € Z, such that the invertible sheaves Ox(—acs:A;.) are generated by
global sections for 1 < ¢ < r. Thus for n € N,

I(aesc A1) - I(0es: Are)"Ox = I(noescAie) - I(noes:Arc)Ox
= I(na.s:A:)Ox = I(aes:A:)"Ox.

Thus the ideals
Ioese A1) - T(0escAre)" I (naescAre) - - - I(naese Are), I(naese Ae ), I(oese Ae)"
have the same integral closure which is I(na.s:Ac), and so the R-algebra
@ I(naes:Ae)
n>0

is integral over

@ I(na:s:A1z) -+ - I(noes:Aye).

n>0
Theoreml3leqV1
Now by Theorem [I.4 an )

(28) limy, o ER(R/I(naEsEAZZ)---I(naEsEAnE)) — limy, oo ¢

For all n € N, we have inclusions

A

I(naescAie) - I(naes:Are) C I(nacseniAy) -+ - I(noesen, Ay)) C I(naese(mAi+---+n,Ay))

18



inducing surjections

R/I(noes:Aie)-- (TLO(ESEAT,S)) — R/I(nagzs.n1Aq) -+ I(nagsen, Ay))
— R/I(nagsa(nlAl + -+ nAL)

so that
lr(R/I(nacscAle) - I(nacscAre))
2
n
Lr(R/I(nacseniAr)--I(naesenrAr))
n2

142y 1 1
—g(As) = @hmn_)oo

1 .
aZs2 lim,, o0
1 lim. Lr(R/I(nacse (n1A1+--~+n,«Ar)))
aZs2 n—00 n2

= a2132 [ é((ass"f(nlAl +ot nT‘AT))Q)]
= 5((“1A1 + AP,

(AVARAYS

Now

Lr(R/I(nacseniAr)--I(naesensAy))

hmnﬁoo ] _ hmnﬁoo ER(R/I(naESEnlD12)---I(na555nrDr))

= (Oé s )hmn oo @R(R/I(nmlilQ)---I(nnrDr))'
Thus
LA+ A)?) = lime,g —1(A2)
(29> = lim,_ oo ER(R/I(nn1[:L12)~~~[(nnTDT))
= G(ny,...,n.).

O

Vi V6
From Proposition %?07 and equation (E i, with Z(i7) = {I(nD;)}, we deduce that the mixed
multiplicities are

(30) en(Z()?; B) = ~(A3) for all j
and

(31) e, ZG); R) = —(A; - Ay)
for i # 7. Pro

0os
We have by Proposition 2.1 (or since —(A?) > 0 for all j since A; # 0 and the inter-
section form is negative definite) that all mixed multiplicities are positive. Further, the
mixed multiplicities are all rational numbers since the A; are Q-divisors.

5.2. Two-dimensional local domains. We now assume that othas dimension two and
X is nonsingular. We use the notation introduced in Subsetion 2.T.

For1 <1 <r,write D(l) = Z” a; j(1)E; ; with a; ;(1) € Nand let D(1); = Zj a; j(1)E; ;.
Let A(l); be the anti-nef part of the Zariski decomposition of D(l);. For ni,...,n, € N,

Lr(S/J(nn1D(1)--J(nn.D(r))

) ER(Sm./J(nnlD(lgi)-~-J(nnTD(r)i))

limy, 0 Zz 1 hmn—>oo

S NS me s Rmgl(m AL+ 4 ny AW

15 V1 L aR1
by (e% and Proposition T Now by Lemma b.emeana the multinomial theorem,
(32)
lim o LD D) = 530 | —3[S/m; : R/mg)(mAQD)i + -+ nrAwr):)?)

n

= ootz wri (S —[8/mi s Rimal(AQF - AG)F)) ot
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V6
Let Z(i) = {I(nD(i))} be the filtrations of mpg-primary ideals. Then by (Ei, the mixed

multiplicities are

t

(33) er(Z(); R) = Y ~[S/mi - Rfmrl(AG)?)

i=1
and for j # k,
(34) en(Z()Y, Z(0)0; B) = 3 ~[S/m: : R/ma)(AG): - A(k),).
i=1

Proposition 5.8. Suppose that R is a two-dimensional excellent local domain, p : X —
Spec(R) is a resolution of singularities and that D(1) and D(2) are effective divisors with
exceptional support on X. Let Z(1) = {I(nD(1))} and Z(2) = {I(nD(2))} be the associated
filtrations of mp-primary ideals. Suppose that D(1) < D(2) and

er(Z(1); R) = er(Z(2); R).
Then I(nD(1)) = I(nD(2)) for all n € N.

Proof. Let A(1); and A(2); be the respective anti-nef parts of the Zariski decompositions
pf D(1}; and D(2);. Then P(1); < D(2); and so A(1); < A(2); for all 4, by Remark
W’TFMS by Corollary ESS for all i, (A(2)?) < (A(1)? Lyith equality if and only if
A(1); = A(2);. Since eg(Z(1); R) = er(Z(2); R), equation (B3) and (II0) imply that

t

> [8/mi s R/mp][(A(2)F) — (A(1)F)] = 0.

i=1
Thus A i for all 1 which implies that J(nD(1)) = J(nD(2);) for all n € N by
Lemma an SO J nD(1)) = J(nD(2)) for all n by (IT). Thus
I(nD(Q)) = J(nD(Q)) NR=JnD1)NR=1I(nD(1))
for all n € N. g

TheoremX1 . X . X L PropR10
Theorem B.5 in the case that dim R = 2 is an immediate corollary of Proposition %.8.
e following theorem is a,generalization to divisorial valuations of a theorem of Teissier
4] and Rees and Sharp [38] for mp-primary ideals.

Theorem 5.9. Suppose that R is a two-dimensional excellent local domain, ¢ : X —
Spec(R) is a resolution of singularities and that D(1) and D(2) are effective divisors with
exceptional support on X. Let Z(1) = {I(nD(1))} and Z(2) = {I(nD(2))} be the associated
filtrations of mp-primary ideals. Suppose that the Minkowski equality

(35) er(T(1)I(2); R)% = ep(Z(1); R) + en(Z(2); R)?
TheoremMI
holds (there is equality in inequality 4) of Theorem [1.5). Then there exist relatively prime
a,b € Zy such that
I(naD(1)) = I(nbD(2))
for all n € N.

LemmaR1
Proof. We will use the notation introduced before the statement of Lemma b.Z. Let
eo = er(Z(1)P:R), ey = er(Z(D)MN, Z(2)M;R) and e; = er(Z(2)?; R). Let A(1); and
20



A(2); be the respective anti-nef parts of the Zariski decompositions of D(1); and D(2);.
Let

G(ni,ng) = lim ER(R/I(nnlD(l))I(nnzD@))).

n—oo n2

Then

1 1
G(ni,ng) = feon% + ening + 562%%
Ve 13 14
by (e . Now by (E%i and (e :

t t
eo =Y _ —[S/mi: R/mg|(A = —[S/mi: R/mg|(A(1)i - A(2),),
=1 =1
t
e2 =Y —[S/mi: R/mg|(A(2)7).
=1
Th, MI
We have the Minkowski inequality (inequality 1) of Theorem I.SeO} e

(36) et < eges.
We conclude that
1 1
er(Z(1)Z(2); R) =2G(1,1) = ep + 2e1 +e2 < eg + 260 62 +ea = (ef +e3)2
egR5
We deduce that equality holds in (b%i i gd only if equality holds in (b% % Since we assume
equality in (B5), we have equality in (36). Write
(&) €9

a
€0 €1 b
with a,b € Z4 relatively prime. Replacing D(1) with aD(1) and D(2) with bD(2) we
obtain eg = e; = e so
t t t
> —[S/m; : R/mg|(A =Y —[S/mi: R/mg|(A(1)i-A(2))) =Y —[S/m; : R/mg](A(2)7).
i=1 i=1 i=1
We have that
t t
> [S/mi : R/mg]((A(1)i=A(2)i)%) =Y [S/mi : R/mg][(A1)7)—2(A(1);-A(2)i)+(A3)] =0
i=1 i=1
which implies that A(1); = A(2); for all ¢ since the intersection product is negative definite,
so J(nbD(1);) = J(naD(2);) for all i and n € N by Lemma 5.5, and thus J(naD(1)) =
J(nbD(2)) for all n € N by (IIT). Now

I(naD(1)) = J(naD(1)) N R = J(nbD(2)) N R = I(nbD(2))
for all n € N.
g

Corollary 5.10. Suppose that R is a two-dimensional excellent local domain and vy, vo
are mg-valuations. If the Minkowski equality
1 1 1
er(Z(11)L(v2); R)2 = er(Z(11); R)? + er(Z(12); R)?
holds then v1 = vs.
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PropR11
Proof. We have by Theorem that 1 (Y1)an = I(12)pn for all n and some positive, rela-

tively prime integers a and b.
Suppose that 0 # f € I(v1)n. Then f* € I(v1)an = I(v2)pn so that ava(f) > bn. If
[ € I(v2)pn+1 then [ € I(v2)pnr1) = I(V1)a(n+1) SO that vi(f) > n. Thus

(37) vi(f) = nif and only if v5(f) = Sn.

21
Further, (E ! i holds for every nonzero f € QF(R) since f is a quotient of nonzero elements
of R.

Now the maps v; : QF(R) \ {0} — Z and 1» : QF(R) \ {0} — Z are surjective, so there
exists 0 # f € QF(R) such that v1(f) = 1 and there exists 0 # g € QF(R) such that
v2(g) = 1 which implies that a = b = 1 since a, b are relatively prime. Thus 11 = vs.

]

6. GEOMETRY ABOVE ALGEBRAIC LOCAL RINGS

6.1. Intersection products and multiplicity on local rings. Let K be an algebraic
function field over a field k. An algebraic local ring of K is a local ring R that is a
localization of a finitely generated k-algebra and is a domain whose quotient field is K.
Let R be a d-dimensional algebraic normal local ring of K. Let BirMod(R) be the directed
set of blowups ¢ : X — Spec(R) of an mp-primary ideal I of R such that X is normal.

Suppose that ¢ : X — Spec(R) is in BirMod(R). Let {E1,..., E;} be the irreducible
exceptional divisors of ¢. We define M'(X) to be the subspace of the real vector space
E1R + -+ + E;R that is generated by the Cartier divisors. An element of M!(X) will be
called an R-divisor on X. We will say that D € M!(X) is a Q-Cartier divisor if there
exists n € Z4 such that nD is a Cartier divisor.

We give M'(X) the Euclidean topology. We first define a natural intersection product
(D1-Dg-...-Dg) on ngr Dy,...,Dg € M'(X). The intersection product is a restriction
of the one defined in [26]. We first define the intersection product for Cartier divisors
Dy,...,Dy€ E1Z + - - -+ EZ. Since this product is multilinear, it extends naturally to a
multilinear product on M*(X)?.

There exists a subfield k; of K with the two properties that k C k; C R and R/mp
is a finite extension of k1. Thus there exists a projective ki-variety Y and a closed point
q € Y such that Oy, = R. The mg-primary ideal I naturally extends to an ideal sheaf 7
in Oy, defined by

7 :{ Oy. ifqg#acy
“ I if a =q.

Let W : Z — Y be the projective, birational morphism that is the obtained by blowing up
Z. Observe that base change of this map by Oy, = R gives the original map ¢ : X —
Spec(R). We can thus view Fj,...,FE; as closed projective subvarieties of the normal
variety Z.

Suppose that Fi,..., F; re Cartier divisors on Z and F i 2 coherent sheaf on Z, such
that dimsupp F < s. By [26] (surveyed in Chapter 19 of [12]) we have an intersection
product [(F1,...,Fs, F) on Z which has the good properties explained in IHSZB] and [12].
The Euler characteristic

oo
X(Oz(niFi+ -+ nsFs) @ F) = Z(—l)zhl(z, Oz(mFr+ - +nFs) @ F)
i=0
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ere h'(Z,G) = dimy, H(Z,G) for G a coherent sheaf on Z, is a polynomial in ny, ..., ng
z&], %@2, Theorem 19.1]). The intersection product I(F1,..., Fs, F) is defined to be the
coefficient of n - - - ng in the Snapper polynomial x(Oz(ni1Fi+---+nsFs) @F). We always
have that I(Fy,...,Fs, F) € Z.

If Dq,...,Ds are Cartier divisors in F1Z + --- + E;Z, and F is a coherent sheaf on X
whose support is contained in ¢ ~!(mpg) (so that F naturally extends to a coherent sheaf
on Z with the same support) and dimsupp F < s, then we define an intersection product

1
[R/mp : ki]
on X. If W is a closed subscheme of ¢~1(mpg), we define

(Dy+...-Dy-W)=(Dy-...- Dy Ow).
If s = d, then we define

(Dy-...-Dy-F) = I(Dy,...,Dys, F)

1

[R/ mpg kl]
This product is well defined (independent of any choices mad in t%% construction), as
follows from the good properties of the intersection product (?EZG], ]). This product
naturally extends to a multilinear product on M (X)¢.

We will say that a divisor F = a1 Ey + - -+ + az By € M*(X) is effective if a; > 0 for all
i, and anti-effective if a; < 0 for all 4. This defines a partial order < on M'(X) by A < B
if B — A is effective. The effective cone EF(X) is the closed convex cone in M*'(X) of
effective R-divisors. The anti-effective cone AEF(X) is the closed convex cone in M!(X)
consisting of all anti-effective R-divisors.

We will say that an anti-effective divisor F € M!(X) is numerically effective (nef) if

(F-C)=(F-0c) >0

for all closed curves C in ¢~ !(mpg). The nef cone Nef(X) is the closed convex cone in
M*Y(X) of all nef R-divisors on X.

Lemma 6.1. There is an inclusion of cones Nef(X) C AEF(X).

(Dy+...-Dg)=(Dy-...-Dg-X) = I(Dy,...,Dy,0%).

Proof. Suppose there exists a nef divisor D € M!(X) that is not anti-effective. Since X
is the blowup of an mpg-primary ideal, there exists an anti-effective ample Cartier divisor
A=aF 4+ -+ atFy, with a1,...,a; < 0. There exists a smallest A € R such that
D + A\A is anti-effective. Necessarily, A\ > 0 and D + AA is nef. Expand D+ A =Y b, E;.
After possibly reindexing the F;, we have that there exists a number s with 1 < s < ¢
such that by = --- = b, :10 and bgy1,...,b; < 0. Now gofl(mR) is connected by Zariski’s
connectedness theorem ([46, Section 20] or [21, Corollary II11.4.3.2]). After reindexing the
Eq,...,Es and the Esi1,..., E;, we may assume that Fs N Es11 # 0. Let C be a closed
curve on the projective variety Fs that is not contained in E; for ¢ > s + 1 but intersects
Esi1. Then (D + AA) - C) < 0, a contradiction. O

We will say that an anti-effective Cartier divisor ' € M!(X) is ample on X if there
exists an ample Cartier divisor H on Y such that U=} (H)+F is ample on Z. This definition
is independent of the choice of Y in the construction. We define a divisor F € M!(X)
to be ample if F' is a formal sum F = > a;F; where F; are ample anti-effective Cartier
divisors and a; are positive real numbers. A divisor D is anti-ample if —D is ample. We
define the convex cone

Amp(X) = {F € M*(X) | F is ample}.
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eql

eq3

We have that Amp(X) C Nef(X), the closure of Amp(X) is Nef(X), and the interior
of Nef(X) is Amp(X), as in [26], [27, Theorem 1.4.23].

Remark 6.2. If G € M'(X), then there exists an effective Q-divisor D € M'(X) such
that G — D € Amp(X).

For F € M'(X) an effective Cartier divisor, define I(F) = I'(X, Ox(—F)), an mg-
primary ideal in R since R is normal. Let 7 : Y — Spec(k;) be the structure morphism.

Lemma 6.3. Suppose that A € M'(X) is an effective Cartier divisor such that —A is
nef. Then

iy R(B/ImA)  —((=A))

im i = .

m—00 m d!
Proof. Let H be an ample Cartier divisor on Y and L = ¥*(H). There exists a € Z, such
that alL — A is nef and big on Z.
We have that R'W,0z(m(aL — A)) = Oy (maH) ® R'¥,0z(—mA) is a coherent sheaf

of Oy-modules whose support is ¢ and

(38) HY(X,0x(—mA)) = 1, (R'W,0z(m(al — A)))

as an [ = Oy,4-module.
By [19, Theorem 6.2],

(39) lim "(Z.0z(mG))

m—o0 md

=0ifi>0

if G is a nef Cartier divisor on Z.
Now tensor the short exact sequence

0= Oz(—mA) - Oz - Opa — 0
with Oz(mal) to get a short exact sequence
0— Oz(m(aL — A)) — Oz(maL) — Opma ® Oz(mal) = Opa — 0.

Taking the long exact cohomology sequence, we have that

h(Z,Op,
lim # _ 0
m—0o0 m
e
for i > 0 by (b%%, and so
limy, 00 % = iMoo x((;rsA)
(40) = limg,,, X(OZ)—X((?iZ(—mA))
40 m-so0 X o
= limy,_y X(Oz(mA))
(Y]
d! )

5
for instange by hCTZ, Theorem 19.16]. The end of the cohomology 5 term sequence (forin-
stance in %39, Theorem 11.2]) of the Leray spectral sequence

Rim, R, 07(m(al — A)) = RV (10 W), 0z(m(al — A))
is the exact sequence
(41) RY(7o®),Oz(m(aL—A)) = m(R'U.0z(m(aL—A))) = R (V,0z(m(aL—A))).
Now R(7 0 ¥),0z(m(al — A)) = HY(Z,0z(m(aL — A)),

R?m.(V,0z(m(aL—A))) = H*(Y,U,0z(m(aL—A))) = H*(Y, Oy (maL)@¥,0z(—mA))
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and 7, (R, 0z(m(aL — A))) = H(Y, R* U, 0z (m(aL — A))).
Let Z,,, = V,.Oz(—mA). From the short exact sequences

0 — Zp, ® Oy(mal) — Oy (mal) — Oy /Z,, — 0,
we obtain the exact cohomology sequences
HYY,Oy /Ty) — H*(Y, T, ® Oz(mal)) — H*(Y, Oy (malL)).

Now HY(Y, Oy /T,,) = 0since Oy /Z,, has zero dimensional support and H?(Y, Oy (mal)) =
0 for m > 0 since L is ample. Thus

eqd| (42) H2(Y,Oy(mal) @ U,04(—mA)) = 0 for m > 0.
We have
im 1 —m
limy,— 00 [R(HI(X;SdX(imA)) = limy—eo [R/mlR:kl] T B (X:?X( 4)

m
1 RO(Y,R' 0., Oz (m(aL—A))
mp:ki] md

eq7| (43)

= limpy 500 R/

4
by (E%%, (Eﬁ, (E%j and (E%J% with G =al —Ain (E%% We have that R = H(X, Ox) since
R is normal. Now from the exact sequences of R-modules
0 — R/I(mA) - H*(X,0x/Ox(—mA)) = HY(X,Ox(—mA)),
(E%% and (E[%% we obtain the formula of the statement of the lemma. O

Lemma 6.4. Suppose that D1, ..., D, € M'(X) are effective Cartier divisors and Ox (—D;)
1s generated by global sections for all i. Then for ni,...,n, € N,
y (r(R/I(mniDy)---I(mn,.D;))  ((—m1Dy—---— nrD,.)d)
im y )
m—00 m d!
Proof. We have that
I(mnyDy)---I(mn,.D,)Ox = Ox(—m(n1D1+---+n,D;)) = I(mnyDy+---+n,.D,)Ox

since the Ox(—mn;D;) are generated by global sections. Thus the integral closure of
I(mniDy)---I(mn,D;) is I(m(n1Di + --- +n,D,)) for all m € N, and so the R-algebra
D,,~o I(m(niD1+---+,D,)) is integral over the R-algebra @, <, I(mniD1) - - - I(mn,D,).
Thus B

ZR(R/I(anDld)---l(mnrDr))

Lr(R/I(mniD1+-+mnyDr)
m d

= limpy, 0 m
_ ((_nlDl—"‘_nrDr)d)
T

d!
Theoreml3 Lemmal
by Theorem 1.4 and Lemma %.3. O

6.2. Finite dimensional vector spaces and cones. Suppose that X € BirMod(R).
Let E,..., E, be the exceptional components of X for the morphism X — Spec(R). For
0 < p < d, we define MP(X) to be the direct product of M!(X) p times, and we define
M9 X)=R. For 1 < p < d, we define LP(X) to be the vector space of p-multilinear forms
from MP(X) to R, and define L°(X) = R.

The intersection product gives us p-multilinear maps

(44) MP(X) — L4&P(X)

for 0 < p < d. In the special case when p = 0, the map is just the linear map taking 1 to
the map

limy, o0

(,Cl,,,cd)r—)(ﬁlﬁd)z(ﬁlﬁdX)
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We will denote the image of (L1,...,Ly,) by L1 -...- L,. We will sometimes write

L1 LyBpptr- s Ba) = (L1 Ly Bppr- - Ba).

We give all the vector spaces just defined the Euclidean topology, so that all of the
mappings considered above are continuous.

Let |£| be a norm on M!(X) giving the Euclidean topology. The Euclidean topology
on LP(X) is given by the norm ||Al], that is defined on a multilinear form A € LP(X) to
be the greatest lower bound of all real numbers ¢ such that

[A(z1, .. ap)| < - [
for z1,...,2, € M1 (X).
Suppose that V is a closed p-dimensional subvariety of some FE; with 1 < p < d — 1.
Define oy € LP(X) by
ov(Ly,...,.Lp)=(L1-...- Ly V)
for £1,...,L, € M(X). For p = d, define ox € LX) by
U)((El,...,ﬁd) = (ﬁlﬁd) = (ElﬁdX>
The pseudoeffective cone Psef(LP(X)) in LP(X) is the closure of the cone generated by all
such oy in LP(X). We define Psef(L°(X)) to be the nonnegative real numbers.

Let V be a vector space and C' C V be a pointed (containing the origin) convex cone
that is strict (C'N (—C) = {0}). Then we have a partial order on V defined by = < y if
y—zxzeC.

Lemma 6.5. Suppose that X € BirMod(R) and 1 < p <d.
1) Suppose that o € Psef(LP(X)) and L1, ...,L, € MY (X) are nef. Then
Oé(ﬁl,... ,ﬁp) > 0.
2) Psef(LP(X)) is a strict cone.

L 3.1 4
The proof of Lemma %?5“‘12 as*the proof of thO, Lemma 3.1].
Since Psef(LP(X)) is a strict cone, we have a partial order on LP(X), defined by

a >0 if a € Psef(LP(X)).

We have that > is the usual order on R since LY(X) = R and Psef(L°(X)) is the set of
nonnegative real numbers. We also have the partial order on M!(X) defined by o > 0 if
a is effective.

Lemma 6.6. Suppose that Fy,...,F, € MY(X) are such that Fy is anti-effective and
Fy,...,F, are nef. Then Iy -...- F, <0 in L9P(X).

Proof. We have [E;Dat —F, € MY(X) is effective. Thus (—Fy)-Fy-...- F, € Psef(L¥P(X))
by Lemma 3.11 [10]. O
Lemma 6.7. Suppose that € Psef(LP(X)). Then the set

{a € Psef(L7(X)) |0 < a < B)
18 compact.

L 3.2 4
The proof of Lemma %?mmh 5 fﬁz same as the proof of %[0, Lemma 3.2].
Suppose that X,Y € BirMod(R) and f : ¥ — X is an R-morphism. Then f in-
duces continuous linear maps f* : M'(X) — MY(Y) (from f* of a Cartier divisor),
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eqb*

eqéxx*

eq7x*

eq8*

Lemma3. 3%

1
f*: MP(X) - MP(Y) and f. : LP(Y) — LP(X). By Proposition 1.2.6 %26], for 1 <t <d,
we have that

(45) FALy) o (L) =Lr-...- Lg
for £1,...,Lq € MY(X). Thus for 0 < p < d we have commutative diagrams of linear
maps

MP(Y) — LTP(Y)
(46) et fed
MP(X) — LP(X).

For o € M'(X), we have that

(47) f*(a) € Nef(Y) if and only if a € Nef(X)
and
(48) f*(«) is effective on Y if and only if « is effective on X.

Lemma 6.8. Suppose that X,Y € BirMod(R) and f : Y — X is an R-morphism. Then
£.(Psef(L(Y))) © Psef(LP(X)).

L 3.3 4
The proof of Lemma %?SmmlasL as*the proof of hgr(), Lemma 3.3].

6.3. Infinite dimensional topological spaces. We have that BirMod(R) is a directed
set by the R-morphisms Y — X for X,Y € BirMod(R). There is at most one R-morphism
X =Y for X,Y € BirMod(X).

The set {MP(Y;) | Y; € BirMod(R)} is a directed system of real vector spaces, where we
have a linear mapping f;; : MP (Y;) = MP(Y;) if the natural birational map fi; : Y; = Y;
is an R-morphism. We define

MP(R) = lim M”(Y;)

with the strong topology (the direct limit topology, c.f. Appendix 1. Section 1 %17]) Let
py, : MP(Y;) — MP(R) be the natural mappings. A set U C MP(R) is open if and only if
p;il(U) is open in MP(Y;) for all i.

We have that MP(R) is a real vector space. As a vector space, MP(R) is isomorphic to
the p-fold product M*(R)P.

We define o € M'(R) to be Q-Cartier (respectively nef or effective) if there exists a
representative of a in M*(Y) that has this property for some Y € BirMod(R). We define
Nef?(R) to be the subset of MP(R) of nef divisors. We define EF?(R) to be the subset of
MP(R) of effective divisors and define AEFP(R) to be the subset of MP(R) of anti-efective
divisor%.[g[%oth of these sets are convex cones in the vector space MP(R).

By (A7) and (43), {Nef(Y)P}, {EF(Y )P} and {AEF(Y )P} also form directed systems.
As sets, we have that

Nef?(R) = lim(Nef(Y)?), EF?(R) = lim(EF(Y)") and AEF"(R) = lim(AEF(Y)?).

We give all of these sets their respective strong topologies.

Let py : MP(Y) — MP(R) be the induced continuous linear maps for Y € BirMod(R).
We will also denote the induced continuous maps Nef(Y')? — Nef?(R), EF(Y)? — EFP(R)
and AEF(Y)? — AEFP(R) by py.
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The set {LP(Y;)} is an inverse system of topological vector spaces, where we have a
linear map (fij)« : LP(Y;) — LP(Y;) if the birational map f;; : Y; — Y; is a morphism. We
define

p — 1 P(y.
LP(R) = lim L¥(Y),

with the weak topology (the inverse limit topology). Thus the open subsets of LP(R)
are the sets obtained by finite intersections and arbitrary unions of sets wil(U ) where
Ty, : LP(R) — LP(Y;) is the natural projection and U is open in LP(Y}).

In general, good topological properties on a directed system do not extend to the direct
limit (c.f. Section 1 of Appendix 2 [17], especially the remark before 1.8). In particular,
we cannot assume that M!(R) is a topological vector space. However, good topological
properties on an inverse system do extend (c.f. Section 2 of Appendix 2[17]). In particular,
we have the following proposition.

Proposition 6.9. LP(R) is a Hausdorff real topological vector space that is isomorphic
(as a vector space) to the p-multilinear forms on M*(R).

Let my : LP(R) — LP(Y') be the induced continuous linear maps for Y € BirMod(R).
The following lemma follows from the universal properties of the inverse limit and the
direct limit (c.f. Theorems 2.5 and 1.5 [17]).

Lemma 6.10. Suppose that F is MP or Neff Then giving a continuous mapping
®: F(R) — LY P(R)

is equivalent to giving continuous maps py : F(Y) — LAP(Y) for all Y € BirMod(R),
such that the diagram

F(Z) B Lt+»(2)

o1 b+

FY) & Lie(y)
commutes, whenever f: Z —'Y is in BirMod(R).

In the case when F = MP, if the py are all multilinear, then ® is also multilinear (via
the vector space isomorphism of MP(R) with p-fold product M*(R)P).
As an application, we have the following useful property.

Lemma 6.11. The intersection product gives us a continuous map
F(R) — L*P(R)
whenever F is MP or Neff. The map is multilinear on MP(R).

We will denote the image of (a1, ...,a;) by a1 ... ap. For Byi1,..., 84 € MY(R), we
will often write

al-...-ap(ﬁpﬂ,...,ﬁd):(al-...-ap-ﬁpﬂ-...-,é’d).

Given a € M!(R), there exists X € BirMod(R) such that « is represented by an
element D of M!(X). If Y € BirMod(R) and f : Y — X is an R-morphism, then « is
also represented by f*(D) € M'(Y). To simplify notation, we will often regard a as an
element of M!'(X) and of M'(Y), and write « € M'(X) and a € M (Y).
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Lemma3. 7%

Lemma3. 8%

Lemmad. 9%

Lemma3. 10%*

Lemma3.11%

Prop3.12%

SecAPM3

Lemma4. 1%

Lemma4. 2%

6.4. Pseudoeffective classes in LP(R). We define a class a € LP(R) to be pseudoeffec-
tive if my (o) € LP(Y') is pseudoeffective for all Y € BirMod(R).

Lemma 6.12. The set of pseudoeffective classes Psef(LP(R)) in LP(R) is a strict closed
convez cone in LP(R).

The proof (})ée%nggmg %%m% the proof of %O, Lemma 3. 7].

By Lemma 6.12°, we can define a partial order > 0 on LP(R) by o > 0if a« € Psef(LP(R)).

We have that L(R) = %ean‘_g .]f§ef(L0(R)) is the set of nonnegative real numbers (by
the remark before Lemma 6.5), so > is the usual order on R.

Lemma 6.13. Suppose that L1,...,L, € Nef(R) and o € Psef(LP(R)). Then
a(ly,...,L,) > 0.
L 3.8 L 3.1 4
The proof of Lemma %?mml 310 lgws from Lemma begm;s 1n*the proof of %0, Lemma 3.8].

Lemma 6.14. Suppose that Y € BirMod(R) and E1,...,E, are the irreducible excep-
tional divisors of Y — Spec(R). Suppose that V C'Y is a p-dimensional closed subvariety
of some E;. Then there exists o € Psef(LP(R)) such that my (o) = oy .

Lemmad. 9%

4
The proof of Lemma b L4 is as the proof of hCTO, Lemma 3.9].
The proof of Lemma 6.15 below is as the proof of [10, Lemma 3.10].

Lemma 6.15. Suppose that a € Psef(LP(R)). Then the set
{BelP(R)[0<p<a}

18 compact.

Lemma 6.16. Suppose that o; € MY(R) for 1 < i < p, with oy € EFY(R) and o; €
Nef!(R) fori>2. Then ay-...- a, € Psef(L™P(R)).

L. 3.11% 4 R k1
The proof of Lemma %?mml Gafol ows from the proof of %O, Lemma 3.11], using Lemma %?Bm.ar

Proposition 6.17. Suppose that o; and o for 1 < i < p are nef classes in MY (R), and
that a; > o fori=1,...,p. Then

/

al-...-ap2a'1-...-ap

in LYP(R).
P 3.12x% 4
The proof of Propositoin %?ol ? is as the proof of hC"IT), Proposition 3.12].

7. ANTI-POSITIVE INTERSECTION PRODUCTS

. . . . . N . . W
We continue in this section with the notation introduced in Section 6.
A partially ordered set is directed if any two elements of it can be dominated by a third.
A partially ordered Eeétmilg Lﬁlt;ﬁered if any two elements of it dominate a thg%.

We state Lemma [7.T below for completeness. A proof can be found in [10, Lemma 4.1].

Lemma 7.1. Let V be a Hausdorff topological vector space and K a strict closed convex
cone in V' with associated partial order relation <. Then any nonempty subset S of V' that
is directed with respect to < and is contained in a compact subset of V has a least upper
bound with respect to < in V.

Lemma 7.2. Suppose that o € M'(R) is anti-effective. Then the set D(a) of effective
Q-divisors D in M'(R) such that o — D is nef is nonempty and filtered.
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Lemmad . 2* Remark? 4
The proof of Lemma ?m:netlsmg Rema ‘.am? T5°as the proof of ﬁ(), Lemma 4.2].
The following proposition generalizes [T0, Proposition 4.3].

Proposition 7.3. Suppose that ay,...,a, € M(R) are anti-effective. Let
S = {(c1—D1)-...-(ay — D,) € L¥P(R) such that
Dy,...,D, € MY(R) are effective Q-divisors and c; — D; are nef for 1 <i < p}.
Then
1) S is nonempty.

2) S is a directed set with respect to the partial order < on LY P(R).
3) S has a (unique) least upper bound with respect to < in L¥P(R).

Proof. There exists ¢ : X — Spec(R) in BirMod(R) such that aq, ..., a, € M'(X). Since
X is the blowup of an mp-primary ideal, there exists an effective Q-divisor w in M'(R)
such that —w is ample on X and a; —w is nef for all i. Syppose D; € M L(R) are effective
Q-divisors such that «; — D; are nef for all . Lemma 72 implies there exist effective

Q-divisors D} € M*'(R) such that for all i, a; — D; are nef, D < D;, D} %% %11(1129Z — D¢

are nef. Thus o —w < a; — D} <0 and a; — D; < o; — D;. Proposition 6.17 implies
(1 —w) (a2 —w) ... (ap —w) < (a1 = D7) - (a2 — D3) - ... (o — D) <0.

Thus v € L¥P(R) is an upper bound for S if and only if v is an upper bound for S N Z
where

Z={xecL¥PR)| (g —w)-... (ap —w) <z <0}
The set SNZ is nonempty since (o —w)-...-(y—w) € SNZ. The set SNZ is directed since

S is and sin%%m\évrlq(einever Bi,...,BpeM Y(R) are ar%ie}emfggc_tiio\;e and nef, 5; Foriig 1ﬁ*p <0

(by Lemma 6.6). The set Z is compact by Lemma 6.15. us by Lemma [7.T, Z has
a least upper bound with respect to < in L%P (R). O

Prop4.3* Def4d.4%*
The following definitign is well defined by Proposition [7.3.” Definition 7.4 gives a local
version of the definition [T0, Definition 4.4] of the positive intersection product on a proper
variety.

Definition 7.4. Suppose that a1,...,qp € MY(R) are anti-effective. Their anti-positive
intersection product (a1 -...-ap) € LY"P(R) is defined to be the least upper bound of the set
of classes (ay — Dy) ...~ (o, — D,) € L4"P(R) where D; € M*(R) are effective Q-Cartier
divisors in M'(R) such that a; — D; are nef.

4
The proof of the following proposition is as the proof of Proposition 4.7 ETO]

Proposition 7.5. The map AEFP(R) — LY P(R) defined by (a1, ..., ap) = (a1, ..., ap)
18 continuous.

8. MIXED MULTIPLICITIES AND ANTI-POSITIVE INTERSECTION PRODUCTS

. . . . . . . SecGLR [SecAPM3 | .
We continue in this section with the notation of Sections 6 and 7. In this section,
suppose that ay,...a, € M'(R) are effective Cartier divisors. For ny,...,n, € N, define
. Ptr(R/I(mniaq) - I(mn,«a
F(ni,...,n,) = lim r(B/I(mm 1)d (mny T))
m—oo m

SS
We have that F(ni,...,n,) is a homogeneous polynomial of degree d by F[;IZ[, Theorem
6.6].
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We now describe a construction that we will use in this section. Let X € BirMod(R)
be such that ay,...,a, € MY (X). For s € Z, let

(49) Y[s] - X
be in BirMod(X) and let 75 : Y5 — Y[s] be the normalization of the blowup of
I(saq) -+ I(say) Oyl

Let v, : Yy — Spec(R) be the induced morphism. Define effective Cartier divisors F;; on
Ys by
I(sa;)Oy, = Oy, (—Fs;) C Oy, (m5(—sa)).

Let Dg; = F,; —mi(scy), that we will write as F; — sa;. Then Dy ; is an effective Cartier
divisor on Y and —o; — %D&i = —%F&i is anti-effective and nef. We have that
(50) I(so)™™ - I(say)™ C I(mniFsy)--- I(mn.Fs,) C I(msnjay) - - - I(msnyoy)

for all m,nq,...,n, € N.
For ny,...,n,. € N, define
ER(R/I(mans,l) s I(mn,ﬂFsm))

Hs(nla'--anr) = mlgnoo sdmd
We have at Hg(ny,...,n,) is a homogeneous polynomial of degree d in nq,...,n, by
Theorem [14, Theorem 6.6].

Expand the polynomials
Hi(ni,...,n,) = sz-l 77777 i (s)nit ol

and ) .
F(ni,...,n,) = Z biy,.ipny oy
with b;, . 4. (5),biy,..i. € R.

Proposition 8.1. For allny,...,n, € N,
lim Hg(ny,...,n,) = F(ny,...,n;)
S$—00

and for all i1, ..., 1.,

(51) slggo bir,in(8) = biy,.oiy-

Proof. Yor s € Z, lgt {I5(j):} be the s-th truncated filtration of {I(j);} where I(j); =
I(ic;) is defined in [14, Definition 4.1]. That is, I5(j); = I(ic;) if i < s and if ¢ > s, then
Is(j)i = Y. Is(j)als(7)p where the sum is over all a,b > 0 such that a + b =1i. Let

CR(R/Ls(Dmny = Ls(r)mn,.)

Fs(nla'--anr):n%i_ﬁnoo md
for ny,...,n, € N. Now there exists m(s) € Z, such that

Is(D)smng - Ls(7) smm,. = I(saq)™™t -+ I(say. )™
2
for m > m(s). By (Eiii, we have

Fy(sni,...,sn,)
Sd

F(sny,...,sn,)

> Hys(ny,...,ny) > o =F(ni,...,ny)

Fs(ni,...,n;) =

SS
for all ny,...,n,. € N. By hch, Proposition 4.3], for all ny,...,n, € Z,,
lim Fs(ni,...,n,) = F(ny,...,n.).
S$—00
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Thus for all ny,...,n, € Z4,
(52) lim Hg(ni,...,ns) = F(ny,...,n,.).
§—00

ss 1
By &, Lemma 3.2] and (%e%, we have that

Jim b, i (8) = b, i

for all 41,...,4,. Thus

lim Hg(ni,...,n.) = F(ny,...,n,)
S5—00

for all ny,...,n, € N. O
Theorem 8.2. The coefficients of F(nq,...,n,) are

biyiy = 7 ((—a1) - (—ap)™)

i1l iy
forall iy, ... 0.

Proof. For s € Zy, let e, = 55. There exist effective Q-Cartier divisors D1(s), ..., D,(s) €
M*'(R) such that —a; — D1(s), ..., —a; — D,(s) are nef and ((—a; — D1(s))™ -... (—a, —
D, (s))" ) is within e, of ((—a1)™-...-(—a,)"") for all ny, ..., n, € Z; withni+---+n, = d.
Let Y(s) — X € BirMod(R) be such that a1,..., oy, Di(s),.. ., Defs),€ MY (s)). Let
A be effective and anti-ample on Y'(s). Then by Proposition h%fﬁt > 0 sufficiently
small, each product ((—ay — Di(s) — tAs)™ - ... (—a, — Dy(s) — tAs)") is within e of
((—aq)™ -+ ..o (—ap)") for all ny,...,n, € Z4 with ny + -+ +n, = d. Replacing D;(s)
with D;(s) + tAs for such a small rational ¢, we may assume that —«; — D;(s) are ample
for all 4.

There exist m; € Zy for ¢ € Z, such that m; < mg < -- -, the mgq; are effective Cartier
divisors on Y(s), msDs(s) is an effective Cartier divisor on Y (s) and Oy (s)(—msa; —
msD;(s)) is very ample on Y (s) for all s and 1 < i < r. In (49), let Y[ms] = Y(s) for
s€Zy and Yt] = X for t & {mq1, ma, E%}rs

With the notation introduced after (49), let F},,_ ; be the Cartier divisor on Y, defined
by Oy,, (—=Fm,:) = 1(msa;)Oy,, . We have that

I(ms(ai+Di(s)) = T(Y(s), Oy(s)(—=msai—msDi(s))) C (Y (s), Oy (s)(—msai)) = I(mscv).
Since —msa; —msD;(s) is very ample on Y (s),

Oy (s)(=msa; —msD;i(s)) = [(=msa; — msD;(s))Oy sy C I(msa;) Oy (s).-

Thus
OY"LS(_mSai - mSDZ(S)) C I(msai)oynbs = OY;VLS (_Fmsﬂ) C OY"LS <_m$al)
for all 4, s. Thus
F .
—Q; — DZ(S) < — et < —q;.
ms
—Fm,s .
Now — == is nef and
TEMed gy — B
mg
where E,, ; is an effective Q-Cartier divisor. We have that
n n —Fing 1 1 —Fmor nr
(—a1=Dy))™ e ar = Do(e))™) < ((Fe )™ () ™)
< ((ma)™ - (on)™)
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[Theovent]

Fgorro 3311 5 andny,...,n, € Nwith ny +--- +n, %e% ‘I*he first inequality is by Proposition

.I'7and the second inequality is by Definition [7.4. us
P \™ P\
@ (o) () ) i o (e e

for all nq1,...,n, e Nwithny +---+n, = d.

Given € > 0, for s > 0, the coefficients b;, ;. (ms) of Hp, (n1,...,n;)
are within ¢ of the coefficients b;, ;. of F(ni,...,n,)

[P. 2
by Proposition %?OI and
L ((=Fm,1))% - ... (=Fm, »)') is within € of ((—a)® -...+ (—a,)™)

55 m¢
(55) for all 41,...,%, e Nwith i1 +---4+14.=d

by (E%% Now

(54)

r

1 . Lr(R/I(mn1Fmg 1) I(mnyFopg r
(56) Hms (nlu e 7n7’) = mcsi (hmm—mo R( / ( md) ( e ))>
21
= (e == B, )
Lemma3 . . L.
by Lemma %.ZI, since Fiy, 1, ..., Fin, » are effective Cartier divisors and Yo, (—Fp, ) are

generated by global sections for all i. Then expanding the last line of ( by the multi-
nomial theorem, we obtain

= l((_Fms,l)il et (_Fms,r)iT)

bil:--~7ir (ms) = m

5 6
for all ¢1,...,4, € Nwith iy +---+14, =d. By (%egﬂ and (E%i, we have that

—1 . )
bir,..sir = m«—al)“ co (o))

for all i1,...,%p.
O

The mixed mutiplicities er(Z(1 [‘él], ..., Z(r)%1: R) of the filtrations Z(1),...,Z(r) of
mpg-primary ideals are defined in %Z] from the coefficients by, . 4, of F(ni,...,n,) by
defining
b 1
di,....dr = meR

Th 1
The following theorem follows immediately from Theorem %.Ze.orem

()l () R).

Theorem 8.3. Let R be a normal algebraic local ring, ay,...,c. € M'(R) be effective
Cartier divisors and let Z(j) be the filtration Z(j) = {I(no;)} for 1 <j <r.
Then the mized multiplicities

er(Z(V)M) T R) = —((—an)® - (—an) )

fordi,...,d. € N withdy + ---+d, = d are the negatives of the anti-positive intersection
products of —a, ..., —q.
TheoremA .
From the case » = 1 of Theorem 8.3, we obtain the statement that
er(Z; R) = ((—a)?)

if « € M'(R) is an effective Cartier divisor and Z = {I(ma)}.
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Theorem10

Theorem 8.4. Suppose that R is a d-dimensional algebraic local domain, and Z(j) =
{I(mD(j))} are divisorial filtrations of R for 1 < j <r. Then the mized multiplicities

t
er((MM, . Z(r)1) =" —[S/mi : Rfmg|((—D(1)))" - ... - (=D(r)))*)
i=1
fordy,...,d e Nwithd, +---+d. =d.
LemmaR1
Wg $e the notation introduced before the statement of Lemma b.?. From Lemma

£ 0ok
.2 and (I2Z), we have that

limy, ;o 2B/ (1 DQ)- I (nn D(r)))
= > i [S/mi : R/”:R] (lim Esm; <sz-/J<rm1D(1>i>~--J<an<r>i>>)
T L=l v n—00 v .
TheoremA
The theorem now follows from Theorem 8.3. 0

Th AICSS
The following theorem follows from Theorem %.Seoarﬁma %M, Theorem 1.2]. It shows that
the Minkowski inequalities hold for the absolute values of the anti-positive intersection
products.

TheoremA
Theorem 8.5. (Minkowski Inequalities) Let assumptions be as in Theorem 8.3, with r =
2. Then
1) (1), (=a2)¥7)? < (=)™ (o)™ ) {(—a1) 7, (—ag)®™ ) for 1 <
1 <d-—1.
2) For0<i<d,

(=)', (a2) ) (=) ", (=a2)) < ((a1))((—a2)?),
3) For 0 <i<d, (—{(—a1)™", (~a2))? < (—{(—a))) " (~({(~a2)%))" and
1) (~((~a1 = a2} < (~((~a1)))d + (~((~az)")) 1.
We mention a version of the Minkowski inequalities in terms of positive intersection
numbers for pseudo effective divisors on a projective variety.

Theorem 8.6. (Minkowski Inequalities) Suppose that X is a complete algebraic variety
of dimension d over a field k and L1 and Lo are pseudo effective Cartier divisors on X.
Then

1) ((£5,£579)% > (Lt Lo (e 57 for 1 <i<d— 1

2) (L}, L5 NLT L4 >) > (L9)(L]) for 1 <i<d—1.
3) (LT, L) = (L)) (L))" for 0 < i <d.
1) (L1 ® L2))7 = ((LF)a + (L),

4
Proof. Statements 1) - 3) follow from the inequality of Theorem 6.6 %0] Statement 4)
follows from 3) and [10, Lemma 4.13], which establishes the super additivity of the positive
intersection product. O

Theoreml3
APPENDIX: A PROOF OF THEOREM 1.4

In this appendix give a proof of Theorem E%.o_r%ﬂgﬁx a potentially confusing index
error in the proof inVF%[].

Step 1). We first observe ‘ghat if I' C I are mp-primary ideals and P, I" is integral
over ,,~o(I")", then, by P{H"l, Theorem 8.2.1, Corollary 1.2.5 and Proposition 11.2.1],
er(l; R) = er(I'; R).
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Step 2). Suppose Z = {I;} and I’ = {I]} are Noetherian filtrations of R by mpg-
primary ideals and 7/ C Z. Suppose b € Z,. Define (V) = {I( } where I( ) — I,; and
(T)® = {(I’)Eb)} where (I’)E ) = = (I')p;. Then from & Lemma 3.3] we deduce that

er(Z; R) = er(Z’; R) if and only if eg(Z"; R) = ex((7")"); R).

Step 3). Suppose Z' C 7 are filtrations of R by m g-prim éfsideals. Suppose a € Z,.. Let
Zo = {Ian} be the a-th truncated filtration of Z defined in [14, Definition 4.1]. Then there
exists @ € Z such that every element of @n>0 I, (considered as a subring of @,,~q In) is

fegral over D50 Ln» Where o = {I7;} is the @-th truncated filtration of 7' defined in
%, Definition 4.1]s.
Define a Noetherian filtration A, = {A,;} of R by mpg-primary ideals by

Aui= Y ILnalhg
a+pB=i

Recall that I = I, a0 = B. We restrict to a, B > 0 in the sum. Thus we have inclusions

of graded rings @n>0 in C D> Aan and @5 Aa,n is finite over P, 5o I, By Steps
2) and 1),

er(Zt R) = er(Aq; R).
SS
By h, Proposition 4.3],
lim eg(Z; R) = er(Z'; R)

a—0o0

and thus
ILm eR(Aa; R) = 6R(I/; R).

SS
Step 4) Let notation be as in the proof of EM, Proposition 4.3], but taking J; = I; and
J(a); = I4;. Define

F(.Aa)(t) = {(ml, .. .,md,i) e Nd+1 ’ dimy, A(w' N Kml)\1+"'+md>\d/Aa'L N Km1>\1+ Fmadg >t
and my + -+ +mgq < Bi}.

Now I'(a)® C T(A,)® c T'® for all ¢, so

A(T(a)P) € A(T(A)Y) c ATH)
for all a. By equation (14) 1),

lim Vol(A(I'(a)®)) = Vol(A(T®)Y),

a—ro0
and so

lim VOl(A(T'(Ag) D)) = Vol(A(D®)).
Thus

lim ep(Aqd; R) = er(T; R)

a—o0

SS
by (12) of the proof of Ffvﬁf, Proposition 4.3] applied to A,.
Step 5). ghave that er(Z; R) = er(Z'; R) by Steps 3) and 4). Now er(Z; M) =
er(Z'; M) by [14, Theorem 6.8](with r = 1).
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