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Abstract. Suppose that R is an excellent local domain with maximal ideal mR. The
theory of multiplicities and mixed multiplicities of mR-primary ideals extends to (possibly
non Noetherian) filtrations of R by mR-primary ideals, and many of the classical theorems
for mR-primary ideals continue to hold for filtrations. The celebrated theorems involving
inequalities continue to hold for filtrations, but the good conclusions that hold in the
case of equality for mR-primary ideals do not hold for filtrations.

In this article, we consider multiplicities and mixed multiplicities of R by mR-primary
divisorial filtrations. We show that some important theorems on equalities of multiplic-
ities and mixed multiplicities of mR-primary ideals, that are not true in general for
filtrations, are true for divisorial filtrations. We prove that a theorem of Rees showing
that if there is an inclusion of mR-primary ideals I ⊂ I ′ with the same multiplicity
then I and I ′ have the same integral closure also holds for divisorial filtrations. This
theorem does not hold for arbitrary filtrations. The classical Minkowski inequalities for
mR-primary ideals I1 and I2 hold quite generally for filtrations. If R has dimension two
and there is equality in the Minkowski inequalities, then Teissier and Rees and Sharp
have shown that there are powers Ia1 and Ib2 that have the same integral closure. This
theorem does not hold for arbitrary filtrations. The Teissier-Rees-Sharp theorem has
been extended by Katz to mR-primary ideals in arbitrary dimension. We show that the
Teissier-Rees-Sharp theorem does hold for divisorial filtrations in an excellent domain of
dimension two.

We also show that the mixed multiplicities of divisorial filtrations are anti-positive
intersection products on a suitable normal scheme X birationally dominating R, when
R is an algebraic local domain (essentially of finite type over a field).

.

1. Introduction
Intro

The study of mixed multiplicities of mR-primary ideals in a Noetherian local ring R
with maximal ideal mR was initiated by Bhattacharya

Bh
[3], Rees

R
[34] and Teissier and Risler

T1
[42]. In

CSS
[14] the notion of mixed multiplicities is extended to arbitrary, not necessarily

Noetherian, filtrations of R by mR-primary ideals. It is shown in
CSS
[14] that many basic

theorems for mixed multiplicities of mR-primary ideals are true for filtrations.
The development of the subject of mixed multiplicities and its connection to Teissier’s

work on equisingularity
T1
[42] can be found in

GGV
[20]. A survey of the theory of mixed mul-

tiplicities of ideals can be found in
HS
[41, Chapter 17], including discussion of the results

of the papers
R1
[35] of Rees and

S
[40] of Swanson, and the theory of Minkowski inequalities

of Teissier
T1
[42],

T2
[43], Rees and Sharp

RS
[38] and Katz

Ka
[22]. Later, Katz and Verma

KV
[23],

generalized mixed multiplicities to ideals that are not all mR-primary. Trung and Verma
TV
[45] computed mixed multiplicities of monomial ideals from mixed volumes of suitable
polytopes.
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We will be concerned with multiplicities and mixed multiplicities of (not necessarily
Noetherian) filtrations, which are defined as follows.

Definition 1.1. A filtration I = {In}n∈N of a ring R is a descending chain

R = I0 ⊃ I1 ⊃ I2 ⊃ · · ·

of ideals such that IiIj ⊂ Ii+j for all i, j ∈ N. A filtration I = {In} of a local ring R
by mR-primary ideals is a filtration I = {In}n∈N of R such that In is mR-primary for
n ≥ 1. A filtration I = {In}n∈N of a ring R is said to be Noetherian if

⊕
n≥0 In is a

finitely generated R-algebra.

The following theorem is the key result needed to define the multiplicity of a filtration
of R by mR-primary ideals. Let `R(M) denote the length of an R-module M .

TheoremI20 Theorem 1.2. (
C2
[9, Theorem 1.1] and

C3
[11, Theorem 4.2]) Suppose that R is a Noetherian

local ring of dimension d, and N(R̂) is the nilradical of the mR-adic completion R̂ of R.
Then the limit

I5I5 (1) lim
n→∞

`R(R/In)

nd

exists for any filtration I = {In} of R by mR-primary ideals, if and only if dimN(R̂) < d.

The problem of existence of such limits (
I5
1) has been considered by Ein, Lazarsfeld and

Smith
ELS
[18] and Mustaţă

Mus
[32]. When the ring R is a domain and is essentially of finite type

over an algebraically closed field k with R/mR = k, Lazarsfeld and Mustaţă
LM
[28] showed

that the limit exists for all filtrations of R by mR-primary ideals. Cutkosky
C3
[11] proved it

in the complete generality stated above in Theorem
TheoremI20
1.2.

As can be seen from this theorem, one must impose the condition that the dimension
of the nilradical of the completion R̂ of R is less than the dimension of R. The nilradical
N(R) of a d-dimensional ring R is

N(R) = {x ∈ R | xn = 0 for some positive integer n}.

We have that dimN(R) = d if and only if there exists a minimal prime P of R such that

dimR/P = d and RP is not reduced. In particular, the condition dimN(R̂) < d holds if

R is analytically unramified; that is, R̂ is reduced. We define the multiplicity of R with
respect to the filtration I = {In} to be

eR(I;R) = lim
n→∞

`R(R/In)

nd/d!
.

The multiplicity of a ring with respect to a non Noetherian filtration can be an irrational
number. A simple example on a regular local ring is given in

CSS
[14].

Mixed multiplicities of filtrations are defined in
CSS
[14]. Let M be a finitely generated

R-module where R is a d-dimensional Noetherian local ring with dimN(R̂) < d. Let
I(1) = {I(1)n}, . . . , I(r) = {I(r)n} be filtrations of R by mR-primary ideals. In

CSS
[14,

Theorem 6.1] and
CSS
[14, Theorem 6.6], it is shown that the function

M2M2 (2) P (n1, . . . , nr) = lim
m→∞

`R(M/I(1)mn1 · · · I(r)mnrM)

md

is equal to a homogeneous polynomial G(n1, . . . , nr) of total degree d with real coefficients
for all n1, . . . , nr ∈ N.
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We define the mixed multiplicities of M from the coefficients of G, generalizing the
definition of mixed multiplicities for mR-primary ideals. Specifically, we write

eqV6eqV6 (3) G(n1, . . . , nr) =
∑

d1+···+dr=d

1

d1! · · · dr!
eR(I(1)[d1], . . . , I(r)[dr];M)nd11 · · ·n

dr
r .

We say that eR(I(1)[d1], . . . , I(r)[dr];M) is the mixed multiplicity of M of type (d1, . . . , dr)
with respect to the filtrations I(1), . . . , I(r). Here we are using the notation

eqI6eqI6 (4) eR(I(1)[d1], . . . , I(r)[dr];M)

to be consistent with the classical notation for mixed multiplicities of M with respect to
mR-primary ideals from

T1
[42]. The mixed multiplicity of M of type (d1, . . . , dr) with respect

to mR-primary ideals I1, . . . , Ir, denoted by eR(I
[d1]
1 , . . . , I

[dr]
r ;M) (

T1
[42],

HS
[41, Definition

17.4.3]) is equal to the mixed multiplicity eR(I(1)[d1], . . . , I(r)[dr];M), where the Noether-
ian I-adic filtrations I(1), . . . , I(r) are defined by I(1) = {Ii1}i∈N, . . . , I(r) = {Iir}i∈N.

We have that

eqX31eqX31 (5) eR(I;M) = eR(I [d];M)

if r = 1, and I = {Ii} is a filtration of R by mR-primary ideals. We have that

eR(I;M) = lim
m→∞

d!
`R(M/ImM)

md
.

The multiplicities and mixed multiplicities of mR-primary ideals are always positive
(
T1
[42] or

HS
[41, Corollary 17.4.7]). The multiplicities and mixed multiplicities of filtrations are

always nonnegative, as is clear for multiplicities, and is established for mixed multiplicities
in

CSV
[15, Proposition 1.3]. However, they can be zero. If R is analytically irreducible, then

all mixed multiplicities are positive if and only if the multiplicities eR(I(j);R) are positive
for 1 ≤ j ≤ r. This is established in

CSV
[15, Theorem 1.4].

Suppose that R is a d-dimensional excellent local domain, with quotient field K. A
valuation ν of K is called an mR-valuation if ν dominates R (R ⊂ Vν and mν ∩ R = mR

where Vν is the valuation ring of ν with maximal ideal mν) and trdegR/mRVν/mν = d− 1.
Suppose that I is an ideal in R. Let X be the normalization of the blowup of I,

with projective birational morphism ϕ : X → Spec(R). Let E1, . . . , Et be the irreducible
components of ϕ−1(V (I)) (which necessarily have dimension d− 1). The Rees valuations
of I are the discrete valuations νi for 1 ≤ i ≤ t with valuation rings Vνi = OX,Ei . If R is

normal, then X is equal to the blowup of the integral closure Is of an appropriate power
Is of I.

Every Rees valuation ν that dominates R is an mR-valuation and every mR-valuation
is a Rees valuation of an mR-primary ideal by

R3
[37, Statement (G)].

Associated to an mR-valuation ν are valuation ideals

eqX2eqX2 (6) I(ν)n = {f ∈ R | ν(f) ≥ n}

for n ∈ N. In general, the filtration I(ν) = {I(ν)n} is not Noetherian. In a two-
dimensional normal local ring R, the condition that the filtration of valuation ideals of
R is Noetherian for all mR-valuations dominating R is the condition (N) of Muhly and
Sakuma

MS
[31]. It is proven in

C6
[7] that a complete normal local ring of dimension two satisfies

condition (N) if and only if its divisor class group is a torsion group. An example is given
in

CGP
[5] of an mR-valuation of a 3-dimensional regular local ring R that is not Noetherian.
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DefDF Definition 1.3. Suppose that R is an excellent local domain. We say that a filtration I
of R by mR-primary ideals is a divisorial filtration if there exists a projective birational
morphism ϕ : X → Spec(R) such that X is the normalization of the blowup of an mR-
primary ideal and there exists a nonzero effective Cartier divisor D on X with exceptional
support for ϕ such that I = {I(mD)}m∈N where

eqX22eqX22 (7) I(mD) = IR(mD) = Γ(X,OX(−mD)) ∩R.

If R is normal, then I(mD) = Γ(X,OX(−mD)). If D =
∑t

i=1 aiEi where the ai ∈ N
and the Ei are prime exceptional divisors of ϕ, with associated mR-valuations νi, then

I(mD) = I(ν1)a1m ∩ · · · ∩ I(νt)atm.

Suppose that I(1), . . . , I(r) are divisorial filtrations of an excellent local domain R. We
then have associated mixed multiplicities

eqX20eqX20 (8) eR(I(1)[d1], . . . , I(r)[dr];R)

for d1, . . . , dr ∈ N with d1 + · · ·+ dr = d.
If R is analytically irreducible, then all mixed multiplicities (

eqX20
8) are positive by Propo-

sition
PropPos
2.1.

We show in (
eq15
54) and (

eq14
53) of Section

Sec5
5 that if R has dimension two, then the mixed

multiplicities (
eqX20
8) are positive rational numbers. In Example 6 of

CS
[16], an example is given

of an mR-valuation ν dominating a normal excellent local domain of dimension three
such that eR(I(ν);R) is an irrational number. Thus the mixed multiplicities (

eqX20
8) can be

irrational if d ≥ 3.
The following theorem in

CSS
[14] generalizes

HS
[41, Proposition 11.2.1] for mR-primary ideals

to filtrations of R by mR-primary ideals.

Theorem13 Theorem 1.4. (
CSS
[14, Theorem 6.9]) Suppose that R is a Noetherian d-dimensional local

ring such that

dimN(R̂) < d

and M is a finitely generated R-module. Suppose that I ′ = {I ′i} and I = {Ii} are filtrations
of R by mR-primary ideals. Suppose that I ′ ⊂ I (I ′i ⊂ Ii for all i) and the ring

⊕
n≥0 In

is integral over
⊕

n≥0 I
′
n. Then

eR(I;M) = eR(I ′;M).

We give a proof of Theorem
Theorem13
1.4 in the Appendix.

Rees has shown in
R
[34] that if R is a formally equidimensional Noetherian local ring

and I ⊂ I ′ are mR-primary ideals such that eR(I;R) = eR(I ′;R), then
⊕

n≥0(I ′)n is

integral over
⊕

n≥0 I
n (I and I ′ have the same integral closure). An exposition of this

converse to the above cited
HS
[41, Proposition 11.2.1] is given in

HS
[41, Proposition 11.3.1], in

the section entitled “Rees’s Theorem”. Rees’s theorem is not true in general for filtrations
of mR-primary ideals (a simple example in a regular local ring is given in

CSS
[14]) but it is

true for divisorial filtrations. In Theorem
TheoremX1
3.5, we show that Rees’s theorem (the converse

of Theorem
Theorem13
1.4) is true for divisorial filtrations of an excellent local domain.

An analogue of the Rees theorem for projective varieties is proven in Theorem
TheoremGRT
4.2.

We prove in
CSS
[14, Theorem 6.3] that the Minkowski inequalities hold for filtrations of

mR-primary ideals.

Theorem 1.5. (Minkowski Inequalities for filtrations)(
CSS
[14, Theorem 6.3]) Suppose thatTheoremMI

R is a Noetherian d-dimensional local ring with dimN(R̂) < d, M is a finitely generated
4



R-module and I(1) = {I(1)j} and I(2) = {I(2)j} are filtrations of R by mR-primary
ideals. Then

1) eR(I(1)[i], I(2)[d−i];M)2 ≤ eR(I(1)[i+1], I(2)[d−i−1];M)eR(I(1)[i−1], I(2)[d−i+1];M)
for 1 ≤ i ≤ d− 1.

2) For 0 ≤ i ≤ d,

eR(I(1)[i], I(2)[d−i];M)eR(I(1)[d−i], I(2)[i];M) ≤ eR(I(1);M)eR(I(2);M),

3) For 0 ≤ i ≤ d, eR(I(1)[d−i], I(2)[i];M)d ≤ eR(I(1);M)d−ieR(I(2);M)i and

4) eR(I(1)I(2));M)
1
d ≤ eR(I(1);M)

1
d + eR(I(2);M)

1
d ,

where I(1)I(2) = {I(1)jI(2)j}.

The Minkowski inequalities were formulated and proven for mR-primary ideals by
Teissier

T1
[42],

T2
[43] and proven in full generality, for Noetherian local rings, by Rees and

Sharp
RS
[38]. The fourth inequality 4) was proven for filtrations of R by mR-primary ideals

in a regular local ring with algebraically closed residue field by Mustaţă (
Mus
[32, Corollary

1.9]) and more recently by Kaveh and Khovanskii (
KK1
[24, Corollary 7.14]). The inequality

4) was proven with our assumption that dimN(R̂) < d in
C3
[11, Theorem 3.1]. Inequalities

2) - 4) can be deduced directly from inequality 1), as explained in
T1
[42],

T2
[43],

RS
[38] and

HS
[41,

Corollary 17.7.3].
Teissier

T3
[44] (for Cohen-Macaulay normal two-dimensional complex analytic R), Rees

and Sharp
RS
[38] (in dimension 2) and Katz

Ka
[22] (in complete generality) have proven that

if R is a d-dimensional formally equidimensional Noetherian local ring and I(1), I(2) are
mR-primary ideals such that the Minkowski equality

eR((I(1)I(2));R)
1
d = eR(I(1);R)

1
d + eR(I(2);R)

1
d

holds, then there exist positive integers r and s such that the integral closures I(1)r and

I(2)s of the ideals I(1)r and S(2)s are equal, which is equivalent to the statement that
the R-algebras

⊕
n≥0 I(1)rn and

⊕
n≥0 I(2)sn have the same integral closure.

The Teissier-Rees-Sharp-Katz theorem is not true for filtrations, even in a regular local
ring, as is shown in a simple example in

CSS
[14].

In Theorem
PropR11
5.9, we show that the Teissier-Rees-Sharp theorem is true for divisorial

filtrations of an excellent two-dimensional local domain.
In Section

SecAPM1
8, we interpret the mixed multiplicities of divisorial filtrations I(1), . . . , I(r)

as intersection multiplicities. We assume that R is an algebraic local domain; that is,
a domain that is essentially of finite type over an arbitrary field k (a localization of a
finitely generated k-algebra), and that ϕ : X → Spec(R) is the normalization of the
blowup of an mR-primary ideal. We define in Section

SecAPM3
7 anti-positive intersection products

〈F1, . . . , Fd〉 of anti-effective Cartier divisors F1, . . . , Fd on X with exceptional support for
ϕ, generalizing the positive intersection product of Cartier divisors defined on projective
varieties in

BFJ
[4] over an algebraically closed field of characteristic zero and in

C4
[10] over an

arbitrary field.
Suppose that D(1), . . . , D(r) are Cartier divisors on X with exceptional support. Let

I(j) = {I(nD(j))} for 1 ≤ i ≤ r be divisorial filtrations of R, where the mR-primary
ideals I(nD(j)) are defined by (

eqX22
7).

In Theorem
TheoremA
8.3, we show that, when R is normal, the mixed multiplicities

eR((1)[d1], . . . , I(r)[dr];R) = −〈(−D(1))d1 , . . . , (−D(r))dr〉
5



are the negatives of the corresponding anti-positive intersection multiplicities for all

d1, . . . , dr ∈ N

such that d1 + · · ·+ dr = d. A related formula is given in Theorem
Theorem10
8.4 if R is not normal.

When R has dimension 2, the anti-positive intersection product

〈(−D(1))d1 , (−D(2))d2〉 = (∆d1
1 ·∆

d2
2 )

is the ordinary intersection product of the anti-nef parts ∆1, ∆2 of the respective Zariski
decompositions of D1 and D2.

In Section
Sec5
5, we develop the theory of mixed multiplicities of divisorial filtrations in

a two-dimensional excellent local domain using the theory of Zariski decomposition. We
give a proof of Theorem

TheoremX1
3.5 in dimension 2 using this method in Proposition

PropR10
5.8 and use

this method to prove Proposition
PropR11
5.9 on the Minkowski equality.

We use the method of volumes of convex bodies associated to appropriate semigroups
introduced in

Ok
[33],

LM
[28] and

KK
[25].

We will denote the nonnegative integers by N and the positive integers by Z+. We will
denote the set of nonnegative rational numbers by Q≥0 and the positive rational numbers
by Q+. We will denote the set of nonnegative real numbers by R≥0. For a real number x,
dxe will denote the smallest integer that is ≥ x and bxc will denote the largest integer that
is ≤ x. If E1, . . . , Er are prime divisors on a normal scheme X and a1, . . . , ar ∈ R, then
b
∑
aiEic denotes the integral divisor

∑
baicEi and daiEie denotes the integral divisor∑

daieEi.
The maximal ideal of a local ring R will be denoted by mR. The quotient field of a

domain R will be denoted by QF(R). We will denote the length of an R-module M by
`R(M).

2. First Properties of Mixed multiplicities of divisorial filtrations
Sec6Secd-dim

In this section we prove some basic facts about mixed multiplicities of valuation ideals
an divisorial filtrations that will be useful.

PropPos Proposition 2.1. Suppose that R is an excellent, analytically irreducible d-dimensional
local domain and ν1, . . . , νt are mR-valuations of R.

1) Suppose that a1, . . . , at ∈ N are not all zero. Let In = I(ν1)na1 ∩ · · · ∩ I(νt)nat and
I = {In}. Then

eR(I;R) > 0.

2) Suppose that r ∈ Z+ and ai(j) ∈ N for 1 ≤ i ≤ t and 1 ≤ j ≤ r and for each j,
not all ai(j) are zero. Let I(j)n = I(ν1)na1(j) ∩ · · · ∩ I(νt)nat(j) for 1 ≤ j ≤ r and
I(j) = {I(j)n} for 1 ≤ j ≤ r. Then

eR(I(1)[d1], . . . , I(r)[dr];R) > 0

for all d1, . . . , dr ∈ N with d1 + · · ·+ dr = d.

Proof. We first prove 1). By statement (G) of
R3
[37], for each mR-valuation νi of R, there

exists an mR-primary ideal Ji such that νi is a Rees valuation of Ji. Now letting J =
J1J2 · · · Jt, we have that ν1, . . . , νt are amongst the Rees valuations of J. We can if necessary
increase the set ν1, . . . , νt and set ai = 0 for each new i to assume that ν1, . . . , νt are the
entirety of the Rees valuations for J . By Rees’s Izumi theorem

R3
[37], the topologies of the
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νi are linearly equivalent. Let νJ be the reduced order. By the Rees valuation theorem
(recalled in

R3
[37]),

νJ(x) = min
i

{
νi(x)

νi(J)

}
for x ∈ R, so the topology induced by νJ is linearly equivalent to the topology induced
by the νi. We have that νJ is linearly equivalent to the J-topology by

R2
[36] since R is

analytically unramified.
Thus there exists α ∈ Z+ such that

eqX5eqX5 (9) I(νi)αn ⊂ Jn ⊂ mn
R for all n ∈ Z+.

Let a = max{a1, . . . , at}. Then Iaαn ⊂ mn
R for all n. So `R(R/mn

R) ≤ `R(R/Inαa) for all
n and so

eR(I;R) ≥ 1

(aα)d
eR(mR;R) > 0.

We now prove 2). Statement 1) implies that eR(I(j);R) > 0 for 1 ≤ j ≤ r. Thus all
mixed multiplicities are positive by

CSV
[15, Theorem 1.4].

�
Not

2.1. Divisors and sections on blowups. Suppose that R is an excellent d-dimensional
local domain. Let S be the normalization of R, which is a finitely generated R-module,
and let m1, . . . ,mt be the maximal ideals of S. Let ϕ : X → Spec(R) be a birational
projective morphism such that X is the normalization of the blowup of an mR-primary
ideal. Since X is normal, ϕ factors through Spec(S). Let ϕi : Xi → Spec(Smi) be the
induced projective morphisms where Xi = X×Spec(S) Spec(Smi). For 1 ≤ i ≤ t, let {Ei,j}
be the irreducible exceptional divisors in ϕ−1

i (mi).
Suppose that D is an effective exceptional Weil divisor on X. Write D =

∑
i,j ai,jEi,j

with aij ∈ N. Define Di =
∑

j ai,jEi,j for 1 ≤ i ≤ t. The reflexive coherent sheaf OX(−D)

of OX -modules is defined by OX(−D) = i∗OU (−D|U) where U is the open subset of
regular points of X and i : U → X is the inclusion. We have that dim(X \ U) ≤ d − 2
since X is normal. The basic properties of this sheaf are developed for instance in

C5
[12,

Section 13.2]. We have that S ⊂ OX,p for all p ∈ X, since OX,p is normal. Now Γ(X,OX)
is a domain with the same quotient field as R, and is a finitely generated R-module since
ϕ is proper. Thus Γ(X,OX) = Γ(X,OX(0)) = S.

Let

eqX30eqX30 (10)

J(D) = Γ(X,OX(−D)),
J(Di) = Γ(Xi,OXi(−Di)),
I(D) = J(D) ∩R,
I(Di) = J(Di) ∩R.

We have that

eqR6eqR6 (11) S/J(D) ∼=
t⊕
i=1

Smi/Γ(Xi,OXi(−Di)) ∼=
t⊕
i=1

Smi/J(Di)

and so

eqR15eqR15 (12) `R(S/J(D)) =

t∑
i=1

`R(Smi/J(Di)) =
t∑
i=1

[S/mi : R/mR]`Smi (Smi/J(Di)).

We have that [S/mi : R/mR] <∞ for all i since S is a finitely generated R-module.
Let D(1), . . . , D(r) be effective Weil divisors on X with exceptional support in ϕ−1(mR).
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LemmaR1 Lemma 2.2. For n1, . . . , nr ∈ N,

lim
n→∞

`R(R/I(nn1D(1)) · · · I(nnrD(r)))

nd
= lim

n→∞

`R(S/J(nn1D(1)) · · · J(nnrD(r)))

nd
.

Proof. Fix n1, . . . , nr ∈ N. Let C be the conductor of R (which is a nonzero ideal in both
R and S), and choose 0 6= x ∈ C. We then have short exact sequences of S-modules

0→ An → S/J(nn1D(1)) · · · J(nnrD(r))
xr→ S/J(nn1D(1)) · · · J(nnrD(r))→ Cn → 0

where An and Cn are the respective kernels and cokernels of multiplication of

S/J(nn1D(1)) · · · J(nnrD(r))

by xr. We have that

Cn ∼= S/(xrS+J(nn1D(1)) · · · J(nnrD(r))) ∼= (S/xrS)/(J(nn1D(1)) · · · J(nnrD(r))(S/xrS)).

Thus limn→∞
`S(Cn)
nd

= 0 since dimS/xrS = d− 1. Now

S/J(nn1D(1)) · · · J(nnrD(r)) ∼=
t⊕

j=1

Smj/J(nn1D(1)j) · · · J(nnrD(r)j)).

By Theorem
TheoremI20
1.2, the limit

lim
n→∞

`S(S/J(nn1D(1)) · · · J(nnrD(r)))

nd
=

t∑
j=1

lim
n→∞

`Smj (Smj/J(nn1D(1)j) · · · J(nnrD(r)j))

nd

exists and so limn→∞
`S(An)
nd

= 0. Let Fn and Bn be the respective kernels and cokernels
of the homomorphisms of R-modules

S/J(nn1D(1)) · · · J(nnrD(r))
xr→ R/I(nn1D(1)) · · · I(nnrD(r))).

Then we have short exact sequences of R-modules

0→ Fn → S/J(nn1D(1)) · · · J(nnrD(r))
xr→ R/I(nn1D(1)) · · · I(nnrD(r)))→ Bn → 0.

We have natural surjections of R-modules

(R/xrR)/I(nn1D(1)) · · · I(nnrD(r))(R/xrR) ∼= R/(xrR+I(nn1D(1)) · · · I(nnrD(r)))→ Bn.

Now dimR/xrR = d− 1 so

lim
n→∞

`R((R/xrR)/I(nn1D(1)) · · · I(nnrD(r))(R/xrR))

nd
= 0,

and so

lim
n→∞

`R(Bn)

nd
= 0.

Since the support of the S-moduleAn is contained in the set of maximal ideals {m1, . . . ,mt},
we have that An ∼=

⊕t
j=1(An)mj and `S(An) =

∑t
j=1 `Smj ((An)mj ). Thus

`R(An) =
∑t

j=1[S/mj : R/mR]`Smj ((An)mj )

≤ µ`S(An)

where µ = maxj{[S/mj : R/mR]}. We then have that

limn→∞
`R(An)

nd
≤ µ lim

n→∞

`S(An)

nd
= 0.

8



There are natural inclusions Fn ⊂ An for all n, so

lim
n→∞

`R(Fn)

nd
= 0

and thus

lim
n→∞

`R(R/I(nn1D(1)) · · · I(nnrD(r)))

nd
= lim

n→∞

`R(S/J(nn1D(1)) · · · J(nnrD(r)))

nd
.

�

3. Rees’s theorem for divisorial filtrations
SecR

In this section, suppose that R is a d-dimensional normal excellent local ring. Let
ϕ : X → Spec(R) be a birational projective morphism that is the blowup of an mR-
primary ideal such that X is normal.

Let E1, . . . , Er be the prime exceptional divisors of ϕ (which all contract to mR), and let
µi be the discrete valuation with valuation ring OX,Ei for 1 ≤ i ≤ r. Let D be a nonzero
effective Cartier divisor on X with exceptional support. For 1 ≤ i ≤ r and m ∈ N, let

I(µi)m = {f ∈ R | µi(f) ≥ m},

as defined in (
eqX2
6), and define

τEi,m(D) = min{µi(f) | f ∈ Γ(X,OX(−mD))}.

Let τm,i = τEi,m(D). Then since τmn,i ≤ nτm,i, we have that

eqAR1eqAR1 (13)
τmn,i
mn

≤ min{τm,i
m

,
τn,i
n
}.

Now define

γEi(D) = inf
m

τm,i
m

.

Expand D =
∑r

i=1 aiEi with ai ∈ N. We have that

Γ(X,OX(−mD)) = {f ∈ R | µi(f) ≥ mai for 1 ≤ i ≤ r}.

Thus τEi,m(D) ≥ mai for all m ∈ N, and so

eqAR12eqAR12 (14) γEi(D) ≥ ai for all i.

LemmaAR1 Lemma 3.1. We have that

Γ(X,OX(−mD)) = Γ(X,OX(−d
r∑
i=1

mγEi(D)Eie))

for all m ∈ N.

Proof. We have that

Γ(X,OX(−d
r∑
i=1

mγEi(D)Eie)) ⊂ Γ(X,OX(−mD))

by (
eqAR12
14).

Suppose that f ∈ Γ(X,OX(−mD)). Then µi(f) ≥ τEi,m(D) ≥ mγEi(D) for all i, so
that µi(f) ≥ dmγEi(D)e for all i since µi(f) ∈ N. �

9



We now define a valuation that we will use to compute volumes of Cartier divisors D,
and that will allow us to extract some extra information that we need to prove Theorem
TheoremAR1
3.4 below.

Let i be any fixed index with 1 ≤ i ≤ r. Suppose that p ∈ Ei is a closed point that is
nonsingular on X and Ei and that is not contained in Ej for j 6= i. Let

eqAR2eqAR2 (15) X = Y0 ⊃ Y1 = Ei ⊃ · · · ⊃ Yd = {p}

be a flag; that is, the Yj are subvarieties of X of dimension d−j such that there is a regular
system of parameters b1, . . . , bd in OX,p such that b1 = · · · = bj = 0 are local equations of
Yj for 1 ≤ j ≤ d.

The flag determines a valuation ν on the quotient field K of R as follows. We have a
sequence of natural surjections of regular local rings

eqGA3eqGA3 (16) OX,p = OY0,p
σ1→ OY1,p = OY0,p/(b1)

σ2→ · · · σd−1→ OYd−1,p = OYd−2,p/(bd−1).

Define a rank-d discrete valuation ν on K (an Abhyankar valuation) by prescribing for
s ∈ OX,p,

ν(s) = (ordY1(s), ordY2(s1), · · · , ordYd(sd−1)) ∈ (Zd)lex

where

s1 = σ1

(
s

b
ordY1 (s)

1

)
, s2 = σ2

(
s1

b
ordY2 (s1)

2

)
, . . . , sd−1 = σd−1

 sd−2

b
ordYd−1

(sd−2)

d−1


and ordYj+1(sj) is the highest power of bj+1 that divides sj in OYj ,p. We have that

ν(s) =

(
µi(s), ω

(
s

b
µi(s)
1

))
where ω is the rank-(d − 1) Abhyankar valuation on the function field k(Ei) of Ei deter-
mined by the flag

Ei = Y1 ⊃ · · · ⊃ Yd = {p}
on the projective k-variety Ei, where k = R/mR.

Consider the graded linear series Ln := Γ(Ei,OX(−nEi)⊗OXOEi) on Ei. Let g = b1, so
that g = 0 is a local equation of Ei in OX,p. Then for n ∈ N, we have natural commutative
diagrams

Γ(X,OX(−nEi)) → Γ(Ei,OX(−nEi)⊗OEi)
↓ ↓

OX(−nEi)p → OX(−nEi)p ⊗OX,p OEi,p
= OX,pg

n ∼= OEi,p ⊗OX,p OX,pgn

where we denote the rightmost vertical arrow by s 7→ εn(s)⊗gn and the bottom horizontal
arrow is

f 7→
[
f

gn

]
⊗ gn,

where
[
f
gn

]
is the class of f

gn in OEi,p.
Let Ξ be the semigroup defined for our fixed index i by

Ξ = {(n, ω(εn(s))) | n ∈ N and s ∈ Γ(Ei,OX(−nEi)⊗OX OEi)} ⊂ Zd,
10



and let ∆(Ξ) be the intersection of the closed convex cone generated by Ξ in Rd with
{1} × Rd−1. By the proof of Theorem 8.1

C2
[9] or the proof of

LM
[28, Theorem A], ∆(Ξ) is

compact and convex. Let

Ξn := {(n, ω(εn(s))) | s ∈ Γ(Ei,OX(−nEi)⊗OX OEi)}

be the elements of Ξ at level n. Suppose that δ is a positive integer. Let Γδ(D) be the
semigroup

Γδ(D) = {(ν(f), n) | f ∈ I(nD) and µi(f) ≤ nδ} ⊂ Nd+1.

Let ∆δ(D) be the intersection of the closed convex cone generated by Γδ(D) in Rd+1 with
Rd × {1}.

We have that the elements of Γδ(D) at level m are

Γδ(D)m := {(ν(f),m) | f ∈ I(mD) and µi(f) ≤ mδ} ⊂ (∪0≤j≤mδΞj)× {m}.

For t ∈ R+, let t∆(Ξ) = {tσ | σ ∈ ∆(Ξ)}. For (σ,m) ∈ Γδ(D), we have that

σ

m
∈ ∪0≤j≤δm

j

m
∆(Ξ) ⊂ ∪t∈[0,δ]t∆(Ξ).

The continuous map [0, δ] × ∆(Ξ) → Rd defined by (t, x) 7→ tx has image ∪t∈[0,δ]t∆(Ξ)
which is compact since ∆(Ξ) is. The closed convex set ∆δ(D) is thus compact since ∆δ(D)
is contained in this image, and so Γδ(D) satisfies condition (5) of

C2
[9, Theorem 3.2].

Now we verify that condition (6) of
C2
[9, Theorem 3.2] is satisfied; that is, Γδ(D) generates

Zd+1 as a group. Let G(Γδ(D)) be the subgroup of Zd+1 generated by Γδ(D). We have that
the value group of ν is Zd, and ej = ν(bj) for 1 ≤ j ≤ d is the natural basis of Zd. Write

bj =
fj
gj

with fj , gj ∈ R for 1 ≤ j ≤ d. There exists 0 6= h ∈ I(D). Thus hfj , hgj ∈ I(D).

There exists c ∈ Z+ such that hfj , hgj 6∈ I(µi)c for 1 ≤ j ≤ d. Possibly increasing δ in
the definition of Γδ(D), we then have (ν(hfj), 1), (ν(hgj), 1) ∈ Γδ(D) for 1 ≤ j ≤ d. Thus
(ej , 0) = (ν(hfj) − ν(hgj), 0) ∈ G(Γδ(D)) for 1 ≤ j ≤ d. Since (ν(hfj), 1) ∈ Γδ(D), we
then have that (0, 1) ∈ G(Γδ(D)). Thus we have that

lim
n→∞

#Γδ(D)n
nd

= Vol(∆δ(D))

by
C2
[9, Theorem 3.2] or

LM
[28, Proposition 2.1].

By Rees’s Izumi theorem
R3
[37], we have that there exists λ ∈ Z+ such that if f ∈ R and

µi(f) ≥ nλ, then µj(f) ≥ n for 1 ≤ j ≤ r. Thus I(µi)nλ ⊂ I(µj)n for all n ∈ N, so that

I(µi)naλ ⊂ I(µi)na1 ∩ · · · ∩ I(µr)nar = Γ(X,OX(−nD))

where a = max{a1, . . . , ar}.
Take δ to be greater than or equal to aλ in the definition of Γδ(D). Let

µ = [OX,p/mp : R/mR].

Consider the Newton-Okounkov bodies ∆δ(0) and ∆δ(D) constructed from the semigroups
Γδ(0) and Γδ(D) with this δ. Then, as in

C3
[11, Theorem 5.6],

eqAR10eqAR10 (17) lim
m→∞

`R(R/I(mD))

md
= µ(Vol(∆δ(0))−Vol(∆δ(D))).

In fact, we have that

eqAR11eqAR11 (18) lim
n→∞

`R(I(nD)/I(µi)δn)

nd
= µVol(∆δ(D)).

11



LemmaCCL Lemma 3.2. Suppose that ∆1 and ∆2 are compact, convex subsets of Rd, ∆1 ⊂ ∆2 and
Vol(∆1) = Vol(∆2) > 0. Then ∆1 = ∆2.

Proof. Suppose that ∆1 6= ∆2. Then there exists p ∈ ∆2 \∆1. Since ∆1 is closed in Rd,
there exists an epsilon ball Bε(p) centered at p in Rd such that Bε(p) ∩∆1 = ∅. Now ∆2

has positive volume, so there exist w1, . . . , wd ∈ ∆2 such that v1 = w1−p, . . . , vd = wd−p
is a real basis of Rd. Since ∆2 is convex, there exists δ > 0 such that letting W be the
hypercube

W = {p+ α1v1 + · · ·+ αdvd | 0 ≤ αi ≤ δ for 1 ≤ i ≤ d},
we have that W ⊂ ∆2 ∩Bε(p). But then

Vol(∆2)−Vol(∆1) ≥ Vol(W ) > 0.

a contradiction. Thus ∆1 = ∆2. �

LemmaAR2 Lemma 3.3. For δ � 0, we have that Vol(∆δ(D)) > 0.

Proof. By (
eqX5
9) in the proof of Proposition

PropPos
2.1, there exists α ∈ Z+ such that I(µi)αn ⊂ mn

R
for all n ∈ Z+ (since an excellent normal local ring is analytically ireducible). Further,
there exists c ∈ Z+ such that mc

R ⊂ I(D), so that mnc
R ⊂ I(nD) for all n. Choosing

δ > 2αc so that I(µi)δn ⊂ m2cn
R for all n, we have that

Vol(∆δ(D)) = 1
µ limn→∞

`R(nD)/I(µi)δn)
nd

≥ 1
µ limn→∞

`R(mcnR /m2cn
R )

nd

= 1
µ
eR(mR;R)cd(2d−1)

d! > 0.

�

TheoremAR1 Theorem 3.4. Let D1, D2 be effective Cartier divisors on X with exceptional support,
such that D1 ≤ D2 and eR(I1, R) = eR(I2, R), where I1 = {I(mD1)} and I2 = {I(mD2)}.
Then

Γ(X,OX(−mD1)) = Γ(X,OX(−mD2))

for all m ∈ N.

Proof. Write D1 =
∑r

i=1 aiEi and D2 =
∑r

i=1 biEi with ai, bi ≥ 0 for all i. For each i with
1 ≤ i ≤ r choose a flag (

eqAR2
15) with Y1 = Ei and p a closed point such that p is nonsingular

on X and Ei and p 6∈ Ej for j 6= i. Let π1 : Rd+1 → R be the projection onto the first
factor.

By the definition of γEi(D2) and since (for δ sufficiently large) γEi(D2) is in the closure
of the compact set π1(∆δ(D2)),

π−1
1 (γEi(D2)) ∩∆δ(D2) 6= ∅

and

π−1
1 (a) ∩∆δ(D2) = ∅ if a < γEi(D2).

We have that D1 ≤ D2 implies ∆δ(D1) ⊂ ∆δ(D2). We have that Vol(∆δ(D1)) > 0 by
Lemma

LemmaAR2
3.3 (taking δ sufficiently large). Since we are assuming that eR(I1;R) = eR(I2;R),

by (
eqAR10
17), we have that Vol(D1) = Vol(D2), and so ∆(D1) = ∆(D2) by Lemma

LemmaCCL
3.2 (taking

δ sufficiently large). Thus

γEi(D1) = γEi(D2)
12



for 1 ≤ i ≤ r. We obtain that

−
r∑
i=1

γEi(D2)Ei = −
r∑
i=1

γEi(D1)Ei.

By Lemma
LemmaAR1
3.1, for all m ≥ 0,

Γ(X,OX(−mD1)) = Γ(X,OX(−d
∑
mγEi(D1)Eie))

= Γ(X,OX(−d
∑
mγEi(D2)Eie))

= Γ(X,OX(−mD2)).

�

We now show that Rees’s theorem for mR-primary ideals,
R
[34],

HS
[41, Proposition 11.3.1],

generalizes to divisorial filtrations, giving a converse to Theorem
Theorem13
1.4 for divisorial filtra-

tions.

TheoremX1 Theorem 3.5. Suppose that R is a d-dimensional excellent local domain. Let ϕ : X →
Spec(R) be the normalization of the blowup of an mR-primary ideal. Suppose that D(1) and
D(2) are effective Cartier divisors on X with exceptional support such that D(1) ≤ D(2)
and eR(I(1);R) = eR(I(2);R), where I(1), I(2) are the filtrations by mR-primary ideals
I(i) = {I(nD(i))} and I(2) = {I(nD(2))}. Then

I(mD(1)) = I(mD(2))

for all m ∈ N.

Proof. We use the notation introduced in Subsection
Not
2.1. Let D(1)i, D(2)i be the divisors

induced by D(1) and D(2) on Xi. Since D(1) ≤ D(2), we have that

eqX1eqX1 (19) D(1)i ≤ D(2)i for all i.

Thus

eqX2*eqX2* (20) eSmi ({J(mD(1)i)};Smi) ≤ eSmi ({J(mD(2)i);Smi) for all i.

Now Lemma
LemmaR1
2.2 and (

eqR15
12) imply

eqX3eqX3 (21) eR(I(j);R) = eR({I(mD(j))};R) =
t∑
i=1

[S/mi : R/mR]eSmi ({J(mD(j)i)};Smi)

for j = 1, 2.
Now the assumption eR(I(1);R) = eR(I(2);R), (

eqX2*
20) and (

eqX3
21) imply

eqX4eqX4 (22) eSmi ({J(mD(1)i)};Smi) = eSmi ({J(mD(2)i)};Smi)

for all i. Now (
eqX1
19), (

eqX4
22) and Theorem

TheoremAR1
3.4 imply

J(mD(1)i) = Γ(Xi,OXi(−mD(1)i)) = Γ(Xi,OXi(−mD(2)i)) = J(mD(2)i)

for all m ∈ N and all i. Thus

J(mD(1)) = Γ(X,OX(−mD(1))) = Γ(X,OX(−mD(2))) = J(mD(2))

for all m ∈ N by (
eqR6
11). Thus

I(mD(1)) = J(mD(1)) ∩R = J(mD(2)) ∩R = I(mD2)

for all m ∈ N. �
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4. A Geometric Rees Theorem

Let X be a d-dimensional normal projective variety over a field k. Suppose that D is
an effective Cartier divisor on X. The volume of D is

Vol(D) = lim
m→∞

dimk Γ(X,OX(mD))

md/d!
.

Let E be a codimension one prime divisor on X. We now define τE,m and γE(D) anal-
ogously to our definitions at the beginning of Section

SecR
3. Here we use slightly different

language, since we (following tradition) work with divisors of sections. For m ∈ N, define

τm,E(D) = min{ordE∆ | ∆ ∈ |mD|}.

Then since τmn,E ≤ nτm,E , we have that

eqGR1eqGR1 (23)
τmn,E
mn

≤ min{
τm,E
m

,
τn,E
n
}.

Now define

γE(D) = inf
m

τm,E
m

.

Expand D =
∑r

i=1 aiEi with Ei prime divisors and ai ∈ Z+.

LemmaGR1 Lemma 4.1. We have that

Γ(X,OX(mD)) = Γ(X,OX(mD−
r∑
i=1

dmγEi(D)eEi)) = Γ(X,OX(bmD−
r∑
i=1

mγEi(D)Eic))

for all m ∈ N.

Proof. Suppose that ∆ ∈ |mD|. Then ∆−
∑

i τEi,m(D)Ei ≥ 0 so that ∆−
∑
mγEiEi ≥ 0.

Thus ∆−
∑r

i=1dmγEi(D)eEi ≥ 0. �

We now recall the method of
LM
[28] to compute volumes of Cartier divisors, as extended

in
C2
[9] to arbitrary fields. Suppose that p ∈ X is a nonsingular closed point and

eqGR2eqGR2 (24) X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yd = {p}

is a flag; that is, the Yi are subvarieties of X of dimension d− i such that there is a regular
system of parameters b1, . . . , bd in OX,p such that b1 = · · · = bi = 0 are local equations of
Yi in X for 1 ≤ i ≤ d.

The flag determines a valuation ν on the function field k(X) of X as follows. We have
a sequence of natural surjections of regular local rings

eqGR3eqGR3 (25) OX,p = OY0,p
σ1→ OY1,p = OY0,p/(b1)

σ2→ · · · σd−1→ OYd−1,p = OYd−2,p/(bd−1).

Define a rank d discrete valuation ν on k(X) by prescribing for s ∈ OX,p,

ν(s) = (ordY1(s), ordY2(s1), · · · , ordYd(sd−1)) ∈ (Zd)lex

where

s1 = σ1

(
s

b
ordY1 (s)

1

)
, s2 = σ2

(
s1

b
ordY2 (s1)

2

)
, . . . , sd−1 = σd−1

 sd−2

b
ordYd−1

(sd−2)

d−1

 .

Let g = 0 be a local equation of D at p. For m ∈ N, define

ΦmD : Γ(X,OX(mD)) = {f ∈ k(X) | (f) +mD ≥ 0} → Zd
14



by ΦmD(f) = ν(fgm). The Newton-Okounkov body ∆(D) of D is the closure of the set

∪m∈N
1

m
ΦmD(Γ(X,OX(mD)))

in Rd. This is a compact and convex set by
LM
[28, Lemma 1.10] or the proof of Theorem 8.1

C2
[9].

Modifying the proof of
C2
[9, Theorem 8.1] and of

C3
[11, Lemma 5.4] we see that

GR4GR4 (26) Vol(D) = lim
m→∞

dimk Γ(X,OX(mD))

md/d!
= d![OX,p/mp : k]Vol(∆(D)).

Suppose that D1 ≤ D2 are effective Cartier divisors on X. Let g1 = 0 be a local
equation of D1 at p, g2 = 0 be a local equation of D2 at p, so that h = g2

g1
is a local

equation of D2 −D1 at p. We have commutative diagrams

Γ(X,OD(mD1)) → Γ(X,OX(mD2))
↓ ΦmD1 × {m} ↓ ΦmD2 × {m}
Zd+1 → Zd+1

where the top horizontal arrow is the natural inclusion and the bottom horizontal arrow
is the map

(α,m) 7→ (α+mν(h),m).

These diagrams induce an inclusion Λ : ∆(D1)→ ∆(D2) defined by α 7→ α+ ν(h).

TheoremGRT Theorem 4.2. Suppose that X is a normal projective variety over a field k and D1, D2

are effective Cartier divisors on X such that D1 is big, D1 ≤ D2 and Vol(D1) = Vol(D2).
Then

Γ(X,OX(nD1)) = Γ(X,OX(nD2))

for all n ∈ N.

Proof. Write D1 =
∑r

i=1 aiEi and D2 =
∑r

i=1 biEi with ai, bi ≥ 0 for all i. For each i with
1 ≤ i ≤ r choose a flag (

eqGR2
24) with Y1 = Ei and p a point such that p ∈ X is a nonsingular

closed point of X and Ei and p 6∈ Ej for j 6= i. Let π1 : Rd → R be the projection onto the
first factor. Then with the notation introduced above, ν(h) = (bi − ai, 0, . . . , 0). By the
definition of γEi(D2) and since γEi(D2) is in the closure of the compact set π1(∆(D2)),
we have that

π−1
1 (γEi(D2)) ∩∆(D2) 6= ∅

and
π−1

1 (a) ∩∆(D2)) = ∅ if a < γEi(D2).

Further, Λ(∆(D1)) ⊂ ∆(D2) and Vol(D1) = Vol(D2), so Λ(∆(D1)) = ∆(D2) by Lemma
LemmaCCL
3.2. Thus

γEi(D1) = γEi(D2)− (bi − ai)
for 1 ≤ i ≤ r. We obtain that

D2 −
r∑
i=1

γEi(D2)Ei = D1 −
r∑
i=1

γEi(D1)Ei.

By Lemma
LemmaGR1
4.1, for all m ≥ 0,

Γ(X,OX(mD1)) = Γ(X,OX(bmD1 −
∑
mγEi(D1)Eic))

= Γ(X,OX(bmD2 −
∑
mγEi(D2)Eic))

= Γ(X,OX(mD2)).

�
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5. Mixed Multiplicities of two dimensional Excellent local rings
Sec5

5.1. 2-dimensional normal local rings. In this subsection, suppose that R is an excel-
lent, normal local ring of dimension two, so that R is analytically irreducible. Resolutions
of singularities of Spec(R) exist by

L2
[30] or

CJS
[6]. Let ϕ : X → Spec(R) be a resolution of

singularities with prime (integral) exceptional curves E1, . . . , Es. By
L1
[29, Lemma 14.1],

the intersection matrix of E1, . . . , Es is negative definite. Thus there exists an effective
(necessarily Cartier) divisor B on X with exceptional support such that OX(−B) is very
ample, and so ϕ is the blowup of the mR-primary ideal ϕ∗OX(−B).

We refer to
L1
[29] for background material for this section. A Q-divisor on X with ex-

ceptional support is a formal linear combination of prime exceptional curves with rational
coefficients. A Q-divisor C is anti-nef if (C · E) ≤ 0 for all exceptional curves E on X.
Suppose that f ∈ QF(R) is nonzero. Then (f) will denote the divisor of f on X.

LemmaV1 Lemma 5.1. Let D be an effective divisor on X with exceptional support. Then there is
a unique minimal effective anti-nef Q-divisor ∆ on X with exceptional support such that
D ≤ ∆.

The Q-divisor ∆ is the unique effective Q-divisor ∆ on X such that

1) ∆ = D +B is anti-nef and B is effective.
2) (∆ · E) = 0 if E is a component of B.

The first conclusion of the lemma follows from the proof of the existence of Zariski
decomposition in

B
[2]. The second conclusion is the local formulation

CHR
[13, Proposition 2.1]

of the classical theorem of Zariski
Z
[47].

We will say that the expression 1) is the Zariski decomposition of D and that ∆ is the
anti-nef part of the Zariski decomposition of D.

Remarkv1 Remark 5.2. From the first conclusion of the lemma, we deduce that if D1 ≤ D2 are
effective divisors with exceptional support and respective anti-nef parts of their Zariski
decompositions ∆1 and ∆2, then ∆1 ≤ ∆2.

CorV1 Corollary 5.3. Suppose that D1 ≤ D2 are effective divisors with effective support, and
respective anti-nef parts of their Zariski decompositions ∆1 and ∆2. Then (∆2

2) ≤ (∆2
1)

with equality if and only if ∆1 = ∆2.

Proof. If ∆ is an anti-nef divisor with exceptional support, and E is a nonzero effective
Q-divisor with exceptional support, then

(∆ + E)2 = (∆2) + 2(∆ · E) + (E2) < (∆2)

since (E2) < 0 as the intersection form on exceptional divisors on X is negative definite.
�

Let νi be the discrete valuation with valuation ring OX,Ei for 1 ≤ i ≤ r, and I(νi)n be
the associated valuation ideals (as defined in (

eqX2
6) for n ∈ N and 1 ≤ i ≤ r.

For D = a1E1 + · · ·+ arEr an effective integral divisor on X with exceptional support
(ai ∈ N for all i), define

I(D) = Γ(X,OX(−D)) = {f ∈ QF(R) | (f)−D ≥ 0}.

This is in agreement with the notation of (
eqX30
10). In fact, we have that I(D) = J(D) since

R is normal.
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We have that I(0) = Γ(X,OX) = R since the ring Γ(X,OX) is a finitely generated R-
module with the same quotient field as R and R is normal. Thus I(D) is an mR-primary
ideal if D 6= 0. For n ∈ N, we have that

I(nD) = I(ν1)na1 ∩ · · · ∩ I(νr)nar

is an mR-primary ideal in R, and {I(nD)} is a filtration of mR-primary ideals in R. By
Theorem

TheoremI20
1.2, the limit

Vol(D) := lim
n→∞

`R(R/I(nD))

n2/2!
= eR({I(nD)};R)

exists. In fact, by formula (7) and Lemma 2.5 on page 6 of
CHR
[13], we have

eqV1eqV1 (27) Vol(D) = −(∆2)

where ∆ is the anti-nef part of the Zariski decomposition of D.

RemarkV2 Remark 5.4. We deduce from Corollary
CorV1
5.3 that if D1 ≤ D2 are effective divisors with

exceptional support on X and respective anti-nef parts of their Zariski decompositons ∆1

and ∆2, then

Vol(D1) ≤ Vol(D2)

with equality if and only if ∆1 = ∆2.

We recall some notation introduced at the end of Section
Intro
1. Let dae denote the smallest

integer that is greater than or equal to a real number a. If D =
∑
aiEi with ai ∈ Q is a

Q-divisor, let dDe =
∑
daieEi.

LemmaV2 Lemma 5.5. Suppose that D is an effective divisor on X with exceptional support and
∆ = D +B is the Zariski decomposition of D. Then for all n ∈ N, I(nD) = I(dn∆e).

Proof. Suppose that f ∈ I(dn∆e) = Γ(X,OX(−dn∆e)). Then (f) − dn∆e ≥ 0. Writing
n∆ = dn∆e −G with G ≥ 0, we have −n∆ = G− dn∆e. From

−nD = −n∆ + nB = −dn∆e+ (G+ nB)

and the fact that G+ nB ≥ 0, we have that (f)− nD ≥ 0 so that f ∈ Γ(X,OX(−nD)) =
I(nD).

Let S be the set of irreducible curves in the support of B. Suppose that f ∈ I(nD) =
Γ(X,OX(−nD)). Then (f) − nD ≥ 0. Write (f) − nD = A + C where A and C are
effective divisors on X, no components of A are in S and all components of C are in S.
We have that (f)− n∆ = A+ (C − nB). If E ∈ S then

(E · (A+ (C − nB))) = (E · ((f)− n∆)) = 0

which implies (E · (C − nB)) = −(E ·A) ≤ 0. The intersection matrix of the curves in S
is negative definite since it is so for the set of all exceptional curves, so C − nB ≥ 0 (for
instance by

Ba
[1, Lemma 14.0]). Thus (f)− n∆ ≥ 0 which implies (f)− dn∆e ≥ 0 since (f)

is an integral divisor (that is, has integral coefficients). Thus f ∈ Γ(X,OX(−dn∆e)) =
I(dn∆e). �

PropV2 Proposition 5.6. Suppose that D1 and D2 are effective divisors with exceptional support
on X. Let I(1) = {I(nD1)} and I(2) = {I(nD2)}. Suppose that D1 ≤ D2 and

eR(I(1);R) = eR(I(2);R).

Then I(nD1) = I(nD2) for all n ∈ N.
17



Proof. Let ∆1 and ∆2 be the respective anti-nef parts of the Zariski decompositions of D1

and D2. By Remark
RemarkV2
5.4, D1 ≤ D2 and Vol(D1) = Vol(D2) implies ∆1 = ∆2. Thus

I(nD1) = I(dn∆1e) = I(dn∆2e) = I(nD2)

for all n ∈ N by Lemma
LemmaV2
5.5. �

PropV1 Proposition 5.7. Suppose that D1, . . . , Dr are effective divisors on X with exceptional
support. For n1, . . . , nr ∈ N, let

G(n1, . . . , nr) = lim
n→∞

`R(R/I(nn1D1) · · · I(nnrDr))

n2
.

Then for n1, . . . , nr ∈ N,

G(n1, . . . , nr) = −1

2
((n1∆1 + n2∆2 + · · ·+ nr∆r)

2)

where ∆1, . . . ,∆r are the respective anti-nef parts of the Zariski decompositions of D1, . . . , Dr.

Proof. Fix n1, . . . , nr ∈ N. Given ε > 0, there exist effective Q-divisors F1,ε, . . . , Fr,ε, A1,ε, . . . , Ar,ε
with exceptional support such that −Ai,ε are ample for 1 ≤ i ≤ r (that is, (Ai,ε · E) < 0
for all exceptional curves E and (A2

i,ε) > 0), −ni∆i = −Ai,ε + Fi,ε for 1 ≤ i ≤ r,

|((n1∆1 + · · ·+ nr∆r)
2)− ((A1,ε + · · ·+Ar,ε)

2)| < ε

and

|(ni∆2
i )− (A2

i,ε)| < ε for 1 ≤ i ≤ r.
Let Aε = A1,ε + · · ·+Ar,ε, Fε = F1,ε + · · ·+ Fr,ε so that

−(n1∆1 + · · ·+ nr∆r) = −Aε + Fε.

There exists sε ∈ Z+ such that sεAi,ε and sε∆i are effective integral divisors (that is,
have integral coefficients) for 1 ≤ i ≤ r. Since the −sεAi,ε are ample integral divisors on
X, there exists αε ∈ Z+ such that the invertible sheaves OX(−αεsεAi,ε) are generated by
global sections for 1 ≤ i ≤ r. Thus for n ∈ N,

I(αεsεA1,ε)
n · · · I(αεsεAr,ε)

nOX = I(nαεsεA1,ε) · · · I(nαεsεAr,ε)OX
= I(nαεsεAε)OX = I(αεsεAε)

nOX .
Thus the ideals

I(αεsεA1,ε)
n · · · I(αεsεAr,ε)

n, I(nαεsεA1,ε) · · · I(nαεsεAr,ε), I(nαεsεAε), I(αεsεAε)
n

have the same integral closure which is I(nαεsεAε), and so the R-algebra⊕
n≥0

I(nαεsεAε)

is integral over ⊕
n≥0

I(nαεsεA1,ε) · · · I(nαεsεAr,ε).

Now by Theorem
Theorem13
1.4 and (

eqV1
27),

eqV2eqV2 (28)
limn→∞

`R(R/I(nαεsεA1,ε)···I(nαεsεAr,ε))
n2 = limn→∞

`R(R/I(nαεsεAε))
n2

= −1
2((αεsεAε)

2) = −α2
εs

2
ε

2 (A2
ε).

For all n ∈ N, we have inclusions

I(nαεsεA1,ε) · · · I(nαεsεAr,ε) ⊂ I(nαεsεn1∆1) · · · I(nαεsεnr∆r)) ⊂ I(nαεsε(n1∆1+· · ·+nr∆r))
18



inducing surjections

R/I(nαεsεA1,ε) · · · I(nαεsεAr,ε))→ R/I(nαεsεn1∆1) · · · I(nαεsεnr∆r))
→ R/I(nαεsε(n1∆1 + · · ·+ nr∆r))

so that

−1
2(A2

ε) = 1
α2
εs

2
ε

limn→∞
`R(R/I(nαεsεA1,ε)···I(nαεsεAr,ε))

n2

≥ 1
α2
εs

2
ε

limn→∞
`R(R/I(nαεsεn1∆1)···I(nαεsεnr∆r))

n2

≥ 1
α2
εs

2
ε

limn→∞
`R(R/I(nαεsε(n1∆1+···+nr∆r)))

n2

= 1
α2
εs

2
ε

[
−1

2((αεsε(n1∆1 + · · ·+ nr∆r))
2)
]

= −1
2((n1∆1 + · · ·+ nr∆r)

2).

Now

limn→∞
`R(R/I(nαεsεn1∆1)···I(nαεsεnr∆r))

n2 = limn→∞
`R(R/I(nαεsεn1D1)···I(nαεsεnrDr))

n2

= (α2
εs

2
ε) limn→∞

`R(R/I(nn1D1)···I(nnrDr))
n2 .

Thus

eqV3eqV3 (29)

−1
2((n1∆1 + · · ·+ nr∆r)

2) = limε→0−1
2(A2

ε)

= limn→∞
`R(R/I(nn1D1)···I(nnrDr))

n2

= G(n1, . . . , nr).

�

From Proposition
PropV1
5.7 and equation (

eqV6
3), with I(i) = {I(nDi)}, we deduce that the mixed

multiplicities are

eqV7eqV7 (30) eR(I(j)[2];R) = −(∆2
j ) for all j

and

eqV8eqV8 (31) eR(I(i)[1], I(j)[1];R) = −(∆i ·∆j)

for i 6= j.
We have by Proposition

PropPos
2.1 (or since −(∆2

j ) > 0 for all j since ∆j 6= 0 and the inter-

section form is negative definite) that all mixed multiplicities are positive. Further, the
mixed multiplicities are all rational numbers since the ∆i are Q-divisors.

5.2. Two-dimensional local domains. We now assume that R has dimension two and
X is nonsingular. We use the notation introduced in Subsetion

Not
2.1.

For 1 ≤ l ≤ r, writeD(l) =
∑

i,j ai,j(l)Ei,j with ai,j(l) ∈ N and letD(l)i =
∑

j ai,j(l)Ei,j .

Let ∆(l)i be the anti-nef part of the Zariski decomposition of D(l)i. For n1, . . . , nr ∈ N,

limn→∞
`R(S/J(nn1D(1)···J(nnrD(r))

n2 =
∑t

i=1 limn→∞
`R(Smi/J(nn1D(1)i)···J(nnrD(r)i))

n2

=
∑t

i=1−
1
2 [S/mi : R/mR]((n1∆(1)i + · · ·+ nr∆(r)i)

2)

by (
eqR15
12) and Proposition

PropV1
5.7. Now by Lemma

LemmaR1
2.2 and the multinomial theorem,

eqR2eqR2 (32)

limn→∞
`R(R/I(nn1D)···I(nnrDr))

n2 =
∑t

i=1−
1
2 [S/mi : R/mR]((n1∆(1)i + · · ·+ nr∆(r)i)

2)

=
∑

k1+...+kr=2
1

k1!···kr!

(∑t
i=1−[S/mi : R/mR](∆(1)k1i · . . . ·∆(r)kri )

)
nk11 · · ·nkrr
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Let I(i) = {I(nD(i))} be the filtrations of mR-primary ideals. Then by (
eqV6
3), the mixed

multiplicities are

eqR13eqR13 (33) eR(I(j)[2];R) =
t∑
i=1

−[S/mi : R/mR](∆(j)2
i )

and for j 6= k,

eqR14eqR14 (34) eR(I(j)[1], I(k)[1];R) =
t∑
i=1

−[S/mi : R/mR](∆(j)i ·∆(k)i).

PropR10 Proposition 5.8. Suppose that R is a two-dimensional excellent local domain, ϕ : X →
Spec(R) is a resolution of singularities and that D(1) and D(2) are effective divisors with
exceptional support on X. Let I(1) = {I(nD(1))} and I(2) = {I(nD(2))} be the associated
filtrations of mR-primary ideals. Suppose that D(1) ≤ D(2) and

eR(I(1);R) = eR(I(2);R).

Then I(nD(1)) = I(nD(2)) for all n ∈ N.

Proof. Let ∆(1)i and ∆(2)i be the respective anti-nef parts of the Zariski decompositions
of D(1)i and D(2)i. Then D(1)i ≤ D(2)i and so ∆(1)i ≤ ∆(2)i for all i, by Remark
Remarkv1
5.2. Thus by Corollary

CorV1
5.3, for all i, (∆(2)2

i ) ≤ (∆(1)2
i ) with equality if and only if

∆(1)i = ∆(2)i. Since eR(I(1);R) = eR(I(2);R), equation (
eqR13
33) and (

eqX30
10) imply that

t∑
i=1

[S/mi : R/mR][(∆(2)2
i )− (∆(1)2

i )] = 0.

Thus ∆(2)i = ∆(1)i for all i, which implies that J(nD(1)i) = J(nD(2)i) for all n ∈ N by
Lemma

LemmaV2
5.5 and so J(nD(1)) = J(nD(2)) for all n by (

eqR6
11). Thus

I(nD(2)) = J(nD(2)) ∩R = J(nD(1)) ∩R = I(nD(1))

for all n ∈ N. �

Theorem
TheoremX1
3.5 in the case that dimR = 2 is an immediate corollary of Proposition

PropR10
5.8.

The following theorem is a generalization to divisorial valuations of a theorem of Teissier
T3
[44] and Rees and Sharp

RS
[38] for mR-primary ideals.

PropR11 Theorem 5.9. Suppose that R is a two-dimensional excellent local domain, ϕ : X →
Spec(R) is a resolution of singularities and that D(1) and D(2) are effective divisors with
exceptional support on X. Let I(1) = {I(nD(1))} and I(2) = {I(nD(2))} be the associated
filtrations of mR-primary ideals. Suppose that the Minkowski equality

eqR4eqR4 (35) eR(I(1)I(2);R)
1
2 = eR(I(1);R)

1
2 + eR(I(2);R)

1
2

holds (there is equality in inequality 4) of Theorem
TheoremMI
1.5). Then there exist relatively prime

a, b ∈ Z+ such that

I(naD(1)) = I(nbD(2))

for all n ∈ N.

Proof. We will use the notation introduced before the statement of Lemma
LemmaR1
2.2. Let

e0 = eR(I(1)[2];R), e1 = eR(I(1)[1], I(2)[1];R) and e2 = eR(I(2)[2];R). Let ∆(1)i and
20



∆(2)i be the respective anti-nef parts of the Zariski decompositions of D(1)i and D(2)i.
Let

G(n1, n2) = lim
n→∞

`R(R/I(nn1D(1))I(nn2D(2)))

n2
.

Then

G(n1, n2) =
1

2
e0n

2
1 + e1n1n2 +

1

2
e2n

2
2

by (
eqV6
3). Now by (

eqR13
33) and (

eqR14
34),

e0 =
t∑
i=1

−[S/mi : R/mR](∆(1)2
i ), e1 =

t∑
i=1

−[S/mi : R/mR](∆(1)i ·∆(2)i),

e2 =
t∑
i=1

−[S/mi : R/mR](∆(2)2
i ).

We have the Minkowski inequality (inequality 1) of Theorem
TheoremMI
1.5)

eqR5eqR5 (36) e2
1 ≤ e0e2.

We conclude that

eR(I(1)I(2);R) = 2G(1, 1) = e0 + 2e1 + e2 ≤ e0 + 2e
1
2
0 e

1
2
2 + e2 = (e

1
2
0 + e

1
2
2 )2.

We deduce that equality holds in (
eqR4
35) if and only if equality holds in (

eqR5
36). Since we assume

equality in (
eqR4
35), we have equality in (

eqR5
36). Write

e1

e0
=
e2

e1
=
a

b

with a, b ∈ Z+ relatively prime. Replacing D(1) with aD(1) and D(2) with bD(2) we
obtain e0 = e1 = e2 so

t∑
i=1

−[S/mi : R/mR](∆(1)2
i ) =

t∑
i=1

−[S/mi : R/mR](∆(1)i·∆(2)i) =

t∑
i=1

−[S/mi : R/mR](∆(2)2
i ).

We have that
t∑
i=1

[S/mi : R/mR]((∆(1)i−∆(2)i)
2) =

t∑
i=1

[S/mi : R/mR][(∆(1)2
i )−2(∆(1)i·∆(2)i)+(∆2

2)] = 0

which implies that ∆(1)i = ∆(2)i for all i since the intersection product is negative definite,
so J(nbD(1)i) = J(naD(2)i) for all i and n ∈ N by Lemma

LemmaV2
5.5, and thus J(naD(1)) =

J(nbD(2)) for all n ∈ N by (
eqR6
11). Now

I(naD(1)) = J(naD(1)) ∩R = J(nbD(2)) ∩R = I(nbD(2))

for all n ∈ N.
�

Prop12 Corollary 5.10. Suppose that R is a two-dimensional excellent local domain and ν1, ν2

are mR-valuations. If the Minkowski equality

eR(I(ν1)I(ν2);R)
1
2 = eR(I(ν1);R)

1
2 + eR(I(ν2);R)

1
2

holds then ν1 = ν2.
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Proof. We have by Theorem
PropR11
5.9 that I(ν1)an = I(ν2)bn for all n and some positive, rela-

tively prime integers a and b.
Suppose that 0 6= f ∈ I(ν1)n. Then fa ∈ I(ν1)an = I(ν2)bn so that aν2(f) ≥ bn. If

fa ∈ I(ν2)bn+1 then fab ∈ I(ν2)b(bn+1) = I(ν1)a(bn+1) so that ν1(f) > n. Thus

eqX21eqX21 (37) ν1(f) = n if and only if ν2(f) =
b

a
n.

Further, (
eqX21
37) holds for every nonzero f ∈ QF(R) since f is a quotient of nonzero elements

of R.
Now the maps ν1 : QF(R) \ {0} → Z and ν2 : QF(R) \ {0} → Z are surjective, so there

exists 0 6= f ∈ QF(R) such that ν1(f) = 1 and there exists 0 6= g ∈ QF(R) such that
ν2(g) = 1 which implies that a = b = 1 since a, b are relatively prime. Thus ν1 = ν2.

�

6. Geometry above algebraic local rings
SecGLR

6.1. Intersection products and multiplicity on local rings. Let K be an algebraic
function field over a field k. An algebraic local ring of K is a local ring R that is a
localization of a finitely generated k-algebra and is a domain whose quotient field is K.
Let R be a d-dimensional algebraic normal local ring of K. Let BirMod(R) be the directed
set of blowups ϕ : X → Spec(R) of an mR-primary ideal I of R such that X is normal.

Suppose that ϕ : X → Spec(R) is in BirMod(R). Let {E1, . . . , Et} be the irreducible
exceptional divisors of ϕ. We define M1(X) to be the subspace of the real vector space
E1R + · · ·+ EtR that is generated by the Cartier divisors. An element of M1(X) will be
called an R-divisor on X. We will say that D ∈ M1(X) is a Q-Cartier divisor if there
exists n ∈ Z+ such that nD is a Cartier divisor.

We give M1(X) the Euclidean topology. We first define a natural intersection product
(D1 ·D2 · . . . ·Dd) on X for D1, . . . , Dd ∈M1(X). The intersection product is a restriction
of the one defined in

Kl
[26]. We first define the intersection product for Cartier divisors

D1, . . . , Dd ∈ E1Z+ · · ·+EtZ. Since this product is multilinear, it extends naturally to a
multilinear product on M1(X)d.

There exists a subfield k1 of K with the two properties that k ⊂ k1 ⊂ R and R/mR

is a finite extension of k1. Thus there exists a projective k1-variety Y and a closed point
q ∈ Y such that OY,q = R. The mR-primary ideal I naturally extends to an ideal sheaf I
in OY , defined by

Ia =

{
OY,a if q 6= a ∈ Y
I if a = q.

Let Ψ : Z → Y be the projective, birational morphism that is the obtained by blowing up
I. Observe that base change of this map by OY,q = R gives the original map ϕ : X →
Spec(R). We can thus view E1, . . . , Et as closed projective subvarieties of the normal
variety Z.

Suppose that F1, . . . , Fs are Cartier divisors on Z and F is a coherent sheaf on Z, such
that dim supp F ≤ s. By

Kl
[26] (surveyed in Chapter 19 of

C5
[12]) we have an intersection

product I(F1, . . . , Fs,F) on Z which has the good properties explained in
Kl
[26] and

C5
[12].

The Euler characteristic

χ(OZ(n1F1 + · · ·+ nsFs)⊗F) =

∞∑
i=0

(−1)ihi(Z,OZ(n1F1 + · · ·+ nsFs)⊗F)
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where hi(Z,G) = dimk1 H
i(Z,G) for G a coherent sheaf on Z, is a polynomial in n1, . . . , ns

(
Kl
[26],

C5
[12, Theorem 19.1]). The intersection product I(F1, . . . , Fs,F) is defined to be the

coefficient of n1 · · ·ns in the Snapper polynomial χ(OZ(n1F1 + · · ·+nsFs)⊗F). We always
have that I(F1, . . . , Fs,F) ∈ Z.

If D1, . . . , Ds are Cartier divisors in E1Z + · · · + EtZ, and F is a coherent sheaf on X
whose support is contained in ϕ−1(mR) (so that F naturally extends to a coherent sheaf
on Z with the same support) and dim supp F ≤ s, then we define an intersection product

(D1 · . . . ·Ds · F) =
1

[R/mR : k1]
I(D1, . . . , Ds,F)

on X. If W is a closed subscheme of ϕ−1(mR), we define

(D1 · . . . ·Ds ·W ) = (D1 · . . . ·Ds · OW ).

If s = d, then we define

(D1 · . . . ·Dd) = (D1 · . . . ·Dd ·X) =
1

[R/mR : k1]
I(D1, . . . , Ds,OZ).

This product is well defined (independent of any choices made in the construction), as
follows from the good properties of the intersection product (

Kl
[26],

C5
[12]). This product

naturally extends to a multilinear product on M1(X)d.
We will say that a divisor F = a1E1 + · · ·+ atEt ∈ M1(X) is effective if ai ≥ 0 for all

i, and anti-effective if ai ≤ 0 for all i. This defines a partial order ≤ on M1(X) by A ≤ B
if B − A is effective. The effective cone EF(X) is the closed convex cone in M1(X) of
effective R-divisors. The anti-effective cone AEF(X) is the closed convex cone in M1(X)
consisting of all anti-effective R-divisors.

We will say that an anti-effective divisor F ∈M1(X) is numerically effective (nef) if

(F · C) = (F · OC) ≥ 0

for all closed curves C in ϕ−1(mR). The nef cone Nef(X) is the closed convex cone in
M1(X) of all nef R-divisors on X.

Lemma 6.1. There is an inclusion of cones Nef(X) ⊂ AEF(X).

Proof. Suppose there exists a nef divisor D ∈ M1(X) that is not anti-effective. Since X
is the blowup of an mR-primary ideal, there exists an anti-effective ample Cartier divisor
A = a1E1 + · · · + atEt, with a1, . . . , at < 0. There exists a smallest λ ∈ R such that
D+λA is anti-effective. Necessarily, λ > 0 and D+λA is nef. Expand D+λA =

∑
biEi.

After possibly reindexing the Ei, we have that there exists a number s with 1 ≤ s < t
such that b1 = · · · = bs = 0 and bs+1, . . . , bt < 0. Now ϕ−1(mR) is connected by Zariski’s
connectedness theorem (

Z1
[46, Section 20] or

G1
[21, Corollary III.4.3.2]). After reindexing the

E1, . . . , Es and the Es+1, . . . , Et, we may assume that Es ∩ Es+1 6= ∅. Let C be a closed
curve on the projective variety Es that is not contained in Ei for i ≥ s+ 1 but intersects
Es+1. Then ((D + λA) · C) < 0, a contradiction. �

We will say that an anti-effective Cartier divisor F ∈ M1(X) is ample on X if there
exists an ample Cartier divisorH on Y such that Ψ−1(H)+F is ample on Z. This definition
is independent of the choice of Y in the construction. We define a divisor F ∈ M1(X)
to be ample if F is a formal sum F =

∑
aiFi where Fi are ample anti-effective Cartier

divisors and ai are positive real numbers. A divisor D is anti-ample if −D is ample. We
define the convex cone

Amp(X) = {F ∈M1(X) | F is ample}.
23



We have that Amp(X) ⊂ Nef(X), the closure of Amp(X) is Nef(X), and the interior
of Nef(X) is Amp(X), as in

Kl
[26],

LV1
[27, Theorem 1.4.23].

Remark2 Remark 6.2. If G ∈ M1(X), then there exists an effective Q-divisor D ∈ M1(X) such
that G−D ∈ Amp(X).

For F ∈ M1(X) an effective Cartier divisor, define I(F ) = Γ(X,OX(−F )), an mR-
primary ideal in R since R is normal. Let π : Y → Spec(k1) be the structure morphism.

Lemma1 Lemma 6.3. Suppose that A ∈ M1(X) is an effective Cartier divisor such that −A is
nef. Then

lim
m→∞

`R(R/I(mA))

md
=
−((−A)d)

d!
.

Proof. Let H be an ample Cartier divisor on Y and L = Ψ∗(H). There exists a ∈ Z+ such
that aL−A is nef and big on Z.

We have that R1Ψ∗OZ(m(aL−A)) ∼= OY (maH)⊗R1Ψ∗OZ(−mA) is a coherent sheaf
of OY -modules whose support is q and

eq6eq6 (38) H1(X,OX(−mA)) ∼= π∗(R
1Ψ∗OZ(m(aL−A)))

as an R = OY,q-module.
By

Fu
[19, Theorem 6.2],

eq1eq1 (39) lim
m→∞

hi(Z,OZ(mG))

md
= 0 if i > 0

if G is a nef Cartier divisor on Z.
Now tensor the short exact sequence

0→ OZ(−mA)→ OZ → OmA → 0

with OZ(maL) to get a short exact sequence

0→ OZ(m(aL−A))→ OZ(maL)→ OmA ⊗OZ(maL) ∼= OmA → 0.

Taking the long exact cohomology sequence, we have that

lim
m→∞

hi(Z,OmA)

md
= 0

for i > 0 by (
eq1
39), and so

eq2eq2 (40)

limm→∞
h0(Z,OmA)

md
= limm→∞

χ(OmA)
md

= limm→∞
χ(OZ)−χ(OZ(−mA))

md

= limm→∞
−χ(OZ(−mA))

md

= −((−A)d)
d! ,

for instance by
C5
[12, Theorem 19.16]. The end of the cohomology 5 term sequence (forin-

stance in
RM
[39, Theorem 11.2]) of the Leray spectral sequence

Riπ∗R
jΨ∗OZ(m(aL−A))⇒ Ri+j(π ◦Ψ)∗OZ(m(aL−A))

is the exact sequence

eq3eq3 (41) R1(π◦Ψ)∗OZ(m(aL−A))→ π∗(R
1Ψ∗OZ(m(aL−A)))→ R2π∗(Ψ∗OZ(m(aL−A))).

Now R1(π ◦Ψ)∗OZ(m(aL−A)) = H1(Z,OZ(m(aL−A)),

R2π∗(Ψ∗OZ(m(aL−A))) = H2(Y,Ψ∗OZ(m(aL−A))) = H2(Y,OY (maL)⊗Ψ∗OZ(−mA))
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and π∗(R
1Ψ∗OZ(m(aL−A))) = H0(Y,R1Ψ∗OZ(m(aL−A))).

Let Im = Ψ∗OZ(−mA). From the short exact sequences

0→ Im ⊗OY (maL)→ OY (maL)→ OY /Im → 0,

we obtain the exact cohomology sequences

H1(Y,OY /Im)→ H2(Y, Im ⊗OZ(maL))→ H2(Y,OY (maL)).

NowH1(Y,OY /Im) = 0 sinceOY /Im has zero dimensional support andH2(Y,OY (maL)) =
0 for m� 0 since L is ample. Thus

eq4eq4 (42) H2(Y,OY (maL)⊗Ψ∗OZ(−mA)) = 0 for m� 0.

We have

eq7eq7 (43)

limm→∞
`R(H1(X,OX(−mA))

md
= limm→∞

1
[R/mR:k1]

dimk1
H1(X,OX(−mA))

md

= limm→∞
1

[R/mR:k1]
h0(Y,R1Ψ∗OZ(m(aL−A))

md

= 0

by (
eq6
38), (

eq3
41), (

eq4
42) and (

eq1
39) with G = aL−A in (

eq1
39). We have that R = H0(X,OX) since

R is normal. Now from the exact sequences of R-modules

0→ R/I(mA)→ H0(X,OX/OX(−mA))→ H1(X,OX(−mA)),

(
eq2
40) and (

eq7
43) we obtain the formula of the statement of the lemma. �

Lemma3 Lemma 6.4. Suppose that D1, . . . , Dr ∈M1(X) are effective Cartier divisors and OX(−Di)
is generated by global sections for all i. Then for n1, . . . , nr ∈ N,

lim
m→∞

`R(R/I(mn1D1) · · · I(mnrDr))

md
= −((−n1D1 − · · · − nrDr)

d)

d!
.

Proof. We have that

I(mn1D1) · · · I(mnrDr)OX = OX(−m(n1D1 + · · ·+nrDr)) = I(mn1D1 + · · ·+nrDr)OX
since the OX(−mniDi) are generated by global sections. Thus the integral closure of
I(mn1D1) · · · I(mnrDr) is I(m(n1D1 + · · · + nrDr)) for all m ∈ N, and so the R-algebra⊕

m≥0 I(m(n1D1+· · ·+rDr)) is integral over theR-algebra
⊕

m≥0 I(mn1D1) · · · I(mnrDr).
Thus

limm→∞
`R(R/I(mn1D1)···I(mnrDr))

md
= limm→∞

`R(R/I(mn1D1+···+mnrDr)
md

= − ((−n1D1−···−nrDr)d)
d!

by Theorem
Theorem13
1.4 and Lemma

Lemma1
6.3. �

6.2. Finite dimensional vector spaces and cones. Suppose that X ∈ BirMod(R).
Let E1, . . . , Er be the exceptional components of X for the morphism X → Spec(R). For
0 < p ≤ d, we define Mp(X) to be the direct product of M1(X) p times, and we define
M0(X) = R. For 1 < p ≤ d, we define Lp(X) to be the vector space of p-multilinear forms
from Mp(X) to R, and define L0(X) = R.

The intersection product gives us p-multilinear maps

eq4*eq4* (44) Mp(X)→ Ld−p(X)

for 0 ≤ p ≤ d. In the special case when p = 0, the map is just the linear map taking 1 to
the map

(L1, . . . ,Ld) 7→ (L1 · . . . · Ld) = (L1 · . . . · Ld ·X).
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We will denote the image of (L1, . . . ,Lp) by L1 · . . . · Lp. We will sometimes write

L1 · . . . · Lp(βp+1, . . . , βd) = (L1 · . . . · Lp · βp+1 · . . . · βd).

We give all the vector spaces just defined the Euclidean topology, so that all of the
mappings considered above are continuous.

Let |L| be a norm on M1(X) giving the Euclidean topology. The Euclidean topology
on Lp(X) is given by the norm ||A||, that is defined on a multilinear form A ∈ Lp(X) to
be the greatest lower bound of all real numbers c such that

|A(x1, . . . , xp)| ≤ c|x1| · · · |xp|

for x1, . . . , xp ∈M1(X).
Suppose that V is a closed p-dimensional subvariety of some Ei with 1 ≤ p ≤ d − 1.

Define σV ∈ Lp(X) by

σV (L1, . . . ,Lp) = (L1 · . . . · Lp · V )

for L1, . . . ,Lp ∈M1(X). For p = d, define σX ∈ Ld(X) by

σX(L1, . . . ,Ld) = (L1 · . . . · Ld) = (L1 · . . . · Ld ·X).

The pseudoeffective cone Psef(Lp(X)) in Lp(X) is the closure of the cone generated by all
such σV in Lp(X). We define Psef(L0(X)) to be the nonnegative real numbers.

Let V be a vector space and C ⊂ V be a pointed (containing the origin) convex cone
that is strict (C ∩ (−C) = {0}). Then we have a partial order on V defined by x ≤ y if
y − x ∈ C.

Lemma3.1* Lemma 6.5. Suppose that X ∈ BirMod(R) and 1 ≤ p ≤ d.

1) Suppose that α ∈ Psef(Lp(X)) and L1, . . . ,Lp ∈M1(X) are nef. Then

α(L1, . . . ,Lp) ≥ 0.

2) Psef(Lp(X)) is a strict cone.

The proof of Lemma
Lemma3.1*
6.5 is as the proof of

C4
[10, Lemma 3.1].

Since Psef(Lp(X)) is a strict cone, we have a partial order on Lp(X), defined by

α ≥ 0 if α ∈ Psef(Lp(X)).

We have that ≥ is the usual order on R since L0(X) = R and Psef(L0(X)) is the set of
nonnegative real numbers. We also have the partial order on M1(X) defined by α ≥ 0 if
α is effective.

Remark1 Lemma 6.6. Suppose that F1, . . . , Fp ∈ M1(X) are such that F1 is anti-effective and

F2, . . . , Fp are nef. Then F1 · . . . · Fp ≤ 0 in Ld−p(X).

Proof. We have that −F1 ∈M1(X) is effective. Thus (−F1) ·F2 · . . . ·Fp ∈ Psef(Ld−p(X))
by Lemma 3.11

C4
[10]. �

Lemma3.2* Lemma 6.7. Suppose that β ∈ Psef(Lp(X)). Then the set

{α ∈ Psef(Lp(X)) | 0 ≤ α ≤ β}

is compact.

The proof of Lemma
Lemma3.2*
6.7 is the same as the proof of

C4
[10, Lemma 3.2].

Suppose that X,Y ∈ BirMod(R) and f : Y → X is an R-morphism. Then f in-
duces continuous linear maps f∗ : M1(X) → M1(Y ) (from f∗ of a Cartier divisor),
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f∗ : Mp(X)→Mp(Y ) and f∗ : Lp(Y )→ Lp(X). By Proposition I.2.6
Kl
[26], for 1 ≤ t ≤ d,

we have that

eq5*eq5* (45) f∗(L1) · . . . · f∗(Ld) = L1 · . . . · Ld

for L1, . . . ,Ld ∈ M1(X). Thus for 0 ≤ p ≤ d we have commutative diagrams of linear
maps

eq4**eq4** (46)
Mp(Y ) → Ld−p(Y )
f∗ ↑ f∗ ↓

Mp(X) → Ld−p(X).

For α ∈M1(X), we have that

eq7*eq7* (47) f∗(α) ∈ Nef(Y ) if and only if α ∈ Nef(X)

and

eq8*eq8* (48) f∗(α) is effective on Y if and only if α is effective on X.

Lemma3.3* Lemma 6.8. Suppose that X,Y ∈ BirMod(R) and f : Y → X is an R-morphism. Then
f∗(Psef(Lp(Y ))) ⊂ Psef(Lp(X)).

The proof of Lemma
Lemma3.3*
6.8 is as the proof of

C4
[10, Lemma 3.3].

6.3. Infinite dimensional topological spaces. We have that BirMod(R) is a directed
set by the R-morphisms Y → X for X,Y ∈ BirMod(R). There is at most one R-morphism
X → Y for X,Y ∈ BirMod(X).

The set {Mp(Yi) | Yi ∈ BirMod(R)} is a directed system of real vector spaces, where we
have a linear mapping f∗ij : Mp(Yi)→ Mp(Yj) if the natural birational map fij : Yj → Yi
is an R-morphism. We define

Mp(R) = lim
→
Mp(Yi)

with the strong topology (the direct limit topology, c.f. Appendix 1. Section 1
D
[17]). Let

ρYi : Mp(Yi)→Mp(R) be the natural mappings. A set U ⊂Mp(R) is open if and only if
ρ−1
Yi

(U) is open in Mp(Yi) for all i.

We have that Mp(R) is a real vector space. As a vector space, Mp(R) is isomorphic to
the p-fold product M1(R)p.

We define α ∈ M1(R) to be Q-Cartier (respectively nef or effective) if there exists a
representative of α in M1(Y ) that has this property for some Y ∈ BirMod(R). We define
Nef p(R) to be the subset of Mp(R) of nef divisors. We define EFp(R) to be the subset of
Mp(R) of effective divisors and define AEFp(R) to be the subset of Mp(R) of anti-efective
divisors. Both of these sets are convex cones in the vector space Mp(R).

By (
eq7*
47) and (

eq8*
48), {Nef(Y )p}, {EF(Y )p} and {AEF(Y )p} also form directed systems.

As sets, we have that

Nef p(R) = lim
→

(Nef(Y )p), EFp(R) = lim
→

(EF(Y )p) and AEFp(R) = lim
→

(AEF(Y )p).

We give all of these sets their respective strong topologies.
Let ρY : Mp(Y )→Mp(R) be the induced continuous linear maps for Y ∈ BirMod(R).

We will also denote the induced continuous maps Nef(Y )p → Nef p(R), EF(Y )p → EFp(R)
and AEF(Y )p → AEFp(R) by ρY .
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The set {Lp(Yi)} is an inverse system of topological vector spaces, where we have a
linear map (fij)∗ : Lp(Yj)→ Lp(Yi) if the birational map fij : Yj → Yi is a morphism. We
define

Lp(R) = lim
←
Lp(Yi),

with the weak topology (the inverse limit topology). Thus the open subsets of Lp(R)
are the sets obtained by finite intersections and arbitrary unions of sets π−1

Yi
(U) where

πYi : Lp(R)→ Lp(Yi) is the natural projection and U is open in Lp(Yi).
In general, good topological properties on a directed system do not extend to the direct

limit (c.f. Section 1 of Appendix 2
D
[17], especially the remark before 1.8). In particular,

we cannot assume that M1(R) is a topological vector space. However, good topological
properties on an inverse system do extend (c.f. Section 2 of Appendix 2

D
[17]). In particular,

we have the following proposition.

Proposition 6.9. Lp(R) is a Hausdorff real topological vector space that is isomorphic
(as a vector space) to the p-multilinear forms on M1(R).

Let πY : Lp(R)→ Lp(Y ) be the induced continuous linear maps for Y ∈ BirMod(R).
The following lemma follows from the universal properties of the inverse limit and the

direct limit (c.f. Theorems 2.5 and 1.5
D
[17]).

Lemma3.5* Lemma 6.10. Suppose that F is Mp or Nef p Then giving a continuous mapping

Φ : F(R)→ Ld−p(R)

is equivalent to giving continuous maps ϕY : F(Y ) → Ld−p(Y ) for all Y ∈ BirMod(R),
such that the diagram

F(Z)
ϕZ→ Ld−p(Z)

f∗ ↑ ↓ f∗
F(Y )

ϕY→ Ld−p(Y )

commutes, whenever f : Z → Y is in BirMod(R).

In the case when F = Mp, if the ϕY are all multilinear, then Φ is also multilinear (via
the vector space isomorphism of Mp(R) with p-fold product M1(R)p).

As an application, we have the following useful property.

3.6* Lemma 6.11. The intersection product gives us a continuous map

F(R)→ Ld−p(R)

whenever F is Mp or Nef p. The map is multilinear on Mp(R).

We will denote the image of (α1, . . . , αp) by α1 · . . . · αp. For βp+1, . . . , βd ∈M1(R), we
will often write

α1 · . . . · αp(βp+1, . . . , βd) = (α1 · . . . · αp · βp+1 · . . . · βd).

Given α ∈ M1(R), there exists X ∈ BirMod(R) such that α is represented by an
element D of M1(X). If Y ∈ BirMod(R) and f : Y → X is an R-morphism, then α is
also represented by f∗(D) ∈ M1(Y ). To simplify notation, we will often regard α as an
element of M1(X) and of M1(Y ), and write α ∈M1(X) and α ∈M1(Y ).

28



6.4. Pseudoeffective classes in Lp(R). We define a class α ∈ Lp(R) to be pseudoeffec-
tive if πY (α) ∈ Lp(Y ) is pseudoeffective for all Y ∈ BirMod(R).

Lemma3.7* Lemma 6.12. The set of pseudoeffective classes Psef(Lp(R)) in Lp(R) is a strict closed
convex cone in Lp(R).

The proof of Lemma
Lemma3.7*
6.12 is as the proof of

C4
[10, Lemma 3. 7].

By Lemma
Lemma3.7*
6.12 , we can define a partial order≥ 0 on Lp(R) by α ≥ 0 if α ∈ Psef(Lp(R)).

We have that L0(R) = R and Psef(L0(R)) is the set of nonnegative real numbers (by
the remark before Lemma

Lemma3.1*
6.5), so ≥ is the usual order on R.

Lemma3.8* Lemma 6.13. Suppose that L1, . . . ,Lp ∈ Nef(R) and α ∈ Psef(Lp(R)). Then

α(L1, . . . ,Lp) ≥ 0.

The proof of Lemma
Lemma3.8*
6.13 follows from Lemma

Lemma3.1*
6.5 as in the proof of

C4
[10, Lemma 3.8].

Lemma3.9* Lemma 6.14. Suppose that Y ∈ BirMod(R) and E1, . . . , Er are the irreducible excep-
tional divisors of Y → Spec(R). Suppose that V ⊂ Y is a p-dimensional closed subvariety
of some Ei. Then there exists α ∈ Psef(Lp(R)) such that πY (α) = σV .

The proof of Lemma
Lemma3.9*
6.14 is as the proof of

C4
[10, Lemma 3.9].

The proof of Lemma
Lemma3.10*
6.15 below is as the proof of

C4
[10, Lemma 3.10].

Lemma3.10* Lemma 6.15. Suppose that α ∈ Psef(Lp(R)). Then the set

{β ∈ Lp(R) | 0 ≤ β ≤ α}
is compact.

Lemma3.11* Lemma 6.16. Suppose that αi ∈ M1(R) for 1 ≤ i ≤ p, with α1 ∈ EF1(R) and αi ∈
Nef1(R) for i ≥ 2. Then α1 · . . . · αp ∈ Psef(Ld−p(R)).

The proof of Lemma
Lemma3.11*
6.16 follows from the proof of

C4
[10, Lemma 3.11], using Lemma

Remark1
6.6.

Prop3.12* Proposition 6.17. Suppose that αi and α′i for 1 ≤ i ≤ p are nef classes in M1(R), and
that αi ≥ α′i for i = 1, . . . , p. Then

α1 · . . . · αp ≥ α′1 · . . . · α′p
in Ld−p(R).

The proof of Propositoin
Prop3.12*
6.17 is as the proof of

C4
[10, Proposition 3.12].

7. anti-positive intersection products
SecAPM3

We continue in this section with the notation introduced in Section
SecGLR
6.

A partially ordered set is directed if any two elements of it can be dominated by a third.
A partially ordered set is filtered if any two elements of it dominate a third.

We state Lemma
Lemma4.1*
7.1 below for completeness. A proof can be found in

C4
[10, Lemma 4.1].

Lemma4.1* Lemma 7.1. Let V be a Hausdorff topological vector space and K a strict closed convex
cone in V with associated partial order relation ≤. Then any nonempty subset S of V that
is directed with respect to ≤ and is contained in a compact subset of V has a least upper
bound with respect to ≤ in V .

Lemma4.2* Lemma 7.2. Suppose that α ∈ M1(R) is anti-effective. Then the set D(α) of effective
Q-divisors D in M1(R) such that α−D is nef is nonempty and filtered.
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The proof of Lemma
Lemma4.2*
7.2, using Remark

Remark2
6.2, is as the proof of

C4
[10, Lemma 4.2].

The following proposition generalizes
C4
[10, Proposition 4.3].

Prop4.3* Proposition 7.3. Suppose that α1, . . . , αp ∈M1(R) are anti-effective. Let

S = {(α1 −D1) · . . . · (αp −Dp) ∈ Ld−p(R) such that
D1, . . . , Dp ∈M1(R) are effective Q-divisors and αi −Di are nef for 1 ≤ i ≤ p}.

Then

1) S is nonempty.
2) S is a directed set with respect to the partial order ≤ on Ld−p(R).
3) S has a (unique) least upper bound with respect to ≤ in Ld−p(R).

Proof. There exists ϕ : X → Spec(R) in BirMod(R) such that α1, . . . , αp ∈M1(X). Since
X is the blowup of an mR-primary ideal, there exists an effective Q-divisor ω in M1(R)
such that −ω is ample on X and αi−ω is nef for all i. Suppose Di ∈M1(R) are effective
Q-divisors such that αi − Di are nef for all i. Lemma

Lemma4.2*
7.2 implies there exist effective

Q-divisors D∗i ∈M1(R) such that for all i, αi−Di are nef, D∗i ≤ Di, D
∗
i ≤ ω and αi−D∗i

are nef. Thus αi − ω ≤ αi −D∗i ≤ 0 and αi −Di ≤ αi −D∗i . Proposition
Prop3.12*
6.17 implies

(α1 − ω) · (α2 − ω) · . . . · (αp − ω) ≤ (α1 −D∗1) · (α2 −D∗2) · . . . · (αp −D∗p) ≤ 0.

Thus γ ∈ Ld−p(R) is an upper bound for S if and only if γ is an upper bound for S ∩ Z
where

Z = {x ∈ Ld−p(R) | (α1 − ω) · . . . · (αp − ω) ≤ x ≤ 0}.
The set S∩Z is nonempty since (α1−ω)·. . .·(αp−ω) ∈ S∩Z. The set S∩Z is directed since
S is and since whenever β1, . . . , βp ∈ M1(R) are anti-effective and nef, β1 · · · . . . · βp ≤ 0
(by Lemma

Remark1
6.6). The set Z is compact by Lemma

Lemma3.10*
6.15. Thus by Lemma

Lemma4.1*
7.1, S ∩ Z has

a least upper bound with respect to ≤ in Ld−p(R). �

The following definition is well defined by Proposition
Prop4.3*
7.3. Definition

Def4.4*
7.4 gives a local

version of the definition
C4
[10, Definition 4.4] of the positive intersection product on a proper

variety.

Def4.4* Definition 7.4. Suppose that α1, . . . , αp ∈ M1(R) are anti-effective. Their anti-positive

intersection product 〈α1 · . . . ·αp〉 ∈ Ld−p(R) is defined to be the least upper bound of the set

of classes (α1−D1) · . . . · (αp−Dp) ∈ Ld−p(R) where Di ∈M1(R) are effective Q-Cartier
divisors in M1(R) such that αi −Di are nef.

The proof of the following proposition is as the proof of Proposition 4.7
C4
[10].

Prop4.7* Proposition 7.5. The map AEFp(R)→ Ld−p(R) defined by (α1, . . . , αp) 7→ 〈α1, ·, . . . , αp〉
is continuous.

8. Mixed multiplicities and anti-positive intersection products
SecAPM1

We continue in this section with the notation of Sections
SecGLR
6 and

SecAPM3
7. In this section,

suppose that α1, . . . αr ∈M1(R) are effective Cartier divisors. For n1, . . . , nr ∈ N, define

F (n1, . . . , nr) = lim
m→∞

`R(R/I(mn1α1) · · · I(mnrαr))

md
.

We have that F (n1, . . . , nr) is a homogeneous polynomial of degree d by
CSS
[14, Theorem

6.6].
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We now describe a construction that we will use in this section. Let X ∈ BirMod(R)
be such that α1, . . . , αr ∈M1(X). For s ∈ Z+, let

eq13eq13 (49) Y [s]→ X

be in BirMod(X) and let πs : Ys → Y [s] be the normalization of the blowup of

I(sα1) · · · I(sαr)OY [s].

Let ψs : Ys → Spec(R) be the induced morphism. Define effective Cartier divisors Fs,i on
Ys by

I(sαi)OYs = OYs(−Fs,i) ⊂ OYs(π∗s(−sαi)).
Let Ds,i = Fs,i−π∗s(sαi), that we will write as Fs,i− sαi. Then Ds,i is an effective Cartier
divisor on Ys and −αi − 1

sDs,i = −1
sFs,i is anti-effective and nef. We have that

eq12eq12 (50)
I(sα1)mn1 · · · I(sαr)

mnr ⊂ I(mn1Fs,1) · · · I(mnrFs,r) ⊂ I(msn1α1) · · · I(msnrαr)
for all m,n1, . . . , nr ∈ N.

For n1, . . . , nr ∈ N, define

Hs(n1, . . . , nr) = lim
m→∞

`R(R/I(mn1Fs,1) · · · I(mnrFs,r))

sdmd
.

We have that Hs(n1, . . . , nr) is a homogeneous polynomial of degree d in n1, . . . , nr by
Theorem

CSS
[14, Theorem 6.6].

Expand the polynomials

Hs(n1, . . . , nr) =
∑

bi1,...,ir(s)n
i1
1 · · ·n

ir
r

and
F (n1, . . . , nr) =

∑
bi1,...,irn

i1
1 · · ·n

ir
r

with bi1,...,ir(s), bi1,...,ir ∈ R.

Prop2 Proposition 8.1. For all n1, . . . , nr ∈ N,

lim
s→∞

Hs(n1, . . . , nr) = F (n1, . . . , nr)

and for all i1, . . . , ir,

eq177eq177 (51) lim
s→∞

bi1,...,ir(s) = bi1,...,ir .

Proof. For s ∈ Z+, let {Is(j)i} be the s-th truncated filtration of {I(j)i} where I(j)i =
I(iαj) is defined in

CSS
[14, Definition 4.1]. That is, Is(j)i = I(iαj) if i ≤ s and if i > s, then

Is(j)i =
∑
Is(j)aIs(j)b where the sum is over all a, b > 0 such that a+ b = i. Let

Fs(n1, . . . , nr) = lim
m→∞

`R(R/Is(1)mn1 · · · Is(r)mnr)
md

for n1, . . . , nr ∈ N. Now there exists m(s) ∈ Z+ such that

Is(1)smn1 · · · Is(r)smnr = I(sα1)mn1 · · · I(sαr)
mnr

for m ≥ m(s). By (
eq12
50), we have

Fs(n1, . . . , nr) =
Fs(sn1, . . . , snr)

sd
≥ Hs(n1, . . . , nr) ≥

F (sn1, . . . , snr)

sd
= F (n1, . . . , nr)

for all n1, . . . , nr ∈ N. By
CSS
[14, Proposition 4.3], for all n1, . . . , nr ∈ Z+,

lim
s→∞

Fs(n1, . . . , nr) = F (n1, . . . , nr).
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Thus for all n1, . . . , nr ∈ Z+,

eq11eq11 (52) lim
s→∞

Hs(n1, . . . , ns) = F (n1, . . . , nr).

By
CSS
[14, Lemma 3.2] and (

eq11
52), we have that

lim
s→∞

bi1,...,ir(s) = bi1,...,ir

for all i1, . . . , ir. Thus
lim
s→∞

Hs(n1, . . . , nr) = F (n1, . . . , nr)

for all n1, . . . , nr ∈ N. �

Theorem1 Theorem 8.2. The coefficients of F (n1, . . . , nr) are

bi1,...,ir =
−1

i1! · · · ir!
〈(−α1)i1 · . . . · (−αr)ir〉

for all i1, . . . , ir.

Proof. For s ∈ Z+, let εs = 1
2s . There exist effective Q-Cartier divisors D1(s), . . . , Dr(s) ∈

M1(R) such that −α1−D1(s), . . . ,−αr−Dr(s) are nef and ((−α1−D1(s))n1 · . . . · (−αr−
Dr(s))

nr) is within εs of 〈(−α1)n1 ·. . .·(−αr)nr〉 for all n1, . . . , nr ∈ Z+ with n1+· · ·+nr = d.
Let Y (s) → X ∈ BirMod(R) be such that α1, . . . , αr, D1(s), . . . , Dr(s) ∈ M1(Y (s)). Let
As be effective and anti-ample on Y (s). Then by Proposition

Prop4.7*
7.5, for t > 0 sufficiently

small, each product ((−α1 −D1(s) − tAs)n1 · . . . · (−αr −Dr(s) − tAs)nr) is within εs of
〈(−α1)n1 · · · . . . · (−αr)nr〉 for all n1, . . . , nr ∈ Z+ with n1 + · · ·+ nr = d. Replacing Di(s)
with Di(s) + tAs for such a small rational t, we may assume that −αi −Di(s) are ample
for all i.

There exist mi ∈ Z+ for i ∈ Z+ such that m1 < m2 < · · · , the msαi are effective Cartier
divisors on Y (s), msDs(s) is an effective Cartier divisor on Y (s) and OY (s)(−msαi −
msDi(s)) is very ample on Y (s) for all s and 1 ≤ i ≤ r. In (

eq13
49), let Y [ms] = Y (s) for

s ∈ Z+ and Y [t] = X for t 6∈ {m1,m2, . . .}.
With the notation introduced after (

eq13
49), let Fms,i be the Cartier divisor on Yms defined

by OYms (−Fms,i) = I(msαi)OYms . We have that

I(ms(αi+Di(s)) = Γ(Y (s),OY (s)(−msαi−msDi(s))) ⊂ Γ(Y (s),OY (s)(−msαi)) = I(msαi).

Since −msαi −msDi(s) is very ample on Y (s),

OY (s)(−msαi −msDi(s)) = I(−msαi −msDi(s))OY (s) ⊂ I(msαi)OY (s).

Thus

OYms (−msαi −msDi(s)) ⊂ I(msαi)OYms = OYms (−Fms,i) ⊂ OYms (−msαi)

for all i, s. Thus

−αi −Di(s) ≤ −
Fms,i
ms

≤ −αi.

Now
−Fmi,s
ms

is nef and

−Fms,i
ms

= −αi − Ems,i

where Ems,i is an effective Q-Cartier divisor. We have that

((−α1 −D1(s))n1 · · · . . . · (αr −Dr(s))
nr) ≤

((
−Fms,1
ms

)n1

· . . . ·
(
−Fms,r
ms

)nr)
≤ 〈(−α1)n1 · . . . · (−αr)nr〉
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for all s and n1, . . . , nr ∈ N with n1 + · · ·+ nr = d. The first inequality is by Proposition
Prop3.12*
6.17 and the second inequality is by Definition

Def4.4*
7.4. Thus

eq14eq14 (53)

((
−Fms,1
ms

)n1

· . . . ·
(
−Fms,r
ms

)nr)
is within εs of 〈(−α1)n1 · . . . · (−αr)nr〉

for all n1, . . . , nr ∈ N with n1 + · · ·+ nr = d.

eq15eq15 (54)
Given ε > 0, for s� 0, the coefficients bi1,...,ir(ms) of Hms(n1, . . . , nr)
are within ε of the coefficients bi1,...,ir of F (n1, . . . , nr)

by Proposition
Prop2
8.1 and

eq16eq16 (55)
1
mds

((−Fms,1))i1 · . . . · (−Fms,r)ir) is within ε of 〈(−α1)i1 · . . . · (−αr)ir〉
for all i1, . . . , ir ∈ N with i1 + · · ·+ ir = d

by (
eq14
53). Now

eq17eq17 (56)
Hms(n1, . . . , nr) = 1

mds

(
limm→∞

`R(R/I(mn1Fms,1)···I(mnrFms,r))
md

)
= −1

mdsd!
((−n1Fms,1 − · · · − nrFms,r)d)

by Lemma
Lemma3
6.4, since Fms,1, . . . , Fms,r are effective Cartier divisors and OYms (−Fms,i) are

generated by global sections for all i. Then expanding the last line of (
eq17
56) by the multi-

nomial theorem, we obtain

bi1,...,ir(ms) =
−1

md
si1! · · · ir!

((−Fms,1)i1 · . . . · (−Fms,r)ir)

for all i1, . . . , ir ∈ N with i1 + · · ·+ ir = d. By (
eq15
54) and (

eq16
55), we have that

bi1,...,ir =
−1

i1! · · · ir!
〈(−α1)i1 · . . . · (−αr)ir〉

for all i1, . . . , ir.
�

The mixed mutiplicities eR(I(1)[d1], . . . , I(r)[dr];R) of the filtrations I(1), . . . , I(r) of
mR-primary ideals are defined in

CSS
[14] from the coefficients bd1,...,dr of F (n1, . . . , nr) by

defining

bd1,...,dr =
1

d1! · · · dr!
eR(I(1)[d1], . . . , I(r)[dr];R).

The following theorem follows immediately from Theorem
Theorem1
8.2.

TheoremA Theorem 8.3. Let R be a normal algebraic local ring, α1, . . . , αr ∈ M1(R) be effective
Cartier divisors and let I(j) be the filtration I(j) = {I(nαj)} for 1 ≤ j ≤ r.

Then the mixed multiplicities

eR(I(1)[d1], . . . , I(r)[dr];R) = −〈(−α1)d1 · . . . · (−αr)dr〉

for d1, . . . , dr ∈ N with d1 + · · ·+ dr = d are the negatives of the anti-positive intersection
products of −α1, . . . ,−αr.

From the case r = 1 of Theorem
TheoremA
8.3, we obtain the statement that

eR(I;R) = 〈(−α)d〉

if α ∈M1(R) is an effective Cartier divisor and I = {I(mα)}.
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Theorem10 Theorem 8.4. Suppose that R is a d-dimensional algebraic local domain, and I(j) =
{I(mD(j))} are divisorial filtrations of R for 1 ≤ j ≤ r. Then the mixed multiplicities

eR(I(1)[d1], . . . , I(r)[dr]) =
t∑
i=1

−[S/mi : R/mR]〈(−D(1)i)
d1 · . . . · (−D(r)i)

dr〉

for d1, . . . , dr ∈ N with d1 + · · ·+ dr = d.

Proof. We use the notation introduced before the statement of Lemma
LemmaR1
2.2. From Lemma

LemmaR1
2.2 and (

eqR15
12), we have that

limn→∞
`R(R/I(nn1D(1)···I(nnrD(r)))

nd

=
∑t

i=1[S/mi : R/mR]
(

limn→∞
`Smi

(Smi/J(nn1D(1)i)···J(nnrD(r)i))

nd

)
.

The theorem now follows from Theorem
TheoremA
8.3. �

The following theorem follows from Theorem
TheoremA
8.3 and

CSS
[14, Theorem 1.2]. It shows that

the Minkowski inequalities hold for the absolute values of the anti-positive intersection
products.

TheoremB Theorem 8.5. (Minkowski Inequalities) Let assumptions be as in Theorem
TheoremA
8.3, with r =

2. Then

1) (〈(−α1)i, (−α2)d−i〉)2 ≤ 〈(−α1)i+1, (−α2)d−i−1〉〈(−α1)i−1, (−α2)d−i+1〉 for 1 ≤
i ≤ d− 1.

2) For 0 ≤ i ≤ d,

〈(−α1)i, (−α2)d−i〉〈(−α1)d−i, (−α2)i〉 ≤ 〈(−α1)d〉〈(−α2)d〉,
3) For 0 ≤ i ≤ d, (−〈(−α1)d−i, (−α2)i〉)d ≤ (−〈(−α1)d〉)d−i(−〈(−α2)d〉)i and

4) (−〈(−α1 − α2)d〉)
1
d ≤ (−〈(−α1)d〉)

1
d + (−〈(−α2)d〉)

1
d .

We mention a version of the Minkowski inequalities in terms of positive intersection
numbers for pseudo effective divisors on a projective variety.

Theorem 8.6. (Minkowski Inequalities) Suppose that X is a complete algebraic variety
of dimension d over a field k and L1 and L2 are pseudo effective Cartier divisors on X.
Then

1) (〈Li1,L
d−i
2 〉)2 ≥ 〈Li+1

1 ,Ld−i−1
2 〉〈Li−1

1 ,Ld−i+1
2 〉 for 1 ≤ i ≤ d− 1.

2) 〈Li1,L
d−i
2 〉〈Ld−i1 ,Li2 >〉 ≥ 〈Ld1〉〈Ld2〉 for 1 ≤ i ≤ d− 1.

3) (〈Ld−i1 ,Li2〉)d ≥ (〈Ld1〉)d−i(〈Ld2〉)i for 0 ≤ i ≤ d.

4) (〈(L1 ⊗ L2)d〉)
1
d ≥ (〈Ld1〉)

1
d + (〈Ld2〉)

1
d .

Proof. Statements 1) - 3) follow from the inequality of Theorem 6.6
C4
[10]. Statement 4)

follows from 3) and
C4
[10, Lemma 4.13], which establishes the super additivity of the positive

intersection product. �

Appendix: A proof of Theorem
Theorem13
1.4

SecApp

In this appendix we give a proof of Theorem
Theorem13
1.4. We fix a potentially confusing index

error in the proof in
CSS
[14].

Step 1). We first observe that if I ′ ⊂ I are mR-primary ideals and
⊕

n≥0 I
n is integral

over
⊕

n≥0(I ′)n, then, by
HS
[41, Theorem 8.2.1, Corollary 1.2.5 and Proposition 11.2.1],

eR(I;R) = eR(I ′;R).
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Step 2). Suppose I = {Ii} and I ′ = {I ′i} are Noetherian filtrations of R by mR-

primary ideals and I ′ ⊂ I. Suppose b ∈ Z+. Define I(b) = {I(b)
i } where I

(b)
i = Ibi and

(I ′)(b) = {(I ′)(b)
i } where (I ′)

(b)
i = (I ′)bi. Then from

CSS
[14, Lemma 3.3] we deduce that

eR(I;R) = eR(I ′;R) if and only if eR(I(b);R) = eR((I ′)(b);R).

Step 3). Suppose I ′ ⊂ I are filtrations of R by mR-primary ideals. Suppose a ∈ Z+. Let
Ia = {Ia,n} be the a-th truncated filtration of I defined in

CSS
[14, Definition 4.1]. Then there

exists a ∈ Z such that every element of
⊕

n≥0 Ia,n (considered as a subring of
⊕

n≥0 In) is

integral over
⊕

n≥0 I
′
a,n, where I ′a = {I ′a,i} is the a-th truncated filtration of I ′ defined in

CSS
[14, Definition 4.1]s.

Define a Noetherian filtration Aa = {Aa,i} of R by mR-primary ideals by

Aa,i =
∑
α+β=i

Ia,αI
′
a,β.

Recall that Ia,0 = I ′a,0 = R. We restrict to α, β ≥ 0 in the sum. Thus we have inclusions

of graded rings
⊕

n≥0 I
′
a,n ⊂

⊕
n≥0Aa,n and

⊕
n≥0Aa,n is finite over

⊕
n≥0 I

′
a,n. By Steps

2) and 1),

eR(I ′a;R) = eR(Aa;R).

By
CSS
[14, Proposition 4.3],

lim
a→∞

eR(I ′a;R) = eR(I ′;R)

and thus

lim
a→∞

eR(Aa;R) = eR(I ′;R).

Step 4) Let notation be as in the proof of
CSS
[14, Proposition 4.3], but taking Ji = Ii and

J(a)i = Ia,i. Define

Γ(Aa)(t) = {(m1, . . . ,md, i) ∈ Nd+1 | dimk Aa,i ∩Km1λ1+···+mdλd/Aa,i ∩K
+
m1λ1+···+mdλd ≥ t

and m1 + · · ·+md ≤ βi}.

Now Γ(a)(t) ⊂ Γ(Aa)(t) ⊂ Γ(t) for all t, so

∆(Γ(a)(t)) ⊂ ∆(Γ(Aa)(t)) ⊂ ∆(Γ(t))

for all a. By equation (14)
CSS
[14],

lim
a→∞

Vol(∆(Γ(a)(t))) = Vol(∆(Γ(t))),

and so

lim
a→∞

Vol(∆(Γ(Aa)(t))) = Vol(∆(Γ(t))).

Thus

lim
a→∞

eR(Aa;R) = eR(I;R)

by (12) of the proof of
CSS
[14, Proposition 4.3] applied to Aa.

Step 5). We have that eR(I;R) = eR(I ′;R) by Steps 3) and 4). Now eR(I;M) =
eR(I ′;M) by

CSS
[14, Theorem 6.8](with r = 1).
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