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Unmanned aerial vehicles (UAVs) are attracting 
increasing attention for applications such as 
video streaming, surveillance, and delivery using 
reliable line-of-sight (LOS) links. Nevertheless, 

due to the large radio-frequency (RF) transmission foot-
print from a UAV transmitted to ground nodes, UAV 
communications may significantly deteriorate the perfor-
mance of cochannel ground communication links. With 
the lack of a dedicated spectrum, researchers need to 
design efficient spectrum-sharing policies for UAV com-
munications to enhance spectral efficiency (SE) and con-
trol interference-to-ground communications. One 
technique for spectrum sharing is spatial spectrum sens-
ing (SSS), which enables devices to sense spatial spec-
trum opportunities and reuse them aggressively and 
efficiently by controlling the SSS radius. The goal of this 
article is to introduce the fundamentals, challenges, and 
applications of SSS for UAV spectrum access and discuss 
open research problems for realizing UAV spectrum shar-
ing, including dynamic spectrum access for swarm UAV 
networks, artificial intelligence (AI)-enabled UAV spec-
trum access, blockchain-based UAV spectrum access, 
multichannel access for UAVs, and the integration of 
UAVs into cellular networks. 

Background of UAV Spectrum Sharing
In future wireless networks, as UAVs become more avail-
able, mobile users will not be restricted to terrestrial 
mobile stations. As shown in Figure 1, there are many 
applications for UAVs in wireless networks, such as UAV 
swarm networks in disasters, UAV-assisted vehicle-to-
everything (V2X) communications [1], UAV-enabled smart 
city development, traffic offloading in hotspots, and sur-
veillance and Internet of Things (IoT) networks. The wire-
less network architecture will become a 3D structure, 
incorporating terrestrial and aerial network nodes, which 
are more dynamic than the fixed terrestrial communica-
tions network that we have today. In the development of 
aerial platforms, the spectrum access for UAV communica-
tions is significant in the design and management of the 
holistic communications network. As opposed to the non-
LOS (NLOS) transmissions in most ground communica-
tions, aerial communications—including air-to-air (A2A), 
air-to-ground (A2G), and ground-to-air (G2A)—enjoy reli-
able wireless transmissions by resorting to lower signal 
attenuation due to fewer obstacles. In A2A communica-
tions, the signal experiences almost free-space propaga-
tion. In A2G and G2A communications, the occurrence 
probability of an LOS or NLOS connection is a function 
of the elevation angle 
between the UAV 
and ground node 

SPECTRUM SHARING  
FOR UAV COMMUNICATIONS

Spatial Spectrum Sensing and Open Issues

Bodong Shang, Vuk Marojevic, Yang Yi, Aly Sabri Abdallah, and Lingjia Liu

Digital Object Identifier 10.1109/MVT.2020.2980020

Date of current version: 30 March 2020

WAVE: ©ISTOCKPHOTO.COM/FORYOU13
DRONES: ©ISTOCKPHOTO.COM/DENYS

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 19,2020 at 20:12:30 UTC from IEEE Xplore.  Restrictions apply. 



JUNE 2020  |  IEEE VEHICULAR TECHNOLOGY MAGAZINE  ||| 105 JUNE 2020  |  IEEE VEHICULAR TECHNOLOGY MAGAZINE  ||| 105 

and the environment, such as rural, urban, dense urban, 
or others.

UAV communications typically occur in unlicensed 
spectrum, including the 2.4- and 5.8-GHz industry, sci-
ence, medicine bands [2]. For small- and medium- range 
UAV applications, multihop 802.11 or Zigbee technolo-
gies are considered according to their throughput and 
range demands [3]. For high-throughput applications, 
additional wireless technologies and spectra need to be 
considered. When operating in an unlicensed spectrum, 
UAVs may suffer from security threats and attacks that 
impact the transmission of confidential information. 
Moreover, with the drastic increase in the number of 
wireless devices (such as tablets, smartphones, and 
sensors) that also operate in unlicensed spectrum, the 

unlicensed spectrum is becoming overcrowded, and 
UAVs will face spectrum scarcity in the near future.

The use of a licensed spectrum, on the other hand, 
would enable wide-scale and high-quality connectivity 
for UAVs with enough capacity to support various ser-
vices and increasing usage levels. For instance, sharing 
the licensed spectrum used for cellular communica-
tions with UAVs can significantly improve the commu-
nication their performance. However, the interference 
generated by the UAVs needs to be well managed to limit 
its effect on primary users. Therefore, network design-
ers need to take the negative impact of implementing 
UAV communications into account and come up with 
efficient spectrum-sharing strategies for the coexis-
tence of UAVs and terrestrial communications devices. 

UAV Swarm in Disasters UAV-Assisted V2X

UAV-Assisted Wireless Networks

Surveillance and IoT Networks Traffic Offloading in Hotspots UAV-Enabled Smart City

Figure 1 Applications of UAVs in wireless networks.
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Enabling spectrum sensing for UAVs will allow UAVs to 
opportunistically exploit licensed spectrum holes and 
improve the SE of the overall wireless ecosystem.

In this article, we extend the SSS originally introduced 
for device-to-device (D2D) communications [4]–[6] to 
spectrum access for UAVs. Note that SSS can be integrated 
into 5G networks [7] and motivates UAVs to sense spatial 
spectrum opportunities and reuse licensed spectrum op-
portunities. Ground users are regarded as primary users 
and UAVs as secondary users. The SSS sphere of a UAV 
is a sphere centered at the UAV with radius .Rs  This is il-
lustrated in Figure 2. The objective is to maximize the SE 
of UAV networks by optimizing the UAV SSS radius while 
guaranteeing the SE of terrestrial primary users above a 
certain threshold.

SSS: Fundamentals and Challenges  
in 3D UAV Networks

Fundamentals of SSS
SSS is a spectrum access technique with controllable 
interference for sharing spectrum between primary and 
secondary users. A sensing device (secondary user) per-
forms SSS at the beginning of each time slot. The test 

statistic of the received signal strength at the sensing 
device during SSS is denoted by C . The energy detection 
threshold is represented by f . If the test statistic C  is 
greater than f , the sensing device will transmit with 
probability 1b ; otherwise, it will transmit with probabili-
ty 0 0 12b b b^ h. That is, if there are fewer primary users 
in the proximity of the sensing device (the sensing device 
is in the spatial spectrum hole of the primary users’ net-
work), the sensing device can access the spectrum with a 
high probability. One useful tool to analyze SSS networks 
is stochastic geometry, which captures large-scale inter-
ference by modeling different types of network nodes at 
various point processes. Due to the elegant mathemati-
cal derivations in stochastic geometry, the network per-
formance in terms of channel access probability, 
coverage probability, SE, and so forth can be obtained 
without doing numerous random experiments.

In signal detection theory, two performance metrics 
are considered to reflect SSS performance. These are 
the false alarm probability Pfa  and the miss-detection 
probability .Pmd  To clarify Pfa  and Pmd, we first define 
two events used in the calculation of the these prob-
abilities. Let H0  be the event where there is no primary 
user in the sensing region of the sensing device, and 
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Figure 2 An example of 3D SSS for UAVs.
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let H1  be the event where there is at least one primary 
user in the sensing region of the sensing device. The 
sensing region is a circular region centered at the 
sensing device with a radius of .Rs  The false-alarm 
probability is the probability that the test statistic C  
is greater than the energy detection threshold f  for 
event H0 . The miss-detection probability is the prob-
ability that C  is less than f  for event H1 . Therefore, 
for event H0 , the sensing device can access the spec-
trum with probability ,P P P10

1 0fa fab b= + -^ h  while, for 
event H1 , it can access the spectrum with probability 

.P P P11
1 0md mdb b= - +^ h

In detection theory, the Neyman-Pearson criterion 
says that one can either minimize Pmd  while not allow-
ing Pfa  to exceed a predefined value or minimize Pfa  sub-
ject to a constraint on .Pmd  According to the constraint 
in the Neyman-Pearson criterion, we can set the false-
alarm probability at a constant value, which indicates 
that the SSS radius and the energy detection threshold 
are mapped to each other. Thus, in practical engineering 
design, one can adjust f  for tuning .Rs

Challenges of SSS in 3D Networks
As it is different from SSS in 2D networks, realizing SSS 
for UAV communications faces many challenges.

3D Channel Modeling
The channel model for UAV communications becomes 
more complex than that of ground communications. To 
better characterize the SSS performance, more accurate 
channel models of A2G and G2A signal transmissions 
need to be explored. For a flying UAV, the received signals 
from ground primary users during SSS include LOS sig-
nals, NLOS signals, and multiple reflected components, all 
of which cause multipath fading [8]. The occurrence prob-
abilities of an LOS and NLOS link are a function of the ele-
vation angle between the UAV and ground transceiver and 
the communication environment. The small-scale fading 
in A2G and G2A transmissions can be described by a Nak-
agami or Rician distribution [9].

Height-Dependent Spectrum Access
UAVs flying at different heights experience different 
received signal strengths generated from ground prima-
ry users because of the changing elevation angle. In the 
NLOS connection, the path loss is higher than in the LOS 
connection due to shadowing effects and the signal 
reflections from obstacles. Therefore, the test statistic C  
at a UAV during the SSS may vary with the UAV’s height, 
which influences the UAV’s channel access probability.

Unknown Distributions of Aggregated  
Received Powers for SSS
To evaluate SSS performance for UAV communications, we 
need to obtain the false alarm and the miss-detection 

probabilities. Since the false alarm and miss detection cases 
are conditioned on the events H0 and H1, respectively, we 
need to attain the distributions of the aggregated received 
signal strengths generated from ground primary users 
under H0 and H1. However, due to the complex 3D channel 
model, these conditional distributions are unknown at pres-
ent and impede the analysis of SSS for UAV communications.

3D UAV Network Interference
In the network where UAVs and ground nodes coexist, 
characterizing the interference generated from UAVs is 
more challenging than that of terrestrial networks. This 
is because UAVs are distributed in a 3D airspace with a 
maximum allowable flight height. Furthermore, although 
given a certain SSS radius Rs, UAVs at different heights 
have various spectrum access probabilities due to the 
diverse test statistics during SSS. Therefore, tractable 
methods need to be developed to approximately depict 
the interference in such 3D networks and facilitate the 
analysis of coverage probability and SE of UAV networks 
and terrestrial primary user networks.

SSS for D2D communications in homogeneous cellular 
networks is studied in [4] and [5]. Closed-form expressions 
of the conditional aggregated received powers for SSS 
can be derived for performance optimization because of 
the simple network setup. In [6], SSS was investigated for 
two-tier, user-centric heterogeneous networks. Although 
a data-driven approach can be used to obtain the false 
alarm and miss-detection probabilities for terrestrial sys-
tems, the analytical framework needs to be redesigned to 
evaluate 3D UAV network interference, where the density 
of UAVs may vary with height. Therefore, a new analyti-
cal framework combined with data-driven approaches is 
needed for implementing SSS in UAV networks.

SSS-Based UAV Spectrum Access
To fully utilize the spatial spectrum holes in 3D wireless 
networks for UAV communications, introducing SSS as a 
technique for opportunistic UAV spectrum access not 
only improves the SE of the entire network but also 
enables management of the RF interference generated 
from UAV transmitters to ground communications net-
works. In this section, we discuss the objectives and con-
straints of SSS -based UAV communications and 
introduce a machine learning-assisted stochastic geome-
try approach to analyze the SSS performance of such het-
erogeneous networks. Finally, we focus on a case study 
to demonstrate the advantages of implementing SSS for 
UAV spectrum access.

SSS-Based UAV: Objectives and Constraints
Since the ground users usually pay monthly fees to the 
operator for utilizing the licensed spectrum in telecom-
munications, we consider that the operator-controlled 
ground users share the licensed spectrum with flying 
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UAVs. The ground users are the primary users, and the 
UAVs are the secondary users. Like the SSS in ground 
communications, let UAVs have an SSS radius where the 
sensing region is a sphere centered at the UAV. Based on 
the sensing sphere of a UAV, let us define the event H0  
and H1  for SSS-based UAV spectrum access, where H0  
denotes that there is no ground primary user in the sens-
ing sphere and H1  denotes that there is at least one 
ground primary user. Under these definitions, we can 
further characterize the false-alarm and miss-detec-
tion probabilities.

Note that, if the UAV’s flight height is lower than the 
sensing radius of the UAV, there will be an intersection 
region between the sensing sphere of the UAV and the 
ground, as shown in Figure 3; otherwise, there will be no 
intersection region. If there is no intersection region, the 
miss-detection case does not exist. More precisely, since 
it is impossible for a ground primary user to enter the 
sensing sphere of the UAV, we can treat the miss-detec-
tion probability as zero. Furthermore, the radius of the 
intersection region can be calculated using the Pythag-
orean theorem based on the UAV’s SSS radius and the 
UAV’s flight height, while the projection of the UAV on the 
ground is at the center of the intersection region. There-
fore, if the UAV’s flight height is lower than the sensing 
radius of the UAV, the events H0  and H1  are equivalent 
to the events for which, respectively, there is no ground 
primary user in the intersection region and there is at 
least one ground primary user in the intersection region.

Optimization Problem
The fundamental problem under consideration is then 
cast as a network SE maximization problem, which is sub-
ject to the constraint that the data rate of a typical 
ground/primary user should not be lower than a certain 
threshold. The optimization variable can be the SSS radi-
us. The maximization problem is given by

 
 

 ,

max

Rs.t. O

SEV

D

Rs

H jp

where SEV  denotes the SE of the UAV network, RD  is the 
data rate of a typical secondary user, and j  indicates the 
data rate threshold of secondary users’ communications. 
A small value of the SSS radius leads to a high spectrum-
access probability of UAVs and thus severe interference 
generated by UAVs, while a large value of the SSS radius 
results in a low spectrum-access probability of UAVs, 
which reduces the SE of UAV networks. Therefore, there is 
a tradeoff between aggressive spectrum reuse and lower 
interference. The objective can be the SE of the UAV or the 
SE of the entire network containing UAVs and ground pri-
mary users. The constraint here is to guarantee the per-
formance of the communications of primary users.

System-Level Performance Evaluation
The tool of stochastic geometry is used to evaluate the 
performance of SSS-based UAV communications from a 
system-level perspective by capturing the spatial loca-
tions of network nodes. To characterize the density of 
UAVs, one needs to obtain the distributions of aggregat-
ed received signal strengths at a UAV conditioned on 
events H0  and H1  for the calculations of false-alarm and 
miss-detection probability during SSS. Due to the com-
plex 3D channel model, these conditional distributions of 
the aggregated received signal strength at a UAV are diffi-
cult to characterize mathematically. To be specific, 
applying the inverse Laplace transform of a Laplace 
transform of the aggregated received signal strengths at 
a UAV can attain its probability density function. Howev-
er, there are many integrals in the calculation of the 
inverse Laplace transform and the integrals on the imagi-
nary domain, which leads to algorithm deficit.

To overcome this issue, one can leverage machine 
learning to train the distributions of the aggregated re-
ceived signal strength at a UAV conditioned on events H0  
and H1 . The conditional distributions of the aggregated 
received signal strength generated from ground primary 
users at a UAV can be approximated by log-normal dis-
tributions, which are observed from experiments where 
most values fall near the vertical axis [10]. The mean 
and standard deviation of log-normal distributions are 
expected to be determined based on real data. Accord-
ingly, given network parameters (ground primary users’ 
density, flight height of the UAV, SSS radius of the UAV, 
and the small-scale fading parameter), we can obtain the 
mean and standard deviation of the approximate log-
normal distributions shown in Figure 4. 

Since the mean and standard deviation are continu-
ous, regression tools can be utilized to train these pa-
rameters of log-normal distributions, which can be 
solved by a parametric or a nonparametric approach. 
For the parametric approach, a polynomial function with 
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Figure 3 The intersection region between UAV’s SSS sphere and 
ground.
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coefficients in each term can be regarded as the hypoth-
esis function, and the coefficients are updated in each 
iteration based on the gradient of the cost function in 
the training process. For the nonparametric approach, a 
series of query points is generated to match the points 
in the data set, which utilizes the local data information 
at a query point. The nonparametric approach usually 
exhibits more accuracy in approximation than the para-
metric approach, while the parametric approach can 
give an exact form of hypothesis function, which facili-
tates intuition analysis.

Case Study
Simulations are conducted to evaluate the performance of 
SSS-based UAV spectrum access. We simulate a 3D UAV 
and ground primary user network, as shown in Figure 5, 
where the UAVs sense and access the channel opportunis-
tically as secondary users. Three spectrum access poli-
cies are compared: random UAV spectrum access (where 
a UAV can access the spectrum with a certain probability), 
SSS-based UAV spectrum access (where a UAV can access 
the spectrum based on the SSS), and distance-based UAV 
spectrum access (where a UAV can access the spectrum 
with probability 0b  under event H0  and with probability 

1b  under event .H0)  For random UAV spectrum access, 
given a required minimum SE of primary user networks, 
we first characterize the UAVs’ maximum random-access 
probability, which guarantees the required minimum SE of 
primary user networks, and then evaluate the SE of UAV 
networks based on this maximum random-access proba-
bility. For SSS- and distance-based UAV spectrum access, 
given a required minimum data rate of a typical primary 
user, we first obtain the minimum UAV spectrum-access 
radius, ensuring the minimum required data rate of a typi-
cal primary user, and then measure the SE of UAV net-
works based on the minimum UAV spectrum-access 
radius. It is worth noting that distance-based UAV spec-
trum access requires the exact positions of UAVs and thus 
increases the system’s signaling overhead. However, both 

random UAV and the SSS-based spectrum access have low 
complexity, as they access the spectrum in distributed 
ways based on several system parameters.

The ground primary users are uniformly distributed 
with the density of /e1 5- m2 [11]. The UAVs are randomly 
located in an aerial region within a height of [10m, 100 m]. 
Considering that each UAV communicates with a ground 
receiver, we assume that the UAV density is the same as 
that of the ground users. The transmission power of UAVs 
and primary users is 200 mW [11]. The considered chan-
nel model is based on the model in [11] and [12], and the 
small-scale fading for UAV communications is assumed 
to be Nakagami-m fading with the parameter 2m =  [13]. 
Rayleigh small-scale fading is assumed for the ground com-
munications, and the path loss exponent is 4 [11], [14]. The 
target false-alarm probability of UAVs is chosen as 0.1 [4]–
[6], [14]. We assume 0 12b b  to ensure the different spec-
trum access probabilities based on the detected energy 
for the SSS-based method and the appearance of primary 
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Figure 4 The inputs and outputs of the machine learning-assisted approach. PDF: probability density function.

120

100

80

60

40

20

0
2,000 1,500 1,000 500 0 0

1,000

2,000

(m)
(m)

(m
)

UAV
UAV Receiver
Ground Transmitter
Ground Receiver

Figure 5 The 3D communication networks where primary transmit-
ters are uniformly distributed on the ground, primary receivers are in 
the proximity of primary transmitters, and UAVs are uniformly distrib-
uted in the allowable flight region within the height of 10 and 100 m. 

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 19,2020 at 20:12:30 UTC from IEEE Xplore.  Restrictions apply. 



110 |||    IEEE VEHICULAR TECHNOLOGY MAGAZINE  |  JUNE 2020

users in the distance-based method. Next, we set .0 80b =  
and . ,0 161b =  according to [4]–[6]. The bandwidth is  
10 MHz, and the noise power is –110 dBm [11]. The desired 
link distances of primary users are 30 m [14], and the dis-
tance between the ground receiver and the projection of 
UAV on the ground is uniformly distributed in [1 m, 100 m]. 
The signal-to-interference-plus-noise ratio (SINR) thresh-
olds are set as –5 dB for both primary users and UAV re-
ceivers [14]. The required minimum data rate of a typical 
primary user is 2 Mbits/s.

Figure 6 shows the data rate of a typical primary user 
with respect to UAV spectrum-access radius, where the 
typical primary user is at the origin of the ground region 
of interest. For both the SSS- and the distance-based UAV 
spectrum-access methods, the data rate of a typical prima-
ry user increases with the UAV spectrum-access radius. 
For the SSS-based approach, a smaller value of the UAV 
spectrum-access radius makes the UAV less aware of the 
radio environment; thus, the average channel access prob-
ability of UAVs increases, which results in the decrease 
of primary users’ SINR due to the increased interference. 
Therefore, there exists a minimum UAV spectrum-access 
radius, guaranteeing the required minimum data rate of a 
typical primary user. For the distance-based approach, a 
smaller value of the UAV spectrum-access radius decreas-
es the probability of detecting a primary user in the UAV 
detection sphere. This also increases the average chan-
nel access probability of UAVs and thus generates more 
interference-to-ground users. Similarly, for random UAV 
spectrum access, there is a maximum access probability 
to ensure that the required minimum data rate of a typi-
cal primary user is met. The three aforementioned UAV 

spectrum policies can guarantee the primary users’ aver-
age data rate.

Figure 7 suggests that, given a required minimum data 
rate of a typical primary user, SSS- and distance-based 
UAV spectrum-access methods can both achieve satisfac-
tory SE gains of about 62% and 49%, respectively, com-
pared to the random UAV spectrum-access method. This 
demonstrates the advantage of the proposed SSS-based 
UAV spectrum access. When the UAV spectrum-access ra-
dius is relatively small (<150 m), the distance-based meth-
od outperforms the SSS-based method in terms of the SE 
of UAV networks because UAVs access the spectrum more 
aggressively using the distance-based method as op-
posed to the energy detection-driven SSS-based method.

Open Research Issues
Besides the proposed SSS-based UAV spectrum access, 
many other spectrum-sharing approaches also need to 
be investigated for various UAV applications.

Spectrum Sharing for Swarm UAV Networks
In future wireless networks, multiple UAVs may form a 
swarm UAV network to complete a mission collaboratively, 
such as holographic beamforming, multiazimuth surveil-
lance, and flying distributed multiple-input, multiple-output 
(MIMO). The spectrum sharing among the UAV swarm 
needs to be investigated to facilitate more efficient data 
transmissions. The major concerns are the fairness and the 
interference among UAVs in the proximity. In some scenari-
os, lead UAVs send command and control information to 
other UAVs. Therefore, for the design of UAV spectrum-
sharing policies, the priority of the lead UAV spectrum 
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access should be higher than for the others. In addition, 
according to the 3rd Generation Partnership Project’s real-
istic antenna patterns, the power leakage in the side lobes 
of the radiated beam from the ground base stations with 
multiple antennas varies with the altitude of the UAV. Thus, 
spectrum sharing for swarm UAV communications in a real-
istic network setup needs to be investigated in the future.

Cooperative SSS
If multiple UAVs are in proximity of one another, they can 
cooperatively perform SSS and exchange the detected sig-
nal strength values for channel access decisions in shared 
spectrum. Such cooperative SSS can potentially improve 
the sensing efficiency and communication performance of 
primary users because multiple distributed sensors com-
bined will lower primary users’ miss detection. However, 
one of the difficulties in cooperative SSS is the determina-
tion of cooperative UAVs, which may have independent 
trajectories. For example, if two UAVs are far apart, there 
is less benefit in exchanging their detected signal strength 
values due to the nearly independent environments.

AI-Enabled UAV Spectrum Access
SSS-based UAV spectrum access can be realized using sta-
tistical information. Other UAV spectrum-access strategies 
can be developed based on real-time network information 
(including wireless channel, UAV aerial position, and trans-
mit power). Although these approaches can achieve better 
performance, they require more information, and the asso-
ciated overhead of transferring this information will be 
costly due to the mobility of UAVs and the limited energy 
resources on UAVs. AI provides a suitable framework for 
such strategies. To be specific, supervised learning can be 
used to optimize the decision of UAV spectrum access 
based on the collected data set, which includes the loca-
tions of primary users, the signal strengths at UAVs and 
primary users, the network environment parameters, and 
so forth. On the other hand, model-free methods, such as 
reinforcement learning, may provide us near-optimal solu-
tions for UAV spectrum access where the network environ-
ment is unknown and UAVs need to conduct spectrum 
access in a distributed fashion.

Multichannel Access
Orthogonal multiple access can be achieved through 
scheduling, by knowing the position and footprint of UAVs 
on terrestrial users. Nonorthogonal multiple access 
(NOMA), discussed for beyond-5G networks, can leverage 
different UAV positions or transmission powers to succes-
sively cancel overlapping transmissions at the intended 
receiver. Furthermore, when NOMA is implemented in UAV 
MIMO communications, the precoding and detection 
design under the 3D channel model needs to be investigat-
ed to improve the UAV network capacity. Research has 
shown that orthogonal channel access mechanisms, such 

as those used for 4G LTE, are suitable for A2G communica-
tions and that parameters can be optimized depending on 
the band and UAV velocity [15]. For spectrum coexistence 
employing either channel access paradigm, the research 
challenges include tracking of UAV locations and channels 
while maintaining a reasonable signaling overhead.

Cellular System Integration
Cellular networks were designed and optimized for terres-
trial users. For cellular downlinks, antennas are tilted 
downwards, meaning that most UAVs see only side lobes. 
Moreover, while on the ground, cells can be defined; cell 
boundaries in the air are less clear, overlap, and are a 
function of the height, due in part to the side lobes and 
nulls. 5G beam-based systems, where certain beams can 
be dedicated to UAVs, are a promising solution to alleviate 
this problem. Data need to be collected with open test-
beds in different environments and with different antenna 
configurations to evaluate strategies and allow effective 
sharing. The integration of UAVs into heterogeneous wire-
less networks, such as V2X networks [1], and spectrum 
sharing between UAVs and moving vehicles are of impor-
tance in future mobile systems.

Blockchain-Based UAV Spectrum Sharing
In contemporary UAV networks, multiple applications such 
as mobility control and surveillance reporting require pre-
cise commands and clean wireless channels. Security is 
one of the major concerns of UAV networks, since malicious 
users may try to attack the network to preempt legitimate 
spectrum resources and wiretap vital information trans-
missions of UAV communications. Conventional, central-
ized certification approaches require additional 
infrastructure cost and administrative and transaction 
expenses with efficiency problems. Blockchain has gained 
attention for its enhancement of secure transactions: it can 
provide a trusted and distributed database for participants 
and be inherently resistant to the modifications of the 
stored data within the blockchain. Each recorded block 
includes the previous cryptographic hash, a timestamp, 
and the transaction data. The database is verified by partic-
ipants and updated with a virtual currency for each party. 
Considering the limited onboard energy of UAVs, designing 
efficient blockchain-based algorithms for UAV communica-
tions while mitigating the power consumption rates is a sig-
nificant challenge.

Conclusions
In this article, we focused on spectrum sharing for UAV 
communications and proposed SSS for spectrum access. 
A comprehensive background of UAV spectrum sharing 
was provided. The fundamentals of SSS and the challeng-
es of implementing SSS in UAV 3D networks were dis-
cussed. SSS-based UAV spectrum access was investigated 
with the objective of maximizing the SE of UAV networks 
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and the constraint of the required minimum SE of primary 
user networks. We introduced a machine learning-assisted 
system-level framework to evaluate the performance from 
the system-level perspective and demonstrated the 
advantage of SSS-based UAV spectrum access. Our results 
show that SSS-based UAV spectrum access outperforms 
random and distance-based UAV spectrum access in 
terms of the SE of UAV networks while managing the inter-
ference to primary users. The article also provided a dis-
cussion on important open problems related to spectrum 
sharing between terrestrial and UAV communications, 
identifying important research areas for spectrum sharing 
in UAV swarms, cooperative SSS, AI and NOMA-enabled 
UAV channel access, cellular system integration, and 
blockchain-based UAV spectrum sharing.
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