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Abstract—In this paper, we study a three-dimensional (3D)
spectrum sharing between device-to-device (D2D) and unmanned
aerial vehicles (UAVs) communications. We consider that UAVs
perform spatial spectrum sensing to opportunistically access the
licensed channels that are occupied by the D2D communications
of ground users. The objective of the considered 3D spectrum
sharing networks is to maximize the area spectral efficiency
(ASE) of UAV networks while guaranteeing the required min-
imum ASE of D2D networks. Using the tools from machine
learning, we obtain the probability of spatial false alarm and
the probability of spatial missed detection at the UAV, which
helps us to characterize the density of active UAVs. Then, based
on the Neyman-Pearson criterion, we further derive the coverage
probability of D2D and UAV communications by leveraging the
tools from stochastic geometry. In addition, the ASE of the D2D
and UAV networks are also obtained. Simulation results show
that a decrease in the spatial spectrum sensing radius of UAVs
reduces the coverage probability of UAV communications but
improves the ASE of UAV networks. Furthermore, the proposed
tools allow obtaining the optimal spatial spectrum sensing radius
of UAVs given certain network parameters.

Index Terms—UAYV, D2D communications, spectrum sharing,
heterogeneous networks, cognitive radio networks.

I. INTRODUCTION

NMANNED aerial vehicles (UAVs) have attracted great

attention as they enable various applications and services
[1]. Cellular operators consider UAVs as users or network
support nodes in cellular networks and vehicle-to-everything
communications [2]. In addition to operator deployed UAVs,
UAVs may belong to third-party organizations or individ-
uals who want to enjoy broadband data transmissions for
video streaming, content delivery, surveillance report, etc.
In the meantime, wireless communication systems for UAV
data transmission need to be carefully designed. Due to
the congested unlicensed spectrum, it is desirable for UAVs
to transmit in licensed or shared spectrum [3]. Licensing
spectrum for massive/broadband UAV communications is not
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feasible; rather, we consider spectrum sharing between UAVs
and ground licensed users to be a viable option.

In the licensed band, device-to-device (D2D) communi-
cations enable mobile users that are close to each other to
communicate directly [4], [5]. The D2D operation in the
licensed band includes the underlay mode (using the same
spectrum as cellular communications links) and the overlay
mode (using orthogonal spectrum to cellular communications)
[6], [7]. D2D communications in the unlicensed band, on the
other hand, need to coexist with WiFi networks and typically
suffer severe interference [8]. Since D2D transceivers are in
proximity of one another, the received interference power at
D2D receivers (D2D-Rxs) from UAVs is lower, compared to
that of the long range regime which occurs when the receiver
lies outside the protection zone of D2D transmitters (D2D-
Txs). Therefore, we consider the three dimensional (3D) spa-
tial spectrum sharing between UAV and D2D communications
where UAVs play the role of secondary users and D2D as
primary users. To fully utilize the licensed spectrum in such
hybrid D2D and UAV networks, we aim to maximize the area
spectral efficiency (ASE) of UAV networks while guaranteeing
the minimum required ASE for D2D users. From operators’
perspective, sharing the licensed spectrum with UAVs can help
them increase profit margins by charging fees from UAV users.
From the UAVs’ perspective, communications can achieve
the desired performance in the licensed band, as opposed
to the congested and insecure unlicensed band. Considering
that mobile users need to pay monthly fees to the operator,
D2D transmitters (D2D-Txs) are considered the primary and
UAVs as the secondary users in the hybrid D2D-UAV spectrum
sharing network. Since it is intractable to numerically calculate
the conditional interference distributions (conditioned on the
presence of D2D-Rx in the intersection of UAV sensing
sphere and ground) at a UAV under the ground-to-air (G2A)
channel models, we leverage machine learning tools, i.e.,
Gaussian kernel nonlinear regression, to approximately obtain
the conditional interference distributions, which are used in the
derivation of spatial false alarm and missed detection prob-
abilities in UAV spatial spectrum sensing. Leveraging tools
from stochastic geometry, we analytically derive the coverage
probability of D2D communications and UAV communica-
tions. Based on our proposed model, we can maximize the
area spectral efficiency (ASE) of UAV networks by optimizing
the UAV spatial spectrum sensing radius under the constraint
of a minimum ASE of D2D networks.
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A. Related Works

Spectrum sharing in terrestrial networks has been investi-
gated in [9]-[15]. In [9], the authors studied spectrum sharing
for D2D communications in cellular networks. A paradigm
for spectrum sharing between cellular communications and
radio astronomy systems was introduced in [10]. In [11], the
approach of guard zones (protection regions) around cellular
BSs was introduced. The spatial spectrum sensing-based D2D
communications have been studied in [12], [14] and have been
extended to the D2D spectrum access in user-centric deployed
heterogeneous networks [15].

On the other hand, 3D spectrum sharing for UAV networks
has largely been unexplored. In [16], the authors derived
the optimal density of spectrum sharing drone networks to
maximize the throughput of the small cell UAV network.
However, the considered channel model is rather simplistic to
facilitate closed-form derivations. In [17], a spectrum sharing
planning problem for a full-duplex UAV and underlaid D2D
communications was studied, where a mobile UAV assists
the communications between separated nodes without a direct
link. In [18], the performance of a static UAV and a mobile
UAV coexisting with D2D users in a finite area was studied,
where the UAVs and D2D communications have the same
spectrum access priority. [19], [20] also studied the coexistence
of D2D and UAV communications. However, these works
considered only one UAV in the sky in the absence of
mutual interference between multiple UAVs with various flight
heights. To the best of our knowledge, this is the first work
that studies overlay spectrum sharing between UAVs and D2D
communications from a system-level perspective.

B. Paper Contributions

The main contributions of our work are the following:

o 3D UAV Spatial Spectrum Sensing Model: A 3D UAV
spatial spectrum sensing model for coexisting D2D and
UAV networks is designed. The spatial spectrum sensing
is conditioned on the sensing of D2D-Txs lying in the
UAV’s spatial spectrum sensing sphere. The conditional
distributions of the received signal strength at the UAV
have been approximated by log-normal distributions.
Given network paramters, a machine learning-assisted
approach is introduced to obtain the approximated dis-
tribution parameters (mean and standard deviation) to
interpret the G2A channels. The spatial false alarm
probability and the spatial missed detection probability
of a typical UAV is obtained using the approximated
conditional distributions.

e Coverage Probability and ASE Analysis: We model and
analyze the 3D hybrid spectrum sharing network from a
system-level perspective. Our model is flexible enough to
capture any density distributions of UAVs in 3D space,
rather than fixing the heights of UAVs. The coverage
probability of D2D and UAV communications are derived
by considering co-tier and cross-tier interference. Based
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on these analyses, we obtain the ASE of the D2D and
UAV communications, respectively.

o Network Design Insights: The analysis and simulation
results provide important network design insights: The
optimal spatial spectrum sensing radius of UAVs is ob-
tained to maximize the ASE of UAV networks under
the constraint of a minimum ASE of D2D networks.
It is observed that a decrease in the spatial spectrum
sensing radius of UAVs has a contrasting effect on the
coverage probability of UAV communications and the
ASE of UAV networks. The optimal transmit power of
UAVs can be also obtained which maximizes the ASE of
UAV networks under the constraint of a minimum ASE
of D2D networks.

The paper is organized as follows. Section II presents the
system model. Section III gives the probabilities of spatial
detection of a typical UAV. Section IV shows the coverage
probabilities of D2D and UAV communications, and presents
the ASE of UAV and D2D networks, respectively. Simulation
and numerical results are discussed in Section V. Section VI
concludes the paper.

II. SYSTEM MODEL

A. Network Layout

The network architecture is shown in Fig. 1. The locations
of D2D transmitters (D2D-Txs) are modeled as a homoge-
neous Poisson point process (PPP) on the two dimensional
(2D) ground with the density of Ap and the set of D2D-
Txs are denoted as ®p. The signal-to-interference-plus-noise
ratio (SINR) threshold of a D2D receiver (D2D-Rx) is yﬁl.
The transmit power of a D2D-Tx is Pp. Without loss of
generality, we assume that UAVs are distributed in 3D space
within the height range of [Hyin, Hmax], Where the densi-
ties of UAVs on different horizontal planes follow a certain
distribution fz (h). Due to their flexible mobility, UAVs can
fly at different heights and change their heights dynamically.
Our model realistically captures the various heights of UAVs,
unlike the state-of-the-art that assumes UAVs at a fixed
height. We denote the 3D allowable flight space for UAVs as
Va = {(x,y,2)| Huin < 2 < Hpax}- The density of UAVs
in V4 is Ay which is the density of the ground projection
points of UAVs. The set of all UAVs is represented by @y .
In this paper, we consider the case where UAVs intend to
transmit data to ground users in a same channel that is used
by the overlaid D2D communications network. The transmit
power of a UAV is denoted by Py and the SINR threshold of
the associated ground receiver is %/h. The transmit power of
UAV can be adapted according to the channel conditions and
the user’s quality of service requirement to further enhance
the communication performance. Our model is applicable for
many power control mechanisms such as the semi-static power
control mechanism [21]. For ease of analysis, in this paper we
assume fixed transmit power at UAVs.
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Fig 1: Spectrum sharing for D2D and UAV coexisting networks.

B. Radio Propagation Model

The SINR of a typical D2D-Rx u{ associated with the
corresponding D2D-Tx dj, is given by

Pth udek — ugH_aGG
SINR (u}) = e
(i) IV, + 15 + 0,2
P, vi,ud) Pyg,.
where IX:Z = Z Loﬁv( Juk)HaZva]ug
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Pthjungj —

d H —QaGgaG
)

where hg, denotes the channel power gain between ground
nodes z and y which follows the Rayleigh distribution,
|la —b|| the distance between a and b, and agg the path
loss exponent from a ground node to another ground node.
I Vd is the aggregate interference power at uk from active

UAVs I

D2D- sz an2 is the noise power, and ®{* denotes the set
of active UAVs which successfully access the channel through
spatial spectrum sensing. For a ground D2D-Rx, the received
interfering signals from active UAVs include LOS signals,
Non-LOS (NLOS) signals, and multiple reflected components
which cause multipath fading [22], [23]. Pros (vj,uf) and
Pyxros (vj,uz) denote the occurrence probabilities of the
LOS and NLOS links between the j** UAV v; and the typical
D2D-Rx ug, where the summation of these two occurrence
probabilities equals to one. Parameter a4 is the path loss
exponent of the A2G link. The path loss is higher in a NLOS
than in a LOS connection because of shadowing and indirect
signal paths. Parameter 7 < 1 is the excessive attenuation

is the aggregate interference power at uk from

factor for NLOS. The Nakagami distribution can be used to

describe the small scale fading in A2G and G2A channels

[24], [25]. We use g,, to denote the channel power gain

between x and y in A2G and G2A connections which follows

a normalized gamma distribution with parameter M.
Specifically, according to [23], we have

1
LOS (vauk) 1+ Cexp[-B(0—0C)]’
(2
1 v
where 0 — 180 arctan 2
™ rvju‘,i

where C' and B are constant values depending on the commu-
nications environment, e.g. rural, urban, or dense urban, hvj
is the height of the UAV v;, and Tyjud denotes the horizontal
distance between UAV v; and D2D-Rx u¢. In addition, we
have Pyros (Uj, ug) =1—- Pros (vj,ug).

The SINR of a typical UAV receiver (UAV-Rx) u; associ-
ated with UAV v; is given by

Py L (v;,u vllv; — u || "
SINR(U;’): v L (v; V)gumD” i . [
Iug + Iuy + oy,
where
L (vi,u;) = Pros (vi,uj) +nPnros (vi,uf) ,
Iy = Y Pphajuylld; —up]| 7" 3
d;€®p ( )
IV - PLOS (’U], )Png]u
> fog —w ™
v; €DLEE v #v; J
Pnros (v, uf) NPV guup
+ Z _ g v||®AG )
[[vj — il

v; €DLEE v #v;

where Progs (vi,u?) and Pyros (vi,u?) are the occurrence
probabilities of LOS and NLOS connections between the
typical UAV v; and its associated receiver u?. The term I, in
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Fig 2: Ground intersection of spectrum sensing region of a typical UAV.

(3) represents the aggregate interference power at the typical
ground UAV-Rx u? caused by the active UAVs . IL) is the
aggregate interference power at u; caused by the D2D-Txs.

C. Spatial Spectrum Sensing

We define the spatial spectrum sensing sphere of a typical
UAV w; at the height of h,, as

Sy, = {U(xv,yv,zv) S V3’ lvi — vl < Rs}
and

o = 0l =/ ar = 20)* + (o, = 50" + (o, — 20)%

“4)
where x,, y, and z, represent the coordinates of the point
v, V3 denotes the 3D space, ||v; — v|| is the spatial distance
between UAV v; and v (2, Yy, 2y), and Ry is the spatial
spectrum sensing radius of UAV. The intersection between S,,,
and the ground is denoted by A,, = S,; N R?, where R? is
the horizontal ground plane. More specifically, we have

Ay, = {m(mm,ym) € R2| |v; — m]|| < /R — hviQ}

and

o = mll = /@0, — 2)? + (g0, — Y™,

&)
where m (Z,,ym) denotes a point located in .A,,, and
(T, ym) are its coordinates. Expression |v; —m| is the
horizontal distance between UAV v; and ground point m. Fig.
2 illustrates the geometrical setup and parameters.

Let H° be the event that there is no D2D-Tx in A,,, and
H! be the event that there is at least one D2D-Tx in A,,. We
assume that in each time slot of duration 7', all UAVs first
perform spatial spectrum sensing of duration 7, and the UAVs
which access the channel transmit data in the remaining time
duration T' — 7. At UAV v, the received signals y [n] during
spatial spectrum sensing for the events H° and H' are given
in (6) and (7), where n is the sample index, sgq, [n] is the
n*" sample from D2D-Tx di, and the noise ng[n] is i.i.d.

circularly symmetric complex Gaussian with zero mean and

variance o,,%:

HO : y[n]

- ¥

di€®p,dp¢Ay,

PDngd- i
Pnros (di, vi) msdk [n]
dp€Pp,drE Ay, b !

PngkUri

Pros (dy,vq) Wsdk [n]

LD

+no [n] )
. (6)
H ryn]

- ¥

dr€Pp,PpNA,, #0

LD

dr€Pp,PpNA,,; #0
+no [n].

Ppga o,

Pros (dg,v;) s = vn[[7 S [n]

PD N9dyv;

Pyros (di,v;) Wsdk [n]

(N
The test statistics of the received signals at a typical UAV
are given by

1 N,—1
I 1% = N ; ly[n])?, @=1{0,1}, (8)

where N, denotes the number of samples. When [V, is large,
the distribution approaches a conditional Gaussian distribution
because of the central limit theorem, i.e.,

= n2 2
T|I% ~ N <Iw+an2,(+NU)). 9)

The mean and the variance of the conditional Gaussian distri-
bution depend on the hypothesis [26], [14]. Note that I° and
I' are random variables that depend on the network topology,
D2D-Tx density and transmit powers, channel conditions,
height of the sensing-based UAV and its spatial spectrum
sensing radius. I and I' are expressed as

Png v;
IO = P d ) kY
2 Pros (o) g e
dkE‘I)D,de_Avi
Ppnga,v, (10)
+ Z Pnros (di,v;) di%’
A€ p,di g Ay, i — vi|
Ppga,v,
= Z Pros (dk,vi)m
dr€Pp,PpNAy, #0 k i
P
+ > Prros (dy,v;) —219dke
AR €D, B pNA,, £D l|d — vil|
(11

The spatial false alarm probability and the spatial missed
detection probability of a UAV are

Pio =Ep {P(T >¢elH")},
Pmd :EIl {P(F < 5‘}[1)}7

12)
13)

where ¢ is the energy detection threshold. The essential differ-
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ence of spectrum sharing between 3D and 2D networks is the
unknown conditional distribution of the aggregated received
power at the UAV which determines the false alarm and missed
detection probabilities.

If the test statistics received power I' at a UAV is greater
than ¢, the UAV will transmit with probability 31, otherwise, it
will transmit with probability 3y, where By > (1. Therefore,
for event H°, a UAV will access the licensed channel with
probability

P = Py, B1 + (1 — Pya) Bo.

For event H', a UAV will access the licensed channel with
probability

(14)

Plz(l_Pmd)ﬁl'i'PmdﬁO'

Note that Py, and P, are key performance metrics for
the UAVs spatial spectrum sensing, affecting the density of
active UAVs and the co-channel interference to UAV and D2D
communications. This will provide useful insights to design
efficient spectrum sharing strategies that balance the aggres-
sive spectrum reuse and the resulting co-channel interference.
Compared with the modeling and analysis in conventional
heterogeneous networks [27], the technical challenges of ana-
lyzing spectral sharing opportunities between UAV and D2D
networks include modeling the height dependent spectrum ac-
cess, determining the distributions of the aggregated received
power during spectrum sensing, and characterizing network
interference in 3D.

15)

III. FALSE ALARM PROBABILITY AND MISSED
DETECTION PROBABILITY ANALYSIS

In this section, we provide the intermediate technical results
for the system-level performance analysis, where we character-
ize the probability of spatial false alarm and the probability of
spatial missed detection of a typical UAV. These probabilities
will be used to determine the density of active UAVs and the
interference from active UAVs.

A. Probability of Spatial False Alarm

For a typical UAV v; at the height of h,,, since I° in (10)
is a random variable relying on the network parameters, the
probability of spatial false alarm Py, in (12) can be expressed
as

Py, = / P (T > e|H°,I° = 2) fro (z)da, (16)
0
where f7o () is the probability density function (PDF) of 1°.
We derive the Laplace transform of I° when R, > hy, to
determine its distribution which is shown in (17), where (a)
is obtained from the expectation of the normalized gamma
distribution. In addition, when R < h,,, we have

510|nghui (s)
=exp{—27Ap

- (18)
. /0 [1— (1—|—£(x7PD)—|—G)(w,PD))_M} a:dx}

5

Using the Probability Density Function (PDF) of IV, i.e
fro). (t), the Laplace transform of I° is expressed as

L. (s) =E{e*}

= / G_Stf[0|. (t)dt
0

where [ 0’ - denotes the event I° under R, > hy, of Rs < hy,.
The PDF can then be derived by taking the inverse Laplace
transform:
fro. (t) = L1 {,C]o‘. (S)}
1 ~y4iT

= — lim
2w T—oo Jo_ip

19)

20
e L o). (s)ds 0

Note that there are several other methods for deriving the
distributions of Iy and I; such as the inverse transform
of characteristic function. However, these analytical methods
involve multiple integrals and integrals in a complex domain
which impede tractable algorithm design.

The probability of spatial false alarm can be calculated by
combining (20) into (16) as follows:

P { fo fI"\R >hy, ( )dl‘,
f() fIO\R <hy, ( )dl‘,

where ¢ () = Q (%\/ﬁ) and @ (-) is the Q-function.

Ry > hy,

R < hy, 21

B. Probability of Spatial Missed Detection

Similar to the derivation of Py,, the Laplace transform of
I' when R > h,, is obtained in (22), where £ (z) and © (z)
are given in (17).

Therefore, the probability of spatial missed detection can
be expressed as

P { 0

0,Rs

fIl\R >hy, ( )dl‘,Rs > h"Ui

(23)

Remark 1. In terrestrial communications with 2D Poisson
distributed interfering nodes, the closed form PDF of I° can
be approximated by the inverse Gaussian distribution [28] and
the log-normal distribution [29] by taking the first, second
and/or third order cumulants. However, these approximations
do not match well with the exact values of I° and I' in
3D networks. Therefore, it is crucial to obtain the simple
and tractable approximated distributions of the aggregate
interference for 3D UAV spectrum sensing to provide useful
system design guidelines.

C. Machine Learning-Assisted Approach

It is difficult to compute Py, and P,,q numerically in (21)
and (23) due to multiple integrals in the calculation of the
inverse Laplace transform. The nonlinear regression technique
can be used to obtain the approximated PDFs of I° and I'
to facilitate system-level performance analysis [30]. Due to
the exponential distance dependent large-scale path-loss, the
PDFs of the aggregated received signal strength I° and I'
at a UAV are concentrated within certain values and have a
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Eg, H

dy, E@DﬂAf)i

P, dy,v;) P, v, + P, dy,v;) P v
E, {exp (—s L0s (dk,vi) Ppga, v, + Pnros (dk, vi) Ppnga, L)}

([dy — vil|

1—exp [-Apm (R — hy,”)]

e—2™p [5° [1-(1+€(@,Pp)+6(2,Pp)) M ]zde LR, >h,, (s)exp (—Apm (Re* — hy,?))

3

1—exp [-Apm (R — hy,”)]

long tail. Without loss of generality, we make the following
proposition.

Proposition 1. The PDFs of the received signal strength I°
and I' for the events H° and H' can be well approximated
by the log-normal distribution with appropriate mean and
standard deviation values. More specifically, we have

(Inz — py=)*
20’]w2

fr=(z) = ] ; (24)

1
- exp|-—
TO = 2T l
where |- and o1= are the mean and the standard deviation
variables.

Note that other families of distributions such as the inverse
gamma or scaled inverse chi-squared can be used to approx-
imate the distributions. However, the choice of approximate
distribution model is beyond the scope of this paper where we
focus on the system-level performance evaluation.

In terrestrial communications with 2D Poisson distributed
interfering nodes, the values of p;0 and o ;o can be obtained by
calculating the first and second cumulants of [ 0 [28]. However,
the results obtained by the first and second cumulants of I°
are no longer accurate under 3D UAV channels due to the
LOS and NLOS nature of G2A connections. The Gaussian
kernel nonlinear regression is used to explore the relationship
between input (network parameters) and output (mean and the
standard deviation of log-normal distribution). In Fig. 3, the
input network parameters are the density Ap of D2D-Txs,
UAV’s flight height h,,,, UAV’s spatial spectrum sensing radius
Rs, and the channel power gain M of G2A transmission.
The output is the mean or the standard deviation of the

approximated log-normal distribution of 1%, w = {0, 1}.

Remark 2. In the training process, the transmit power
of D2D-Txs is not set as an input. We use the scal-
ing property of the log-normal distribution to update the
mean value of the approximated log-normal distribution,
i.e, if I” ~ Lognormal (jiy=,01=), then we have al® ~
Lognormal (py= + Ina, or=).

We use Monte Carlo simulations with diverse input values to
generate the data set for training. For this data set generation,
the mean and the standard deviation values of the log-normal
distribution can be obtained as follows

E{I=}?
pr= =1In _EUFY ; (25)
E{(=)"}
21\ 72
E<(I7)
S A (1 (0 A Y IS
E{I=}
We 'denolte .the input  variables as x(® =
[argz),zg),mg),zy)] (corresponding  to  the network

parameters Ap, h,,, Rs, M). The output variable is denoted
by ¥ (corresponding to the yi;= or o=, = {0,1}), where
(¢) indicates the data set index. To balance the weights of the
different inputs, we normalize the input variables between 0
and 1 as follows
() .
=) _ z;’ — min (x;) i1

27
J max (x;) — min (x;)’ ’

.4

)
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Input network parameters:

1. Density of D2D-Txs
2. Flight height of the UAV
3. UAV spectrum sensing radius
4. Small-scale fading parameter

2

Output:

Parameters of
approximate PDFs of
the received signal
o strength ata UAV

o4

Training process

Fig 3: Input and output of the machine learning-based approach.

where x; = xgl), e ,ng)} and L is the number of input-

output pairs in the generated data set. We then obtain the
normalized input variables X(*) = [Egl), Eg), Eg), ES)]

To estimate the output value given the input network pa-
rameters, we use the Gaussian Kernel function to calculate
the weighted average output values as follows

2
(z — pa)

ex —_—
p 25c2 |

flx) = (28)

1
V2rog?
where i and o are the mean and the standard deviation of
the Gaussian kernel function.

The query point is denoted by q = [q1, g2, g3, g4], which
collects the local information of the data set. The distance
between the query point q and the normalized data point X(*),
ie., D (q, x(V), is given by

D (a.%") = y/(a-%0) (a—x)",

Note that the term \/#cﬂ in (28) will not impact the weighted

average value at the query point q. Therefore, the kernel
function in the training process can be expressed as

(29)

D(q,%)"

2 )

K (q, §<i>) — exp (30)

20’G

where D (q,x() is given in (29). Then, the estimate output
value at the query point q is

S (K (@, %9) y®)
=1 7 31

(
L
i=1
where K (q7 ﬁ(i)) represents the weight value of the input-
output pair (x(,y("). After evaluating (31) over a range
of query points, given an input combination of the network
parameters, we can search the nearest query point to the inputs
and obtain the corresponding output value. After that, we use
the approximated PDFs of I° and I' in (21) and (23) to obtain
the approximated spatial false alarm probability and spatial
missed detection probability.

In detection theory, the Neyman-Pearson criterion says that
one can minimize the spatial missed detection probability P,,4
while not allowing the spatial false alarm probability Py, to
exceed a predefined value Py,”, i.e., Prq < Py,”, or minimize

Py, subject to a constraint on F,4. In this paper, we assume a
constant Py, = Py,”*. Therefore, the spatial spectrum sensing
radius and the energy detection threshold of a UAV are coupled
through the UAV’s spatial spectrum sensing. In practical
engineering design, based on the policy P, = Pr,", we
can adjust the energy detection threshold to change the spatial
spectrum sensing radius. It is worth noting that the proposed
machine learning-assisted approach is applicable to other user
distributions such as Poisson cluster process and Poisson hole
process. However, the exact closed-form analytical expression
of energy detection threshold cannot be derived for these,
which provides few information in performance optimization.

IV. SYSTEM-LEVEL PERFORMANCE ANALYSIS

In this section, we derive the coverage probability of a typi-
cal D2D communication network and the coverage probability
of a typical UAV communication network conditioned on the
UAV’s flight height £, and the distance r{ between UAV-Rx
u; and the projection of its associated UAV v; on the ground.
These results will be used to determine the ASE of the D2D
and UAV networks.

Note that a UAV can access the licensed channel with
probability P° = P,031 + (1 — Py,) Bo for event H° and
with probability P! = (1 — Py,4) f1 + PnafBo for event H1,
where Py, and P,,q are given in (21) and (23), respectively,
and the PDFs of I° and I' are given in Proposition 1 with
its parameters trained using a Gaussian nonlinear kernel-based
machine learning method.

Lemma 1. In the spatial spectrum sensing process, the
channel access probability P° under event H° is greater than
the channel access probability P' under event H'.

Proof. Please refer to Appendix A for the proof. O

It’s worth noting that UAVs at different heights experience
different aggregated received powers from D2D transmissions
because of the varying elevation angles and intersection region
between the spatial spectrum sensing sphere and ground.
The specific aggregated received power at each UAV leads
to different secondary channel access probabilities. In other
words, UAVs at different flight heights will generate different
levels of interference to the primary D2D network on the
ground. For analytical tractability, we uniformly divide the
height V4 into NV sub-regions with a common thickness of
AH, ie.,

Hmax -

Hopin = N - AH. (32)
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H,, approximates the height of UAVs in the n!* sub-region
V(z,y,Hy,). In V(x,y, H,), we assume that UAVs are uni-
formly distributed on the horizontal plane at height H,,. The
set of UAVs in V (z,y, H,,) is denoted as @y, ;7. Considering
the randomness of UAV locations, we assume that ®v g,
follows a homogeneous PPP with density Ay, g, , where

H, + AH
Av,H, = /\V/
H,

If Ry > H,, the active probability of UAVs in ®y g is
statistically equivalent to the case where all UAVs in @y f,
transmit with probability P! and additionally the UAVs in
®y g, , which have no D2D-Txs within their spatial spectrum
sensing spheres, transmit with probability PY — P!, Thus, the
average channel access probability of UAVs at height H,, is
given by

fu (h)dh. (33)

Pt = PU g (PO — PY) e e(RI-IZ) (34

For analytical tractability, we approximate the locations of
active UAVs in V (z,y, H,,) as randomly distributed with the
density of P35 Av, i, @4 ;;  denotes the set of active UAV'
in V(x,y, Hy).

If R« < H,, all UAVs in V (z,y,H,) will transmit
with probability P°. Thus, the locations of active UAVs are
modeled by a PPP @, ;; with density P°Ay z,.

We are now in the position of computing the coverage
probability of a typical D2D communication network and a
typical UAV communication network.

A. Coverage Probability of D2D Communications
We obtain the coverage probability of a typical D2D-Rx in
the following theorem.

Theorem 1. The coverage probability of a typical D2D-Rx
ul conditioned on the D2D serving distance 1{ is given in
equation (35).

Proof. Please refer to Appendix B. O

B. Coverage Probability of UAV Communications

A typical ground UAV-Rx receives interference from D2D
and UAV communications. Note that the desired serving link

distance of a typical UAV wv; is dependent on UAV’s flight
height and distance 7] which is the distance between UAV-Rx
and the projection of UAV on the ground.

Theorem 2. The coverage probability of the attached UAV-Rx
uy conditioned on the distance r] and the UAV’s flight height
hy, is given in (36).

Proof. Please refer to Appendix C for the proof. O

C. Area Spectral Efficiency

The ASE of UAV and D2D networks can be obtained
from the previous results. We denote the PDF of the dis-
tance between UAV-Rx and the ground projection of its
associated UAV as f,v (r). For example, if we consider that
ry is uniformly distributed in a circular region centered at
the projection of UAV v; with radius Ry,.x, then we have
fr}f (T) Rj:)g ;7= 0.
The ASE of UAV networks is given by

T—1 (&
ASEy = (Z P A, PY| Hy,
n=1
N E—
+ > Pava, PchHn> logy (1 -+,

n=Np+1

1)

where N, satisfies that Hy, ~ R, IP’§/|Hn =

E. {P§|r, Hy,}, PS,|r, H, is given in Theorem 2, and P51
is obtained in (34).
The ASE of D2D networks is given by

ASEp = \pPlog, (1+11),

where P, = E; {P% |1} and P% |1 is given in (35).

Based on our analytical framework, we can maximize the
ASE of UAV networks while guaranteeing that the ASE of
D2D networks is not below a certain value 9, as follows

II7123;X ASEy

(38)

(39
st. ASEp > 9,

where ASEy and ASEp are given in (37) and (38), respec-

tively, ¥ denotes the ASE threshold of D2D networks. It is

worth noting that decreasing R leads to a more aggressive
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spectrum reuse for UAV communications; however, it also
generates more severe co-channel interference, which reduces
the D2D communications performance. Therefore, there is
a clear trade-off between aggressive spectrum reuse and
co-channel interference. Alternatively, based on our model,
one can evaluate the entire network performance using the
weighted Tchebycheff method [31] and obtain the Pareto-
optimality criterion for spectrum sharing between UAV and
D2D communications. To solve the problem 39, we lever-
age the one-dimensional numerical search method using the
closed-form expressions of ASEs for both the UAV and D2D
networks. It is worth noting that the ASE of both the UAV and
D2D networks can be approximated by the machine learning
approach. However, it involves many input network parameters
which makes the data set generation difficult. In addition,
when the operation of networks changes, the scalability of
the approach that directly approximates the ASE by machine
learning is insufficient.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we verify our analysis by simulations and
evaluate the performance of the D2D and UAV spectrum shar-
ing networks. The simulated network uses the following pa-
rameter settings, unless otherwise stated: A\p = 1 x 10~°/m?,
Av = 1 x107%/m?, Pp = 20mW, Py = 20mW, M = 1,
N 10, Hpin 10m, Hpax 100m, agc 4,
agA — ag = 2.1, Pfa* = 0.1, O’n2 7110dBm, 60 = 08,
81 =0.16 [14], n=0.1, B =0.136 and C = 11.95 [23].

In Fig. 4, we show a 3D network for the coexistence of D2D
and UAV communications. D2D-Txs are uniformly distributed
on the ground with the density Ap = 1 x 107> /m?. D2D-Rxs
are located at positions with random directions and distances
to its associated D2D-Txs between 20m and 80m. The UAVs

o UAV
o D2D-Tx
D2D-Rx

150~

100 - ® o ° °

meter, [m]
o
°
°

2000 . 2 Ty
1500 . %V . 7
- ¥ —
100 I e P

S 500
meter, [m] 0 0

Fig 4: Simulation scenario where D2D-Txs are uniformly distributed on the ground
and UAVs are uniformly distributed in the allowable flight space within the height of
[10m, 100m].

are uniformly distributed in the aerial 3D space at a height of
[10m, 100m]. The density of the projections of UAVs on the
ground is Ay = 1 x 107 /m?.

Fig. 5 compares the PDF of the received signal strength
at a UAV for the event H°, where the UAV is at a height
of 60m and has the spatial spectrum sensing radius of
Rs = 150m. The results are obtained from Monte-Carlo
simulations, whereas the red dashed line is obtained by the
proposed machine learning-based approximation in Section
III-C. We observe that the proposed approximation method
accurately depicts the PDF of the received aggregated power
generated from ground D2D communications for the event
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Fig 5: PDF of a the received signal strength at the UAV during spatial spectrum sensing

for the false alarm case and the flight height of A, = 60m, Ry = 150m.

_e_hv = GOm‘. M=1, simu]al‘ion
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+hv =100m, M = 1, simulation
hv =100m, M = 1, ML-based approx
hv =100m, M = 2, simulation
- ¢ -h, =100m, M = 2, ML-based approx

Cumulative distribution function (CDF)
G
T

. ,0/1
0 ° g;:g/ e

-50 -45 -40 -35 -30 -25 -20
Received signal strength at a UAV under HO, [dBm]

Fig 6: CDF of a UAV’s received signal strength during spatial spectrum sensing for the
false alarm case, where R = 150m.

H° during spatial spectrum sensing. The complexity of the
Monte-Carlo simulations are more time-consuming than the
proposed ML-based approach. This is because the ML-based
approach needs to collect the data set in the early stage before
the training process, whereas the trained distributions can be
used permanently. However, for the Monte-Carlo simulations,
we need to average multiple independent trials to obtain a
stable performance, and, in each trial, the calculation of the
network interference at each node is time-consuming.

Fig. 6 shows the cumulative distribution functions (CDFs)
of the received signal strength at a UAV for the event #H°.
We observe that the machine learning-based approximation
method well approximates the distribution of the received
aggregate power from D2D communications for the event 7.
In addition, we observe that when the UAV flight height in-
creases, the received signal strength improves. This is because
an increase in UAV height results in a decrease of the radius

10

Rs =250m

—e—hy =80m, Rs = 150m, simulation
-0 ,hy = 80m, Rs = 150m, ML-based approx

Cumulative distribution function (CDF)

—&—h =80m, Rs = 250m, simulation
h\, = 80m, Rs = 250m, ML-based approx
+hv = 120m, Rs = 250m, simulation

-v 7h‘ = 120m, Rs = 250m, ML-based approx
T T T

-45 -40 -35 -30 -25 -20 -15
Received signal strength at a UAV under Hl, [dBm]

Fig 7: CDF of a UAV’s received signal strength during spatial spectrum sensing in missed
detection for different UAV flight heights and spatial spectrum sensing radiuses.

-26 T
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UAV energy detection threshold, [dBm]

-40 : : :
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Fig 8: UAV energy detection threshold € with respect to the UAV spatial spectrum sensing
radius R 5.

of A,, defined in (5) and improves the probability of LOS
connections between D2D-Txs and UAV due to the increased
elevation angle. Besides, a higher value of small-scale fading
parameter M improves the received signal strength.

In Fig. 7, the CDFs of received signal strength at a UAV
for the event H! are shown. When R increases, the received
signal strength at a UAV under H! decreases, because of
the longer distances between D2D-Txs and the UAV and
the higher probability of their NLOS connections in these
scenarios. In addition, when a UAV’s flight height increases,
the received signal strength increases. The reason behind this
is similar to that of Fig. 6.

In Fig. 8, we compare the UAV energy detection threshold
e with respect to UAV spatial spectrum sensing radius Rs.
Using the Neyman-Pearson criterion and assuming Py, =
Py, there exists a mapping between R, and e. It can be
observed that ¢ decreases with R . This is because the received
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Fig 9: UAV channel access probability with respect to the UAV spatial spectrum sensing
radius Rs.

signal strength I1° under H° decreases as R increases. To
achieve the target P7,, the energy detection threshold needs
to be accordingly reduced. In addition, when the UAV’s flight
height h, increases, its energy detection threshold increases,
because UAVs at higher heights receive more power from
D2D communications under the event #° as shown in Fig.
6. In Fig. 8, we observe that the proposed machine learning-
based approximation cannot exactly describe the simulated
e. The reason for this is that the distribution of I" is not
coincidentally the assumed log-normal distribution. However,
we train the log-normal distribution parameters to approach
the real I° distribution.

Fig. 9 plots the UAV channel access probability which is
given in (34) over the UAV spatial spectrum sensing radius
Rs. It can be observed that the UAV channel access probability
decreases with Rs. This can be explained as follows: under
the assumption of 3y > [3;, increasing R, results in a
decrease of the UAV energy detection threshold according to
Fig. 8. Thus, a UAV has a high probability of transmitting
with probability 3;. Therefore, adjusting R, can regulate the
density of active UAVs and hence, the interference power
due to UAV communications. More specifically, decreasing
R leads to more severe interference generated from UAVs.
It can be observed from Fig. 9 that when the density of
D2D-Txs becomes large, the UAV channel access probability
reduces accordingly due to the incremental received signal
strength from D2D-Txs at a UAV during spatial spectrum
sensing. We can also find that, when R is small, increasing
the UAV’s flight height improves the UAV channel access
probability. However, when R, is large, increasing the UAV’s
height decreases its channel access probability. The rationale
behind this is that when R is small, increasing the height
largely increases the UAV’s energy detection threshold. The
energy detection thresholds for different UAV flight heights
is not obvious when R is large, according to Fig. 8. On the
other hand, based on the observation from the simulations,
the values of total signal strength received from D2D-Txs are

11
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Fig 10: Coverage probability of a t)(/ipical D2D communication vs. the UAV spatial
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h =60m
v

ot
o
o

ot
)

o
0
<

<

0.75% o Ay=3%107/m’, h = 60m, simulation ||
—Ay=3* 10°%/m?, h = 60m, analysis
0.7+ voAg=SE 10°/m?, h = 60m, simulation |

===y =5%10"m’% h = 60m, analysis

Coverage probability of UAV communication
(=}
oo

o

o

oy
T

O A, =3%10"m’ h = 100m, simulation|]

----- Ay =3%10%m’ h = 100m, analysis

0.6 . i i
150 200 250 300 350

UAV spatial spectrum sensing radius (RS), [m]

Fig 11: Coverage probability of a typical UAV communications vs. the UAV’s spatial
spectrum sensing radius R g, where r, = 30m.

more concentrated around small values for a lower flight height
than that for higher heights. Therefore, these can illustrate the
behaviour of the crossover point of the UAV channel access
probability for different flight height with respect to the UAV’s
spatial spectrum sensing radius.

In Fig. 10, the coverage probability of D2D communication
is presented with respect to the UAV’s spatial spectrum sensing
radius Rs. As can be seen, increasing R is beneficial to
D2D communications. This is so because a larger value of
R makes the UAV more sensitive of the radio environment
and reduces its channel access probability, which reduces the
interference from UAVs to D2D communications. Besides,
reducing the density of UAVs improves the coverage prob-
ability of D2D communications. Furthermore, from Fig. 10
we can observe that when R, is small, the SINR threshold
of D2D communications 'ygl has a significant impact on the
D2D communications coverage probability.
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Fig 12: ASE of UAV networks vs. the UAV’s spatial spectrum sensing radius R s, where
Ty = 30m, Pp = 0.2W.

Fig. 11 plots the coverage probability of UAV communi-
cation as a function of the UAV’s spatial spectrum sensing
radius R ;. It can be observed that the coverage probability of a
typical UAV communication link increases with R s due to the
reduced co-channel interference generated from active UAVs.
The coverage probability decreases with increasing density of
UAVs Ay and the increasing flight height hy . The decrease
of hy results in the reduction of the serving link distance
and thus enhances the desired signal strength at the UAV-Rx,
despite the decreasing LOS occurrence probability. Compared
with Fig. 9, when R, is small, there is a trade-off between
UAV channel access probability and coverage probability. On
the other hand, when R, is large, it is advantageous for a
UAV that has a lower flight height in terms of both coverage
probability and channel access probability.

In Fig. 12, we compare the relate between the ASE of
UAV networks AS Ey and the UAV’s spatial spectrum sensing
radius R. The ASFE)y decreases with R, since the reduction
of UAV channel access probability dominates the ASE of UAV
networks. According to (39), when the ASE of D2D networks
is guaranteed not less than a certain value ¥, according to
Fig. 10, we can obtain a minimum R, which maximizes
ASFEy . Besides, when increasing the UAV’s transmit power
Py, we observe that the ASFEy, increases. This is because of
the improvement of the desired signal strength of UAV com-
munications, while the impact of interference from D2D-Txs
gradually diminished. However, increasing Py~ deteriorates the
coverage probability of D2D communications and thus the
ASE of D2D networks. Therefore, there exists an optimal
transmit power for UAVs to maximize the ASE of UAV
networks under the constraint of the minimum ASEp. Also,
when the density of D2D-Txs increases, AS Fy decreases due
to the increased interference from D2D communications.

VI. CONCLUSIONS

In this paper, we develop a machine learning-assisted
stochastic geometry framework for spectrum sharing between
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ground D2D and UAV communications. The D2D-Txs are
regarded as the primary users while UAVs opportunistically
access the licensed channel by implementing spatial spectrum
sensing. We first analyze the spatial false alarm probability
and the spatial missed detection probability of a typical UAV.
Then, we derive the coverage probability of typical D2D-
Rx and typical UAV-Rx, respectively. The ASEs of D2D and
UAV networks are also characterized. The results show that
a decrease in the spatial spectrum sensing radius of UAVs
reduces the coverage probability of UAV communications, but
it improves the ASE of UAV networks although the inter-UAV
interference increases. The proposed tools allow obtaining the
optimal spatial spectrum sensing radius of UAVs to maximize
the ASE of UAV networks while guaranteeing the minimum
ASE of D2D networks. In addition, the optimal transmit
power of UAVs can be obtained to maximize the ASE of
UAV networks while guaranteeing the performance of D2D
communications.

APPENDIX B
PROOF OF LEMMA 1

Considering that there is at least one D2D-Tx in the A,,
under the case of H!, we can straightforwardly obtain the test

statistics T under H! is greater than that under HO, as follows
P(T >e|H', I') >P (L >e|H°,I°) @0)
== (1 — Pmd) > Pfa,

where ¢ is the energy detection threshold. In addition, we have
P? — P! = (Po = 1+ Ppa) f1 + (1 = Pra — Prma) Bo
_[<1_Pmd)_Pfa]ﬂl+[(1_Pmd)_Pfa]ﬂo
= [(1 = Pma) = Pra] (Bo — 1) > 0,

41)
where By > f; in the system model.
Therefore, P° > P! holds, which completes the proof.

APPENDIX B
PROOF OF THEOREM 1

According to (1), conditioned on the D2D serving distance
I = ||d), — ug||. the coverage probability of a typical D2D-Rx
ug is given by

DIk
=P{SINR (u}) >~}

yih (IX; + If;ﬁ + a,ﬂ)
Pp(1f) "¢

th th
= Lo 7707(1 L ’ViDﬂ
S\ Po) = ) i \ poig)

VB on®
+ €Xp _W .
Pp(I)

= ||y — ug]

(42)

0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 19,2020 at 20:10:16 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.2997957, IEEE

Transactions on Communications

13
Nu N Pyros (Uf", %) Pyng,tnyg  Pros (UJH”, %) Py g, g
U £1:51n (s) =E{ exp —SZ Z i G + i PTG )
n=1 k n=1 Hn eq,‘L/H 'U] — U 'UJ — U
{ Ny, 00 "
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where ¢ (z, Py, H,) =

/M

1+ Cexp[—B (F arctan (H Jz) —
caq
nuPyn(a? + H,?) 2

@/ (I,PV,Hn) = M 775, (I7PV)7
More specifically, we have According to (3), conditioned on r{ and h,,, the coverage
L; o (s) probability of UAV-Rx uy is
o PS |17, h,
—« — v th
=ESexp|—s Y,  Pphggld; —uf]] " =P{SINR(u}) > ‘}rahvb}
d; €Pp,d;#dy t LI 99
Y = ]P) gviu / P L ’U Z'U aag r;j7 h'ui
212 Ap (sPp) oG v L (vi, uf) ( )
= exp - - 5 Iagg M
age sin (ﬁ) @151 e Ny
Py L (v, u) (1) 4

(43)

We define an integer NV}, satisfying ®v g, will Hy, ~ Rs.

The interference power generated from UAVs is obtained by
a summation of each sub-region as follows

Np, N
Vv _ V,n Vin
Iu;i - z :Iug + z : Iui )

n=1 n=Np+1

(44)

The Laplace transform of the interference power from UAVs
at a typical D2D-Rx u{ is

Nh

Ucv”

In addition, we have (46). In (46), we approximately con-
sider the interference at the typical D2D-Tx instead of at the
typical D2D-Rx for analytical tractability.

When n > Np, the flight heights of UAVs exceed the
spatial spectrum sensing radius Rg. Thus, based on the an-
lytical framework, UAVs will transmit with probability P°.

U ACIVC,ln (S)

n=Np+1 "k

£Iv (45)

N
Therefore, the Laplace transform of > I;/;;" is obtained
n=Np+1 k

act,n

by substituting P° for P;%;’ in (46) and letting the lower
limit of integral to be zero.

Combining (43), (45) into (42), we obtain the coverage
probability of a typical D2D-Rx as in (35), which completes
the proof.

APPENDIX C
PROOF OF THEOREM 2

The serving distance of UAV u]
192 =122 + hy,”.

is denoted by [?, where

)(l”)

n
7”\4,\{(}: IGQQ

)]E ¢ PvL(eap)(p) 4G

(el

() 0t 62, (e

=
T
M=
7N
3=

nnp v 1999
Py L(viuy)(1y)”AG Tu}

NGENINGE

n
n=1
(47
agg __ 14 D 2 s :
where Iu,: = Iu? + I%” + 0,7 is the aggrega}ted interfer-
th
ence and noise power at u?, s = SR and
P 0 Py L) (17) 4

L (vi,u¥) = Pros (vi, u?)+nPnros (vi, u?) is given in (36),
(a) is obtained by the approximation of normalized gamma
distribution of g,,,» [32], (b) is obtained from Binomial
theorem. Specifically, we have

515@ (s)

V|| GG
il

=Eqexp | —s Z Pphg,ylldj —u
d;€®p

(48)
_2

212\p(sPp)=cc

aga sin (%)

Similar to (44) and (45), the Laplace transform of the inter-

ference power from UAVs is

~exp | —

Np,

N
U ‘CIV{)” (S) U ﬁ]]‘{{)" (5)

n=Np+1 ‘

»CIV (49)
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The results of (49) can be obtained with the similar methods
to (46).

Finally, combining (48) and (49) into (47), we can obtain
the desired results.
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