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Abstract— This paper aims to develop an optimal controller
that can automatically provide personalized control of robotic
knee prosthesis in order to best support gait of individual
prosthesis wearers. We introduced a new reinforcement learning
(RL) controller for this purpose based on the promising
ability of RL controllers to solve optimal control problems
through interactions with the environment without requiring
an explicit system model. However, collecting data from a
human-prosthesis system is expensive and thus the design
of a RL controller has to take into account data and time
efficiency. We therefore propose an offline policy iteration
based reinforcement learning approach. Our solution is built on
the finite state machine (FSM) impedance control framework,
which is the most used prosthesis control method in commercial
and prototypic robotic prosthesis. Under such a framework, we
designed an approximate policy iteration algorithm to devise
impedance parameter update rules for 12 prosthesis control
parameters in order to meet individual users’ needs. The goal
of the reinforcement learning-based control was to reproduce
near-normal knee kinematics during gait. We tested the RL
controller obtained from offline learning in real time experiment
involving the same able-bodied human subject wearing a robotic
lower limb prosthesis. Our results showed that the RL control
resulted in good convergent behavior in kinematic states, and
the offline learning control policy successfully adjusted the
prosthesis control parameters to produce near-normal knee
kinematics in 10 updates of the impedance control parameters.

I. INTRODUCTION

The robotic prosthesis industry has experienced rapid
advances in the past decade. Compared to passive devices,
robotic prostheses provide active power to effciently assist
gait in lower limb amptuees. Such active devices are poten-
tially beneficial to amputees by providing the capability of
decreased metabolic consumption during walking [1], [2],
improved performance while walking on various terrains
[3], [4], enhanced balance and stability [5], and improved
adaptability to different walking speed [6]. In term of control
for robotic prostheses, although several ideas [7], [8] have
been proposed in recent years, the most commonly used
approach in commercial and prototypic devices is still the
finite state machine (FSM) impedance control [9]-[11].

The FSM impedance control framework requires cus-
tomization of several impedance parameters for individual
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users in order to accommodate different physical conditions.
This requirement currently poses a major challenge for broad
adoption of the powered prosthesis devices because of the
following reasons. For robotic knee prosthesis, the number of
parameters to be configured is up to 15 [11], [12]. However,
in clinical practice, only 2-3 parameters are practically fea-
sible to be customized by prosthetists manually and heuristi-
cally. This procedure is time and labor intensive. Researchers
have attempted alternative ways to manual tuning. To mimic
the impedance nature of biological joint, intact leg models
were studied to estimate the impedance parameters for the
prosthetic knee joint [13]-[15]. Yet, the accuracy of these
models have not been validated. Our group developed a cyber
expert system approach to finding the impedance parameters
[16]. This method is promising because of its model-free
nature, however, its high demands for knowledge of expe-
rienced prosthesis tuning experts impedes its application in
the real world. Most recently, some studies proposed to take
into account the human’s feedback in the optimization for
the parameter configuration and demonstrated the promise.
However, these methods still have some limitations, such as
hard to extend for configuring high dimensional parameters
[17] or imposing a prerequisite on the dataset which has to
cover all users’ preference [18].

In fact, the process of configuring impedance parameters
can be formulated as a control problem of solving optimal
sequential decisions. Because of the ability to autonomously
learn an optimal behavior through interactions rather than
explicitly formulate a detailed solution to a specific prob-
lem, the reinforcement learning (RL) based control design
becomes a natural candidate when it comes to addressing
the aforementioned challenges of configuring robotic knee
prosthesis to meet individual needs. Recently, RL was suc-
cessfully applied to solving robotic problems that involve
sophisticated and hard-to-engineer behaviors. In most of
these successful applications, policy search methods were
at the center of the development [19]-[24]. For example,
Gu [23] developed an off-policy deep Q-function based
RL algorithm to learn complex 7 DoF robotic arm ma-
nipulation policies from scratch for a door opening task.
Vogt [25] presented a data-driven imitation learning system
for learning human-robot interactions from human-human
demonstrations. However, deep RL based methods may not
be appropriate in some biomedical applications such as the
human-prosthesis control problem under consideration. One
primary reason is that training data involving human subjects
are usually not easily acquired or expensive to collect.
Additionally, experimental session involving human subjects
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Overview of offline reinforcement learning controller design and online human subject testing. (a) The offline training process (Algorithm 1). Here

zn and u, are state and action of the nth offline collected sample, respectively. The optimal policy 7* is obtained after training. (b) The online testing
process. State xj, is computed based on real-time measurements, then action wuy, i.e., the adjustment to the impedance parameters, is computed according
to the offline trained policy 7*(z}). Finally, according to the well established FSM framework, a knee joint torque 7 is created based on the impedance
control law (2). (c) Target points and control points are defined on gait trajectories. The grey dashed line shows knee kinematics of normal human walking
and the blue line represents actual measured knee kinematics. The red crosses are target points in the normal knee kinematics and black crosses are control
points of measured knee kinematics. State x;, is formulated using the vertical and horizontal distances between the control points and the target points.

usually cannot last more than one hour because of human
fatique and safety considerations. Putting it together, we are
in need of a reinforcement learning controller that can adapt
to individual conditions in a timely and data efficient manner.

In our previous study [26], [27], we developed an ac-
tor critic RL controller, namely direct heuristic dynamic
programming (dHDP) [28] to the robotic knee prosthesis
parameter tuning problem. By interacting with the human-
prosthesis system and under the same FSM impedance
control framework, dHDP learned to reproduce near-normal
knee kinematics. Though the dHDP showed its promise, it
still took a relatively long time to complete the learning
process. It took about 300 gait cycles or about 10 minutes
of walking to achieve acceptable walking performance [26].
Moreover, because it is an online learning algorithm, it has
not been developed to take advantage of existing offline data.
Therefore, the problem calls for a more time efficient and
data efficient solution.

To this end, we introduce an innovative, approximate pol-
icy iteration based reinforcement learning controller. Com-
pared to the previous dHDP approach, it has several advan-
tages. First, it enjoys several important properties of classic
policy iteration algorithm such as convergent value functions
and stable iterative control policies [29], [30]. Second, it
is reported that policy iteration has higher data and time
efficiency than general gradient descent based methods [31].
Third, as we aim to show in this paper that our policy
iteration based RL approach can learn from offline data to
fully utilize historical data. As such, this learning controller
can potentially be expanded to solve more complex problems
that require an integration of both online and offline data.

The objective of this study is to develop and evaluate the
feasibility of a policy iteration based learning control for
personalizing a robotic prosthesis. In our previous study [32],
we conducted a simulation study to indicate the potential
of the proposed idea. Our approach is based on that in
[29], which is further developed in this study to provide
real time control for a real physical robotic prosthesis with
human in the loop. The real human-prosthesis system is rich
in unmodeled dynamics and uncertainties from environment
and human. Especially, the human variances and consequent

impact on the prosthetic knee and the human-prosthesis
system have made controlling the robotic prosthesis more
challenging than those problems encountered in humanoid
robots or human-robot interactions to jointly perform a task
such as picking up a box. This is because the human-
prosthesis system interact and evolve seamlessly at an almost
instantaneous time scale, i.e., a potentially out-of-control
parameter adjustment in the prosthesis can result in system
instability almost immediately, which is much less tolerant
than a human-robot system.

In this paper, for the first time, we successfully designed
a reinforcement learning controller realized by approximate
policy iteration to control robotic lower limb prosthesis
with human in the loop. This new prosthesis control design
approach is data efficient as it was derived from offline data
collected from interactions between human and prosthesis.
We demonstrated this learning controller for tuning 12 pros-
thesis parameters to approach desired normal gait on real
human subject.

II. HUMAN-PROSTHESIS INTEGRATED SYSTEM
A. Finite State Machine Framework

Fig. 1 illustrates reinforcement learning controlled pros-
thesis in a human-prosthesis integrated system. The learn-
ing controller is realized within a well established FSM
platform. Specifically, an FSM partitions a gait cycle into
four sequential gait phases based on knee joint kinematics
and ground reaction force (GRF). These four gait phases
are stance flexion (STF), stance extension (STE), swing
flexion (SWF) and swing extension (SWE). In real-time
experiments, transitions between phases are realized as those
in [11] based on Dempster-Shafer theory (DST). For each
phase, the prosthetic system mimicked a passive spring-
damper-system with predefined impedance that matched
the biological knee impedance. The predefined impedance
parameters are selected by the finite state machine and
outputted to the impedance controller as

I=[K,B,0]" e R?, (1)
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where K is stiffness, B is damping coefficient and 0. is
equilibrium position. In other words, for all four phases there
are 12 impedance parameters to activate the knee joint which
directly impact the kinematics of the robotic knee and thus
the performance of the human-prosthesis system. The knee
joint torque 7' € R is generated based on the impedance
control law

T=K(®-0.)+ Bw. 2

The four target points (red markers) and four control points
(black markers) in Fig. 1(c) provide state information for the
learning controller to generate optimal control. The chosen
points were the maximum or minimum points within each
phase, so they could characterize basic knee movements. To
approach the normal gait, target points were set to resem-
ble the corresponding points in normative knee kinematics
measured in able-bodied individuals [33].

Specifically, one learning controller is designed for one
phase under the FSM framework. Without loss of generality,
our following discussion involves only one of the four
phases. In each phase, peak error AP € R and duration error
AD € R are defined as the vertical and horizontal distance
between the corresponding pair of control point and target
point. Then the state = of the RL controller are formed using
AP c R and AD € R as

z=[AP,AD]T. 3)

Correspondingly, the action w is the impedance adjustment
Al
u= Al )

Additional insights and construct on the FSM framework and
the peak/duration errors can be found in [27].

III. OFFLINE REINFORCEMENT LEARNING CONTROL
DESIGN

A. Problem Formulation

In this paper, we consider the integrated human-prosthesis
system as a discrete-time nonlinear system (5),

a:k.+1:F(a:k,uk),k:071,2,... (5)

u = m(Tk) 6)

where k is the discrete time index that provides timing for
each impedance control parameter update, x;, € R? is the
state vector x at time k, uj, € R3 is the action vector u at time
k, F is the unknown system dynamics, and 7 : R? — R3 is
the control policy.

To provide learning control of the prosthesis within system
(5), we formulate an instantaneous cost function U(z,u) in
a quadratic form as

U(z,u) = 2" Ryx +u' Ryu 7

where R, € R?*? and R, € R3*3 are positive definite
matrices. We use (7) to regulate state x and action wu, as
larger peak/duration error as in (3) and larger impedance
adjustment as in (4) will be penalized with a larger cost.

The infinite horizon cost function Q(zy,u) is defined as

Q(aw,u) = Ulwp,u)+ 7 U(xj,w(x;)  (8)

j=k+1

where ~ is a discount factor. Note that the Q(zy,u) repre-
sents the cost function when action u is applied at state xy,
the system (5) then reaches z,y; and follows the control
policy 7 thereafter.

The optimal cost function Q* (z, u) satisfies the Bellman
optimality equation

Q" (zg,u) = Uz, u) +vQ" (w1, 7" (xr41))  9)

where the optimal control policy 7* () can be determined
from
7 () = arg minQ* (xy, u). (10)
Policy iteration is used to solve the Bellman optimality
equation (9) iteratively in this study. Policy iteration has
several favorable properties such as convergence guarantee
and high efficiency [29], which make it a good candidate
for configuring a robotic knee with human in the loop.
Starting from an initial admissible control 7(9)(x}), the
policy iteration algorithm evolves from iteration ¢ to 7 + 1
according to the following policy evaluation step and policy
improvement step. Note that for offline training, a zero output
policy is sufficient to be an initial admissible control.
Policy Evaluation

QW (wp, u) = Uzp, u) + ¥QW (@pg1, 7 (wh41))

1=0,1,2,... (D
Policy Improvement
71—(1"’1)((1;) = argminQ(i)(fL“,u),l' = 07132?"' (12)

Equation (11) performs an off-policy policy evaluation,
which means the action u need not to follow the policy
being evaluated. In other words, u # w(i)(xk) in general.
This makes it possible to implement (11) and (12) in an
offline manner using previously collected samples and thus
achieve data efficiency. Solving (11) and (12) requires exact
representations of both cost function and control policy,
which is often not tractable in robotic knee configuration
problem where continuous state and continuous control are
involved. In Subsect. III-B, we circumvent this issue by
finding an approximated solution for (11) using offline data.

B. Offline Approximate Policy Iteration

For implementation of the policy evaluation equation (11),
we used a quadratic function approximator to approximate
the cost function Q(¥)(z,u) in the ith iteration as

T . .
. Ll T SQE,Q Sg(;ﬁz T
Q(Z)(x,u) - S - _ _
u U U Sffgz S&)L u
_ (13)
where S() € R®*> is a positive definite matrix and

55,85 st and S are submatrices of S() with proper
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TABLE I
BOUNDS ON THE ACTIONS

Gait Phase K (N-m/deg) 0. (deg) B (N-m-s/deg)
STF [<0.1,0.1] [—1,1] [=0.001,0.001]
STE (—0.1,0.1] [—1,1] [~0.001, 0.001]
SWF [-0.01, 0.01] [-2,2] [~0.001,0.001]
SWE [—0.01,0.01] [—1,1] [—0.001,0.001]

dimensions. The quadratic form of (13) corresponds to the
instantaneous cost function U (z,w) in (7).

To utilize offline data with the approximated cost function
(13), samples are formulated as 3-tuples (z,, un,z,),n =
1,2,3... N, where n is the sample index and N is the
total number of samples of the offline dataset. The 3-tuple
(Zn, un, x,) means that after control action u,, is applied at
state x,,, the system reaches the next state z7,. In other words,
T, 5 2! is required to formulate a sample, but z/, needs
not to equal to x,41 and u, does not need to be on-policy,
i.e. following a specific policy. Notice that k represents
a sequential time evolution associated with gait cycle, but
n does not need to follow such an order because offline
sample n and n + 1 may come from two different trials.
Hence, collecting offline samples is much more flexible than
collecting online learning samples. Having an offline dataset
D = {(xn,up,z)),n =1,2,3... N}, we can perform the
following approximate policy evaluation step according to
(1D,

QY (2, un) = Uz, un) + QW (2!, 7D (2))). (14)
Solving (14) for Q) (x,,,u,) is equivalent to solving for
S In other words, based on (13), the policy evaluation
(14) can be converted to the following convex optimization
problem with respect to S,

minimize fu S@ i, — y(13,)" SO s, = U pan) 15)

subject to S =0
where p1, = [, ul]" and p), = 2/, 7@ (2),)T]7. After
obtaining the S and Q) (x,,,u,), we can update policy
based on

7r(i+1)(1:n) = arg minQ(i) (T Un) (16)

which is an approximate version of (12). In practice, con-
straints on actions are added to keep actions within a
reasonable range (TABLE I). As a result, policy update (16)
can be converted to a quadratic programming problem,

minimize Q) (s ) (17)
subject to u_ < u, < U4

where u_ and u, are the lower bound and upper bound of
acceptable action, respectively. The values of u_ and u can
be found in TABLE 1. We used convex optimization [34] to
solve (15) and (17).

Algorithm 1 summarizes the implementation of the offline
approximate policy iteration algorithm.

Algorithm 1 Offline Approximate Policy Iteration
Input: training dataset D = {(zp, up, 7;,),n =1,2,....N}
Output: optimal cost function Q*(z,u) and policy 7* ()

I: for i =1,2,...,9mqs do

2 Get S from (15) and Q) (z,u) from (13)

3 Get policy 70"V (z) from (17)

4: end for

s: return Q* (z,u) = Q) (x,u) and 7*(z) = 701 ()

|

10 20 0 10 20
Iteration count Iteration count
(b)

(a)
10 20

Iteration count
(d)

-
o~

Frobenius norm
N

Frobenius norm
Lo

(=]
k=]
o=

s

2}

N

0 10 20

Iteration count
©

Fig. 2. The Frobenius norm of the difference between two successive S
matrices which vary as the policy iteration number increases for the four
different phases. (a) Stance flexion. (b) Stance extension. (c) Swing flexion.
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C. Implementation of Offline Policy Training

The offline training data including N = 140 pairs of
the (z,, un,x),) tuples came from two separate experiments
invovling the same human subject using the same prosthesis
device. The whole data collection process took 29 minutes to
complete. During data collection, the prosthesis impedance
parameters were controlled by the dHDP based RL approach
that we investigated previously [26]. Note, however, that
the dHDP was used to only provide some control to the
prosthesis or in other words, dHDP was an enabler of the data
collection session. That is to say that the data were drawn
from the online learning process of the dHDP RL controller
rather than generated by a well-learned policy. During data
collection, the state z,, and next state z/, in each pair of
sampled tuples were averaged by 7 gait cycles conditioned on
the same action wu,,. In addition, prior to applying Algorithm
1, all samples were normalized into the range between —1
and 1 to avoid ill-conditioning issues during application of
convex optimization to achieve admissible control policies.

The discount factor v was set to 0.8. The termination con-
dition of the Algorithm 1 was set as a maximum of 4,4, =
100 iterations. The weight matrices of state and action were
specified as R, = diag(10,1) and R, = diag(1,1,1),
respectively. They were specified to make the peak error
dominating the cost. Because, compared to the duration error
which is partially controlled by human behaviors (e.g. heel-
strike or toe-off timing), the peak error is more sensitive to
the parameter changes. Moreover, as a factor determining
gait performance, the peak error is more important than the
action taken in our settings. Yet, we still need to take the
duration error as one of the monitored states in the controller,
because the controller has to adjust parameters to keep the
duration error in a reasonable range. Otherwise, human users
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cannot stabilize the duration error by themselves.

To evaluate the convergence of the trained policies, we
investigated the changes of S matrix in the approximate
cost function @ over the entire offline training process for
each phase. As a measure of element-wise distance regarding
two matrices, the Frobenius norm of the difference between
two successive matrices ||SU+D) — S@|| was adopted to
quantify the changes. As Fig. 2 shows, the norm value of
the difference reduced fast when the training process started
off for each phase, and they all approached zeros within 10
iterations. The result indicates that the approximated cost
function as well as the policy was convergent and optimal
given the training dataset. It took about 5 minutes to perform
the offline training until reached the convergence.

IV. ONLINE HUMAN SUBJECT TESTING EXPERIMENTS
A. Experimental Protocol and Setup

The offline trained policy was implemented on the online
able-bodied subject testing experiments. The male subject
was the same one from whom we collected the offline
training data. He was involved with informed consent. The
experimental protocol was approved by the Institutional Re-
view Board (IRB) of University of North Carolina at Chapel
Hill. During the experiment, the subject wore a powered knee
prosthesis and walked on a split-belt treadmill at a fixed
speed of 0.6 m/s without holding handrails.

The entire experiment consisted of three sessions with dif-
ferent sets of initial impedance parameters for the prosthetic
knee. The three sets of parameters were randomly selected,
yet initially feasible to carry on policy iteration. The subject
experienced 40 updates of the impedance control parameters
for each phase of the FSM during a single experiment
session. To reduce the influence of noises introduced by
human variance during walking, the update period (i.e., the
time index k in (5)) was set as 4 gait cycles (i.e., the states
were obtained as an average of every 4 gait cycles). The
proposed offline policy iteration based RL controller was
used to automatically update impedance control parameters
online such that actual knee kinematics approached prede-
fined target points. At the beginning and at the end of each
session, the subject had two stages of acclimation walking
corresponding to the initial and final set of parameters,
respectively. Each stage consisted of 20 gait cycles. The
measured knee kinematics in the corresponding acclimation
were averaged out to contrast the before-after effects of the
proposed controller.

The robotic knee prosthesis used in this study was de-
scribed in [11]. This prosthesis used a slider-crank mech-
anism, where the knee motion was driven by the rotation
of the moment arm powered by the DC motor through the
ball screw. The prosthetic knee kinematics were recorded
by a potentiometer embedded in the prosthesis. Some major
gait events determining phase transitions in the finite state
machine were detected by a load cell. The control system of
the robotic knee prosthesis was implemented by LabVIEW
and MATLAB in a desktop PC.
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Fig. 3. Three comparisons (corresponding to three different sets of initial
impedance parameters) of knee kinematics for before and after impedance
parameter tuning. (a) The first set of initial parameters. (b) The second set
of initial parameters. (c) The third set of initial parameters.
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Fig. 4. Evolution of states ((a) peak error and (b) duration error) as

impedance parameters were updated. This result corresponds to the case
with the first set of initial parameters (i.e., the same initial condition as in
Fig. 3(a)).

B. Performance Evaluations

Measures of knee kinematics were obtained at the begin-
ning acclimation stage and at the ending acclimation stage
during each session. These measurements reflect how the
prosthetic knee joint moved when it interacted with the
human subject before and after experiencing the control
parameter update. By comparing the respective errors with
respect to target points, the performance of the RL controller
in a human-prosthesis system can be assessed.

While knee kinematic measures provide a quantitative
evaluation of controller performance in terms of reaching
desired gait target points, it is also necessary to consider
an acceptable error range for the kinematic states. This is
because the inherent human variance during walking. Our
experiments indicate that when the peak errors and duration
errors are within 2 degrees and 2 percent range of the
target values, respectively, the human subject would not feel
any discomfort or insecure while walking. Therefore, in our
study, we adopted those error bounds.

C. Experimental Results

As Fig. 3 shows, the knee kinematics of the initial ac-
climation stages were different in three different sessions
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and distant from the target points, especially the peak angle
errors. Clearly, after the impedance parameters were adjusted
by the proposed RL controller, knee kinematics of the final
acclimation stages approached the target points. Specifically,
the averaged absolute values of the peak errors over the three
sessions deceased from 4.18 + 3.28 degrees to 0.56 £ 0.47
degrees for STF, from 4.33 4 0.44 degrees to 1.11 + 0.66
degrees for STE, from 4.92 £ 3.78 degrees to 0.14 £ 0.04
degrees for SWF and from 3.21+1.23 degrees to 0.254+0.23
degrees for SWE. The results indicate that offline policy
iteration based RL controller is able to reshape the prosthetic
knee kinematics to meet the target points from different
initial parameter settings.

Fig. 4 illustrates the evolution of peak errors and duration
errors during the experimental session under the first set of
initial parameters corresponding to the first result in Fig. 3.
Since similar results were obtained from other experiment
sessions, hereafter we only present the result from the first
session as an example. All four phases experienced reduction
in the peak angles errors at the end . Specifically, the peak
error decreased from 5.8 degrees to —0.2 degrees for STF,
from 3.8 degrees to —1.5 degrees in the STE phase. For SWF
and SWE, they dropped from 7.4 degrees to 0.18 degrees and
from —4.4 degrees to 0.05 degrees respectively.

The duration errors were insignificant, i.e., they were
within the range of two percent of one gait cycle, and they
remained within the range over the entire session. There are
two considerations in this study. First, the duration time is
controlled partially by human behavior, or in other words, the
effect of controller on this state at the prosthetic knee is not
the exclusively decisive factor. Second, given the previous
consideration, we placed more emphasis on the peak error
than the duration error as reflected in the weighting matrix
R, in the quadratic cost measure.

The state errors at the final stage are mostly within the
bounds of 2 degrees and 2 percent, respectively. These errors
remained within bounds thereafter the first 10 parameter
update cycles (40 gait cycles, about 1.3 minutes). Compared
to the state errors achieved by dHDP [26], the offline policy
iteration based RL controller achieved comparable perfor-
mance with small errors (i.e. £2 degrees, £2 percent), but
with less time to adjust the impedance control parameters.
Specifically, it took dHDP 10 minutes of experiment (300
gait cycles) to achieve comparable state errors.

Note that the peak errors from the STF and the STE phases
are usually associated with more oscillations than the other
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Evolution of the impedance parameters in different phases (a) STF (b) STE (c) SWF (d) SWE.

two swing phases as the state errors approach zeros (from the
10" update to the 40*" update). In addition, as illustrated in
Fig. 5, the impedance parameters exhibited different change
patterns during the experimental sessions. It is apparent that
the impedance parameters during swing phases converged
in the first 20 updates and remained stationary thereafter.
However, the impedance parameters exhibited somewhat
oscillatory patterns during the stance phases. It is actually
not surprising when we see the different patterns in the
above. As can be understood, the stance phases involve
direct interactions and thus directly affected by the ground,
the human subject and the robotic prosthesis (for example,
loading induced variation). Such varying interactions would
introduce more perturbations to the prosthesis and result in
oscillations. Whereas the swing phases are less likely to be
affected by these factors and thus the state errors during these
phases appear more stationary. Under the above discussed
disturbances, the RL controller responded by making adjust-
ments when it observed discrepancies between target and
actual states. This unique phenomena is a result of us dealing
with an inherently co-adapting human-prosthesis system.

V. CONCLUSION AND FUTURE WORK

We developed a new data efficient and time efficient
approximate policy iteration RL controller to optimally
configure impedance parameters automatically for robotic
knee prosthesis. The learning controller was trained offline
using historical data and then the learned control policy was
applied for online control of the prosthetic knee. Our experi-
mental results validated this new approach and showed that it
reproduced near-normal knee kinematics for the robotic knee
prosthesis. Our results proved that the offline policy iteration
based RL controller is a promising new tool to solve the
challenging parameter tuning problems for the robotic knee
prosthesis with human in the loop.

In this paper, we only collected one subject’s data to train
the offline policy and tested it on the same subject. Further
studies need to be done to investigate whether the outcome
of the proposed method can be generalized or transferred
to other subjects. In addition, our future work will extend
the current design to facilitate further online control policy
adjustment. We believe such an integrated approach will
facilitate even broader range of human-prosthesis integrated
behavior to address changes in environment, task, and human
condition.
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