A Study of Data Store-based Home Automation

Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, Denys Poshyvanyk
William & Mary, Williamsburg, VA, USA
{kkafle,kpmoran,smanandhar,nadkarni,denys}@cs.wm.edu

ABSTRACT

Home automation platforms provide a new level of convenience by
enabling consumers to automate various aspects of physical objects
in their homes. While the convenience is beneficial, security flaws
in the platforms or integrated third-party products can have serious
consequences for the integrity of a user’s physical environment. In
this paper we perform a systematic security evaluation of two pop-
ular smart home platforms, Google’s Nest platform and Philips Hue,
that implement home automation “routines” (i.e., trigger-action
programs involving apps and devices) via manipulation of state
variables in a centralized data store. Our semi-automated analysis
examines, among other things, platform access control enforcement,
the rigor of non-system enforcement procedures, and the potential
for misuse of routines. This analysis results in ten key findings
with serious security implications. For instance, we demonstrate
the potential for the misuse of smart home routines in the Nest
platform to perform a lateral privilege escalation, illustrate how
Nest’s product review system is ineffective at preventing multiple
stages of this attack that it examines, and demonstrate how emerg-
ing platforms may fail to provide even bare-minimum security by
allowing apps to arbitrarily add/remove other apps from the user’s
smart home. Our findings draw attention to the unique security
challenges of platforms that execute routines via centralized data
stores, and highlight the importance of enforcing security by design
in emerging home automation platforms.

KEYWORDS

Smart Home, Routines, Privilege Escalation, Overprivilege

ACM Reference Format:

Kaushal Kafle, Kevin Moran, Sunil Manandhar, Adwait Nadkarni, Denys
Poshyvanyk. 2019. A Study of Data Store-based Home Automation. In
Proceedings of ACM Conference on Data and Application Security and Privacy
(CODASPY 2019). ACM, New York, NY, USA, 12 pages. https://doi.org/10.
475/123_4

1 INTRODUCTION

Internet-connected, embedded computing objects known as smart
home products have become extremely popular with consumers.
The utility and practicality afforded by these devices has spurred
tremendous market interest, with over 20 billion smart home prod-
ucts projected to be in use by 2020 [13]. The diversity of these
products is staggering, ranging from small physical devices with
embedded computers such as smart locks and light bulbs, to full
fledged appliances such as refrigerators and HVAC systems. In the
modern computing landscape, smart home devices are unique as
they provide an often imperceptible bridge between the digital and
physical worlds by connecting physical objects to digital services

CODASPY 2019, March 2019, Dallas, TX, USA
2019. ACM ISBN 123-4567-24-567/08/06...$15.00
https://doi.org/10.475/123_4

via the Internet, allowing the user to conveniently automate their
home. However, because many of these products are tied to the
user’s security or privacy (e.g., door locks, cameras), it is important
to understand the attack surface of such devices and platforms, in
order to build practical defenses without sacrificing utility.

As the market for smart home devices has continued to mature,
a new software paradigm has emerged to facilitate smart home
automation via the interactions between smart home devices and
the apps that control them. These interactions may be expressed
as routines, which are sequences of app and device actions that
are executed upon one or more triggers, ie., an instance of the
trigger-action paradigm in the smart home. Routines are becoming
the foundational unit of home automation [8, 42, 50, 51], and as a
result, it is natural to characterize existing platforms based on how
routines are implemented.

If we categorize available platforms based on how routines are
facilitated, we observe two broad categories: (1) API-based Smart
Home Managers such as Yeti [55], Yonomi [56], IFTTT [18], and
Stringify [48] that allow users to chain together a diverse set of
devices using third-party APIs exposed by device vendors, and
(2) smart home platforms such as Google’s Works with Nest [34],
Samsung SmartThings [45], and Philips Hue [40] that leverage
centralized data stores to monitor and maintain the states of IoT
devices. We term these platforms as Data Store-Based (DSB) Smart
Home Platforms. In DSB platforms, complex routines are executed
via reads/writes to state variables in a central data store.

This paper is motivated by a key observation that while routines
are supported via centralized data stores in all DSB platforms, there
are differences in the manner in which routines are created, ob-
served, and managed by the user. That is, SmartThings encourages
users to take full control of creating and managing routines involv-
ing third-party apps and devices via the SmartThings app. On the
contrary, in Nest, users do not have a centralized perspective of rou-
tines at all, and instead, manage routines using third-party apps/de-
vices. This key difference may imply unique security challenges for
Nest. Similarly, being a much simpler platform within this category
of DSB platforms, Hue represents another unique and interesting
instance of the DSB platform paradigm. While prior work has ex-
plored the security of routines enabled by a smart home manager
(i.e., specifically, IFTTT recipes [49]), the permission enforcement
and application security in the SmartThings platform [12], and the
side-effects of SmartThings SmartApps [4], there is a notable gap in
current research. Namely, prior studies do not evaluate the potential
for adversarial misuse of routines, which are the essence of DSB
platforms, and by extension, home automation.

Contributions: This paper performs a systematic security analysis
of some of the less studied, but widely popular, data store-based
smart home platforms, i.e., Nest and Hue, helping to close the exist-
ing gap in prior research. In particular, we evaluate (1) the access
control enforcement in the platforms themselves, (2) the robustness

CODASPY 2019, March 2019, Dallas, TX, USA

of other non-system enforcement (e.g., product reviews in Nest),
(3) the use and more importantly the misuse of routines via ma-
nipulation of the data store by low-integrity devices, ! and finally,
(4) the security of applications that integrate into these platforms.
To our knowledge, this paper is the first to analyze this relatively
new class of smart home platforms, in particular the Nest and Hue
platforms, and to provide a holistic analysis of routines, their use,
and potential for their misuse in DSB platforms. Moreover, this
paper is the first to analyze the accuracy of app-defined permission
prompts, which form one of the few sources of access control infor-
mation for the user. Our novel findings (¥ —%10), summarized as
follows, demonstrate the unique security challenges faced by DSB
platforms at the cost of seamless automation:

e Misuse of routines — The permission model in Nest is fine-
grained and enforced according to specifications (#7), giving
low-integrity third-party apps/devices (e.g., a switch) little room
for directly modifying the data store variables of high-integrity
devices (e.g., security cameras). However, the routines supported
by Nest allow low-integrity devices/apps to indirectly modify the
state of high-integrity devices, by modifying the shared variables
that both high/low integrity devices rely on (%3).

e Lack of systematic defenses — Nest does not employ transitive
access control enforcement to prevent indirect modification of
security-sensitive data store variables; instead, it relies on a prod-
uct review of application artifacts before allowing API access. We
discover that the product review process is insufficient and may
not prevent malicious exploitation of routines; i.e., the review
mandates that apps prompt the user before modifying certain
variables, but does not validate what the prompt contain, allow-
ing apps to deceive users into providing consent (¥5). Moreover,
permission descriptions provided by apps during authorization
are also often incorrect or misleading (¥, ¥9), which demon-
strates that malicious apps may easily find ways to gain more
privilege than necessary (¥7), circumventing both users and the
Nest product review (%3).

e Lateral privilege escalation — We find that smart home apps,
particularly those that connect to Nest and have permissions to
access security-sensitive data store variables, have a significantly
high rate of SSL vulnerabilities (#19). We combine these SSL flaws
with the findings discussed previously (specifically F4—%9) and
demonstrate a novel form of a lateral privilege escalation attack.
That is, we compromise a low-integrity app that has access to
the user’s Nest smart home (e.g., a TP Link Kasa switch), use the
compromised app to change the state of the data store to trigger
a security-sensitive routine, and indirectly change the state of a
high-integrity Nest device (e.g., the Nest security camera). This
attack can be used to deceive the Nest Cam into determining
that the user is home when they are actually away, and prevent
it from monitoring the home in the user’s absence.

e Lack of bare minimum protections — Unlike Nest, the access
control enforcement of Hue is woefully inadequate. Third-party
apps that have been added to a user’s Hue platform may arbitrar-
ily add other third-party apps without user consent, despite an
existing policy that the user must consent by physically pressing

In the context of our study, we define a device as high-integrity if it is advertised
as security-critical by the device vendor (e.g., Nest Cam) while those that are not
security-critical are referred to as low-integrity (e.g., Philips Hue lamp).

K. Kafle, K.Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk

Apps Central Data Store

Devices
Home State: {h|h € H}
read

<29 device, State: {v|v € Vievice, } write _
< (G,

device, State: {v]|v € Vievice, }
. . vices
write, |

read,
(device,,)

Figure 1: The general architecture of home automation platforms

a8

app, device, State: {v|v € Vievice, }

that leverage centralized data stores. Note that H is the universe of
all home state variables, and V. ice; is the universe of all state
variables specific to device;

a button (%2). Making matters worse, an app may remove other
apps integrated with the platform by exploiting unprotected data
store variables in Hue (¥3). These vulnerabilities may allow an
app with seemingly useful functionality (i.e., a Trojan [21]) to
install malicious add-ons in a manner invisible to the user, and
replace the user’s integrated apps with its malicious substitutes.

The rest of the paper is structured as follows: Section 2 describes
the key attributes of DSB platforms, and provides background. Sec-
tion 3 provides an overview of our analysis, and Sections 4, 5 and 6
describe our analysis of permission enforcement in Nest and Hue,
security ramifications of routines, and security of smart home apps,
respectively. Section 7 provides an end-to-end attack, and Section 8
describes the lessons learned. Section 9 describes the vendors’ re-
sponse to our findings. Section 10 describes the threats to validity.
Section 11 describes the related work, and Section 12 concludes.

2 HOME AUTOMATION VIA CENTRALIZED
DATA STORES

This section describes the general characteristics of data store-based
platforms, i.e., smart home platforms that use a centralized data
store to facilitate routines. Following this general description, we
provide background on two such platforms, namely (1) Google’s
“Works with Nest” [36] platform (henceforth called “Nest”) and
(2) the Philips Hue lighting system [39] (henceforth called “Hue”),
which serve as the targets of our security analysis. While there
are no official statistics on the market adoption of either Nest or
Hue, the Android apps for both of the systems have over a million
downloads on Google Play [16, 17], indicating significant adoption,
and far-reaching security impact of our analysis.

2.1 General Characteristics
Figure 1 describes the general architecture of DSB platforms, con-
sisting of three main components: apps, devices, and the centralized
data store. These components generally communicate over the In-
ternet. Additionally, a physical hub that facilitates local commu-
nication via protocols such as Zigbee or Z-wave may or may not
be included in this setup (e.g., the Hue Bridge); i.e., in a general
sense, routines are agnostic of the presence of the hub. Hence, we
exclude the hub in Figure 1. Similarly, the apps may either be Web
services hosted on the cloud, or mobile apps communicating via
Web services. At this juncture, we generalize apps as third-party
software interacting with the data store, and provide the specifics
for individual platforms in later sections.

The centralized data store facilitates communication among apps
and devices via state variables. The data store exposes two types
of state variables: (1) Home state variables that reflect the general

A Study of Data Store-based Home Automation

state of the entire smart home (e.g., if the user is at home/away,
the devices attached to the home, the postal code), and (2) Device-
specific state variables that reflect the attributes specific to particular
devices (e.g., if the Camera is streaming, the target temperature of
the thermostat, the battery health of the smoke alarm).

Apps and devices communicate by reading from or writing to
the state variables in the centralized data store. This model allows
expressive communication, from simple state updates to indirect
trigger-action routines. Consider this simple state update: the user
may change the temperature of the thermostat from an app, which
in turn writes the change to the target temperature variable in the
data store. The thermostat device receives an update from the data
store (i.e., reads the target temperature state variable), and changes
its target temperature accordingly. Further, as stated previously, ex-
pressive routines may also be implemented using the data store. For
instance, the thermostat may change to its “economy” mode when
the home’s state changes to away. That is, the thermostat’s app may
detect that the user has left the smart home (e.g., using Geofencing),
and write to the home state variable away. The thermostat may
then read this change, and switch to its economy mode.

A salient characteristic of DSB platforms is that they lean to-
wards seamless home automation, by automatically interacting
with devices and executing complex routines via the centralized
data store. However, even within platforms that follow this model
(e.g., Samsung SmartThings, Nest, and Hue), our preliminary in-
vestigation led to the following key observations that motivate a
targeted analysis of the Nest and Hue platforms and their apps:

Key Observations: We observe that both Nest and SmartThings
execute routines; however, there is a key difference in how routines
are managed. SmartThings allows users to create and manage rou-
tines from the SmartThings app itself, thereby providing users with
a general view of all the routines executing in the home [46]. In
contrast, Nest routines are generally implemented as decentralized
third-party integrations. Third-party products that facilitate rou-
tines provide the user with the ability to view and manage them.
As a result, the Nest platform does not provide the user with a
centralized view of the routines that are in place. Due to this lack of
user control, Nest smart homes may face unique security risks and
challenges, which motivates this security analysis. Similarly, we
observe that the Philips Hue platform may be another interesting
variant of DSB platforms. That is, Hue integrates homogeneous de-
vices related to lighting such as lamps and bulbs, unlike Nest and
SmartThings that integrate heterogeneous devices, and represents a
drastically simpler (and hence unique) variant of home automation
platforms that use centralized data stores. As a result, the analysis of
Hue’s attack surface has potential to draw attention to other similar,
homogeneous platforms, which is especially important considering
the fragmentation in the smart home product ecosystem [6]. To
our knowledge, this paper is the first to analyze this relatively new
class of smart home platforms, and specifically, Nest and Hue.

2.2 Nest Background

The Works with Nest platform integrates a heterogenous set of de-
vices, including devices from Nest (e.g., Nest thermostat, Nest Cam,
Nest Protect) as well as from other brands (e.g., Wemo and Kasa

switches, Google Home, MyQ Chamberlain garage door opener) [36].

CODASPY 2019, March 2019, Dallas, TX, USA

A] structures:
L <structure, ID>
away = “home”
eta_begin = “1970-01-01T00:00:00.000Z”
postal_code = “00000”
thermostats = [<thermostat, ID>, ..., thermostat, ID]

cameras = [<camera, ID>, ..., <camera,, ID>]

B] devices:

— thermostats:

L <thermostat, ID>
has_fan = true
target_temperature_c = 27
ambient_temperature_c = 24

<thermostat, ID>
—— cameras:
L <camera, ID>
is_online = true
is_streaming = true
web_url = “https://home.nest.com/cameras/...”

<camera,, ID>
L—— ... (other device types)

Figure 2: A simplified view of the centralized data store in Nest.

This section describes the key characteristics of Nest, i.e., its data
store, its access control model, and routines.

Data store composition: Figure 2 shows a simplified, conceptual
view of the centralized data store in Nest. Note that the figure shows
a small fraction of the true data store, i.e., only enough to facilitate
understanding. Nest implements the data store as a JSON-format
document divided into two main top-level sections: structures and
devices. A structure represents an entire smart home environment
such as a user’s home or office, and is defined by various state
variables that are global across the smart home (e.g., Away to indi-
cate the presence or absence of the user in the structure and the
postal_code to indicate the home’s physical location). The devices
are subdivided into device types (e.g., thermostats, cameras, smoke
detectors), and there can be many devices of a certain type, as shown
in Figure 2. Each device stores its state in variables that are relevant
to its type; e.g., a thermostat has state variables for humidity, and
target_temperature_c, whereas a camera has the variables is_online
and is_streaming. Aside from these type-specific variables, devices
also have certain variables in common; e.g., the alphanumeric device
ID, the structure ID of the structure in which the device is installed,
the device’s user-assigned name, and battery_health.

Access Control in Nest.: Nest treats third-party apps, Web ser-
vices, and devices that want to integrate with a Nest-based smart
home as “products”. Each Nest user account has a specific data store
assigned to it and any product that requests access to the user’s
data store needs to be first authorized by the user using OAuth
2.0. Nest defines read or read/write permissions for each of the
variables in the data store. Additionally, some variables e.g., the list
of all thermostats in the structure are always read-only. A product
that wants to register with Nest must first declare the permissions
that it needs (e.g.,thermostat read, thermostat read/write) in the Nest
developer console. When connecting a product to Nest, during
the OAuth authorization phase, the user is shown the permissions
requested by the product. Once the user grants the permissions,
a revocable access token is generated specific to the product, the
set of permissions requested, and the particular smart home to
which the product is connected. This token is used for subsequent
interactions with the data store.

CODASPY 2019, March 2019, Dallas, TX, USA

Accessing the Nest data store.: Devices and applications that are
connected to a particular smart home (i.e., the user’s Nest account)
can update data store variables to which they have access, and also
subscribe to the changes to the state of the data store. Nest uses
the REST approach for these update communications, as well as for
apps/devices to modify the data store. The REST endpoints can be
accessed through HTTPS by any registered Nest products.

Routines in Nest: The ability of connected devices to observe
and write to state variables in the centralized data store facilitates
trigger-action routines. However, in Nest, the user cannot create or
view routines in a centralized interface (i.e., unlike SmartThings).
Instead, apps may provide routines as opt-in features. For example,
the Nest smoke alarm’s smoke_alarm_state variable has three pos-
sible values, “ok”, “warning”, and “emergency”. When this variable
is changed to “warning”, other smart home products (e.g., Somfy
Protect [28]) can be configured to trigger and warn the user. Note
that in the Home/Away assist section of the Nest app settings, users
can view a summary of how certain variables (i.e., home or away)
affect their Nest-manufactured devices; however, there is no way
for users to observe the triggers/apps that change the state of the
away variable simultaneously with the resultant actions, preventing
them from fully understanding how routines execute in their home.

2.3 Hue Background

Unlike Nest, which is a platform for heterogeneous devices, Philips
Hue deals exclusively with lighting devices such as lamps and
bulbs. As a result, the centralized data store of Philips Hue supports
much simpler routines. Hue implements its data store as a JSON
document with sections related to (1) physical lighting devices, (2)
semantic groups of these devices, and (3) global config variables
(such as whitelisted apps and the linkbutton). To connect a third-
party management app to a user’s existing Hue system, the app
identifies a Hue bridge connected to the local network, and requires
the user to press a physical button on the bridge. Once this action
is completed by the user, the app receives a username token that is
stored in the whitelisted section of the Hue data store. Whitelisted
apps can then read and modify data store variables as dictated by
Hue’s access control policy, which grants all authorized apps the
same access regardless of their purported functionality. Our online
appendix provides additional details regarding the Hue platform [1].

3 ANALYSIS OVERVIEW

This paper analyzes the security of home automation platforms that
rely on centralized data stores (i.e., DSB platforms). Third-party apps
are the security principals on such platforms, as they are assigned
specific permissions to interact with the integrated devices. That is,
as described in Section 2, DSB platforms consist of (1) third-party
apps that interact with the smart home (i.e., centralized data store
and devices) by acquiring (2) platform permissions, and execute a
complex set of such interactions as (3) trigger-action routines. Our
analysis methodology takes these three aspects into consideration,
starting with platform permissions, as follows:

A. Analysis of Platform Permissions (Section 4): We analyze
the enforcement of platform permissions/access control to discover
inconsistencies. For this analysis, we automatically build permission
maps, and semi-automatically analyze them.

K. Kafle, K.Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk

B. Analysis of Routines (Section 5): While analyzing permis-
sion enforcement gives us an idea of what individual devices can
accomplish with a certain set of permissions, we perform an exper-
imental analysis with real devices to identify the interdependencies
among devices and apps through the shared data model, and the
ramifications of such interdependencies on the user’s security and
privacy. Additionally, we notice that Nest does not enforce tran-
sitive access control policies to prevent dangerous side-effects of
routines, but instead employs a product review process as a defense
mechanism. We analyze the effectiveness of this review process
using the permission prompts used by existing apps as evidence.

C. Analysis of Third-party Apps (Section 6): We analyze the
permission descriptions presented by mobile apps compatible with
Nest to identify over-privileged apps, or apps whose permission
descriptions are inconsistent with the permission requested. We
then analyze the apps for signs of SSL misuse, in order to exploit ap-
plications that possess critical permissions, which can be leveraged
to indirectly exploit security critical devices in the smart home.

We combine the findings from these three analyses to demon-
strate an instance of a lateral privilege escalation attack in a smart
home (Section 7). That is, we demonstrate how an attacker can com-
promise a low-integrity device/app integrated into a smart home
(e.g., a light bulb), and use routines to perform protected operations
on a high-integrity product (e.g., a security camera).

4 EVALUATING PERMISSION ENFORCEMENT

The centralized data store described in Section 2 may contain vari-
ables whose secrecy or integrity is crucial; e.g., unprotected write
access to the web_url field of the camera may allow a malicious
app to launch a phishing attack, by replacing the URL in the field
with an attacker-controlled one. To understand if appropriate bar-
riers are in place to protect such sensitive variables, we perform an
analysis of the permission enforcement in Nest and Hue.

Our approach is to generate and analyze the permission map for
each platform, i.e., the variables that can be accessed with each
permission, and inversely, the permissions needed to access each
variable of the data store. Note that while this information should
ideally be available in the platform documentation, prior analysis
of similar systems has demonstrated that the documentation may
not always be complete or correct in this regard [10, 12].

4.1 Generating Permission Maps

We generate the permission map using automated testing as in
prior work on Android [10]. We use two separate approaches for
Nest and Hue, owing to their disparate access control models.

Approach for Nest: We first created a simulated home environ-
ment using the Nest Home Simulator [35], and linked our Nest user
account to this simulated smart home. We then created our test
Android app, and connected our test app to the simulated home
(i.e., our Nest user account) as described in Section 2.2. Note that
the simulated smart home is virtually identical to an end-user’s
setup, such that real devices may be added to it. Using the simulator
allows us to investigate the data store information of Nest devices
(e.g., the Smoke/CO detector) that we may not have installed.

In order to generate a complete view of the data store, we granted
our test app all of the 15 permissions in Nest (e.g.,Away read/write,
Thermostat read), and read all accompanying information. To build

A Study of Data Store-based Home Automation

the permission map for Nest’s 15 permissions, we created 15 apps,
such that each app requested a single unique permission, and regis-
tered these apps to our developer account in the Nest developer con-
sole. Note that we do not test the effect of permission combinations,
as our goal is to test the enforcement of individual permissions,
and Nest’s simple authorization logic simply provides an app with
a union of the privileges of the individual permissions.

We then connected each of the 15 apps to our Nest user account
using the procedure described in Section 2.2. We programmed each
app to attempt to read and write each variable of the data store (i.e.,
the previously derived complete view). We recorded the outcome
of each access, i.e., if it was successful, or an access control denial.
In the cases where we experienced non-security errors writing to
data store variables (e.g., writing data with an incorrect type), we
revised our apps and repeated the test. The outcome of this process
was a permission map, i.e., the mapping of each permission to the
data store variables that it can read and/or write.

Approach for Hue: We followed the procedure for Hue described
in Section 2.3 to get a unique token that registers our single test
app with the data store of our Hue bridge. In Hue, all the variables
of the data store are “readable” (i.e., we verified that all the vari-
ables described in the developer documentation [40] can be read
by third-party apps). Therefore, to build the permission map, we
first extracted the contents of the entire data store. Then, for each
subsection within the data store, our app made repeated write re-
quests, i.e., PUT calls with the payload consisting of a dummy value
based on the variable type (i.e., String, Boolean and Integer). All the
variables that were successfully written to using this method were
assigned as “writable” variables. Similarly, our app made repeated
DELETE calls to the API and the variables that were successfully
deleted were assigned as “writable” variables. This generated per-
mission map applies to all third-party apps connected to Hue, since
the platform provides equal privilege to all third-party apps.

4.2 Analyzing Permission Maps

The objective behind obtaining the permission map is to under-
stand the potential for application overprivilege, by analyzing the
granularity as well as the correctness of the enforcement. We ana-
lyze the permission map to identify instances of (1) coarse-grained
permissions, i.e., permissions that give the third-party app access to
a set of security-sensitive resources that must ideally be protected
under separate permissions, and (2) incorrect enforcement, i.e., when
an app has access to more resources (i.e., state variables) than it
should have given its permission set, as per the documentation; e.g.,
apps on SmartThings may lock/unlock the door lock without the
explicit permission required to do so [12].

To perform this analysis, we first identified data store variables
that may be security or privacy-sensitive. This identification was
performed using an open-coding methodology by one author, and
separately verified by another author, for each platform. We then
performed further analysis by separately considering each such
variable, and the permission(s) that allow access to it. A major con-
sideration in our analysis is the security impact of an adversary
being allowed read or read/write access to a particular resource.
Moreover, our evaluation of the impact of the access control en-
forcement was contextualized to the platform under inspection.

CODASPY 2019, March 2019, Dallas, TX, USA

That is, when evaluating Nest, we took into consideration the se-
mantic meaning and purpose of certain permissions in terms of
the data store variables, as described in the documentation (e.g.,
that the Away read/write permission should be required to write to
the away variable [30]). For Hue, we only considered the security-
impact of an adversary accessing data store variables. Our rationale
is that the Hue platform defines the same static policy (i.e., same
permissions) for all third-party apps, and hence, its permission map
can be simply said to consist of just one permission that provides
access to a fixed set of data store variables. As a result, we judge
application over-privilege in Hue by considering the impact of an
adversarial third-party app reading from or writing to each of the
security-sensitive variables identified in Hue’s permission map.
The creation of the permission maps for both Nest and Hue re-
quires the application of well-studied automated testing techniques,
and as such, can be replicated for similar platforms, with minor
changes to input data (e.g., the permissions to test for). We will
release our code and data to developers and platform vendors.

4.3 Permission Enforcement Findings (7; — 73)

Finding 1: The permission enforcement in Nest is fine-grained
and correctly enforced, i.e., as per the specification (7). We
observe that the Nest permission map is significantly more fine-
grained, and permissions are correctly enforced, relative to the
observations of prior research in similar platforms (e.g., the analy-
sis of SmartThings [12]). Some highly sensitive variables are always
read-only (e.g., the web_url where the camera feed is posted), and
there are separate read and read/write permissions to access sensi-
tive variables. Variables that control the state of the entire smart
home are protected by dedicated permissions that control write
privilege; e.g., the away variable can only be written to using the
Away read/write permission, the ETA variable has separate permis-
sions for apps to read and write to it (i.e.,, ETA read and ETA write),
and the Nest Cam can only be turned on/off via the is_streaming
variable, using the Camera + Images read/write permission that
controls write access to it. Moreover, since many apps need to re-
spond to the away variable (i.e., react when the user is home/away),
device-specific read permissions (e.g., Thermostat read, Smoke + CO
read) also allow apps to read the away variable, eliminating the need
for apps to ask for higher-privileged Away read permission. The
separate read and read/write permissions are correctly enforced,
i.e.,our generated permission map provides the same access as is de-
fined in the Nest permission documentation [30]. This is in contrast
with findings of similar analyses of permission models in the past
(e.g., the Android permission model [10], SmartThings [12]), and
demonstrates that the Nest platform has incorporated lessons from
prior work in permission enforcement.

Finding 2: In Hue, the access control policy allows apps to
bypass the user’s explicit consent (F3). We discovered two data
store variables that were not write-protected, and which have a
significant part to play in controlling access to the data store and
the user’s smart home. First, any third-party app can write to the
linkbutton flag. Recall from Section 2.3 that the user has to press the
physical button on the Hue bridge device to authorize an app’s addi-
tion to the bridge. The physical button press changes the linkbutton
value to “true”, and allows the app to be added to the whitelist of

CODASPY 2019, March 2019, Dallas, TX, USA

allowed third-party apps. However, we discovered that once in-
stalled, an app can toggle the linkbutton variable at will, enabling
third-party apps to add other third-party apps to the smart home
without the user’s consent. This exploitable access control vulner-
ability can allow an app with seemingly useful functionality to
install malicious add-ons by bypassing the user altogether. In our
tests, we verified this attack with apps that were connected to the
local network. This condition is feasible as a malicious app that
needs to be added without the user’s consent may not even have
to pretend to work with Hue; all it needs is to be connected to the
local network (i.e., a game on the mobile device from one of the
people present in the smart home). Note that it is also possible to
remotely perform this attack, which we discuss in Section 10.

Finding 3. In Hue, third-party apps can directly modify the
list of added apps, adding and revoking access without user
consent (73). Hue stores the authorization tokens of apps con-
nected to the particular smart home in a whitelist on the Hue Bridge
device. While analyzing the permission map, we discovered that not
only could our third-party test app read from this list, it could also
directly delete tokens from it. We experimentally confirmed this
finding again, by removing Alexa and Google Home from the smart
home, without the user’s consent. An adversary could easily com-
bine this vulnerability with (73), to remove legitimate apps added
by the user, add adversary-controlled apps (i.e., by keeping the
linkbutton “true”), all without the user’s consent. More importantly,
users do not get alerts when such changes are made (i.e., since it is
assumed that the enforcement will correctly acquire user consent).
Hence, unless the user actually checks the list of integrated apps
using the Hue Web app, the user would not notice these changes.

While the Nest permission model is robust in its mapping of
data store variables and permissions required to access them, Sec-
tion 5 demonstrates how fields disallowed by permissions may be
indirectly modified via strategic misuse of routines, and describes
Nest’s product review guidelines to prevent the same [32]. Section 6
describes how badly written and overprivileged apps escape these
review guidelines, and motivate a technical solution.

5 EVALUATING SMART HOME ROUTINES

Prior work has demonstrated that in platforms that favor applica-
tion interoperability but lack transitive access control enforcement,
problems such as confused deputy and application collusion may
persist [5, 11, 23, 24]. Smart homes that facilitate routines are no
different, but the exploitability and impact of routines on smart
homes is unknown, which motivates this aspect of our study.

Recall that routines are trigger-action programs that are either
triggered by a change in some variable of the data store, or whose
action modifies certain variables of the data store. While both Nest
and Hue share this characteristic, routines in Hue are fairly limited
in scope, and their exploitation is bound to only affect the lighting of
the smart home. As a result, while we provide confirmed examples
of Hue routines in Section 2.3, the security evaluation described
in this section is focused on the heterogeneous Nest platform that
facilitates more diverse and expressive routines.

5.1 Methodology for the Analysis of Routines

While using the simulator as described in Section 4 allows us to
understand what routines are possible on the platform, i.e., what

K. Kafle, K.Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk

variables might be manipulated, and what Nest devices (e.g., the
Nest Cam, Nest Thermostat) are affected as a result, we performed
additional experiments with real apps and devices to study existing
routines in the wild. For this experiment, we extended the smart
home setup previously discussed in Section 4 with real devices.

We started by collecting a list of devices that integrate with Nest
from the Works with Nest website [36]. Using this initial list and
information from the website, we purchased a set of 7 devices that
possessed a set of characteristics relevant to this study, i.e., devices
that (1) take part in routines (i.e., as advertised on the website),
(2) are important for the user’s security or privacy, and (3) are
widely-known/popular with a large user base (i.e., determined by
the number of installs of the mobile client on Google Play). We
obtained a final list of devices (7 real and 2 simulated) to our Nest
smart home, namely, the Nest Cam (i.e., a security camera), Hue
light bulb, Belkin Wemo switch, the MyQ Chamberlain garage
door opener, TP Link Kasa Smart Plug, Google Home, Alexa, Nest
Thermostat (simulated), and the Nest Protect Smoke & CO Alarm
(simulated). Some devices that may be important for security did
not participate in routines at the time of the study, and hence were
excluded from our final device list.

We connected these devices to our Nest smart home using the
Android apps provided by device vendors, and connected a small
set of smart home managers (e.g., Yeti [55] and Yonomi [56]) to our
Nest smart home as well. For each device, we set up and executed
each individual routine as described on the Works with Nest as well
as the device vendor’s website, and observed the effects on the rest
of the smart home (especially, security-sensitive devices). Also, we
manipulated data store variables from our test app, and observed
the effects on previously configured routines and devices.

5.2 Smart Home Routine Findings (7, — 75)

Finding 4. Third-party apps that do not have the permission
to turn on/off the Nest Cam directly, can do so by modifying
the away variable (¥3). The Nest Cam is a home monitoring de-
vice, and important for the users’ security. The is_streaming variable
of the Nest Cam controls whether the camera is on (i.e., streaming)
or off, and can only be written to by an app with the permission
Camera r/w. The Nest Cam provides a routine as a feature, which
allows the camera to be automatically switched on when the user
leaves the home (i.e., when the away variable of the smart home is
set to “away”), and switched off when the user returns (i.e., when
away is set to “home”). Leveraging this routine, third-party apps
such as the Belkin Wemo switch can manipulate the away field, and
indirectly affect the Nest Cam, without having explicit permission
to do so. We tested this ability with our test app (see Section 4) as
well, which could indirectly switch the camera on and off at will.
This problem has serious consequences; e.g., a malicious test app
with the away r/w permission may set the variable to “home” when
the user is away to prevent the camera from recording a burglary.
The key problem here is that a low-integrity device/app can trigger
a change in a high-integrity device indirectly, i.e., by modifying a
variable it relies on, which is an instance of the well-known in-
formation flow integrity problem. Moreover, this is not the only
instance of a high-integrity routine that relies on away; e.g., the
Nest x Yale Lock can lock automatically when the home changes to

A Study of Data Store-based Home Automation

HVAC is in Away Mode

Your HVAC system is in Away mode
Do you want to end it Away mode
and change the temperature
of your Nest thermostat?

Figure 3: The Keen Home app asks the user to modify the thermo-
stat’s mode, but in reality, this action leads to the entire smart home
being set to “home” mode, which affects a number of other devices.

away mode [27], leakSMART reads the away state of the home and
can notify the user’s emergency contact when a leak occurs [26].
Nest has a basic defense to prevent such issues: application de-
sign policies that apply to apps with more than 50 users [32]. App
developers are required to submit their app for a product review to
the Nest team once the app reaches 50 users, and a violation of the
rather strict and detailed review guidelines can result in the app
being rejected from using the Nest API. One of the review policies
(i.e., specifically policy 5.8) states that “Products that modify Home-
/Away state automatically without user confirmation or direct user
action will be rejected.” [32]. Nest users may be vulnerable in spite
of this defense, for two reasons. First, as attacking a smart home is
an attack on a user’s personal space, it is feasible to assume that
most attacks that exploit routines will be targeted (e.g., to perform
burglaries). Assuming that the adversary can use social engineering
to get the user to connect a malicious app to their Nest setup, a
targeted attack on a specific user will succeed in spite of the policy, as
the app would be developed solely for the targeted user and hence
will have <50 users, and be exempt from the Nest product review.
Second, it is unclear how apps are checked against this policy; our
next finding demonstrates a significant omission in Nest’s review.

Finding 5. Nest’s product review policies dictate that the apps
must prompt users before modifying away , but there is no
official constraint on what the prompt may display (¥s). Con-
sider the example in Figure 3, which shows one such prompt by the
Keen Home app [25] when the user tries to change the temperature
of the thermostat. That is, when the user tries to change the tem-
perature of the thermostat while the away variable is set to “away”,
the app requires us to change it to “home” before the thermostat
temperature can be changed. This condition is entirely unneces-
sary to change the temperature. More importantly, it presents the
prompt to the user in a way that states that the home/away modes
are specific to the HVAC alone. This is in contrast to the actual func-
tionality of these modes, in which a change to the away variable
affects the entire smart home; i.e., we confirmed that the Nest Cam
gets turned off as well once we agree to the prompt. It is important
to note that the Keen Home app has passed the Nest product review,
as it has well over 50 users (1K+ downloads on Google Play [15]).
Therefore, this case demonstrates that the Nest product review does
not consider the contents of the prompt, and a malicious app may

CODASPY 2019, March 2019, Dallas, TX, USA

easily misinform the user and make them trigger the away vari-
able to the app’s advantage. Finally, in Section 6.1 we demonstrate
that this problem of misinforming the user is not just limited to
runtime in-app prompts described in this section, but extends to
application-defined install-time permission descriptions (F6—F9).

6 SECURITY ANALYSIS OF NEST APPS

In this Section, we investigate the privileges of apps developed to be
integrated with Nest. Unlike prior work [12], we not only report the
permissions requested by apps, but also analyze the information
prompts displayed to the user when requesting the permission.
Additionally, we analyze the rate of SSL misuse by both general
smart home management apps as well as apps integrated with Nest.
For this section, we do not consider the Hue platform as it has a
limited ecosystem of apps as compared to Nest. We derived two
datasets to perform the analyses that we describe in this section, the
ApPSgeneral dataset, which contains 650 smart home management
apps extracted from Google Play, and the Appspes; dataset, which
includes 39 apps that integrate into the Nest platform. Our online
appendix [1] details our dataset collection methodologies.

6.1 Application Permission Descriptions

On Nest, developers provide permission descriptions that explain
how an app uses a permission while registering their apps in the
Nest developer console. These developer-provided descriptions
are the only direct source of information available to the user to
understand why an app requires a particular permission, i.e., Nest
itself only provides a short and generic permission “title” phrase that
is displayed to the user along with the developer-defined description
(e.g., for Thermostat read, the Nest phrase is “See the temperature
and settings on your thermostat(s)”). Owing to their significant
role in the user’s understanding of the permission requirements,
we analyze the correctness of such developer-defined descriptions
relative to the permissions requested.

6.1.1 Analysis Methodology. As described in Section 2, upon
registering permissions at the developer console, developers are
granted an OAuth URL that they can direct the user to for obtaining
an access token. As a result, permissions are not encoded in the
client mobile app or Web app (i.e., unlike Android), which makes
the task of extracting permissions difficult. However, we observe
that the permissions that an app asks for are always displayed to
the user for approval (i.e., when first connecting an app to their
Nest smart home using OAuth). We leverage this observation to
obtain permissions dynamically, i.e., by executing apps to the point
of integrating them with our Nest smart home, and recording the
permission prompt displayed for the user’s approval. The procedure
is the same for mobile as well as Web apps.

6.1.2 Nest App Findings (F¢—%9). The two permissions that
dominate the permission count are Away read/write and Thermo-
stat read/write, requested by 20 and 24 apps respectively, from the
Appspes: dataset. Our online appendix [1] provides the permission
count for all other permissions. Our findings are as follows:

Finding 6. A significant number of apps provide incorrect
permission descriptions, which may misinform users (%¢).
As shown in Table 1, we found a total of 15 permission description
violations in 13/39 apps from the Appsy.s; dataset. We classify these

CODASPY 2019, March 2019, Dallas, TX, USA

K. Kafle, K.Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk

Table 1: Permission description violations discovered in Works with Nest apps

Application ‘ Incorrect Permission Description
VC1: Requesting Read/Write instead of Read
1. Home alerts “thermostat read/write: Allows Home alerts to notify you when the Nest temperature exceeds your threshold(s)”
2. Home alerts “away read/write: Allows Home Alerts to notify you when someone is in your home while in away-mode”
3. MyQ Chamberlain “thermostat read/write: Allows Chamberlain to display your Nest Thermostat temperature in the MyQ app”
4. leakSMART “thermostat read/write: Allows leakSMART to show Nest Thermostat room temperature and humidity. New HVAC sensor mode will
notify you to shut off your thermostat if a leak is detected in your HVAC system.”
5. Simplehuman Mirror “Camera+Images read/write: Allow your simplehuman sensor mirror pro to capture and recreate the light your Nest Cam sees”
6. Iris by Lowe’s “structure read/write: View your Nest Structure names so Iris can help you pair your Nest Structures to the correct Iris Places”
7. Heatworks model 1 “away read/write: Allows the Heatworks MODEL 1 to be placed into vacation mode to save on power consumption while you're away”
8. Feather Controller “Camera+Images read/write: Allows Feather to show you your camera and activity images. Additionally, Feather will allow you to

request a snapshot.”

e

Heatworks model 1

“thermostat r/w: Allows your Heatworks MODEL 1 water heater to go into vacation mode when your home is set to away”

VC2: Describing Away as a property of the thermostat alone, rather than something that affects the entire smart home

10. Gideon

“away read/write: Allows Gideon to read and update the Away state of your thermostat”

11. Muzzley

“away read/write: Allows Muzzley to read and update the Away state of your thermostat”

12. Keen home smart vent

“away read/write: Allows Smart vent to read the state of your Thermostat and change the state from Away to Home”

VC3: Both VC1 and VC2

13. WeMo

“away read/write: Allows your WeMo products to turn off when your Nest Thermostat is set to Away and on when set to Home.”

14. IFTTT thermostat service
ture changes”

“thermostat read/write: Now you can turn on Nest Thermostat Applets that monitor when you’re home, away and when the tempera-

VC4: Descriptions that do not relate to the permission

15. IFTTT thermostat service

“away read/write: Now you can set your temperature or turn on the fan with Nest Thermostat Applets on IFTTT”

16. Life360

“away read/write: We need this permission to automatically turn on/off your nest system”

Works with Nest

FTL Lighting would like to do the
following

ﬁ Set Home and Away.
Al FTL Lights turn off when the room is empty.
See your camera’s settings, turn it on or off, show images or video

when there’s sound or motion, and share your video stream if it's
public.

FTL Lights turn on when a sound or motion event occurs.

Figure 4: An example from the Nest documentation on OAuth au-
thorization [31] that displays a permission description violation
(specifically, VC1) for the Away r/w and Camera + images r/w per-
missions. The developer’s permission description indicates that the
FTL Lights only need to read data store variables, in both cases.

incorrect descriptions into 5 violation categories (i.e., VC1 — VC4),
based on the specific manner in which they misinform the user,
such as requesting more privileges than required for the described
need (e.g., read/write permissions when only reading is required), or
misrepresenting the effect of the use of the permission (e.g., stating
Away as affecting only the thermostat). That is, over 33.33% of the
apps we could integrate have violating permission descriptions.

Finding 7. In most cases of violations, apps request read/write
permissions instead of read (#7). In 9 cases, apps request the
more privileged read/write version of the permission, when they
should have clearly requested the read version, as per their per-
mission description (i.e., VC1 in Table 1). For example, consider
the “MyQ Chamberlain” app (Table 1, entry 3), which asks for
the thermostat read/write permission, but whose description only
suggests the need for the thermostat read permission, ie., “Allows
Chamberlain to display your Nest Thermostat temperature in the
MyQ app”. More importantly, a majority of the violations of this
kind occur for the Away read/write and Camera+Images read/write
permissions, which may have serious consequences if these over-
privileged apps are compromised, i.e., as Away read/write regulates

control over indicating whether a user is at home or out of the house,
and Camera+Images read/write may allow apps to turn off the Nest
cam via the is_streaming variable. These violations exist in spite of
Nest guidelines that mention the following as a Key Point: “Choose
‘read’ permissions when your product needs to check status. Choose
‘read/write’ permissions to get status checks and to write data val-
ues.” [30]. Finally, we found that the Nest documentation may itself
have incorrect instructions, e.g., the Nest’s documentation on OAuth
2.0 authentication [31] shows an example permission prompt that
incorrectly requests the Away read/write permission while only
needing read access, i.e., with the description “FTL Lights turn off
when the room is empty”, as shown in the Figure 4.

Finding 8. The Nest product review is insufficient when it
comes to reviewing the correctness of permission descrip-
tions and requests by apps (73). The Nest product review sug-
gests the following two rules, violating which may cause apps to be
rejected: (1) “3.3. Products with names, descriptions, or permissions
not relevant to the functionality of the product”, and (2) “3.5. Products
that have permissions that don’t match the functionality offered by
the products” [32]. Our findings demonstrate that the 16 violations
discovered violate either one or both of these rules (e.g., by request-
ing read/write permissions, when the app only requires read). The
fact that the apps are still available suggests that the Nest product
review may not be rigorously enforced, and as a result, may be
insufficient in protecting the attacks discovered in Section 5.

Finding 9. Apps often incorrectly describe the Away field as
alocal field of the Nest thermostat, which is misleading (%9).
One example of this kind (VC2 in Table 1) is the Keen Home app
described in Section 5 (Table 1. entry 12), which states that it needs
Away read/write in order to “Allow Smart vent to read the state
of your Thermostat and change the state from Away to Home”. As
a result, Keen Home misrepresents the effect and significance of
writing to the Away field, by making it seem like Away is a variable
of the thermostat, instead of a field that affects numerous devices
in the entire smart home. Gideon and Muzzley (entries 10 and
11 in Table 1) present a similar anomaly. Our hypothesis is that

A Study of Data Store-based Home Automation

such violations occur because Nest originally started as a smart
thermostat that gradually evolved into a smart home platform.
Finally, in addition to misleading descriptions classified as VC1 and
VC2, we discovered apps whose permission descriptions did not
relate to the permissions requested at all (VC4), and apps whose
descriptions satisfied both VC1 and VC2 (i.e., VC3 in Table 1).

The accuracy of permission descriptions is important, as the
user has no other source of information upon which to base their
decision to trust an app. Nest recognizes this, and hence, makes
permissions and descriptions a part of its product review. The
discovery of inaccurate descriptions not only demonstrates that
apps may be overprivileged, but also that Nest’s design review
process is incomplete, as it puts all its importance on getting the
user’s consent via permission prompts (e.g., in Findings 5—9), but
not on what information is actually shown.

6.2 Application SSL Use

The previous section demonstrated that smart home apps may be
overprivileged in spite of a dedicated product review. An adversary
may be able to compromise the smart home by exploiting vulner-
abilities in such overprivileged apps. As a result, we decided to
empirically derive an estimate of how vulnerable smart home apps
are, in terms of their use of SSL APIs, which form an important
portion of the apps’ attack surface.

We used two datasets for this experiment, i.e., the Appsgeneral
dataset consisting of 650 generic smart home (Android) apps crawled
from Google Play, and an extended version of the Appsy s dataset,
i.e., the AppspestExt dataset, which consists of 111 Android apps
built for Works with Nest devices (i.e., including the ones for which
we do not possess devices). We analyzed each app from both the
datasets using MalloDroid [9], to discover common SSL flaws.

Finding 10. A significant percentage of general smart home
management apps, as well as apps that connect to Nest have
serious SSL vulnerabilities (F10). 20.61% (i.e., 134/650) of the
smart home apps from the Appsgeperqr dataset, and 19.82% (ie.,
22/111) apps from the Appspes:Ex: dataset, have at least one SSL
violation as flagged by MalloDroid. Specifically, in the AppspestExt
dataset, the most common cause of an SSL vulnerability is a bro-
ken TrustManager that accepts all certificates (i.e., 20 violations),
followed by a broken HostNameVerifier that does not verify the
hostname of a valid certificate (i.e., 11 violations). What is particu-
larly worrisome is that apps such as MyQ Chamberlain and Wemo
have multiple SSL vulnerabilities as well as the Away read/write
permission, which makes their compromise especially dangerous.
Prior work has demonstrated that such vulnerabilities can be dy-
namically exploited (e.g., via a Man-in-the-Middle proxy) [9, 43],
and we use similar approaches to demonstrate an end-to-end attack
on the Nest security camera, using one of the SSL vulnerabilities
discovered from this analysis.

7 LATERAL PRIVILEGE ESCALATION

While our findings from the previous sections are individually
significant, we demonstrate that they can be combined to form an
instance of a lateral privilege escalation attack [41], in the context
of smart homes. That is, we demonstrate how an adversary can
compromise one product (device/app) integrated into a smart home,

CODASPY 2019, March 2019, Dallas, TX, USA

and escalate privileges to perform protected operations on another
product, leveraging routines configured via the centralized data store.
This attack is interesting in the context of smart homes, be-
cause of two core assumptions that it relies on (1) low-integrity
(or non-security) smart home products may be easier to directly
compromise than high-integrity devices such as the Nest Cam (i.e.,
none of the SSL vulnerabilities in ¥7¢ were in security-sensitive
apps), and (2) while low-integrity devices may not be able to di-
rectly modify the state of high-integrity devices (#7), they may be
able to indirectly do so via automated routines triggered by global
smart home variables (7). (3) Moreover, since the low-integrity
device is not being intentionally malicious, but is compromised, the
product review process would not be useful, even if it was effective
(which it is not, as demonstrated by #5—%9). This last point dis-
tinguishes a lateral privilege escalation from actions of malicious
apps that trigger routines (e.g., the “fake alarm attack” discussed in
prior work [12]). These conditions make lateral privilege escalation
particularly interesting in the context of smart home platforms, and
especially, DSB platforms such as SmartThings and Nest.

Attack Scenario and Threat Model: We consider a common man-
in-the-middle (MiTM) scenario, similar to the SSL-exploitation sce-
narios that motivate prior work [9, 43]. Consider Alice, a smart
home user who has configured a security camera to record when
she is away (i.e., using the away variable in the centralized data
store). Bob is an acquaintance (e.g., a disgruntled employee or an
ex-boyfriend) whose motive is to steal a valuable from Alice’s house
without being recorded by the camera. We assume that Bob also
knows that Alice uses a smart switch in her home, and controls
it via its app, which is integrated with Alice’s smart home. Bob
follows Alice, and connects to the same public network as her (e.g.,
a coffee shop, common workplace), sniffs the access token sent
by the switch’s app to its server using a known SSL vulnerability
in the app, and then uses the token to directly control the away
variable. Setting the away to “home” confuses the security camera
into thinking that Alice is at home, and it stops recording. Bob can
now burglarize the house without being recorded.

The Attack: The example scenario described previously can be
executed on a Nest smart home, using the Nest Cam and the TP Link
Kasa switch (and the accompanying Kasa app). We compromise the
SSL connection of Kasa app, which was found to contain a broken
SSL TrustManager in our analysis described in Section 6. We choose
Kasa app as it requests the sensitive Away read/write permission,
and has a sizable user base (1IM+ downloads on Google Play [14]).
It is interesting to note that the Kasa app has also passed the Nest
product review process and is advertised on the Works with Nest
website [33], but can still be leveraged to perform an attack. We use
bettercap [2] as a MiTM proxy to intercept and modify unencrypted
data. Additionally, as described in the attack scenario, we assume
that (1) the victim’s Nest smart home has the Nest Cam and the
Kasa switch installed, (2) the popular routine which triggers the
Nest Cam to stop recording when the user is home is enabled, and
(3) the user connects her smartphone to a network to which the
attacker has access (e.g., coffee shop, office), which is a common
assumption when exploiting SSL-misuse [9, 43].

The attack proceeds as follows: (1) The user utilizes the Kasa app
to control the switch, while the user’s mobile device is connected

CODASPY 2019, March 2019, Dallas, TX, USA

Listing 1: The Kasa app’s unencrypted GET request.

1 {"data":{"uri":"com.tplinkra.iot.authentication.impl.
RetrieveAccountSettingRequest"},

2 "iotContext":

3 {"userContext": {"accountToken":"<anonymized

alphanumeric token>",

4 "app":{"appType":"Kasa_Android"},

5 "email":"<anonymized>",

6 "terminalId":"<anonymized>"}}, ...

to public network. (2) The attacker uses a MiTM proxy to intercept
Kasa app’s attempt to contact its own server, and supplies the
attacker’s certificate to the app during the SSL handshake, which is
accepted by the Kasa app due to the faulty TrustManager. (3) The
Kasa app then sends an authorization token (see Listing 1) to the
MiTM proxy (i.e., assuming it is the authenticated server), which is
stolen by the attacker. This token authorizes a particular client app
to send commands to the TP Link server. (4) Using the stolen token,
the attacker instructs the TP Link server to set the smart home’s
away variable to the value “home”, while the user is actually “away”.
This action is possible as the TP Link server (i.e., Web app) has the
-Away read/write permission for the user’s Nest smart home. (5)
This triggers the routine in the Nest Cam, which stops recording.
In sum, the attacker compromises a security-insensitive (i.e., low-
integrity) product in the system, and uses it along with a routine to
escalate privileges, i.e., to modify the state of a security-sensitive
(i-e., high-integrity) product. It should be noted that while this is
one verified instance of a lateral privilege escalation attack on DSB
smart home platforms, given the broad attack surface indicated by
our findings, it is likely that similar undiscovered attacks exist.

8 LESSONS

Our findings (%1)—(¥10) demonstrate numerous gaps in the secu-
rity of smart home platforms that implement routines using central-
ized data stores. Moreover, while many of the findings may apply to
platforms such as SmartThings as well, their implications are more
serious on Nest, as the user does not have a centralized perspective
of the routines programmed into the smart home. We now distill the
core lessons from our findings, which motivate significant changes
in modern platforms such as Nest.

Lesson 1: Seamless automation must be accompanied by strong in-
tegrity guarantees. It is important to note that the attack described
in Section 7 may not be addressed by fixing the problem of over-
privilege or via product reviews, since none of the components of
the attack are overprivileged (i.e., including TP Link Kasa), and our
findings demonstrate that the Nest product review is insufficient
(F5—F9). The attack was enabled due to the integrity-agnostic exe-
cution of routines in Nest (74). To mitigate such attacks, platforms
such as Nest need information flow control (IFC) enforcement that
ensures strong integrity guarantees [3], and future work may ex-
plore the complex challenges of (1) specifying integrity labels for a
diverse set of user devices and (2) enforcing integrity constraints
without sacrificing automation. Moreover, as third-party devices
are integrated into the data store, future work may also explore the
use of decentralized information flow control (DIFC) to allow de-
vices to manage the integrity of their own objects [20, 22, 57]. The
introduction of tiered-trust domains in Nest (i.e., via Weave) offers
an encouraging start to the incorporation of integrity guarantees
into smart home platforms [29].

10

K. Kafle, K.Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk

Lesson 2: Nest Product Reviews would benefit from at least light-
weight static analysis. Our findings demonstrate numerous viola-
tions of the Nest design policies that should have been discovered
during the product review. Moreover, the review guidelines also
state that products that do not securely transmit tokens will be
rejected [32], but our simple static analysis using MalloDroid dis-
covered numerous SSL vulnerabilities in Nest apps (#7¢), of which
one can be exploited (Section 7). We recommend the integration of
light-weight tools such as MalloDroid in the review process.

Lesson 3: The security of the smart home indirectly depends on
the smart phone (apps). Smartphone apps have been known to be
susceptible to SSL misuse [9], among other security issues (e.g.,
unprotected interfaces [5]). Thus, unprotected smartphone clients
for smart home devices may enable the attacker to gain access
to the smart home, and launch further attacks, as demonstrated
in Section 7. Ensuring the security of smart phone apps is a hard
problem, but future work may triage smartphone apps for security
analyses based on the volume of smart home devices/platforms they
integrate with, thereby, improving the apps that offer the widest
possible attack surface to the adversary.

Lesson 4: Popular but simpler platforms need urgent attention. The
startling gaps in the access control of Hue demonstrate that the
access control of other simple (i.e., homogeneous) platforms may
benefit from a similar holistic security analysis (%2, 73).

9 VULNERABILITY REPORTING

We have reported the discovered vulnerabilities to Philips (2, 73),
Google (1, Fa—F9), and TP Link (¥70), and have received confir-
mations from all the vendors. TP Link has since fixed the SSL flaw
in the latest version of the app. Philips Hue is currently analyzing
third party apps for the specific behavior discussed in this paper,
and will eventually roll out a fix to their access control policy. We
have also provided recommendations to Google on improving the
safety of routines, which is a design challenge that may be hard to
immediately address.

10 THREATS TO VALIDITY

1. SSL MiTM for different Android versions: Our attack de-
scribed in Section 7 has been tested and is fully functional on a
Nexus 7 device running Android version 4.4.2. However, we have
recently observed that the MiTM proxy is blocked when intercept-
ing connections from a Pixel 2 device running the latest version of
Android (i.e., 8.1.0). Our hypothesis is that the TP Link Kasa app
changes its SSL API use based on the Android API version, and
we are currently working on locating at what Android version (i.e.,
between 4.4.2 and 8.1.0) the SSL component of our described attack
no longer functions. However, this caveat does not change the fact
that our attack is feasible under certain settings, or that third-party
Android apps may often have exploitable SSL verification vulnera-
bilities [9, 38, 43]. It is important to note that the SSL compromise
is a well-studied engineering challenge, and is not the focal point
of the lateral privilege escalation exploit we describe, which occurs
primarily because of routines implemented using shared global
variables in Nest (F4—%%).

A Study of Data Store-based Home Automation

2. Number of devices and apps: For the analysis in Section 6, our
set of 9 devices (i.e., 7 real and 2 virtual) allowed us to integrate a
set of 39 apps into our Nest platform (i.e., the Appspes; dataset),
out of the around 130 “Works with” Nest apps we found. Therefore,
while we cannot say that our findings (Fs—9) generalize to all
the apps compatible with Nest, we can certainly say that they are
valid for a significant minority (i.e., over 27%).

3.Local and Remote exploits of Hue: Our exploits for the Philips
Hue platform demonstrated in Section 4 (72 and ¥3) can be exe-
cuted from an app operating on the same local network as the Hue
bridge. This is feasible, as the attacker-controlled app simply needs
to be on the same network (i.e., not even on the victim’s device).
The vulnerabilities we describe may also be remotely exploited, as
access control enforcement remains the same for remote access.

11 RELATED WORK

Smart home platforms are an extension of the new modern OS para-
digm, the security problems in smart home platforms are similar to
prior modern OSes (e.g., application over-privilege, incorrect plat-
form enforcement). As a result, some of the same techniques may be
applied in detecting such problems. For instance, in a manner simi-
lar to Felt et al’s seminal evaluation of Android permission enforce-
ment [10], our work uses automated testing to derive permission
maps and compares the maps to the platform documentation. We
also leverage lessons from prior work on SSL misuse [9, 38, 43, 47]
to perform the SSL Analysis (Section 6.2) and the MiTM exploit
(Section 7). The lack of transitivity in access control that we ob-
serve is similar to prior observations on Android [5, 7, 11, 23, 24].
However, the implications of intransitive enforcement are differ-
ent in the smart home space, and, to our knowledge, some of the
key analyses performed in this paper is novel across modern OS
research (e.g., exploitation of home automation routines and the
ineffectiveness of Nest’s product review). The novelty of this paper
is rooted in using lessons learned from prior research in modern
OS and application security to identify problems in popular but
under-evaluated platforms such as Nest and Hue, and moreover, in
demonstrating the potential misuse of home automation routines
for performing lateral privilege escalation.

In the area of smart home security, the investigation by Fernan-
dez et al. [12] into the SmartThings platforms and its apps is highly
related to the study presented in this paper. However, our work
exhibits key differences. For instance, the platforms explored in
this paper (i.e, Nest and Hue) are popular, and have key differences
relative to SmartThings (Section 2). Moreover, while Fernandez et al.
focus on application overprivilege, this work studies the utility and
security of routines, and leverages routines to demonstrate the first
instance of lateral privilege escalation on smart home platforms.
Our analysis of permission text artifacts, product review-based de-
fense in Nest, and SSL-misuse in apps leads to novel findings that
facilitate the end-to-end attack. Finally, we demonstrate that simpler
platforms (i.e., Hue) fail to provide bare-minimum protections.

Aside from this closely-related work, prior work has demon-
strated direct attacks on smart home platforms and applications.
For instance, Sukhvir et al. attack the communication and authenti-
cation protocols in Hue and Wemo [37], Sivaraman et al. attack the
home’s firewall using a malicious device on the network [44], and a

11

CODASPY 2019, March 2019, Dallas, TX, USA

Veracode study demonstrated issues in a range of products such as
the MyQ Garage System and Wink Relay [53]. Our work performs
a holistic security evaluation of the access control enforcement in
DSB platforms (i.e., Nest and Hue) and their applications, and is
complementary to such per-device security analysis.

Prior work has also analyzed the security of trigger-action pro-
grams. Surbatovich et al. [49] analyzed the security and privacy
risks associated with IFTTT recipes, which are trigger-action pro-
grams similar to routines. The key difference is that Surbatovich
et al. examines the safety of individual recipes, while our work ex-
plores routines that may be safe on their own (e.g., when home, turn
off the Nest Cam), but which may be used as gadgets by attackers
to attack a high-integrity device from a low-integrity device.

In a similar vein, Celik et al. [4] presented Soteria, a static analysis
system that detects side-effects of concurrent execution of Sam-
sung’s smart apps. The problem explored in our paper is broadly
similar to Celik et al’s work, i.e., both papers explore problems that
arise due to the lack of transitive access control in smart homes.
While the techniques that underlie Soteria have advanced the state
of the art for analyzing smart home products, our paper exhibits
two key differences that demonstrate the novelty of our analysis.
First, Soteria does not aim to address the adversarial use of routines
as mechanisms to perform a lateral privilege escalation. As a result,
it would not detect the attack discussed in Section 7, since the pre-
condition for the attack is not a routine (i.e., it is the exploitation
of SSL vulnerability in the Kasa app, which allows us to steal the
authorization token and misuse the away permission allocated to
Kasa). Second, this paper is novel in its analysis of runtime prompts
and permission descriptions on home automation platforms, and
uncovers problems in how users are informed of specific sensitive
automation actions (¥s—%9), and how the permissions that enable
such actions (¥5) are described.

Finally, prior work has proposed novel access control enhance-
ments, which may alleviate some of the concerns raised in this paper.
ProvThings [54] provides provenance information that may allow
the user to piece together evidence of some of the attacks described
in this paper, but does not prevent the attacks themselves. On the
contrary, ContextloT [19] provides users with runtime prompts
describing the context of sensitive data accesses, which may alert
users to unintended execution of routines (%3), at the cost of reducing
automation. Further, SmartAuth [52] analyzes the consistency of ap-
plication descriptions with code, and may benefit the Nest product
review in determining the correctness of permission descriptions.

12 CONCLUSION

Smart home platforms and devices operate in the users’ physi-
cal space, hence, evaluating their security is critical. This paper
evaluates the security of two such platforms, Nest and Hue, that
implement home automation routines via centralized data stores.
We systematically analyze the limitations of the access control
enforced by Nest and Hue, the exploitability of routines in Nest,
the robustness of Nest’s product review, and the security of third-
party apps that integrate with Nest. Our analysis demonstrates ten
impactful findings, which we leverage to perform an end-to-end
lateral privilege escalation attack in the context of the smart home.
Our findings motivate more systematic and design-level defenses
against attacks on the integrity of the users’ smart home.

CODASPY 2019, March 2019, Dallas, TX, USA

REFERENCES

(1]

=

[10

[11]

[12

[13

[14]

[15

=
&

[17]

[18

[19]

[20]

[21

oo
0

[23]

[24

[25]

[26

[27]

[28]

[29]

2018. Online Appendix. https://sites.google.com/view/
smart-home-routines-analysis-2/home. Accessed August 27, 2018.

BetterCAP. Accessed June 2018. BetterCAP stable documentation. https://www.
bettercap.org/legacy///.

K. J. Biba. 1977. Integrity Considerations for Secure Computer Systems. Technical
Report MTR-3153. MITRE.

Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
I0T Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC). 147-158.

Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing Inter-Application Communication in Android. In Proceedings of the
9th Annual International Conference on Mobile Systems, Applications, and Services.
Ry Crist. Accessed September 2018. A smart home divided: Can it stand? https:
//www.cnet.com/news/a-smart-home-divided-can-it-stand/.

Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S. Wallach.
2011. Quire: Lightweight Provenance for Smart Phone Operating Systems. In
Proceedings of the USENIX Security Symposium.

Engadget. Accessed June 2018. SmartThings shows off the ridiculous possi-
bilities of its connected home system. https://www.engadget.com/2014/01/11/
smartthings-labs/.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgértner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android:
An Analysis of Android SSL (in)Security. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android Permissions Demystified. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses. In Proceedings
of the USENIX Security Symposium.

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In Security and Privacy (SP), 2016 IEEE
Symposium on. 636-654.

Gartner. Accessed June 2018. Gartner Says 8.4 Billion Connected Things Will Be
in Use in 2017, Up 31 Percent From 2016. https://www.gartner.com/newsroom/
1d/3598917.

Google Play. Accessed June 2018. Kasa for Mobile. https://play.google.com/store/
apps/details?id=com.tplink kasa_android.

Google Play. Accessed June 2018. Keen Home. https://play.google.com/store/
apps/details?id=com.hipo.keen//.

Google Play. Accessed June 2018. Nest. https://play.google.com/store/apps/
details?id=com.nest.android.

Google Play. Accessed June 2018. Philips Hue. https://play.google.com/store/
apps/details?id=com.philips.lighting hue2.

IFTTT. Accessed June 2018. IFTTT helps your apps and devices work together.
https://ifttt.com/.

Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z Morley Mao, Atul Prakash, and Shanghai JiaoTong Unviersity. 2017. ContexIoT:
Towards providing contextual integrity to appified IoT platforms. In Proceedings
of the 2017 Network and Distributed System Security Symposium (NDSS).
Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information Flow Control for Standard OS
Abstractions. In Proceedings of ACM Symposium on Operating Systems Principles
(SOSP). 321-334.

Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. 1994.
A Taxonomy of Computer Program Security Flaws. ACM Computing Surveys
(CSUR) 26, 3 (Sept. 1994).

Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for Informa-
tion Flow Control. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP).

Adwait Nadkarni, Benjamin Andow, William Enck, and Somesh Jha. 2016. Prac-
tical DIFC Enforcement on Android. In Proceedings of the 25th USENIX Security
Symposium.

Adwait Nadkarni and William Enck. 2013. Preventing Accidental Data Disclosure
in Modern Operating Systems. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS).

Nest. Accessed June 2018. Keen Home - Works with Nest Store. https://workswith.
nest.com/company/leaksmart/leaksmart//.

Nest. Accessed June 2018. LeakSmart - Works with Nest Store. https://workswith.
nest.com/company/leaksmart/leaksmart//.

Nest. Accessed June 2018. Nest x Yale Lock - Works with Nest Store. https:
//workswith.nest.com/company/yale/nest-x-yale-lock//.

Nest. Accessed June 2018. Somfy Protect - Works with Nest Store.
https://workswith.nest.com/company/somfy-protect-by-myfox-sas/
works-with-somfy-protect//.

Nest. Accessed June 2018. Weave. https://nest.com/weave/.

12

K. Kafle, K.Moran, S. Manandhar, A. Nadkarni, and D. Poshyvanyk

(30]

[31

(38]

[39

[40

N
fury

[42

[43

[44]

[45

'S
&

[47

[48

[49

[50

[51

[52]

o
&

Nest Developers. Accessed June 2018. How to Choose Permissions
and Write Descriptions. https://developers.nest.com/documentation/cloud/
permissions-overview.

Nest Developers. Accessed June 2018. OAuth 2.0 Authentication and Authoriza-
tion. https://developers.nest.com/documentation/cloud/how-to-auth.

Nest Developers. Accessed June 2018. Product Review Guidelines. https://
developers.nest.com/documentation/cloud/product-review-guidelines.

Nest Labs. Accessed June 2018. Kasa - Works with Nest Store. https://workswith.
nest.com/company/tp-link-research-america-corp/kasa.

Nest Labs. Accessed June 2018. Nest Developers. https://developers.nest.com///.
Nest Labs. Accessed June 2018. Nest Simulator. https://developers.nest.com/
documentation/cloud/home-simulator.

Nest Labs. Accessed June 2018. Works with Nest.
works-with-nest//.

Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi Gharakheili, Vijay Sivaraman,
and Roksana Boreli. 2014. An experimental study of security and privacy risks
with emerging household appliances. In Proceedings of the 2014 IEEE Conference
on Communications and Network Security (CNS). 79-84.

Lucky Onwuzurike and Emiliano De Cristofaro. 2015. Danger is my middle name:
experimenting with SSL vulnerabilities in Android apps. In Proceedings of the 8th
ACM Conference on Security & Privacy in Wireless and Mobile Networks. 15.
Philips. Accessed June 2018. Philips Hue: Your Personal Wireless Lighting System.
https://www2.meethue.com/en-us/about-hue.

Philips Hue Developers. Accessed June 2018. Philips hue APL https://developers.
meethue.com/philips-hue-api.

Dave Piscitello. 2016. What is Privilege Escalation. https://www.icann.org/news/
blog/what-is-privilege-escalation.
Popular Science. Accessed June 2018.
home so much and set up multi-step routines.
smart-home-routines-apple-google-amazon/.
Bradley Reaves, Nolen Scaife, Adam Bates, Patrick Traynor, and Kevin R.B. But-
ler. 2015. Mo(bile) Money, Mo(bile) Problems: Analysis of Branchless Banking
Applications in the Developing World. In Proceedings of the 24th USENIX Security
Symposium (USENIX Security 15). 17-32.

Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-
phones attacking smart-homes. In Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 195-200.
Smartthings Developers. Accessed June 2018. Documentation. http://developer.
smartthings.com/.

SmartThings Support. Accessed June 2018. Routines in the Smart-
Things Classic app. https://support.smartthings.com/hc/en-us/articles/
205380034-Routines-in-the-SmartThings-Classic-app.

David Sounthiraraj, Justin Sahs, Zhigiang Lin, Latifur Khan, and Garrett Green-
wood. 2014. SMV-Hunter: Large Scale, Automated Detection of SSL/TLS Man-in-
the-Middle Vulnerabilities in Android Apps. In Proceedings of the ISOC Network
and Distributed Systems Symposium (NDSS).

Stringify. Accessed June 2018. Stringify | Change Your Life by Connecting
Everything. https://www.stringify.com//.

Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin
Jia. 2017. Some Recipes Can Do More Than Spoil Your Appetite: Analyzing
the Security and Privacy Risks of IFTTT Recipes. In Proceedings of the 26th
International Conference on World Wide Web. 1501-1510.

TechCrunch. Accessed June 2018. Google Assistant is adding Rou-
tines and location-based reminders. https://techcrunch.com/2018/02/23/
google-assistant-is-adding-routines-and-location-based-reminders/.

The Verge. Accessed June 2018. You can soon activate multi-step routines in
Alexa with a single command. https://www.theverge.com/2017/9/27/16375050/
alexa-routines-echo-amazon-2017/.

Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, XianZheng
Guo, and Patrick Tague. 2017. SmartAuth: User-Centered Authorization for the
Internet of Things. In Proceedings of the 26th USENIX Security Symposium.
Veracode. 2016. The Internet of Things Poses Cybersecurity Risk. https://info.
veracode.com/whitepaper-the-internet-of-things-poses-cybersecurity-risk.
html.

Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear and Logging
in the Internet of Things. In Network and Distributed Systems Symposium.

Yeti. Accessed June 2018. Yeti - Simplify the control of your smart home. https:
//getyeti.co/.

Yonomi. Accessed June 2018. Yonomi app — Yonomi. https://www.yonomi.co.
Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. 2006.
Making Information Flow Explicit in HiStar. In Proceedings of the 7th symposium
on Operating Systems Design and Implementation (OSDI). 263-278.

https://nest.com/

Stop shouting at your smart
https://www.popsci.com/

	Abstract
	1 Introduction
	2 Home Automation via Centralized Data Stores
	2.1 General Characteristics
	2.2 Nest Background
	2.3 Hue Background

	3 Analysis Overview
	4 Evaluating Permission Enforcement
	4.1 Generating Permission Maps
	4.2 Analyzing Permission Maps
	4.3 Permission Enforcement Findings (F1F3)

	5 Evaluating Smart Home Routines
	5.1 Methodology for the Analysis of Routines
	5.2 Smart Home Routine Findings (F4 F5)

	6 Security Analysis of Nest Apps
	6.1 Application Permission Descriptions
	6.2 Application SSL Use

	7 Lateral Privilege Escalation
	8 Lessons
	9 Vulnerability Reporting
	10 Threats to Validity
	11 Related Work
	12 Conclusion
	References

