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ABSTRACT

Home automation platforms provide a new level of convenience by

enabling consumers to automate various aspects of physical objects

in their homes. While the convenience is beneficial, security flaws

in the platforms or integrated third-party products can have serious

consequences for the integrity of a user’s physical environment. In

this paper we perform a systematic security evaluation of two pop-

ular smart home platforms, Google’s Nest platform and Philips Hue,

that implement home automation łroutinesž (i.e., trigger-action

programs involving apps and devices) via manipulation of state

variables in a centralized data store. Our semi-automated analysis

examines, among other things, platform access control enforcement,

the rigor of non-system enforcement procedures, and the potential

for misuse of routines. This analysis results in ten key findings

with serious security implications. For instance, we demonstrate

the potential for the misuse of smart home routines in the Nest

platform to perform a lateral privilege escalation, illustrate how

Nest’s product review system is ineffective at preventing multiple

stages of this attack that it examines, and demonstrate how emerg-

ing platforms may fail to provide even bare-minimum security by

allowing apps to arbitrarily add/remove other apps from the user’s

smart home. Our findings draw attention to the unique security

challenges of platforms that execute routines via centralized data

stores, and highlight the importance of enforcing security by design

in emerging home automation platforms.
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1 INTRODUCTION

Internet-connected, embedded computing objects known as smart

home products have become extremely popular with consumers.

The utility and practicality afforded by these devices has spurred

tremendous market interest, with over 20 billion smart home prod-

ucts projected to be in use by 2020 [13]. The diversity of these

products is staggering, ranging from small physical devices with

embedded computers such as smart locks and light bulbs, to full

fledged appliances such as refrigerators and HVAC systems. In the

modern computing landscape, smart home devices are unique as

they provide an often imperceptible bridge between the digital and

physical worlds by connecting physical objects to digital services
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via the Internet, allowing the user to conveniently automate their

home. However, because many of these products are tied to the

user’s security or privacy (e.g., door locks, cameras), it is important

to understand the attack surface of such devices and platforms, in

order to build practical defenses without sacrificing utility.

As the market for smart home devices has continued to mature,

a new software paradigm has emerged to facilitate smart home

automation via the interactions between smart home devices and

the apps that control them. These interactions may be expressed

as routines, which are sequences of app and device actions that

are executed upon one or more triggers, i.e., an instance of the

trigger-action paradigm in the smart home. Routines are becoming

the foundational unit of home automation [8, 42, 50, 51], and as a

result, it is natural to characterize existing platforms based on how

routines are implemented.

If we categorize available platforms based on how routines are

facilitated, we observe two broad categories: (1) API-based Smart

Home Managers such as Yeti [55], Yonomi [56], IFTTT [18], and

Stringify [48] that allow users to chain together a diverse set of

devices using third-party APIs exposed by device vendors, and

(2) smart home platforms such as Google’s Works with Nest [34],

Samsung SmartThings [45], and Philips Hue [40] that leverage

centralized data stores to monitor and maintain the states of IoT

devices. We term these platforms as Data Store-Based (DSB) Smart

Home Platforms. In DSB platforms, complex routines are executed

via reads/writes to state variables in a central data store.

This paper is motivated by a key observation that while routines

are supported via centralized data stores in all DSB platforms, there

are differences in the manner in which routines are created, ob-

served, and managed by the user. That is, SmartThings encourages

users to take full control of creating and managing routines involv-

ing third-party apps and devices via the SmartThings app. On the

contrary, in Nest, users do not have a centralized perspective of rou-

tines at all, and instead, manage routines using third-party apps/de-

vices. This key difference may imply unique security challenges for

Nest. Similarly, being a much simpler platform within this category

of DSB platforms, Hue represents another unique and interesting

instance of the DSB platform paradigm. While prior work has ex-

plored the security of routines enabled by a smart home manager

(i.e., specifically, IFTTT recipes [49]), the permission enforcement

and application security in the SmartThings platform [12], and the

side-effects of SmartThings SmartApps [4], there is a notable gap in

current research. Namely, prior studies do not evaluate the potential

for adversarial misuse of routines, which are the essence of DSB

platforms, and by extension, home automation.

Contributions: This paper performs a systematic security analysis

of some of the less studied, but widely popular, data store-based

smart home platforms, i.e., Nest and Hue, helping to close the exist-

ing gap in prior research. In particular, we evaluate (1) the access

control enforcement in the platforms themselves, (2) the robustness
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state of the entire smart home (e.g., if the user is at home/away,

the devices attached to the home, the postal code), and (2) Device-

specific state variables that reflect the attributes specific to particular

devices (e.g., if the Camera is streaming, the target temperature of

the thermostat, the battery health of the smoke alarm).

Apps and devices communicate by reading from or writing to

the state variables in the centralized data store. This model allows

expressive communication, from simple state updates to indirect

trigger-action routines. Consider this simple state update: the user

may change the temperature of the thermostat from an app, which

in turn writes the change to the target temperature variable in the

data store. The thermostat device receives an update from the data

store (i.e., reads the target temperature state variable), and changes

its target temperature accordingly. Further, as stated previously, ex-

pressive routines may also be implemented using the data store. For

instance, the thermostat may change to its łeconomyž mode when

the home’s state changes to away. That is, the thermostat’s app may

detect that the user has left the smart home (e.g., using Geofencing),

and write to the home state variable away. The thermostat may

then read this change, and switch to its economy mode.

A salient characteristic of DSB platforms is that they lean to-

wards seamless home automation, by automatically interacting

with devices and executing complex routines via the centralized

data store. However, even within platforms that follow this model

(e.g., Samsung SmartThings, Nest, and Hue), our preliminary in-

vestigation led to the following key observations that motivate a

targeted analysis of the Nest and Hue platforms and their apps:

Key Observations:We observe that both Nest and SmartThings

execute routines; however, there is a key difference in how routines

are managed. SmartThings allows users to create and manage rou-

tines from the SmartThings app itself, thereby providing users with

a general view of all the routines executing in the home [46]. In

contrast, Nest routines are generally implemented as decentralized

third-party integrations. Third-party products that facilitate rou-

tines provide the user with the ability to view and manage them.

As a result, the Nest platform does not provide the user with a

centralized view of the routines that are in place. Due to this lack of

user control, Nest smart homes may face unique security risks and

challenges, which motivates this security analysis. Similarly, we

observe that the Philips Hue platform may be another interesting

variant of DSB platforms. That is, Hue integrates homogeneous de-

vices related to lighting such as lamps and bulbs, unlike Nest and

SmartThings that integrate heterogeneous devices, and represents a

drastically simpler (and hence unique) variant of home automation

platforms that use centralized data stores. As a result, the analysis of

Hue’s attack surface has potential to draw attention to other similar,

homogeneous platforms, which is especially important considering

the fragmentation in the smart home product ecosystem [6]. To

our knowledge, this paper is the first to analyze this relatively new

class of smart home platforms, and specifically, Nest and Hue.

2.2 Nest Background

TheWorks with Nest platform integrates a heterogenous set of de-

vices, including devices from Nest (e.g., Nest thermostat, Nest Cam,

Nest Protect) as well as from other brands (e.g., Wemo and Kasa

switches, GoogleHome,MyQChamberlain garage door opener) [36].

A] structures:
<structure1 ID>

away = “home”
eta_begin = “1970-01-01T00:00:00.000Z”
postal_code = “00000”
thermostats = [<thermostat1 ID>, …, thermostatn ID]  

cameras = [ <camera1 ID>, …, <cameran ID>]

…

B] devices:
thermostats:

has_fan = true
target_temperature_c = 27
ambient_temperature_c = 24
…

<thermostatn ID>

…

cameras:

<camera1 ID>

is_online = true
is_streaming = true
web_url = “https://home.nest.com/cameras/…”
…

<cameran ID>
…

… (other device types)

<thermostat1 ID>

Figure 2: A simplified view of the centralized data store in Nest.

This section describes the key characteristics of Nest, i.e., its data

store, its access control model, and routines.

Data store composition: Figure 2 shows a simplified, conceptual

view of the centralized data store in Nest. Note that the figure shows

a small fraction of the true data store, i.e., only enough to facilitate

understanding. Nest implements the data store as a JSON-format

document divided into two main top-level sections: structures and

devices. A structure represents an entire smart home environment

such as a user’s home or office, and is defined by various state

variables that are global across the smart home (e.g., Away to indi-

cate the presence or absence of the user in the structure and the

postal_code to indicate the home’s physical location). The devices

are subdivided into device types (e.g., thermostats, cameras, smoke

detectors), and there can bemany devices of a certain type, as shown

in Figure 2. Each device stores its state in variables that are relevant

to its type; e.g., a thermostat has state variables for humidity, and

target_temperature_c, whereas a camera has the variables is_online

and is_streaming. Aside from these type-specific variables, devices

also have certain variables in common; e.g., the alphanumeric device

ID, the structure ID of the structure in which the device is installed,

the device’s user-assigned name, and battery_health.

Access Control in Nest.: Nest treats third-party apps, Web ser-

vices, and devices that want to integrate with a Nest-based smart

home as łproductsž. Each Nest user account has a specific data store

assigned to it and any product that requests access to the user’s

data store needs to be first authorized by the user using OAuth

2.0. Nest defines read or read/write permissions for each of the

variables in the data store. Additionally, some variables e.g., the list

of all thermostats in the structure are always read-only. A product

that wants to register with Nest must first declare the permissions

that it needs (e.g.,thermostat read, thermostat read/write) in the Nest

developer console. When connecting a product to Nest, during

the OAuth authorization phase, the user is shown the permissions

requested by the product. Once the user grants the permissions,

a revocable access token is generated specific to the product, the

set of permissions requested, and the particular smart home to

which the product is connected. This token is used for subsequent

interactions with the data store.
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Accessing the Nest data store.: Devices and applications that are

connected to a particular smart home (i.e., the user’s Nest account)

can update data store variables to which they have access, and also

subscribe to the changes to the state of the data store. Nest uses

the REST approach for these update communications, as well as for

apps/devices to modify the data store. The REST endpoints can be

accessed through HTTPS by any registered Nest products.

Routines in Nest: The ability of connected devices to observe

and write to state variables in the centralized data store facilitates

trigger-action routines. However, in Nest, the user cannot create or

view routines in a centralized interface (i.e., unlike SmartThings).

Instead, apps may provide routines as opt-in features. For example,

the Nest smoke alarm’s smoke_alarm_state variable has three pos-

sible values, łokž, łwarningž, and łemergencyž. When this variable

is changed to łwarningž, other smart home products (e.g., Somfy

Protect [28]) can be configured to trigger and warn the user. Note

that in the Home/Away assist section of the Nest app settings, users

can view a summary of how certain variables (i.e., home or away)

affect their Nest-manufactured devices; however, there is no way

for users to observe the triggers/apps that change the state of the

away variable simultaneouslywith the resultant actions, preventing

them from fully understanding how routines execute in their home.

2.3 Hue Background

Unlike Nest, which is a platform for heterogeneous devices, Philips

Hue deals exclusively with lighting devices such as lamps and

bulbs. As a result, the centralized data store of Philips Hue supports

much simpler routines. Hue implements its data store as a JSON

document with sections related to (1) physical lighting devices, (2)

semantic groups of these devices, and (3) global config variables

(such as whitelisted apps and the linkbutton). To connect a third-

party management app to a user’s existing Hue system, the app

identifies a Hue bridge connected to the local network, and requires

the user to press a physical button on the bridge. Once this action

is completed by the user, the app receives a username token that is

stored in the whitelisted section of the Hue data store. Whitelisted

apps can then read and modify data store variables as dictated by

Hue’s access control policy, which grants all authorized apps the

same access regardless of their purported functionality. Our online

appendix provides additional details regarding the Hue platform [1].

3 ANALYSIS OVERVIEW

This paper analyzes the security of home automation platforms that

rely on centralized data stores (i.e.,DSB platforms). Third-party apps

are the security principals on such platforms, as they are assigned

specific permissions to interact with the integrated devices. That is,

as described in Section 2, DSB platforms consist of (1) third-party

apps that interact with the smart home (i.e., centralized data store

and devices) by acquiring (2) platform permissions, and execute a

complex set of such interactions as (3) trigger-action routines. Our

analysis methodology takes these three aspects into consideration,

starting with platform permissions, as follows:

A. Analysis of Platform Permissions (Section 4): We analyze

the enforcement of platform permissions/access control to discover

inconsistencies. For this analysis, we automatically build permission

maps, and semi-automatically analyze them.

B. Analysis of Routines (Section 5): While analyzing permis-

sion enforcement gives us an idea of what individual devices can

accomplish with a certain set of permissions, we perform an exper-

imental analysis with real devices to identify the interdependencies

among devices and apps through the shared data model, and the

ramifications of such interdependencies on the user’s security and

privacy. Additionally, we notice that Nest does not enforce tran-

sitive access control policies to prevent dangerous side-effects of

routines, but instead employs a product review process as a defense

mechanism. We analyze the effectiveness of this review process

using the permission prompts used by existing apps as evidence.

C. Analysis of Third-party Apps (Section 6): We analyze the

permission descriptions presented by mobile apps compatible with

Nest to identify over-privileged apps, or apps whose permission

descriptions are inconsistent with the permission requested. We

then analyze the apps for signs of SSL misuse, in order to exploit ap-

plications that possess critical permissions, which can be leveraged

to indirectly exploit security critical devices in the smart home.

We combine the findings from these three analyses to demon-

strate an instance of a lateral privilege escalation attack in a smart

home (Section 7). That is, we demonstrate how an attacker can com-

promise a low-integrity device/app integrated into a smart home

(e.g., a light bulb), and use routines to perform protected operations

on a high-integrity product (e.g., a security camera).

4 EVALUATING PERMISSION ENFORCEMENT

The centralized data store described in Section 2 may contain vari-

ables whose secrecy or integrity is crucial; e.g., unprotected write

access to the web_url field of the camera may allow a malicious

app to launch a phishing attack, by replacing the URL in the field

with an attacker-controlled one. To understand if appropriate bar-

riers are in place to protect such sensitive variables, we perform an

analysis of the permission enforcement in Nest and Hue.

Our approach is to generate and analyze the permission map for

each platform, i.e., the variables that can be accessed with each

permission, and inversely, the permissions needed to access each

variable of the data store. Note that while this information should

ideally be available in the platform documentation, prior analysis

of similar systems has demonstrated that the documentation may

not always be complete or correct in this regard [10, 12].

4.1 Generating Permission Maps
We generate the permission map using automated testing as in

prior work on Android [10]. We use two separate approaches for

Nest and Hue, owing to their disparate access control models.

Approach for Nest: We first created a simulated home environ-

ment using the Nest Home Simulator [35], and linked our Nest user

account to this simulated smart home. We then created our test

Android app, and connected our test app to the simulated home

(i.e., our Nest user account) as described in Section 2.2. Note that

the simulated smart home is virtually identical to an end-user’s

setup, such that real devices may be added to it. Using the simulator

allows us to investigate the data store information of Nest devices

(e.g., the Smoke/CO detector) that we may not have installed.

In order to generate a complete view of the data store, we granted

our test app all of the 15 permissions in Nest (e.g.,Away read/write,

Thermostat read), and read all accompanying information. To build
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the permission map for Nest’s 15 permissions, we created 15 apps,

such that each app requested a single unique permission, and regis-

tered these apps to our developer account in the Nest developer con-

sole. Note that we do not test the effect of permission combinations,

as our goal is to test the enforcement of individual permissions,

and Nest’s simple authorization logic simply provides an app with

a union of the privileges of the individual permissions.

We then connected each of the 15 apps to our Nest user account

using the procedure described in Section 2.2. We programmed each

app to attempt to read and write each variable of the data store (i.e.,

the previously derived complete view). We recorded the outcome

of each access, i.e., if it was successful, or an access control denial.

In the cases where we experienced non-security errors writing to

data store variables (e.g., writing data with an incorrect type), we

revised our apps and repeated the test. The outcome of this process

was a permission map, i.e., the mapping of each permission to the

data store variables that it can read and/or write.

Approach for Hue:We followed the procedure for Hue described

in Section 2.3 to get a unique token that registers our single test

app with the data store of our Hue bridge. In Hue, all the variables

of the data store are łreadablež (i.e., we verified that all the vari-

ables described in the developer documentation [40] can be read

by third-party apps). Therefore, to build the permission map, we

first extracted the contents of the entire data store. Then, for each

subsection within the data store, our app made repeated write re-

quests, i.e., PUT calls with the payload consisting of a dummy value

based on the variable type (i.e., String, Boolean and Integer). All the

variables that were successfully written to using this method were

assigned as łwritablež variables. Similarly, our app made repeated

DELETE calls to the API and the variables that were successfully

deleted were assigned as łwritablež variables. This generated per-

mission map applies to all third-party apps connected to Hue, since

the platform provides equal privilege to all third-party apps.

4.2 Analyzing Permission Maps
The objective behind obtaining the permission map is to under-

stand the potential for application overprivilege, by analyzing the

granularity as well as the correctness of the enforcement. We ana-

lyze the permission map to identify instances of (1) coarse-grained

permissions, i.e., permissions that give the third-party app access to

a set of security-sensitive resources that must ideally be protected

under separate permissions, and (2) incorrect enforcement, i.e.,when

an app has access to more resources (i.e., state variables) than it

should have given its permission set, as per the documentation; e.g.,

apps on SmartThings may lock/unlock the door lock without the

explicit permission required to do so [12].

To perform this analysis, we first identified data store variables

that may be security or privacy-sensitive. This identification was

performed using an open-coding methodology by one author, and

separately verified by another author, for each platform. We then

performed further analysis by separately considering each such

variable, and the permission(s) that allow access to it. A major con-

sideration in our analysis is the security impact of an adversary

being allowed read or read/write access to a particular resource.

Moreover, our evaluation of the impact of the access control en-

forcement was contextualized to the platform under inspection.

That is, when evaluating Nest, we took into consideration the se-

mantic meaning and purpose of certain permissions in terms of

the data store variables, as described in the documentation (e.g.,

that the Away read/write permission should be required to write to

the away variable [30]). For Hue, we only considered the security-

impact of an adversary accessing data store variables. Our rationale

is that the Hue platform defines the same static policy (i.e., same

permissions) for all third-party apps, and hence, its permission map

can be simply said to consist of just one permission that provides

access to a fixed set of data store variables. As a result, we judge

application over-privilege in Hue by considering the impact of an

adversarial third-party app reading from or writing to each of the

security-sensitive variables identified in Hue’s permission map.

The creation of the permission maps for both Nest and Hue re-

quires the application of well-studied automated testing techniques,

and as such, can be replicated for similar platforms, with minor

changes to input data (e.g., the permissions to test for). We will

release our code and data to developers and platform vendors.

4.3 Permission Enforcement Findings (F1 → F3)

Finding 1: Thepermission enforcement inNest is fine-grained

and correctly enforced, i.e., as per the specification (F1). We

observe that the Nest permission map is significantly more fine-

grained, and permissions are correctly enforced, relative to the

observations of prior research in similar platforms (e.g., the analy-

sis of SmartThings [12]). Some highly sensitive variables are always

read-only (e.g., the web_url where the camera feed is posted), and

there are separate read and read/write permissions to access sensi-

tive variables. Variables that control the state of the entire smart

home are protected by dedicated permissions that control write

privilege; e.g., the away variable can only be written to using the

Away read/write permission, the ETA variable has separate permis-

sions for apps to read and write to it (i.e., ETA read and ETA write),

and the Nest Cam can only be turned on/off via the is_streaming

variable, using the Camera + Images read/write permission that

controls write access to it. Moreover, since many apps need to re-

spond to the away variable (i.e., react when the user is home/away),

device-specific read permissions (e.g., Thermostat read, Smoke + CO

read) also allow apps to read the away variable, eliminating the need

for apps to ask for higher-privileged Away read permission. The

separate read and read/write permissions are correctly enforced,

i.e.,our generated permission map provides the same access as is de-

fined in the Nest permission documentation [30]. This is in contrast

with findings of similar analyses of permission models in the past

(e.g., the Android permission model [10], SmartThings [12]), and

demonstrates that the Nest platform has incorporated lessons from

prior work in permission enforcement.

Finding 2: In Hue, the access control policy allows apps to

bypass the user’s explicit consent (F2).We discovered two data

store variables that were not write-protected, and which have a

significant part to play in controlling access to the data store and

the user’s smart home. First, any third-party app can write to the

linkbutton flag. Recall from Section 2.3 that the user has to press the

physical button on the Hue bridge device to authorize an app’s addi-

tion to the bridge. The physical button press changes the linkbutton

value to łtruež, and allows the app to be added to the whitelist of
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allowed third-party apps. However, we discovered that once in-

stalled, an app can toggle the linkbutton variable at will, enabling

third-party apps to add other third-party apps to the smart home

without the user’s consent. This exploitable access control vulner-

ability can allow an app with seemingly useful functionality to

install malicious add-ons by bypassing the user altogether. In our

tests, we verified this attack with apps that were connected to the

local network. This condition is feasible as a malicious app that

needs to be added without the user’s consent may not even have

to pretend to work with Hue; all it needs is to be connected to the

local network (i.e., a game on the mobile device from one of the

people present in the smart home). Note that it is also possible to

remotely perform this attack, which we discuss in Section 10.

Finding 3. In Hue, third-party apps can directly modify the

list of added apps, adding and revoking access without user

consent (F3). Hue stores the authorization tokens of apps con-

nected to the particular smart home in a whitelist on the Hue Bridge

device. While analyzing the permission map, we discovered that not

only could our third-party test app read from this list, it could also

directly delete tokens from it. We experimentally confirmed this

finding again, by removing Alexa and Google Home from the smart

home, without the user’s consent. An adversary could easily com-

bine this vulnerability with (F2), to remove legitimate apps added

by the user, add adversary-controlled apps (i.e., by keeping the

linkbutton łtruež), all without the user’s consent. More importantly,

users do not get alerts when such changes are made (i.e., since it is

assumed that the enforcement will correctly acquire user consent).

Hence, unless the user actually checks the list of integrated apps

using the Hue Web app, the user would not notice these changes.

While the Nest permission model is robust in its mapping of

data store variables and permissions required to access them, Sec-

tion 5 demonstrates how fields disallowed by permissions may be

indirectly modified via strategic misuse of routines, and describes

Nest’s product review guidelines to prevent the same [32]. Section 6

describes how badly written and overprivileged apps escape these

review guidelines, and motivate a technical solution.

5 EVALUATING SMART HOME ROUTINES

Prior work has demonstrated that in platforms that favor applica-

tion interoperability but lack transitive access control enforcement,

problems such as confused deputy and application collusion may

persist [5, 11, 23, 24]. Smart homes that facilitate routines are no

different, but the exploitability and impact of routines on smart

homes is unknown, which motivates this aspect of our study.

Recall that routines are trigger-action programs that are either

triggered by a change in some variable of the data store, or whose

action modifies certain variables of the data store. While both Nest

and Hue share this characteristic, routines in Hue are fairly limited

in scope, and their exploitation is bound to only affect the lighting of

the smart home. As a result, while we provide confirmed examples

of Hue routines in Section 2.3, the security evaluation described

in this section is focused on the heterogeneous Nest platform that

facilitates more diverse and expressive routines.

5.1 Methodology for the Analysis of Routines
While using the simulator as described in Section 4 allows us to

understand what routines are possible on the platform, i.e., what

variables might be manipulated, and what Nest devices (e.g., the

Nest Cam, Nest Thermostat) are affected as a result, we performed

additional experiments with real apps and devices to study existing

routines in the wild. For this experiment, we extended the smart

home setup previously discussed in Section 4 with real devices.

We started by collecting a list of devices that integrate with Nest

from the Works with Nest website [36]. Using this initial list and

information from the website, we purchased a set of 7 devices that

possessed a set of characteristics relevant to this study, i.e., devices

that (1) take part in routines (i.e., as advertised on the website),

(2) are important for the user’s security or privacy, and (3) are

widely-known/popular with a large user base (i.e., determined by

the number of installs of the mobile client on Google Play). We

obtained a final list of devices (7 real and 2 simulated) to our Nest

smart home, namely, the Nest Cam (i.e., a security camera), Hue

light bulb, Belkin Wemo switch, the MyQ Chamberlain garage

door opener, TP Link Kasa Smart Plug, Google Home, Alexa, Nest

Thermostat (simulated), and the Nest Protect Smoke & CO Alarm

(simulated). Some devices that may be important for security did

not participate in routines at the time of the study, and hence were

excluded from our final device list.

We connected these devices to our Nest smart home using the

Android apps provided by device vendors, and connected a small

set of smart home managers (e.g., Yeti [55] and Yonomi [56]) to our

Nest smart home as well. For each device, we set up and executed

each individual routine as described on the Works with Nest as well

as the device vendor’s website, and observed the effects on the rest

of the smart home (especially, security-sensitive devices). Also, we

manipulated data store variables from our test app, and observed

the effects on previously configured routines and devices.

5.2 Smart Home Routine Findings (F4 → F5)

Finding 4. Third-party apps that do not have the permission

to turn on/off the Nest Cam directly, can do so bymodifying

the away variable (F4). The Nest Cam is a home monitoring de-

vice, and important for the users’ security. The is_streaming variable

of the Nest Cam controls whether the camera is on (i.e., streaming)

or off, and can only be written to by an app with the permission

Camera r/w. The Nest Cam provides a routine as a feature, which

allows the camera to be automatically switched on when the user

leaves the home (i.e., when the away variable of the smart home is

set to ławayž), and switched off when the user returns (i.e., when

away is set to łhomež). Leveraging this routine, third-party apps

such as the Belkin Wemo switch can manipulate the away field, and

indirectly affect the Nest Cam, without having explicit permission

to do so. We tested this ability with our test app (see Section 4) as

well, which could indirectly switch the camera on and off at will.

This problem has serious consequences; e.g., a malicious test app

with the away r/w permission may set the variable to łhomež when

the user is away to prevent the camera from recording a burglary.

The key problem here is that a low-integrity device/app can trigger

a change in a high-integrity device indirectly, i.e., by modifying a

variable it relies on, which is an instance of the well-known in-

formation flow integrity problem. Moreover, this is not the only

instance of a high-integrity routine that relies on away; e.g., the

Nest x Yale Lock can lock automatically when the home changes to
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Table 1: Permission description violations discovered in Works with Nest apps

Application Incorrect Permission Description

VC1: Requesting Read/Write instead of Read

1. Home alerts łthermostat read/write: Allows Home alerts to notify you when the Nest temperature exceeds your threshold(s)ž

2. Home alerts ławay read/write: Allows Home Alerts to notify you when someone is in your home while in away-modež

3. MyQ Chamberlain łthermostat read/write: Allows Chamberlain to display your Nest Thermostat temperature in the MyQ appž

4. leakSMART łthermostat read/write: Allows leakSMART to show Nest Thermostat room temperature and humidity. New HVAC sensor mode will
notify you to shut off your thermostat if a leak is detected in your HVAC system.ž

5. Simplehuman Mirror łCamera+Images read/write: Allow your simplehuman sensor mirror pro to capture and recreate the light your Nest Cam seesž

6. Iris by Lowe’s łstructure read/write: View your Nest Structure names so Iris can help you pair your Nest Structures to the correct Iris Placesž

7. Heatworks model 1 ławay read/write: Allows the Heatworks MODEL 1 to be placed into vacation mode to save on power consumption while you’re awayž

8. Feather Controller łCamera+Images read/write: Allows Feather to show you your camera and activity images. Additionally, Feather will allow you to
request a snapshot.ž

9. Heatworks model 1 łthermostat r/w: Allows your Heatworks MODEL 1 water heater to go into vacation mode when your home is set to awayž

VC2: Describing Away as a property of the thermostat alone, rather than something that affects the entire smart home

10. Gideon ławay read/write: Allows Gideon to read and update the Away state of your thermostatž

11. Muzzley ławay read/write: Allows Muzzley to read and update the Away state of your thermostatž

12. Keen home smart vent ławay read/write: Allows Smart vent to read the state of your Thermostat and change the state from Away to Homež

VC3: Both VC1 and VC2

13. WeMo ławay read/write: Allows your WeMo products to turn off when your Nest Thermostat is set to Away and on when set to Home.ž

14. IFTTT thermostat service łthermostat read/write: Now you can turn on Nest Thermostat Applets that monitor when you’re home, away and when the tempera-
ture changes.ž

VC4: Descriptions that do not relate to the permission

15. IFTTT thermostat service ławay read/write: Now you can set your temperature or turn on the fan with Nest Thermostat Applets on IFTTTž

16. Life360 ławay read/write:We need this permission to automatically turn on/off your nest systemž

Figure 4: An example from the Nest documentation on OAuth au-

thorization [31] that displays a permission description violation

(specifically, VC1) for the Away r/w and Camera + images r/w per-

missions. The developer’s permission description indicates that the

FTL Lights only need to read data store variables, in both cases.

incorrect descriptions into 5 violation categories (i.e., VC1 → VC4),

based on the specific manner in which they misinform the user,

such as requesting more privileges than required for the described

need (e.g., read/write permissions when only reading is required), or

misrepresenting the effect of the use of the permission (e.g., stating

Away as affecting only the thermostat). That is, over 33.33% of the

apps we could integrate have violating permission descriptions.

Finding 7. Inmost cases of violations, apps request read/write

permissions instead of read (F7). In 9 cases, apps request the

more privileged read/write version of the permission, when they

should have clearly requested the read version, as per their per-

mission description (i.e., VC1 in Table 1). For example, consider

the łMyQ Chamberlainž app (Table 1, entry 3), which asks for

the thermostat read/write permission, but whose description only

suggests the need for the thermostat read permission, i.e., łAllows

Chamberlain to display your Nest Thermostat temperature in the

MyQ appž. More importantly, a majority of the violations of this

kind occur for the Away read/write and Camera+Images read/write

permissions, which may have serious consequences if these over-

privileged apps are compromised, i.e., as Away read/write regulates

control over indicatingwhether a user is at home or out of the house,

and Camera+Images read/write may allow apps to turn off the Nest

cam via the is_streaming variable. These violations exist in spite of

Nest guidelines that mention the following as a Key Point: łChoose

‘read’ permissions when your product needs to check status. Choose

‘read/write’ permissions to get status checks and to write data val-

ues.ž [30]. Finally, we found that the Nest documentation may itself

have incorrect instructions, e.g., the Nest’s documentation on OAuth

2.0 authentication [31] shows an example permission prompt that

incorrectly requests the Away read/write permission while only

needing read access, i.e., with the description łFTL Lights turn off

when the room is emptyž, as shown in the Figure 4.

Finding 8. The Nest product review is insufficient when it

comes to reviewing the correctness of permission descrip-

tions and requests by apps (F8). The Nest product review sug-

gests the following two rules, violating which may cause apps to be

rejected: (1) ł3.3. Products with names, descriptions, or permissions

not relevant to the functionality of the productž, and (2) ł3.5. Products

that have permissions that don’t match the functionality offered by

the productsž [32]. Our findings demonstrate that the 16 violations

discovered violate either one or both of these rules (e.g., by request-

ing read/write permissions, when the app only requires read). The

fact that the apps are still available suggests that the Nest product

review may not be rigorously enforced, and as a result, may be

insufficient in protecting the attacks discovered in Section 5.

Finding 9. Apps often incorrectly describe the Away field as

a local field of the Nest thermostat, which is misleading (F9).

One example of this kind (VC2 in Table 1) is the Keen Home app

described in Section 5 (Table 1. entry 12), which states that it needs

Away read/write in order to łAllow Smart vent to read the state

of your Thermostat and change the state from Away to Homež. As

a result, Keen Home misrepresents the effect and significance of

writing to the Away field, by making it seem like Away is a variable

of the thermostat, instead of a field that affects numerous devices

in the entire smart home. Gideon and Muzzley (entries 10 and

11 in Table 1) present a similar anomaly. Our hypothesis is that

8
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such violations occur because Nest originally started as a smart

thermostat that gradually evolved into a smart home platform.

Finally, in addition to misleading descriptions classified as VC1 and

VC2, we discovered apps whose permission descriptions did not

relate to the permissions requested at all (VC4), and apps whose

descriptions satisfied both VC1 and VC2 (i.e., VC3 in Table 1).

The accuracy of permission descriptions is important, as the

user has no other source of information upon which to base their

decision to trust an app. Nest recognizes this, and hence, makes

permissions and descriptions a part of its product review. The

discovery of inaccurate descriptions not only demonstrates that

apps may be overprivileged, but also that Nest’s design review

process is incomplete, as it puts all its importance on getting the

user’s consent via permission prompts (e.g., in Findings 5→9), but

not on what information is actually shown.

6.2 Application SSL Use
The previous section demonstrated that smart home apps may be

overprivileged in spite of a dedicated product review. An adversary

may be able to compromise the smart home by exploiting vulner-

abilities in such overprivileged apps. As a result, we decided to

empirically derive an estimate of how vulnerable smart home apps

are, in terms of their use of SSL APIs, which form an important

portion of the apps’ attack surface.

We used two datasets for this experiment, i.e., the Appsдeneral
dataset consisting of 650 generic smart home (Android) apps crawled

from Google Play, and an extended version of the Appsnest dataset,

i.e., the AppsnestExt dataset, which consists of 111 Android apps

built for Works with Nest devices (i.e., including the ones for which

we do not possess devices). We analyzed each app from both the

datasets using MalloDroid [9], to discover common SSL flaws.

Finding 10. A significant percentage of general smart home

management apps, as well as apps that connect to Nest have

serious SSL vulnerabilities (F10). 20.61% (i.e., 134/650) of the

smart home apps from the Appsдeneral dataset, and 19.82% (i.e.,

22/111) apps from the AppsnestExt dataset, have at least one SSL

violation as flagged by MalloDroid. Specifically, in the AppsnestExt
dataset, the most common cause of an SSL vulnerability is a bro-

ken TrustManager that accepts all certificates (i.e., 20 violations),

followed by a broken HostNameVerifier that does not verify the

hostname of a valid certificate (i.e., 11 violations). What is particu-

larly worrisome is that apps such as MyQ Chamberlain andWemo

have multiple SSL vulnerabilities as well as the Away read/write

permission, which makes their compromise especially dangerous.

Prior work has demonstrated that such vulnerabilities can be dy-

namically exploited (e.g., via a Man-in-the-Middle proxy) [9, 43],

and we use similar approaches to demonstrate an end-to-end attack

on the Nest security camera, using one of the SSL vulnerabilities

discovered from this analysis.

7 LATERAL PRIVILEGE ESCALATION

While our findings from the previous sections are individually

significant, we demonstrate that they can be combined to form an

instance of a lateral privilege escalation attack [41], in the context

of smart homes. That is, we demonstrate how an adversary can

compromise one product (device/app) integrated into a smart home,

and escalate privileges to perform protected operations on another

product, leveraging routines configured via the centralized data store.

This attack is interesting in the context of smart homes, be-

cause of two core assumptions that it relies on (1) low-integrity

(or non-security) smart home products may be easier to directly

compromise than high-integrity devices such as the Nest Cam (i.e.,

none of the SSL vulnerabilities in F10 were in security-sensitive

apps), and (2) while low-integrity devices may not be able to di-

rectly modify the state of high-integrity devices (F1), they may be

able to indirectly do so via automated routines triggered by global

smart home variables (F4). (3) Moreover, since the low-integrity

device is not being intentionally malicious, but is compromised, the

product review process would not be useful, even if it was effective

(which it is not, as demonstrated by F5→F9). This last point dis-

tinguishes a lateral privilege escalation from actions of malicious

apps that trigger routines (e.g., the łfake alarm attackž discussed in

prior work [12]). These conditions make lateral privilege escalation

particularly interesting in the context of smart home platforms, and

especially, DSB platforms such as SmartThings and Nest.

Attack Scenario andThreatModel:We consider a commonman-

in-the-middle (MiTM) scenario, similar to the SSL-exploitation sce-

narios that motivate prior work [9, 43]. Consider Alice, a smart

home user who has configured a security camera to record when

she is away (i.e., using the away variable in the centralized data

store). Bob is an acquaintance (e.g., a disgruntled employee or an

ex-boyfriend) whose motive is to steal a valuable from Alice’s house

without being recorded by the camera. We assume that Bob also

knows that Alice uses a smart switch in her home, and controls

it via its app, which is integrated with Alice’s smart home. Bob

follows Alice, and connects to the same public network as her (e.g.,

a coffee shop, common workplace), sniffs the access token sent

by the switch’s app to its server using a known SSL vulnerability

in the app, and then uses the token to directly control the away

variable. Setting the away to łhomež confuses the security camera

into thinking that Alice is at home, and it stops recording. Bob can

now burglarize the house without being recorded.

The Attack: The example scenario described previously can be

executed on a Nest smart home, using the Nest Cam and the TP Link

Kasa switch (and the accompanying Kasa app). We compromise the

SSL connection of Kasa app, which was found to contain a broken

SSL TrustManager in our analysis described in Section 6. We choose

Kasa app as it requests the sensitive Away read/write permission,

and has a sizable user base (1M+ downloads on Google Play [14]).

It is interesting to note that the Kasa app has also passed the Nest

product review process and is advertised on the Works with Nest

website [33], but can still be leveraged to perform an attack. We use

bettercap [2] as a MiTM proxy to intercept and modify unencrypted

data. Additionally, as described in the attack scenario, we assume

that (1) the victim’s Nest smart home has the Nest Cam and the

Kasa switch installed, (2) the popular routine which triggers the

Nest Cam to stop recording when the user is home is enabled, and

(3) the user connects her smartphone to a network to which the

attacker has access (e.g., coffee shop, office), which is a common

assumption when exploiting SSL-misuse [9, 43].

The attack proceeds as follows: (1) The user utilizes the Kasa app

to control the switch, while the user’s mobile device is connected

9
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Listing 1: The Kasa app’s unencrypted GET request.

1 {"data":{"uri":"com.tplinkra.iot.authentication.impl.

RetrieveAccountSettingRequest"},

2 "iotContext":

3 {"userContext":{"accountToken":"<anonymized

alphanumeric token>",

4 "app":{"appType":"Kasa_Android"},

5 "email":"<anonymized>",

6 "terminalId":"<anonymized>"}}, ...

to public network. (2) The attacker uses a MiTM proxy to intercept

Kasa app’s attempt to contact its own server, and supplies the

attacker’s certificate to the app during the SSL handshake, which is

accepted by the Kasa app due to the faulty TrustManager. (3) The

Kasa app then sends an authorization token (see Listing 1) to the

MiTM proxy (i.e., assuming it is the authenticated server), which is

stolen by the attacker. This token authorizes a particular client app

to send commands to the TP Link server. (4) Using the stolen token,

the attacker instructs the TP Link server to set the smart home’s

away variable to the value łhomež, while the user is actually ławayž.

This action is possible as the TP Link server (i.e., Web app) has the

-Away read/write permission for the user’s Nest smart home. (5)

This triggers the routine in the Nest Cam, which stops recording.

In sum, the attacker compromises a security-insensitive (i.e., low-

integrity) product in the system, and uses it along with a routine to

escalate privileges, i.e., to modify the state of a security-sensitive

(i.e., high-integrity) product. It should be noted that while this is

one verified instance of a lateral privilege escalation attack on DSB

smart home platforms, given the broad attack surface indicated by

our findings, it is likely that similar undiscovered attacks exist.

8 LESSONS

Our findings (F1)→(F10) demonstrate numerous gaps in the secu-

rity of smart home platforms that implement routines using central-

ized data stores. Moreover, while many of the findings may apply to

platforms such as SmartThings as well, their implications are more

serious on Nest, as the user does not have a centralized perspective

of the routines programmed into the smart home.We now distill the

core lessons from our findings, which motivate significant changes

in modern platforms such as Nest.

Lesson 1 : Seamless automation must be accompanied by strong in-

tegrity guarantees. It is important to note that the attack described

in Section 7 may not be addressed by fixing the problem of over-

privilege or via product reviews, since none of the components of

the attack are overprivileged (i.e., including TP Link Kasa), and our

findings demonstrate that the Nest product review is insufficient

(F5→F9). The attack was enabled due to the integrity-agnostic exe-

cution of routines in Nest (F4). To mitigate such attacks, platforms

such as Nest need information flow control (IFC) enforcement that

ensures strong integrity guarantees [3], and future work may ex-

plore the complex challenges of (1) specifying integrity labels for a

diverse set of user devices and (2) enforcing integrity constraints

without sacrificing automation. Moreover, as third-party devices

are integrated into the data store, future work may also explore the

use of decentralized information flow control (DIFC) to allow de-

vices to manage the integrity of their own objects [20, 22, 57]. The

introduction of tiered-trust domains in Nest (i.e., via Weave) offers

an encouraging start to the incorporation of integrity guarantees

into smart home platforms [29].

Lesson 2: Nest Product Reviews would benefit from at least light-

weight static analysis. Our findings demonstrate numerous viola-

tions of the Nest design policies that should have been discovered

during the product review. Moreover, the review guidelines also

state that products that do not securely transmit tokens will be

rejected [32], but our simple static analysis using MalloDroid dis-

covered numerous SSL vulnerabilities in Nest apps (F10), of which

one can be exploited (Section 7). We recommend the integration of

light-weight tools such as MalloDroid in the review process.

Lesson 3: The security of the smart home indirectly depends on

the smart phone (apps). Smartphone apps have been known to be

susceptible to SSL misuse [9], among other security issues (e.g.,

unprotected interfaces [5]). Thus, unprotected smartphone clients

for smart home devices may enable the attacker to gain access

to the smart home, and launch further attacks, as demonstrated

in Section 7. Ensuring the security of smart phone apps is a hard

problem, but future work may triage smartphone apps for security

analyses based on the volume of smart home devices/platforms they

integrate with, thereby, improving the apps that offer the widest

possible attack surface to the adversary.

Lesson 4: Popular but simpler platforms need urgent attention. The

startling gaps in the access control of Hue demonstrate that the

access control of other simple (i.e., homogeneous) platforms may

benefit from a similar holistic security analysis (F2, F3).

9 VULNERABILITY REPORTING

We have reported the discovered vulnerabilities to Philips (F2, F3),

Google (F1, F4→F9), and TP Link (F10), and have received confir-

mations from all the vendors. TP Link has since fixed the SSL flaw

in the latest version of the app. Philips Hue is currently analyzing

third party apps for the specific behavior discussed in this paper,

and will eventually roll out a fix to their access control policy. We

have also provided recommendations to Google on improving the

safety of routines, which is a design challenge that may be hard to

immediately address.

10 THREATS TO VALIDITY

1. SSL MiTM for different Android versions: Our attack de-

scribed in Section 7 has been tested and is fully functional on a

Nexus 7 device running Android version 4.4.2. However, we have

recently observed that the MiTM proxy is blocked when intercept-

ing connections from a Pixel 2 device running the latest version of

Android (i.e., 8.1.0). Our hypothesis is that the TP Link Kasa app

changes its SSL API use based on the Android API version, and

we are currently working on locating at what Android version (i.e.,

between 4.4.2 and 8.1.0) the SSL component of our described attack

no longer functions. However, this caveat does not change the fact

that our attack is feasible under certain settings, or that third-party

Android apps may often have exploitable SSL verification vulnera-

bilities [9, 38, 43]. It is important to note that the SSL compromise

is a well-studied engineering challenge, and is not the focal point

of the lateral privilege escalation exploit we describe, which occurs

primarily because of routines implemented using shared global

variables in Nest (F4→F6).
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2. Number of devices and apps: For the analysis in Section 6, our

set of 9 devices (i.e., 7 real and 2 virtual) allowed us to integrate a

set of 39 apps into our Nest platform (i.e., the Appsnest dataset),

out of the around 130 łWorks withž Nest apps we found. Therefore,

while we cannot say that our findings (F6→F9) generalize to all

the apps compatible with Nest, we can certainly say that they are

valid for a significant minority (i.e., over 27%).

3. Local andRemote exploits ofHue:Our exploits for the Philips

Hue platform demonstrated in Section 4 (F2 and F3) can be exe-

cuted from an app operating on the same local network as the Hue

bridge. This is feasible, as the attacker-controlled app simply needs

to be on the same network (i.e., not even on the victim’s device).

The vulnerabilities we describe may also be remotely exploited, as

access control enforcement remains the same for remote access.

11 RELATED WORK

Smart home platforms are an extension of the new modern OS para-

digm, the security problems in smart home platforms are similar to

prior modern OSes (e.g., application over-privilege, incorrect plat-

form enforcement). As a result, some of the same techniques may be

applied in detecting such problems. For instance, in a manner simi-

lar to Felt et al.’s seminal evaluation of Android permission enforce-

ment [10], our work uses automated testing to derive permission

maps and compares the maps to the platform documentation. We

also leverage lessons from prior work on SSL misuse [9, 38, 43, 47]

to perform the SSL Analysis (Section 6.2) and the MiTM exploit

(Section 7). The lack of transitivity in access control that we ob-

serve is similar to prior observations on Android [5, 7, 11, 23, 24].

However, the implications of intransitive enforcement are differ-

ent in the smart home space, and, to our knowledge, some of the

key analyses performed in this paper is novel across modern OS

research (e.g., exploitation of home automation routines and the

ineffectiveness of Nest’s product review). The novelty of this paper

is rooted in using lessons learned from prior research in modern

OS and application security to identify problems in popular but

under-evaluated platforms such as Nest and Hue, and moreover, in

demonstrating the potential misuse of home automation routines

for performing lateral privilege escalation.

In the area of smart home security, the investigation by Fernan-

dez et al. [12] into the SmartThings platforms and its apps is highly

related to the study presented in this paper. However, our work

exhibits key differences. For instance, the platforms explored in

this paper (i.e., Nest and Hue) are popular, and have key differences

relative to SmartThings (Section 2). Moreover, while Fernandez et al.

focus on application overprivilege, this work studies the utility and

security of routines, and leverages routines to demonstrate the first

instance of lateral privilege escalation on smart home platforms.

Our analysis of permission text artifacts, product review-based de-

fense in Nest, and SSL-misuse in apps leads to novel findings that

facilitate the end-to-end attack. Finally, we demonstrate that simpler

platforms (i.e., Hue) fail to provide bare-minimum protections.

Aside from this closely-related work, prior work has demon-

strated direct attacks on smart home platforms and applications.

For instance, Sukhvir et al. attack the communication and authenti-

cation protocols in Hue and Wemo [37], Sivaraman et al. attack the

home’s firewall using a malicious device on the network [44], and a

Veracode study demonstrated issues in a range of products such as

the MyQ Garage System and Wink Relay [53]. Our work performs

a holistic security evaluation of the access control enforcement in

DSB platforms (i.e., Nest and Hue) and their applications, and is

complementary to such per-device security analysis.

Prior work has also analyzed the security of trigger-action pro-

grams. Surbatovich et al. [49] analyzed the security and privacy

risks associated with IFTTT recipes, which are trigger-action pro-

grams similar to routines. The key difference is that Surbatovich

et al. examines the safety of individual recipes, while our work ex-

plores routines that may be safe on their own (e.g.,when home, turn

off the Nest Cam), but which may be used as gadgets by attackers

to attack a high-integrity device from a low-integrity device.

In a similar vein, Celik et al. [4] presented Soteria, a static analysis

system that detects side-effects of concurrent execution of Sam-

sung’s smart apps. The problem explored in our paper is broadly

similar to Celik et al.’s work, i.e., both papers explore problems that

arise due to the lack of transitive access control in smart homes.

While the techniques that underlie Soteria have advanced the state

of the art for analyzing smart home products, our paper exhibits

two key differences that demonstrate the novelty of our analysis.

First, Soteria does not aim to address the adversarial use of routines

as mechanisms to perform a lateral privilege escalation. As a result,

it would not detect the attack discussed in Section 7, since the pre-

condition for the attack is not a routine (i.e., it is the exploitation

of SSL vulnerability in the Kasa app, which allows us to steal the

authorization token and misuse the away permission allocated to

Kasa). Second, this paper is novel in its analysis of runtime prompts

and permission descriptions on home automation platforms, and

uncovers problems in how users are informed of specific sensitive

automation actions (F8→F9), and how the permissions that enable

such actions (F5) are described.

Finally, prior work has proposed novel access control enhance-

ments, whichmay alleviate some of the concerns raised in this paper.

ProvThings [54] provides provenance information that may allow

the user to piece together evidence of some of the attacks described

in this paper, but does not prevent the attacks themselves. On the

contrary, ContextIoT [19] provides users with runtime prompts

describing the context of sensitive data accesses, which may alert

users to unintended execution of routines (F4), at the cost of reducing

automation. Further, SmartAuth [52] analyzes the consistency of ap-

plication descriptions with code, and may benefit the Nest product

review in determining the correctness of permission descriptions.

12 CONCLUSION

Smart home platforms and devices operate in the users’ physi-

cal space, hence, evaluating their security is critical. This paper

evaluates the security of two such platforms, Nest and Hue, that

implement home automation routines via centralized data stores.

We systematically analyze the limitations of the access control

enforced by Nest and Hue, the exploitability of routines in Nest,

the robustness of Nest’s product review, and the security of third-

party apps that integrate with Nest. Our analysis demonstrates ten

impactful findings, which we leverage to perform an end-to-end

lateral privilege escalation attack in the context of the smart home.

Our findings motivate more systematic and design-level defenses

against attacks on the integrity of the users’ smart home.
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