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Space-time modulation adds another powerful degree of freedom to the manipulation of classical wave
systems. It opens the door for complex control of wave behavior beyond the reach of stationary systems,
such as nonreciprocal wave transport and realization of gain media. Here we generalize the transfer matrix
method and use it to create a general framework to solve wave propagation problems in time-varying acoustic,
electromagnetic, and electric circuit systems. The proposed method provides a versatile approach for the
study of general space-time-varying systems, which allows any number of time-modulated elements with an
arbitrary modulation profile, facilities the investigation of high-order modes, and provides an interface between
space-time-modulated systems and other systems.
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I. INTRODUCTION

Wave propagation in systems where the material param-
eters or structures are varying in both space and time has
attracted considerable attention in recent years. Such space-
time modulation provides an efficient means to break time-
reversal symmetry and has found many applications in the
field of integrated circuits (ICs), optics, electromagnetics
(EM), and acoustics. For example, time-varying transmission
lines (TVTLs) have been used to create frequency convert-
ers, multipliers, and nonreciprocal devices such as isolators
and circulators [1–9]. Recently, the idea of achieving non-
reciprocity through space-time modulation has been applied
to modern optical and electromagnetic systems [10–22]. For
mechanical waves, space-time-modulated elastic beams have
been proposed to create a directional band gap [23,24].
Space-time-modulated mass-spring systems have also been
proposed to study directional wave manipulation for elastic
waves [25,26]. In airborne acoustics, frequency converters
and parametric amplifiers have been demonstrated in a space-
time-modulated metamaterial [27]. Acoustic isolators [28],
circulators [29–31], and topological insulators [32] have also
been demonstrated with temporally modulated resonators.

Theoretical tools available for studying time-varying wave
systems generally fall into several categories. In time-varying
transmission lines [1–3], the most commonly used approach
is to directly solve the coupled differential equations by as-
suming a slowly varying envelope and then solve the coupled
equations for the envelope. However, such an approach con-
siders only a small number of interacting waveguide modes
and neglects all the higher-order modes. Taking these modes
into account will result in additional coupled differential equa-
tions and make the system more difficult to solve efficiently.
Space-time Floquet theory [23,25,33], on the other hand,
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calculates the band structure for an infinitely long system.
However, the Floquet theory predicts only which waveguide
modes are coupled, and it does not provide detailed infor-
mation on how waves change gradually in such systems.
Both theoretical approaches deal with infinitely long and
continuous systems. However, in practice, the systems must
have a finite length, and in many cases, the realization for
space-time-modulated media is discretized [9,24,26,27]. Fur-
thermore, both solving coupled wave equations directly and
space-time Floquet theory deal with wave propagation where
the material properties are modulated sinusoidally, and they
cannot be applied to more complicated modulation profiles.
For discrete systems with space-time-varying boundary con-
ditions, the system can be solved by balancing the harmonics
at each order [14,28]. Another type of discrete system involves
one or more coupled resonators and is generally solved by
the coupled mode theory (CMT) [34,35]. CMT has been
widely applied in mechanical-optical systems [16,19,36] and
was recently introduced in acoustics [30,31]. However, the
coupling coefficients are usually not easy to determine or
design in practice. Furthermore, for both harmonic balancing
and CMT, as the number of resonators or boundaries increases
and with the increase of modes taken into account, the coupled
equations become complicated to solve.

Here we propose a generalized transfer matrix approach
for solving one-dimensional space-time-varying systems. By
setting up time-varying boundary conditions and rewriting
them into transfer matrix form, the effects of time variation are
localized. Therefore, all the time-varying components can be
described individually so that we can calculate a system with
an arbitrary number of time-varying elements and an arbitrary
spatial modulation profile by simply multiplying their transfer
matrices. It is shown that with a small number of elements, it
reduces to the harmonic balancing method described in [28],
while with a large number of modulated elements with small
spacing, it reduces to the continuous counterpart [27] and
space-time Floquet theory [23,25,33]. The results are verified
with finite-difference time-domain (FDTD) simulations. Our
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approach provides a versatile platform to investigate the be-
havior of general space-time-modulated systems. Compared
with current available theoretical tools, it has a number of
advantages. First, it handles multiple higher-order waves and
arbitrary number of modulated elements without increasing
the computational complexity, therefore providing a better
approximation. Second, it offers many degrees of freedom and
thus allows the study of arbitrary modulation parameters such
as modulation depth and phase for each element or even the
study of a system with random time modulation, which is dif-
ficult for other approaches. Third, it has no constraint for the
element spacing or material properties. Therefore, it facilities
the study of the interplay of time-dependent wave behavior
with other classical behaviors, such as resonances, multiple
scattering, and inhomogeneity. Fourth, by representing the
whole system with a transfer matrix, our method provides
an interface for the study of interaction between a space-
time-modulated system and other stationary and nonstationary
systems.

This paper is organized as follows. First, we present the
formulation of the transfer matrix method for general time-
varying systems. We use acoustic representation, and the
results can be directly applied to EM waves and ICs, and
the corresponding formulation can be found in Appendix A.
The approach is then applied to several examples to show its
capabilities and advantages. In the first case, we present the
design of an acoustic diode without operating at resonance fre-
quencies. The isolation level can be controlled by employing
different numbers of modulated resonators and modulation
strategies. The off-resonance feature makes the design robust
to loss and fabrication errors. In the second case, we will show
that when the phase-matching condition is met, parametric
mode conversion and amplification can be achieved with
multiple space-time-modulated resonators. With this example,
we will discuss the impact of high-order modes, multiple scat-
tering, and how this approach reduces to continuous theory
and space-time Floquet theory under several conditions.

II. MATRIX REPRESENTATION OF A
SPACE-TIME-VARYING SYSTEM

In this section, we exemplify the derivation with the acous-
tic representation. The general procedure applies to the study
of EM waves and ICs, where one just needs to substitute
the pressure and velocity (p, v) with electric and magnetic
fields (E ,H ) or voltage and current (V, I ). The details for
the EM and IC formulation and the corresponding realization
approaches are summarized in Appendix A.

A. Response of a time-varying load in series

Consider an acoustic waveguide loaded with a time-
varying impedance sheet ZL. Assume the modulation am-
plitude is sufficiently small and the impedance is varying
harmonically in the form of

ZL(ω, t ) = ZL0(ω)[1 + a cos (�t + φ)], (1)

where � is the modulation frequency, φ is the initial phase
of the modulation, a denotes the modulation depth (a � 1),
and ZL0(ω) is the impedance without modulation. In general,

a can be a function of frequency depending on the physical
parameters under modulation. A plane wave is launched into
the waveguide with angular frequency ω0. We would like
to note here that the impedance is defined in the frequency
domain; such a treatment shall be valid under the slow and
weak modulation. However, as is shown in later sections, such
a treatment yields great agreement between the calculation
and simulation even when the modulation frequency is twice
the input frequency. Due to the time-varying load impedance,
harmonics will be generated. Therefore, the pressure and
velocity upstream and downstream of the load are written as

p∓ =
∞∑

n=−∞
pn∓e

jωnt , (2)

v∓ =
∞∑

n=−∞
vn

∓e
jωnt , (3)

where ωn = ω0 ± n�. The boundary condition at the position
of the load should satisfy

p− − p+ =
∞∑

n=−∞
Zn
Lv

n
+e

jωnt , (4)

v− = v+, (5)

where the superscript denotes the impedance at each order of
harmonic, i.e., Zn

L = ZL(ωn, t ) and so on. Putting the expres-
sion of the series load, pressure, and velocity into Eqs. (4)
and (5) and equating the terms with e jωnt using the relation
cos(�t + φ) = 1

2 [e j(�t+φ) + e− j(�t+φ)], we can rewrite the
boundary conditions in terms of each order of the harmonics:

pn− − pn+ = Zn
L0v

n
+ + aZn−1

L0

2
e jφvn−1

+ + aZn+1
L0

2
e− jφvn+1

+ , (6)

vn
− = vn

+, (7)

where Zn
L0 = ZL0(ωn). The transfer matrix M is defined as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
pn−1

−
vn−1

−
pn−
vn

−
pn+1

−
vn+1

−
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
pn−1

+
vn−1

+
pn+
vn

+
pn+1

+
vn+1

+
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

With the boundary conditions, the transfer matrix at the load
can be written as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

. . . 1 Zn−1
L0 0 aZn

L0
2 e− jφ 0 0 . . .

. . . 0 1 0 0 0 0 . . .

. . . 0 aZn−1
L0
2 e jφ 1 Zn

L0 0 aZn+1
L0
2 e− jφ . . .

. . . 0 0 0 1 0 0 . . .

. . . 0 0 0 aZn
L0

2 e jφ 1 Zn+1
L0 . . .

. . . 0 0 0 0 0 1 . . .
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)
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For waves traveling in an empty waveguide, the transfer
matrix can be simply written as

MT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
. . . Mn−1

T 0 0 . . .

. . . 0 Mn
T 0 . . .

. . . 0 0 Mn+1
T . . .

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

where

Mi
T =

[
cos(kid ) jZ0 sin(kid )
j
Z0

sin(kid ) cos(kid )

]

(i = . . . , n − 1, n, n + 1, . . . ). (11)

Here Z0 is the characteristic impedance of air, ki is the wave
number for the ith-order wave, and d is the length of the
waveguide. All the coupling terms between each order are
zero since the waveguide is stationary.

For a system composed of N equally spaced cascaded
time-varying impedance sheets, the transfer matrix can be
calculated as Mtot = M1MTM2MT · · ·MTMN , where Mi (i =
1, . . . ,N) denotes the transfer matrix of the impedance loads
and MT is the transfer matrix of each section of the empty
waveguide.

B. Response of a time-varying load in parallel

For a shunted load on the waveguide, it is more convenient
to use the effective admittance, defined as YL = SL/(SwZL ),
where Sw and SL denote the cross-sectional areas of the
waveguide and the load, respectively. Note here that the admit-
tance is scaled by the ratio between the cross-sectional areas
to keep the generality of our formulation. Now we assume
the admittance varies in the form of YL(ω, t ) = YL0(ω)[1 +
a cos (�t + φ)]. In this case, the boundary condition at the
position of the load should satisfy

p− = p+, (12)

v− − v+ =
∞∑

n=−∞
Y n
L p

n
+e

jωnt . (13)

The boundary conditions for each order then become

pn− = pn+, (14)

vn
− − vn

+ = Y n
L0p

n
+ + aY n−1

L0

2
e jφ pn−1

+

+ aY n+1
L0

2
e− jφ pn+1

+ , (15)

where the superscript denotes the admittance at each order of
harmonic, i.e., Y n

L0 = YL0(ωn). In this case, the transfer matrix

at the load becomes

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...
...

...
...

. . . 1 0 0 0 0 0 . . .

. . . Y n−1
L0 1 aY n

L0
2 e− jφ 0 0 0 . . .

. . . 0 0 1 0 0 0 . . .

. . .
aY n−1

L0
2 e jφ 0 Y n

L0 1 aY n+1
L0
2 e− jφ 0 . . .

. . . 0 0 0 0 1 0 . . .

. . . 0 0 aY n
L0

2 e jφ 0 Y n+1
L0 1 . . .

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

We can see from Eqs. (9) and (16) that the loads in series
and in parallel are similar, which is consistent with the passive
cases [37]. With the transfer matrix for the loads and empty
waveguide, the transfer matrix for the entire structure can be
calculated by multiplying the transfer matrices for all com-
ponents. Hence, the transmission and reflection coefficients
can be calculated by converting the transfer matrix into a
scattering matrix. The conversion from the transfer matrix to
the scattering matrix is given in Appendix B.

With the transfer matrix method we can, in principle, take
all the orders of harmonics into account. However, in practice,
the matrix shall be truncated to account only for the orders
that are non-negligible. Compared with existing theories that
characterize space-time-modulated systems, there are three
main advantages for the proposed method. First, our proposed
transfer matrix method takes higher-order modes into account.
It will be shown in the following sections that these high-order
modes exhibit non-negligible effects on the wave propagation.
Second, current theories focus on the traveling-wave-like
modulation where the modulation has a linear phase gradient
along the space, while with the proposed theory, the transfer
matrix for all the time-varying elements can be written inde-
pendently. Therefore, by cascading the transfer matrices, we
will be able to calculate an arbitrary space-time modulation
profile. Third, the generalized transfer matrix method provides
an interface between time-varying systems and other systems,
so it can be used to study the interaction between stationary
and nonstationary systems.

C. An acoustic case: Waveguide loaded with
space-time-modulated Helmholtz resonators

In this section, we will look into a practical system in
acoustics where a waveguide is side loaded with a series of
Helmholtz resonators whose cavity heights are modulated in
both space and time. The schematic diagram is shown in
Fig. 1. Since the resonators are side loaded, such a configura-
tion fits the parallel-load case. The impedance of a Helmholtz
resonator can be represented with Z = jωL + 1

jωC , where

L = ρl , C = Scavh
SLρc2 . Here ρ and c are the density and sound

speed in air, l is the corrected length of the neck, and SL and
Scav are the area of the neck and cavity, respectively.

Assume the height of the cavity h varies in the form of
h(t ) = h0[1 + m cos(�t + φ)] and the modulation is weak,
i.e., m � 1. The impedance of a single Helmholtz resonator
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FIG. 1. Schematic representation of a waveguide loaded with an
arbitrary number of space-time-modulated resonators

can be written as

Z (ωn, t ) = Zn

[
1 − mZcn

Zn
cos(�t + φ)

]
, (17)

where Zn = jωnL + 1
jωnC0

, Zcn = 1
jωnC0

, and C0 = Scavh0
SLρc2 is

the acoustic capacitance for a resonator without modula-
tion [14,27,28]. The impedance variation corresponds to
the parallel-load case described in Sec. II B. Inserting the
impedance into the above formalism, a physical acoustic
system can be represented by the transfer matrix framework
described above.

III. EXAMPLES IN THE DISCRETIZED
SPACE-TIME-MODULATED SYSTEMS

A. Nonreciprocal sound transport

Nonreciprocal devices that create directional control of the
energy flow have numerous applications and, consequently,
have attracted significant attention in recent years. Nonre-
ciprocal sound transport using space-time modulation was
recently reported by cascading modulated resonators [28] or
forming a circulator [30,32]. However, the proposed designs
require resonators with a high quality factor, and the system
has to work close to the resonant frequency. These features
bring challenges in realization and make the system sensitive
to inevitable losses and fabrication errors. In this section, we
will demonstrate the design of a nonreciprocal device by cas-
cading multiple space-time-modulated resonators. Different
from the existing strategy that derives the requirements for
the resonators, we start from a physically realizable resonator
design and then determine the number of resonators needed to
generate a sufficient nonreciprocal response at off-resonance
frequencies.

For the demonstration of these features, we pick an acous-
tic waveguide with a cross section of 9.5 × 9.5 mm2. The
Helmholtz resonator dimension is shown in Fig. 1. The cavity
is cylindrical with radius R = 14 mm and height h0 = 10 mm.
The neck is also cylindrical with radius r = 4.5 mm and
neck length l = 1.6 mm. With the help of a numerical finite-
element simulation performed in COMSOL MULTIPHYSICS, we
calculated the resonance frequency as 2566 Hz, which yields
an effective neck length l = 4.7 mm. The distance between
adjacent shunted resonators is 40 mm. We would like to note
here that the resonator parameters are chosen for demonstrat-
ing the capability of the method and not optimizing the device

performance. The performance is expected to be improved
by further optimization of the geometric parameters, which
is not the focus of this paper. Since the calculation deals
with slow and weak modulation, we chose the modulation
frequency to be 100 Hz and the modulation depth m to be
0.15. The modulation phase of each resonator has a linear
gradient; that is, the modulation phase for the nth resonator
can be written as φn = n�φ, where �φ is the phase difference
between adjacent resonators. The incident wave is assumed
to be sinusoidal with angular frequency ω0 and is defined
as the 0th order. We have studied the same system truncated
at different orders and found that for this particular system,
the transmission coefficients converge after the ±5th order
is considered. The detailed information is summarized in
Appendix C. In the study, the waves are truncated to ±10th
order.

By multiplying transfer matrices and converting the total
transfer matrix into the scattering matrix, the transmission
and reflection coefficients for such a system can be calcu-
lated. Since we truncated the waves to ±10th order, the
size of the scattering matrix is 42 by 42, and S22,21 and
S21,22 represent the transmission coefficients for the 0th-order
wave in the forward direction and backward direction (see
Appendix B for details). Here we define the transmission ratio
� = |S22,21|/|S21,22| as a measure of the resulting asymmetry.
In Fig. 2, we show the change in � by varying the phase
difference �φ from −π to π and incident frequency from
1000 to 2000 Hz, in the cases of two, three, four, and five
cascaded resonators.

With two modulated resonators, the asymmetric modula-
tion creates a directional bias, which leads to nonreciprocity.
However, due to the low quality factor of the resonance
and the fact that the incident wave is not close to the res-
onant frequency, the nonreciprocal effect is very weak. In
this case, the maximum value of � is 1.022 (0.189 dB).
As the number of resonators increases, the maximum trans-
mission ratio reaches 1.274 (2.103 dB), 3.585 (11.089 dB),
and 51.55 (34.245 dB) with three, four, and five modu-
lated resonators. This indicates that with more resonators
which introduce more design degrees of freedom, nonrecip-
rocal transmission can be realized conveniently using this
approach.

The analytic model is verified with a one-dimensional (1D)
FDTD simulation implemented in MATLAB [38]. The back-
ground media is lossless air with density ρ0 = 1.21 kg/m3

and speed of sound c0 = 343 m/s. The time step is 1 ×
10−7 s, and the grid is 5 × 10−5 m. Here we use the four-
resonator case as an example. The dimensions for the
Helmholtz resonator are the same as the ones we used
in the analytic calculation. In the simulation, each of the
three-dimensional (3D) resonators is represented by a time-
dependent harmonic oscillator, and they couple into the 1D
waveguide by inducing the discontinuity in local velocity
at each position. As an example, the phase step for each
resonator and the incident frequency are chosen to be �φ =
0.24π and 1550 Hz, respectively. The waveguide in front of
and behind the structure is 0.5 m, and radiation boundaries are
applied to eliminate reflection from both sides. Figure 3 shows
the comparison between theoretical calculated transmission
coefficients and the simulation results. We can see excellent
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FIG. 2. Transmission ratio for two, three, four, and five space-time-modulated resonators with the change in input frequency and
modulation phase step. With the increased number of resonators, the range of available transmission ratio can be increased.

agreement between them where not only the fundamental
order but also all the higher-order waves are well captured.
The results again confirm that for multiple resonators, higher-
order harmonics need to be considered to accurately represent

the system. The 0th-order transmission coefficients for the
positive direction are 0.2612 and 0.2598 in the calculation
and simulation, respectively, and for the negative direction,
they are 0.0729 and 0.0860. The small discrepancy may come

FIG. 3. Comparison of the transmission coefficients for each order between the theoretical calculation and FDTD simulation. The
amplitudes of all the involved orders agree well. Nonreciprocal sound transport is achieved at the fundamental frequency of 1550 Hz.
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from the first-order truncation in Eq. (17) for the impedance
approximation.

B. Parametric frequency conversion and
parametric amplification

It has been shown that in TVTLs, parametric frequency
conversion and amplification can be achieved if the phase-
matching condition is met [1,2,9]. Similar phenomena have
also been demonstrated in acousto-optic effects [16,19] and
space-time-modulated media [27]. However, the realization
of a space-time-modulated effective material usually means
approximating a continuous system. In many practical cases,
however, it is difficult to discretize the system into deep
subwavelength scales. In these cases, multiple scattering may
have a significant impact on the wave behavior. Therefore, our
theoretical model has a great advantage in characterizing such
discretized space-time-varying systems since the scattering
is intrinsically built into the model. In this section, we will
show that parametric frequency conversion and parametric
amplification can be achieved in such a discrete space-time-
modulated system. It will also be shown that as we truncate

the model to consider only the fundamental mode and targeted
mode, the results agree well with those obtained with TVTLs
and space-time-modulated metamaterials. On the other hand,
as we will discuss in this section, in many cases, high-order
modes and multiple reflections have non-negligible effects on
the fundamental modes, and therefore, neglecting them will
not yield accurate predictions.

The system configuration we use in this section is as
follows: the cross section of the acoustic waveguide is 20 ×
20 mm2; the cavity of the Helmholtz resonator is cylindri-
cal with radius R = 10 mm and height h0 = 5 mm, and the
neck is also cylindrical with radius r = 1.5 mm and effective
neck length l = 3.1 mm. These parameters yield a resonance
frequency of 2091 Hz. Note here that we use a different
set of parameters than in the previous case so that the in-
fluence of high-order modes and discretization can be better
visualized. The distance between adjacent shunted resonators
is 40 mm. The modulation depth m is chosen to be 0.15.
The effective dispersion curve can be obtained in simulation
by effective parameter retrieval [39]. The simulation is done
with the commercial finite-element analysis package COMSOL

MULTIPHYSICS.
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FIG. 4. Comparison between theory and simulation for the case of parametric frequency conversion. (a) The wave amplitudes for 0th- to
±5th-order waves along the waveguide predicted by the transfer matrix method. The calculation truncated at ±10th order. (b) Amplitudes for
0th- to ±5th-order waves obtained from simulation. (c) Wave amplitudes calculated by the transfer matrix method when only 0 and −1 orders
are considered, showing that high-order waves have a non-negligible effect. (d) The corresponding calculation using the continuous model as
a reference.

144311-6



TRANSFER MATRIX METHOD FOR THE ANALYSIS OF … PHYSICAL REVIEW B 100, 144311 (2019)

The first case we show in this section is the realization of
parametric frequency conversion. The total length of the mod-
ulated section is 20 m, containing 500 space-time-modulated
resonators. Two empty waveguides are connected to both
sides of the modulated section. In this case, we use a 1600-Hz
wave as the fundamental mode (0th order) and a 1300-Hz
wave as the target mode (−1st order). The wave numbers
for the two modes are retrieved as k1 = 32.69 rad/m and
k2 = 25.67 rad/m. Therefore, the modulation frequency for
each resonator is 300 Hz, and the phase step is �φ = (k1 −
k2)�d = 0.28 rad [27]. Assuming a monochromatic wave
(0th order) is incident from the empty waveguide, Fig. 4(a)
shows the variation of normalized amplitudes of each mode as
the wave propagates along the system. Here the wave ampli-
tudes are obtained by calculating the transmission and reflec-
tion coefficients of the space-time-modulated system. This is
done by computing the total transfer matrix and converting it
to the scattering matrix by assuming air on both sides. Hence,
the pressure and velocity for each mode at the incident port
can be calculated. By doing this, the interaction between the
space-time-modulated system and two empty waveguides can
be conveniently analyzed. With total pressure and velocity
on the input side, the pressure amplitudes for each order,
normalized by the incident wave, at an arbitrary position can
be calculated with the help of the transfer matrix. A FDTD
simulation is performed to verify the theoretical results. In the
simulation, the time step and space step are 1 × 10−7 s and
5 × 10−5 m, respectively. Radiation boundaries are applied on
both ends of the empty waveguides to eliminate reflection.
The sinusoidal wave is incident from the air section, and
we wait 0.4 s for the system to reach its steady state. The
waveform along the modulated section from 0.3 to 0.4 s is
recorded, and a Fourier transform is performed to analyze its
spectrum. Figure 4(b) shows how energy transfers back and
forth among the modes while propagating in the system. The
simulation results are in good agreement with the theoretical
predictions. The theoretically calculated distance needed for
one cycle of such a transition is 9.426 m, while in the simula-
tion, the measured distance is 9.069 m. We can see that apart
from the incident mode and the target mode, the +1st mode

and ±2nd modes all have non-negligible amplitudes. The
small oscillation in the amplitudes is a result of interaction
with higher-order modes. This can be confirmed by truncating
the model to account for only the fundamental mode and
the target mode, with all other modes neglected. The mode
amplitudes calculated from the simplified model are shown in
Fig. 4(c), and we can see that the small oscillation disappears
when the high-order modes are turned off. This confirms
our conclusion that high-order modes cannot be neglected
while treating the time-varying systems. As a comparison, the
corresponding results calculated from a continuous effective
material model [27] are shown in Fig. 4(d). We can see the
energy swapping between two modes, but the amplitudes of
two modes are not accurate, and the prediction of the distance
needed for a cycle of transition is 7.357 m, which is 18.9% off
from the simulation results. This is because in the continuous
model, plane wave solutions are assumed. Therefore, with the
effective medium approximation, the unit cells are required
to be subwavelength. However, this assumption no longer
holds near the resonant frequency range, as the wave velocity
becomes very slow such that the wavelength is comparable to
the spacing between resonators. In our case, the wavelength
for the −1st, 0th, and 1st modes are 24.5, 19.2, and 14.1 cm,
respectively. They are comparable to the separation of 4 cm
and do not satisfy the subwavelength condition. In principle,
if the separation is reduced to being infinitesimal, the effective
medium approximation will become valid again. However,
in practice, it is very hard to achieve due to the follow-
ing reasons. First, as we have demonstrated above, higher-
order harmonics have non-negligible effects on the system
performance. To meet the effective medium approximation,
the separation has to be much smaller than the smallest
wavelength (highest order) taken into account. Second, as
the frequency approaches the band gap, the effective sound
speed will become extremely slow. Such an effect will make
the wavelength even smaller for these frequency ranges, so
that the requirement of the effective medium approximation
becomes very hard to meet. Therefore, to better predict the
wave behavior in a practical system, the Bragg scattering
needs to be considered.
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FIG. 5. Comparison between theory and simulation for the case of parametric amplification (non-Hermitian gain media). (a) The wave
amplitudes for 0th- to ±2nd-order waves along the waveguide predicted by the transfer matrix method. The calculation truncated at ±10th
order. (b) Amplitudes for 0th- to ±2nd-order waves obtained from simulation.
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The same resonator geometry is used for the paramet-
ric amplification case. To better show how the waves grow
gradually, the length of the modulated section is shortened
to 10 m. In this case, the modulation frequency is set as
2500 Hz. The frequencies for the incident wave and generated
wave are 1000 and 1500 Hz, corresponding to wave numbers
k1 = 19.46 rad/m and k2 = 30.18 rad/m, respectively. There-
fore, the phase step between each resonator is �φ = (k1 +
k2)�d = 1.99 rad [27]. The comparison between theory and
simulation is given in Fig. 5, where exponential growth for
both waves is observed, following the form of cosh(αx) for
the 1000-Hz wave and sinh(αx) for the 1500-Hz wave, where
α represents the growth rate. α is obtained by fitting the data
to the function and is found to be 0.2056 and 0.2036 rad/m
for theory and simulation, showing excellent agreement. The
small oscillation in the growing amplitude is the result of
discretization. In both the theoretical calculation and the simu-
lation, the high-order waves are small because these modes are
far from the allowed modes in the system, so that the coupling
is very weak.

IV. DISCUSSION AND CONCLUSION

In this paper, we proposed a framework to solve one-
dimensional wave propagation problems in time-varying
acoustic, EM, and IC systems through a generalization of the
transfer matrix method. By analyzing the boundary conditions
for time-varying impedance in series and in parallel, the
boundary conditions can be set up by balancing the harmon-
ics. The boundary condition is converted to a generalized
transfer matrix form which facilitates the computation pro-
cess. With this step, the influence of a time-varying element on
the whole system is completely localized. Localization pro-
vides the advantage of making the time-varying components
serve as individual building blocks and thus allows the study
of time-varying systems with complicated modulation profiles
by simply multiplying individual pieces.

Compared with currently available models for studying
general space-time varying systems, our approach has many
advantages. First, it enables the study of complicated spatial
modulation strategies instead of simple sinusoidal traveling-
wave-like modulation. While dealing with a traveling-wave-
like system, it can reduce to the continuous counterpart, such
as solving the coupled partial differential equations (as used in
TVTLs and space-time-modulated metamaterials) and space-
time Floquet theory, with much more precise details. Second,
high-order modes are taken into consideration, and we showed
the influence of high-order harmonics with two examples: de-
signing a nonreciprocal sound-transporting device and para-
metric mode conversion. Third, the computational complexity
does not grow with the system complexity; therefore, it is
effective in studying large systems, while it produces the
same results as [28] when the size of the system is small.
Fourth, it allows the study of the interaction between space-
time-varying behavior and other classical wave behaviors,
such as multiple scattering. Fifth, it enables the study of the
interaction between a time-varying system and other existing
systems and thus offers possibilities for more advanced and
complex wave control. Note here that the approach proposed
in this paper is a close approximation instead of an accurate

result. To the best of our knowledge, there are two main
sources for the inaccuracy. The first one is by taking the first
term of the Taylor expansion while representing the time-
varying impedances; this is valid only when the modulation
depth is small enough. The other source of inaccuracy is the
truncation of higher-order modes. To predict a system with
sufficient accuracy, one should include a sufficient number of
modes in the calculation, as illustrated in Appendix C.

Space-time modulation puts a new twist on controlling
wave behaviors and opens the door for unprecedented wave
manipulation capabilities that are not possible for stationary
systems. The possibility offered by modulation is much richer
than nonreciprocal wave transport, frequency conversion, and
the realization of gain media. It will be important that fu-
ture research explore richer phenomena enabled by various
modulation profiles instead of the simple traveling-wave-like
modulation. It will also be beneficial to extend the transfer
matrix framework by investigating more complicated modu-
lation waveforms, such as a square wave, sawtooth wave, etc.
Additionally, we would like to note that even in a 1D system,
there remains a lot of room to explore which requires more
insights on the system behaviors under space-time modula-
tion; extension of such a theory into two-dimensional or 3D
systems could prove quite beneficial to the literature. We hope
this theory will serve as a powerful tool and versatile platform
for studying general space-time-modulated systems.
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APPENDIX A: ELECTROMAGNETIC AND IC
FORMULATION OF THE SPACE-TIME-MODULATED

SYSTEMS

Here we use TE-polarized EM waves as an example.
Assume the �E field is pointing in the x̂ direction and the
wave is propagating along the ẑ axis. The waves upstream
and downstream of a thin impedance sheet connected in series
with the waveguide can be written as

�E∓ =
∞∑

n=−∞
�En
∓e

jωnt , (A1)

�H∓ =
∞∑

n=−∞
�Hn
∓e

jωnt . (A2)

If the impedance sheet has only an electric response and no
magnetic response, the boundary conditions for electromag-
netic waves can be expressed as

�E− = �E+, (A3)

ẑ × ( �H+ − �H−) =
∞∑

n=−∞
Y n
L

�En
−e

jωnt , (A4)
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TABLE I. Analogy of acoustic, EM, and IC systems and the corresponding realization for series and parallel cases.

System type Discontinuity Realization

Series case Acoustic p Membranes and plates
EM �E Impedance sheets that create magnetic current
IC V Impedance in series

Parallel case Acoustic v Side-loaded resonators
EM −n̂ × �H Impedance sheets that create electric current
IC I Impedance in parallel

where YL is the admittance of the sheet. Now if we assume
the admittance varies in the form of YL(ω) = YL0(ω)[1 +
a cos (�t + φ)], the boundary conditions for each order then
become

�En
− = �En

+, (A5)

(−ẑ × �Hn
−) − (−ẑ × �Hn

+) = Y n
L0

�En
− + aY n−1

L0

2
e jφ �En−1

−

+ aY n+1
L0

2
e− jφ �En+1

− . (A6)

Comparing Eqs. (A3) and (A4) and Eqs. (12) and (13), we
can see that they take the same form, where �E corresponds
to p and −ẑ × �H corresponds to v. This corresponds to the
parallel impedance case in acoustics. By converting these
equations into the transfer matrix form, all the field terms will
be isolated, so that the transfer matrix is exactly the same
as the one we derived in Eq. (16). Similar equations can be
found for an impedance sheet with time-varying magnetic
responses.

For IC systems, the analogy is straightforward. By replac-
ing p withV and v with I , all the matrices can be obtained and
remain in the same form as in the acoustic formulation. Here
V and I denote voltage and current.

The analogy of acoustic, EM, and IC systems in the se-
ries case and parallel case and the corresponding realization
approaches are summarized in Table I.

APPENDIX B: CONVERSION FROM TRANSFER MATRIX
TO SCATTERING MATRIX

The schematic diagram is shown in Fig. 6. The transfer
matrix and scattering matrix of the structure are defined

A

B

C

D

p-
v-

p+
v+

Upstream Structure Downstream

FIG. 6. Schematic of the system for matrix conversion.

as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

pn−1
−

vn−1
−
pn−
vn

−
pn+1

−
vn+1

−
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

pn−1
+

vn−1
+
pn+
vn

+
pn+1

+
vn+1

+
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Bn−1

Cn−1

Bn

Cn

Bn+1

Cn+1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= S

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

An−1

Dn−1

An

Dn

An+1

Dn+1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)

The calculation strategy of the transfer matrix is given in
Sec. II and can be expressed as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...

. . . M ′
n−1,n−1 M ′

n−1,n M ′
n−1,n+1 . . .

. . . M ′
n,n−1 M ′

n,n M ′
n,n+1 . . .

. . . M ′
n+1,n−1 M ′

n+1,n M ′
n+1,n+1 . . .

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B3)

where

M ′
i, j =

[
M2i−1,2 j−1 M2i−1,2 j

M2i,2 j−1 M2i,2 j

]
. (B4)
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Using An, Bn, Cn, and Dn to represent pn−, vn
−, pn+, and vn

+, we
can rewrite Eq. (B1) as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...

. . . Sout
n−1,n−1 Sout

n−1,n Sout
n−1,n+1 . . .

. . . Sout
n,n−1 Sout

n,n Sout
n,n+1 . . .

. . . Sout
n+1,n−1 Sout

n+1,n Sout
n+1,n+1 . . .

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Outn−1

Outn

Outn+1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...

. . . Sin
n−1,n−1 Sin

n−1,n Sin
n−1,n+1 . . .

. . . Sin
n,n−1 Sin

n,n Sin
n,n+1 . . .

. . . Sin
n+1,n−1 Sin

n+1,n Sin
n+1,n+1 . . .

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Inn−1

Inn

Inn+1

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B5)

where

Outn =
[
Bn

Cn

]
, (B6)

Inn =
[
An

Dn

]
, (B7)

Sout
i, j =

⎡
⎢⎢⎣

δi j −
(
M ′

i, j (1, 1) + M ′
i, j (1, 2)

z0

)

−δi j

z0
−

(
M ′

i, j (2, 1) + M ′
i, j (2, 2)

z0

)
⎤
⎥⎥⎦, (B8)

Sin
i, j =

⎡
⎢⎢⎣

−δi j

(
M ′

i, j (1, 1) − M ′
i, j (1, 2)

z0

)

−δi j

z0

(
M ′

i, j (2, 1) − M ′
i, j (2, 2)

z0

)
⎤
⎥⎥⎦. (B9)

δi j is the Kronecker delta. Then, we can get the scattering
matrix of the structure as

S = [Sout]−1Sin. (B10)

From the definition of the scattering matrix [Eq. (B2)], we
can see that the transmission and reflection coefficients for
each order can be directly obtained from the corresponding
elements in the scattering matrix. For simplicity, we represent
the scattering matrix as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

...

. . . S′
n−1,n−1 S′

n−1,n S′
n−1,n+1 . . .

. . . S′
n,n−1 S′

n,n S′
n,n+1 . . .

. . . S′
n+1,n−1 S′

n+1,n S′
n+1,n+1 . . .

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B11)

where

S′
i, j =

[
r+
i, j t−i, j
t+i, j r−

i, j

]
, (B12)
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FIG. 7. Transmission coefficients for 0th- to ±5th-order modes
as we increase the number of orders taken into account. The upper
and lower figure are the scenario when the incident wave is from the
positive direction and the negative direction, respectively. The results
remain unaffected after accounting for the ±5 order.

where each element in S′
i, j represents the reflection and trans-

mission coefficients for the positive direction and negative
direction, corresponding to the ith-order output and jth-order
input.

APPENDIX C: CONVERGENCE OF THE RESULTS AS
MORE ORDERS ARE TAKEN INTO ACCOUNT

One of the main advantages for our proposed method is
that it takes high-order waves into account. Then it comes
to the question of what kind of truncation gives reliable
results. Here we pick the four-resonator nonreciprocal sound
transmission case as an example. Figure 7 shows the conver-
gence of transmission coefficient amplitudes for 0th- to ±5th-
order waves as we increase the number of modes taken into
account during the truncation process. Here the transmission
coefficient for each order is defined as the ratio between the
complex amplitude for each order and the incident wave am-
plitude. They can be directly obtained from the corresponding
components in the scattering matrix. From Fig. 7 we can
see that high-order harmonics do play a role, and sometimes
they are higher than the 0th order; therefore, omitting them
during the calculation will lead to inaccurate results. In our
example case, the amplitudes of harmonics higher than ±5th
order are lower than 0.01 and therefore can be neglected.
The amplitudes of the 0th to ±5th orders remain essentially
unchanged after the 5th order is taken into account. This jus-
tifies our calculation where we truncated the matrix at ±10th
order.
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