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Robustness Against Disturbances in Power
Systems Under Frequency Constraints

Dongchan Lee , Liviu Aolaritei , Thanh Long Vu , and Konstantin Turitsyn

Abstract—The wide deployment of renewable generation
and the gradual decrease in the overall system inertia make
modern power grids more vulnerable to transient instabili-
ties and unacceptable frequency fluctuations. Time-domain
simulation-based assessment of the system robustness
against uncertain and stochastic disturbances is extremely
time-consuming. In this paper, we develop an alternative
approach, which has its roots in the input–output stabil-
ity analysis for Lur’e systems. Our approach consists of
a mathematically rigorous characterization of the external
disturbances that the power system is transiently stable
and the frequency constraints are not violated. The derived
certificate is efficiently constructed via convex optimization
and is shown to be nonconservative for different IEEE test
cases.

Index Terms—Constrained input constrained output
(CICO) stability, frequency constraints, input–output stabil-
ity, sector-bound nonlinearity, small-gain analysis, transient
stability.

I. INTRODUCTION

TRANSIENT stability assessment is one of the most com-
putationally challenging security assessment procedures

carried out by the system operators [1]–[3]. In addition to tran-
sient stability, the operators are required to maintain the system
frequency close to the nominal values of 50 or 60 Hz [4]. The
grid is equipped with underfrequency load shedding relays, as
well as underfrequency and overfrequency generation protection
relays to ensure that the frequency regulation is met [5]. Tradi-
tionally, the frequency deviations during faults were suppressed
by the turbine speed governors and by the natural inertia of the
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generators. However, in recent years, the primary frequency re-
sponse capabilities have steadily declined in many power grids,
e.g., the Eastern Interconnection [6] in the USA. This decline
in response results in deeper frequency nadir, which, in turn,
increases the risk of unintended disconnection of units and cas-
cading outages.

In addition to the decrease in the power system inertia, the
source of disturbance has significantly increased, due to the
higher penetration of renewables and distributed generators.
Typical disturbances could include nearly instant switching
events, such as load shedding and generation tripping, or contin-
uous changes, such as varying power output from wind turbines
[5], [7]. One of the most common causes of frequency rise is
the near simultaneous tripping of more than one generator. As a
consequence, it is very important to be able to efficiently quan-
tify the critical disturbance levels that the grid can withstand at
any given operating condition.

In recent years, there have been many efforts to assess the
transient stability of power systems under operational (e.g., fre-
quency) constraints. These studies can be divided into three main
groups. The first group proposes numerical simulations under
stochastic disturbances, where the output trajectory is computed
for a given realization of the disturbance [8]–[10]. Time-domain
simulations yield high-fidelity assessments when the distur-
bance and the operating conditions are known exactly. However,
when there is limited information about the disturbance, the
assessment may require large number of simulations. The
second group is based on reachability analysis, where the output
trajectories are bounded inside the reachable set [11]–[15].
While some of these formulations allow differential–algebraic
equations to model the power grid dynamics, they rely on the
approximation of the dynamics via linearization or Taylor-series
expansion [11], [12]. The works in [12] and [13] give tight
time-dependent bounds on the output, but they require solving
an optimization problem at every time step. The third and final
group is based on input-to-state stability (ISS) [16], [17] anal-
ysis. ISS provides a powerful rigorous approach to tackle such
a problem, however finding a Lyapunov function that renders
this approach nonconservative is in general very difficult.

In this paper, we propose a tractable method for finding the
bound on the maximum magnitude of the disturbance that the
grid can withstand without violating the frequency constraints.
This will allow system operators to certify that the grid is robust
against an entire class of magnitude-bounded disturbances. The
disturbances are only characterized by their magnitude, and
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therefore instant step changes such as switching or tripping are
also considered in the proposed analysis.

The methodology proposed to solve this problem builds on
the input–output stability analysis [18] for nonlinear systems,
which we specialize to systems written in a Lur’e form rep-
resentation [19]. A Lur’e system is a linear dynamical system
with a nonlinear static state feedback, where the nonlinearity is
sector bounded by two linear functions [20]–[22]. The Lur’e sys-
tem representation with local sector bounded nonlinearity has
been recently applied to power systems for finding the region
of attraction [16], [22]. In our formulation, the power system
is seen as an input–output map from the disturbance to the fre-
quency of the generators. Small-gain arguments are then used
to assess the input–output stability of the system under output
constraints.

The main contributions of this paper are as follows. First, we
define the notions of constrained input bounded output (CIBO)
stability and constrained input constrained output (CICO) sta-
bility. These definitions extend the well-known bounded input
bounded output (BIBO) stability notion to consider constraints
on both the input and the output. The term CICO stability has
also appeared in the context of filter design in [23]. Second,
we provide a certificate on the disturbance magnitude such
that the resulting generator frequencies are constrained within
some operational limits provided by the system operators. Our
result guarantees that the system is robust against all possi-
ble realizations of magnitude-bounded disturbances. Third, we
show that finding the maximum disturbance magnitude can be
solved via convex optimization when the generator angle sep-
aration constraint is imposed. The ability to quickly and ef-
ficiently assess the potential impact of disturbance provides
a significant advantage to our method in the real-time opera-
tion of power grids compared to the other approaches in the
literature.

The rest of the paper is organized as follows. In Section II,
we present the system model, together with its Lur’e repre-
sentation, and we mathematically formulate the problem. In
Section III, we define three notions of input–output stability, for
which we present sufficient conditions in Section IV. In Section
V, we build on the stability analysis previously developed to for-
mulate a convex optimization problem of finding the maximum
magnitude of the admissible disturbance. The results are numer-
ically validated in Section VI on the IEEE 9-bus and 39-bus test
cases. Finally, Section VII concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The power grid is represented as an undirected graph
A(N , E), where N = {1, 2, . . . , n} is the set of buses, and
E ⊆ N ×N is the set of transmission lines connecting the
buses. Let � = |E|. The indices G = {1, . . . ,m} denote the gen-
erators, and L = {m+ 1, . . . ,m+ n} denote the loads. Let
E ∈ Rn×� denote the incidence matrix of the graph. Moreover,
let 0 and I denote the zero matrix and the identity matrix of
appropriate dimensions, respectively. Finally, given a matrix
A ∈ Rn×n , its spectral radius is denoted by ρ(A).

A. Power System Model

The structure-preserving second-order swing equation is used
to model the power system dynamics

Mkδ̈k +Dk δ̇k +
∑

(k,j )∈E
φkj sin(δkj ) = pk ∀k ∈ G

Dk δ̇k +
∑

(k,j )∈E
φkj sin(δkj ) = PL,k ∀k ∈ L

(1)

where Mk and Dk are the inertia and damping coefficients of
the generator k, respectively. pk and PL,k are the mechani-
cal power at generator k and load k, respectively. Moreover,
φkj = bkjVkVj , where bkj is the susceptance of the transmis-
sion line (k, j), and Vk is the voltage magnitude at bus k, which
we assume constant. Finally, δkj denotes the phase difference
between bus k and bus j, i.e., δkj = δk − δj .

In addition to the grid dynamics, we consider the turbine
governor dynamics, which introduce delay in the primary fre-
quency control response. The delayed response often leads to
greater excursion from the nominal grid frequency. This effect
is captured by the following first-order turbine governor model:

Tk ṗk + pk +
1
Rk

δ̇k = PG,k , k ∈ G (2)

where PG,k is the scheduled power injection at bus k, Tk is
the governor time constant, and Rk is the droop coefficient. To
write the system model (1) and (2) in vector form, the following
notation is introduced. Let δG and δL be the vectors obtained
by stacking the scalars δk , for k ∈ G, and δk , for k ∈ L, respec-
tively. Moreover, let δ =

[
δTG δTL

]T
. Similarly, let p, PG , and

PL be the vectors obtained by stacking the scalars pk , PG,k ,
for k ∈ G, and PL,k for k ∈ L, respectively. Let M , DG , DL ,
and Φ be the diagonal matrices containing the elements Mk ,
Dk , for k ∈ G, Dk , for k ∈ L, and φkj , for (k, j) ∈ E , on their

diagonal, respectively. Finally, let E =
[
ET
G ET

L

]T
, where the

subscripts G and L correspond to the generator and load buses,
respectively.

Consider now the disturbance vector u =
[
uTG uTL

]T
. The

system model (1) and (2) can be rewritten in the following
form:

Mδ̈G +DGδ̇G + EGΦsin(ET δ) = p

DL δ̇L + ELΦsin(ET δ) = PL + uL

T ṗ+ p+R−1 δ̇G = PG + uG.

(3)

This simple formulation of the disturbance could incorporate
a rich variety of uncertainty scenarios, such as load shedding,
generation tripping, and stochastic fluctuations in the power
output from wind turbines.

B. Lur’e System Representation

In the following, the system (3) will be rewritten as a Lur’e
system, i.e., as an interconnection of a linear dynamical system
with a nonlinear static state feedback. As it will be shown in this
paper, the Lur’e system, together with the efficient bounding of
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Fig. 1. Lur’e system representation of the power system dynamics in
G(s) and the nonlinear components in ψ(·).

the nonlinearity between linear functions, heavily simplifies the
analysis of the nonlinear power systems.

The system model (3) can be written in a state-space rep-
resentation. For uL = 0 and uG = 0, let δ∗ and δ̇ = 0 rep-
resent the equilibrium point of (3), with generator power
injection p∗. Then, we define the state of the system as
x =

[
xT1 xT2 xT3 xT4

]T
, with x1 = δG − δ∗G , x2 = δ̇G , x3 =

δL − δ∗L , and x4 = p− p∗.
Now let z = ET δ − ET δ∗ be the phase difference on each

transmission line subtracted by its equilibrium, and y be
the vector containing the frequencies of the generators y =
δ̇G . Finally, let ϕ∗ = ET δ∗, and v = sin(ϕ∗ + z) − sin(ϕ∗) −
diag(cos(ϕ∗))z. With these new variables, the system (3) can
be written in the Lur’e form ẋ = Ax+Bvv +Buu as follows:

ẋ =

⎡

⎢⎢⎢⎣

0 I 0 0
A21 −M−1DG A23 M−1

A31 0 A33 0
0 −R−1T−1 0 −T−1

⎤

⎥⎥⎥⎦x

+

⎡

⎢⎢⎢⎣

0
−M−1EGΦ
−D−1

L ELΦ
0

⎤

⎥⎥⎥⎦v +

⎡

⎢⎢⎢⎣

0 0
0 0
0 D−1

L

T−1 0

⎤

⎥⎥⎥⎦u

(4)

with

A21 = −M−1EGΦdiag(cosϕ∗)ET
G

A23 = −M−1EGΦdiag(cosϕ∗)ET
L

A31 = −D−1
L ELΦdiag(cosϕ∗)ET

G

A33 = −D−1
L ELΦdiag(cosϕ∗)ET

L .

The complete model can be compactly written as

ẋ = Ax+Bvv +Buu (5a)

v = sin(ϕ∗ + z) − sinϕ∗ − diag(cosϕ∗)z (5b)

y =
[
0 I 0 0

]
x = Cyx (5c)

z =
[
ET
G 0 ET

L 0
]
x = Czx. (5d)

The matrix A in (4) was obtained by linearization of the
system (3) around the equilibrium point x = 0. The vector v
represents the static nonlinear feedback of the state x, i.e., v =
ψ(z) = ψ(Czx).

Let the transfer function matrix G(s) represent the linear dy-
namics in Laplace domain. Then, the Lur’e system (4) can be
graphically represented as in Fig. 1. Following this representa-
tion of the system, the transfer function matrixG can be divided

into four blocks

G(s) =
[
Gy,u (s) Gy,v (s)
Gz,u (s) Gz,v (s)

]
(6)

where each block of transfer matrix can be computed by
Gi,j (s) = Ci(sI −A)−1Bj , with i ∈ {y, z} and j ∈ {u, v}.
This representation of the system implies that the initial con-
dition of the system is at the equilibrium (i.e., x0 = 0). Given
the system model described in this section, the problem can be
formulated as follows.

C. Problem Formulation

Consider the power system model (5), containing the additive
magnitude-bounded disturbance u. The analysis carried out in
this paper concentrates on finding the maximum bound on the
magnitude of the disturbance such that the generators remain
synchronized, and some imposed constraints on the frequencies
of the generators are never violated.

In order to quantify the magnitude of the disturbance u, we
propose the following elementwise infinity norm.

Definition 1: Let u(t) ∈ Rn . Its elementwise L-infinity
norm, which we denote by |u|Ln∞ ∈ Rn , is defined as

[|u|Ln∞
]
i
= sup

t≥0
|ui(t)| (7)

where
[|u|Ln∞

]
i

and ui are the ith entries of |u|Ln∞ and u,
respectively.

Remark 1: The elementwiseL-infinity generalizes the stan-
dard L∞ norm of u, defined as ‖u‖L∞ = maxi(supt≥0 |ui(t)|).
The proposed elementwise norm allows us to represent differ-
ent magnitudes of disturbance at the individual buses, rather
than bounding them uniformly. This fact will be exploited in
Section V, where an optimization problem will be formulated
to compute the maximum magnitude of the admissible distur-
bance entering at each bus. To avoid any confusion, we denoted
the elementwise L-infinity norm of an n-dimensional signal by
Ln∞, where the superscriptn should remind the reader that | · |Ln∞
is an n-dimensional vector.

The problem can be now mathematically formulated as
follows.

Problem Formulation: Consider the power system (1) writ-
ten in the Lur’e form (5), with initial condition x0 = 0. The
objective of our problem is to find the maximum bound ū ∈ Rn

on the disturbance such that if |u|Ln∞ ≤ ū, the following two
conditions hold:

i) ∃ z̄ such that |z|L�∞ ≤ z̄;
ii) |y|Lm∞ ≤ ȳ.

The first condition, which introduces a constraint z̄ on the
difference in angles between adjacent buses, prevents the angu-
lar separation of the generators, and therefore ensures that the
generators remain synchronized during the transient dynamics.
The second condition ensures that the frequency constraints,
defined by ȳ, are not violated.

III. DEFINITIONS AND PRELIMINARIES

Let y = Hu define an input–output relation, where H is an
operator that specifies the output y in terms of the input u. In the
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following, we will introduce three types of input–output stability
notions for the operator H with respect to the elementwise
infinity norm | · |L·∞ . The first type of input–output stability is
the BIBO stability, which is defined as follows.

Definition 2 (BIBO): The operator H is BIBO stable if for
every input constraint ū, if |u|Ln∞ ≤ ū, then the output |y|Lm∞ is
bounded.

Notice that it is not always possible to meet such a condition,
especially for nonlinear systems, such as the power grid. We
now define the second type of input–output stability, namely the
CIBO stability.

Definition 3 (CIBO): The operator H is CIBO stable if
there exists an input constraint ū, such that for every input u
with |u|Ln∞ ≤ ū, the output |y|Lm∞ is bounded.

Recall from Section II-C that we want to find the maximum
bound on the magnitude of the disturbance such that the genera-
tors remain synchronized, and the constraints on the frequencies
of the generators are never violated. We formalize this concept
into the third and last type of input–output stability, namely the
CICO stability.

Definition 4 (CICO): The operator H is CICO stable if
given an output constraint ȳ, there exists an input constraint ū,
such that for every input u with |u|Ln∞ ≤ ū, the output satisfies
|y|Lm∞ ≤ ȳ.

In Section IV, we will propose conditions under which the
system (5) is BIBO, CIBO, and CICO stable.

Remark 2: Under normal operating conditions, the linear
dynamics G(s) in the Lur’e system (5) is BIBO stable. Notice
that any uniform shift in the angles δ defines another equilibrium
point, and therefore the matrix A cannot be Hurwitz, but only
marginally stable. However, it can be shown that the eigenvalues
of A with zero real part do not appear in G(s) due to pole-zero
cancelation. The cancelation occurs because the angles do not
appear in the output of the linear system, but only the angle
differences. In the power system literature, this is known as
small-signal stability, which is a necessary condition for the
system to be transiently stable.

Let y = Hu be a BIBO stable system. If there exists a non-
negative constant matrix γH ∈ Rm×n such that

|y|Lm∞ ≤ γH |u|Ln∞ (8)

then we refer to γH as the gain matrix of the system.
When the input is bounded, i.e., |u|Ln∞ ≤ ū, we denote the

gain matrix by γH (ū) to remind that it is a function of the
domain parameterized by ū.

For a BIBO stable linear system, where the operator H cor-
responds to the transfer functionG(s) in (6), the gain matrix γG
can be computed using the following lemma.

Lemma 1: Given a BIBO stable linear system with transfer
function G(s), the ij element of the gain matrix γG can be
computed as

γG,ij = ‖Gij‖L1 (9)

with ‖Gij‖L1 =
∫ ∞
−∞ |hij (τ)|dτ , where hij is the impulse

response of Gij .

Proof: For the ith element of the output vector

|yi(t)| ≤
∑

j

ūj

∫ ∞

−∞
|hij (τ)|dτ =

∑

j

‖Gij‖L1 ūj .

�
The matrix γG can be divided, according to (6), into

γG =
[
γy,u γy ,v

γz ,u γz,v

]
(10)

where γy,u ∈ Rm×n , γy,v ∈ Rm×� , γz,u ∈ R�×n , and γz,v ∈
R�×� are the gain matrices computed as shown in Lemma 1.

Consider now the nonlinear component, given by v = ψ(z).
Since it is decentralized, i.e., vi = ψi(zi) ∀i ∈ {1, . . . , �}, the
gain matrix γψ is a diagonal matrix. The diagonal element of
γψ in the position {i, i} is equal to

γψ,ii = sup
zi

∣∣∣∣
vi
zi

∣∣∣∣ (11)

and the direct substitution of (5b) results in

γψ,ii = sup
zi

∣∣∣∣
sin(ϕ∗

i + zi) − sinϕ∗
i

zi
− cosϕ∗

i

∣∣∣∣ (12)

which is finite for bounded phase angles. Therefore, the nonlin-
ear component ψ(·) is BIBO stable.

IV. INPUT–OUTPUT STABILITY ANALYSIS

In this section, we will establish the mathematical framework
for the analysis and assessment of the system stability under the
additive disturbance u. The proposed framework combines
the input–output stability approach with the sector bounds on
the nonlinearity v in the Lur’e system to propose a novel small-
gain theorem based on the elementwise L-infinity norm | · |L·∞ .

Given the computed gain matrices of the system, the following
inequalities hold:

|y|Lm∞ ≤ γy,u |u|Ln∞ + γy,v |v|L�∞ (13a)

|z|L�∞ ≤ γz,u |u|Ln∞ + γw,v |v|L�∞ (13b)

|v|L�∞ ≤ γψ |z|L�∞ . (13c)

The gain matrices are nonnegative, i.e., γi,j ≥ 0, ∀ i, j. Us-
ing this property, we state the following lemma, which will be
important in the proofs of the subsequent results of this paper.

Lemma 2: Given the positive matrices γw,v and γψ , the
following three conditions are equivalent:

i) ρ(γz,v γψ ) < 1;
ii) (I − γz,v γψ )−1 ≥ 0;

iii) there exists x ≥ 0 such that (I − γz,v γψ )x > 0.
Proof: The proof is based on the properties of Z and M

matrices. A matrix is a Z-matrix if its off-diagonal elements
are nonpositive, and it is an M -matrix if it is a Z-matrix and
its eigenvalues have nonnegative real parts. First the matrix I −
γz,v γψ is a Z-matrix since the gain matrices are nonnegative.
Now notice that ρ(γz,v γψ ) < 1 if and only if the eigenvalues of
I − γz,v γψ have positive real parts, which is the definition of a
nonsingular M -matrix. Given that I − γz,v γψ is a nonsingular
M -matrix, conditions (i)–(iii) are equivalent [24].
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The theory of Z and M matrices also appears in the power
systems literature in the analysis of the steady-state voltage
stability of distribution networks [25]. �

Remark 3: Since the matrix γz,v γψ is nonnegative, it has a
real eigenvalue equal to its spectral radius ρ(γz,v γψ ) [26].

In the next theorem, we present the condition under which
the power system is BIBO stable.

Theorem 1 (Small-Gain Theorem): The system (5) is BIBO
stable if the gain matrices γG and γψ are finite, and ρ(γz,v
γψ ) < 1.

Proof: By substituting (13b) into (13c) and rearranging, we
have

(I − γz,v γψ )|z|L�∞ ≤ γz,u |u|Ln∞ .
Since ρ(γz,v γψ ) < 1, Lemma 2 guarantees that (I −
γz,v γψ )−1 ≥ 0. As such

|z|L�∞ ≤ (I − γz,v γψ )−1γz,u |u|Ln∞ .
The output can be bounded by

|y|Lm∞ ≤ γy,u |u|Ln∞ + γy,v |v|L�∞
≤ γy,u |u|Ln∞ + γy,v γψ |z|L�∞
≤ [

γy,u + γy,v γψ (I − γz,v γψ )−1γz,u
]|u|Ln∞ .

Therefore, the system is BIBO stable. �
Remark 4: Theorem 1 ensures more than just BIBO sta-

bility. The last inequality in the proof implies that there exists
a nonnegative constant gain matrix γH =

[
γy,u + γy,v γψ (I −

γz,v γψ )−1γz,u
]

such that

|y|Lm∞ ≤ γH |u|Ln∞ (14)

and therefore the system is finite gain L·
∞ stable [19].

Theorem 1 presents a novel small-gain theorem, defined for
the elementwise L-infinity norm | · |L·∞ . The small-gain condi-
tion ensures BIBO stability, which guarantees that the output is
bounded for any bounded input. However, a power grid does not
have a globally stable equilibrium, and therefore the bounded-
ness of the output cannot be guaranteed for every bounded input.
Thus, for such a system the small-gain condition is not satisfied
in general, for any bounded input. However, if the magnitude of
the disturbance is constrained by some appropriate ū, the output
could be bounded. This reasoning is further explained in the
following.

The condition in Theorem 1 is not satisfied for an arbitrary
nonlinear gain matrix γψ . Indeed, since ρ(γz,v γψ ) < 1, it re-
sults that for fixed linear gain matrix γz,v , there exists a limit on
the magnitude of γψ such that our system is BIBO stable. This
can be deduced from the fact that γψ is a nonnegative diagonal
matrix, and therefore the spectral radius ρ(γz,v γψ ) is a strictly
increasing function in γψ . Recall that z corresponds to the phase
differences deviation from the phase differences at the equilib-
rium, i.e., z = ET δ − ET δ∗. Let z̄ be some magnitude bound
on z, i.e., |z|L�∞ ≤ z̄. Now γψ is function of z̄, i.e., γψ = γψ (z̄),
and that larger z̄ results in larger γψ (z̄) (see Fig. 2). As a conse-
quence, the condition in Theorem 1 could be satisfied for some z̄.

Fig. 2. Sector bound for v = ψ(z) = sin(z + ϕ∗) − cos(ϕ∗)z.

This observation is exploited in the following theorem, where
a sufficient condition for the CIBO stability of our system is
presented.

Theorem 2: Let ū be a bound on the magnitude of the input,
i.e., |u|Ln∞ ≤ ū. If γG and γψ are finite, and if there exist ū and
z̄ satisfying

γz,u ū < (I − γz,v γψ (z̄))z̄ (15)

then the system (5) is CIBO stable and |z|L�∞ ≤ z̄.
Proof: Since the gain matrix is a positive matrix and ū ≥

0, (I − γz,v γψ (z̄))z̄ > γz,u ū ≥ 0 with z̄ ≥ 0. From Lemma 2,
ρ(γz,v γψ ) < 1, and by using Theorem 1, the system is BIBO
stable for |u|Ln∞ ≤ ū. Substituting condition (15) and (13c) into
(13a), we have

|z|L�∞ ≤ γz,u |u|Ln∞ + γz,v |v|L�∞
≤ (I − γz,v γψ (z̄))z̄ + γz,v γψ (z̄)|z|L�∞ .

By rearranging

(I − γz,v γψ (z̄))|z|L�∞ ≤ (I − γz,v γψ (z̄))z̄.

Now, I − γz,v γψ (z̄) is inverse positive from Lemma 2, so
|z|L�∞ ≤ z̄. �

Remark 5: Theorem 2 provides a local small-gain condition
over the domain |z|L�∞ ≤ z̄. If the condition (15) is satisfied for
all z̄, then it is equivalent to the small-gain condition from
Theorem 1, and the system is BIBO stable.

This remark can be directly observed from Lemma 2. This
inequality condition is a different representation of the small-
gain condition, but further exploits the fact that γψ can be a
function of z̄. There is a natural tradeoff based on the value of
z̄. The nonlinear gain γψ increases as z̄ increases, which makes
it difficult to meet the small-gain condition. On the other hand,
small z̄ imposes a stricter bound on the phase difference on the
transmission lines. This tradeoff is represented as the product of
I − γz,v γψ (z̄) and z̄, which are monotonically decreasing and
linearly increasing functions of z̄, respectively.

Now, in order to enforce the generator frequency constraints,
we need to impose an additional condition that will guarantee
the CICO stability. This is presented in the following theorem.
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Theorem 3: Let ū be a bound on the magnitude of the input,
i.e., |u|Ln∞ ≤ ū. If γG and γψ are finite, and if there exist ū and
z̄ such that

γz,u ū < (I − γz,v γψ (z̄))z̄

γy ,u ū+ γy,v γψ (z̄)z̄ ≤ ȳ
(16)

then the system (5) is CICO stable. Moreover, we have |z|L�∞ ≤ z̄
and |y|Lm∞ ≤ ȳ.

Proof: From Theorem 2, the first condition in (16) ensures
|z|L�∞ ≤ z̄. Moreover, the substitution of the condition in this
theorem and (13c) into (13a) results in

|y|Lm∞ ≤ γy,u |u|Ln∞ + γy,v γψ |z|L�∞ ≤ γy,u ū+ γy,v γψ z̄ ≤ ȳ.

�
The inequalities proposed in Theorem 3 provide a sufficient

condition for CICO stability. Condition (16) will be used in the
following section as a constraint in an optimization problem that
computes the maximum admissible disturbance magnitude.

V. COMPUTATION OF THE DISTURBANCE BOUND

In the following, an optimization problem is formulated to
find the bound ū on the disturbance such that the frequencies
of the generators remain inside the operational limits. Given
a potential disturbance u, the system operator only needs to
check that |u|Ln∞ ≤ ū is satisfied to ensure that the generator
frequency constraints are not violated. The input–output stabil-
ity framework developed in Theorem 3 will be used to solve this
problem.

The first step in doing so is to derive an explicit expression for
the gain of nonlinear component γψ . Recall that γψ is function
of z̄

γψ ,ii(z̄i) = sup
|zi |≤z̄ i

∣∣∣∣
sin(zi + ϕ∗

i ) − sin(ϕ∗
i )

zi
− cos(ϕ∗

i )
∣∣∣∣ (17)

where ϕ∗ = ET δ∗.
In the following corollary, we derive an analytical expression

for the gain of the nonlinear components γψ,ii(z̄i), for angle
deviation constraints that are of practical interest.

Corollary 1: Let z̄ be a bound on the angle difference
between generators and ϕ∗ = ET δ∗ be such that |ϕ∗

i | + z̄i ≤
π, |ϕ∗

i | ≤ π
2 ∀i. Then

γψ,ii(z̄i) ≤ cos |ϕ∗
i | −

sin(|ϕ∗
i | + z̄i) − sin |ϕ∗

i |
z̄i

. (18)

Proof: From (12) and given |ϕ∗
i | ≤ π

2 , we have

γψ,ii(z̄i) = sup
|zi |≤z̄ i

∣∣∣∣
sin(zi + ϕ∗

i ) − sin(ϕ∗
i )

zi
− cos(ϕ∗

i )
∣∣∣∣

= sup
|zi |≤z̄ i

∣∣∣∣
sin zi − zi

zi
cosϕ∗

i +
cos zi − 1

zi
sinϕ∗

i

∣∣∣∣

≤ sup
|zi |≤z̄ i

|zi | − sin |zi |
|zi | cos |ϕ∗

i | +
1 − cos |zi |

|zi | sin |ϕ∗
i |.

Moreover, the function inside the supremum is increasing mono-
tonically with respect to zi for |ϕ∗

i | + z̄i ≤ π. Therefore, the
inequality (18) holds true. �

The analytical expression for the gain of the nonlinearity (17)
will be used in the conditions proposed in Theorem 3, which
also guarantees the operational constraints of the system. The
maximum bound on the magnitude of the admissible disturbance
can be computed with the following optimization problem:

maximize
z̄≥0, ū≥0, μ

μ

subject to γz,u ū < (I − γz,v γψ (z̄))z̄

γy ,u ū+ γy,v γψ (z̄)z̄ ≤ ȳ

μ ≤ cT ū

(19)

where ȳ is the generator frequency limit provided by the system
operators. The vector c ∈ Rn is used to fix the ratio of the
disturbance entering at each bus. This procedure allows us to
find the maximum disturbance magnitude at a particular bus, or
alternatively, at a combination of buses.

Proposition 1: The optimization problem (19) is convex
within the region defined by the angle deviation constraints
|ϕ∗

i | + z̄i ≤ π, |ϕ∗
i | ≤ π

2 ∀i.
Proof: Using the explicit expression for γψ (z̄) in the

constraint γz,u ū ≤ (I − γz,v γψ (z̄))z̄, we obtain the following
constraint:

γz,u ū ≤ (I − γz,vdiag(cosϕ∗))z̄

− γz,v sin |ϕ∗| + γz,v sin(|ϕ∗| + z̄).
(20)

The sinusoidal term is concave within the region defined
by the bound 0 ≤ |ϕ∗

i | + z̄i ≤ π, and therefore the constraint
in (20) forms a convex region. Similarly, the constrained output
condition is similarly bounded to a convex region of a sinusoidal
function. Therefore, the constraints are convex, and we can
conclude that the optimization problem (19) is convex. �

VI. SIMULATIONS

In this section, we numerically validate the theoretical and
computational results presented in this paper. For illustration
purposes, we first consider a single machine infinite bus (SMIB)
system on which we test and interpret the proposed results.
Then, some practically important disturbance scenarios (e.g.,
simultaneous tripping of generators and loads, as well as the
uncertainty from wind generation) will be tested on the standard
IEEE 9-bus and 39-bus test cases.

A. Single Machine Infinite Bus

The procedure and results are illustrated on a system com-
posed of a single machine connected to an infinite bus through
a lossless line. The dynamic equation is given by

Mδ̈ +Dδ̇ + φ sin δ = p+ u (21)

where M = 1, D = 1.2, p = 0.2, and φ = 0.8 are the parame-
ters used in this study. Foru = 0, its equilibrium is given by δ∗ =
arcsin(p/φ), δ̇ = 0. Let the output be the frequency in hertz,
y = δ̇/2π. Substituting z = δ − δ∗ and v = sin(δ) − cos(δ∗)w,
we get

Mẍ+Dẋ+ φ cos(δ∗)x+ φv = u. (22)
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Fig. 3. Maximum disturbance magnitude allowed as a function of sec-
tor bound for an SMIB system. (a) System gains and (b) admissible
disturbance bound as a function of the sector bound domain.

In frequency domain

Z(s) =
1

Ms2 +Ds+ φ cos(δ∗)
[
U(s) − φV (s)

]

= Gw,uU(s) +Gw,vV (s)
(23)

and Y (s) = sZ/2π.
The gains corresponding to the transfer functionsGy,u ,Gy,v ,

Gz,u , and Gz,v are γy,u = 0.178, γy,v = 0.142, γz,u = 1.434,
and γz,v = 1.148, respectively. Following the proposed proce-
dure, the nonlinear gain is a function of the bound on the phase
difference, which can be seen in Fig. 3(a).

Since the gain matrices are just scalars, the condition for
BIBO stability is simply γz,v γψ < 1. In Fig. 3(b), we plot the
CIBO stability condition presented in Theorem II with blue.
The vertical dashed black lines in Fig. 3(a) and 3(b) show that
the small-gain condition is violated if the CIBO stability condi-
tion is not satisfied.

In Fig. 3(b), the estimation of the upper bound on the distur-
bance magnitude was computed by time-domain simulations.
After applying a step disturbance with magnitude bounded by
ū, the maximum phase difference deviation z̄ was recorded.
All the simulation points are represented with orange, and they
are all connected by a dashed orange line. Since every sim-
ulation point is only a single realization among all possible
disturbances, it only provides an upper bound on the magnitude
of the disturbance.

The approach proposed in this paper uses convex optimiza-
tion to efficiently compute the maximum magnitude for the
admissible disturbance. Fig. 3(b) shows that the gap between
the upper bound and the bound on the magnitude based on our

Fig. 4. Maximum frequency deviation for an SMIB system.

Fig. 5. Maximum disturbance bound at every bus for the (a) 9-bus and
(b) 39-bus systems. A disturbance on every individual node is considered
and the resulting maximum bound is represented as the size of circle at
that node. For both systems, a reference circle is labeled with its value.

method is very tight. The maximum disturbance magnitude al-
lowed occurs when z̄ is about 1.2 rad, which can be computed
with the optimization problem (19). The small-gain condition
in Fig. 3(a) is violated when the angle deviation is about 2.4 rad.
The bound on the disturbance magnitude becomes zero at the
same z̄, which illustrates the equivalence of conditions (i) and
(iii) in Lemma 2. In Fig. 4, the maximum frequency deviation is
computed with the second condition in Theorem 3. Similarly, a
lower bound on the frequency deviation was computed using the
same procedure explained for the upper bound on the magnitude
of the disturbance.

B. 9-Bus and 39-Bus Systems

This section presents numerical case studies on the IEEE
9-bus and 39-bus systems. The nonlinear optimization was per-
formed using the interior point method in Ipopt [27] on a PC
laptop with an Intel Core I7 3.3 GHz CPU and 16 GB of memory.
In Fig. 5, we show a graphical representation of the computed
maximum bound on the magnitude of the disturbance that can
enter at every single bus. The results suggest that the bigger dis-
turbances are allowed to enter at the buses with many neighbors
to distribute the impact. For the generator nodes, the second-
order dynamics together with the governor reduce the damping
ratio, and only small disturbances are admissible.

Regarding the computation time, for the 9-bus system the
gain matrix took 1.86 s to compute, whereas the optimization
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Fig. 6. Time-domain simulation results for the disturbance. Figure (a)
shows varying wind generation as the disturbance input, and (c) shows its
frequency response. Figure (b) shows simultaneous generation tripping
as the disturbance input, and (d) shows its frequency response.

took 0.017 s. For the 39-bus system, the computation time for
the gain matrix was 166.9 s, whereas optimization time was
0.148 s. Therefore, the most computationally intense step in
our method is the computation of gain matrix of the linear
component, which requires simulation of an impulse response
and numerical integration. However, the computation time of
the gain matrix could be improved by estimating only an upper
bound, rather than its exact value [28].

For the 39-bus case study, we consider the following distur-
bance scenarios: a step disturbance to represent the simultaneous
tripping of distributed generators, and a continuous disturbances
to represent the varying power output from wind generation. The
simulations results are shown in Fig. 6.

1) Simultaneous Distributed Generators Tripping: In this
scenario, we consider the simultaneous tripping of the loads at
the buses 3, 15, and 27. The active power loads at those buses
are 3.22, 3.2, and 2.81 p.u., respectively. Under the frequency
constraint of 0.5 Hz, the maximum tripped load magnitude needs
to be less than 0.939 p.u. Without the frequency constraint,
the maximum disturbance magnitude allowed at each load is
2.29 p.u.

2) Wind Generation: In this scenario, we consider the vary-
ing power output from wind generation at the buses 1, 9, and 16.
Under the frequency constraint of 0.5 Hz, the deviation from the
nominal generation needs to be less than 1.305 p.u. Without the
frequency constraint, a deviation in the active power of 2.02 p.u.
is allowed at each wind generator.

VII. CONCLUSION

Conventionally, operational constraints on the frequency de-
viation are not considered in the study of transient stability.
The formulation presented in this paper offers a simple way
to unify these considerations: transient stability and frequency

constraints, and makes use of well-developed and efficient op-
timization methods to perform stability assessment. The input–
output stability analysis provides a novel and practical solution
to quickly identify the disturbances that the electric power grid
can withstand while never violating some imposed frequency
constraints. The numerical study shows that our technique is
not conservative, and can include a wide range of disturbances.

As future work, our results could be extended to consider
additional features for the disturbance, such as ramping rate
bound and duration. While our approach can deal with a very
general class of disturbances, bounded only in magnitude,
practical disturbances may come from a much more restricted
class, with known characteristics. By exploiting such additional
knowledge about the nature of disturbance, the methodology
proposed here can be adapted to other specific applications.
A different research direction could focus on designing robust
controllers that would increase the magnitude of the admissible
disturbances.
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