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Convex Restriction of Power Flow
Feasibility Sets

Dongchan Lee *“, Hung D. Nguyen

Abstract—The convex restriction of power flow feasibility
sets identifies the convex subset of power injections where
a solution for power flow equations is guaranteed to ex-
ist and satisfy the operational constraints. In contrast to
convex relaxations, the convex restriction provides a suf-
ficient condition for power flow feasibility under variations
in power generation and demand. In this article, we present
a general framework to construct convex restrictions of an
algebraic set defined by equality and inequality constraints
and apply this framework to the power flow feasibility prob-
lem. The procedure results in convex quadratic constraints
that provide a sufficiently large region for practical opera-
tion of the grid.

Index Terms—AC power flow equations, convex restric-
tion, power grid.

|. INTRODUCTION

OWER-FLOW equations are at the core of steady-state
P analysis of the power grid [1], [2]. State estimation, secu-
rity assessment, and optimal power flow (OPF) rely on the ac
power flow equations to model the grid. The power flow equa-
tions determine internal states of the system, such as voltage
magnitudes and phase angles given the profile of generation
and loads. While the ac power flow equation provides a stan-
dard model for the analysis of the grid, the nonlinearity of the
equation creates computational bottlenecks and challenges.

In state estimations and security assessments, the state vari-
ables are determined using numerical algorithms, such as
the Newton—Raphson method or the backward—forward sweep
method. The disadvantage of using a numerical algorithm is
that it requires a deterministic operating point to find the exact
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Fig. 1. lllustration of the convex restriction and convex relaxation of a
nonconvex feasibility set.

state solution. When uncertainties in the generation and the load
profile are introduced, there is no easy way to tell whether there
will be a state solution satisfying the ac power flow equations
without running an iterative algorithm.

In OPF problems, power flow equations enter as nonlinear
equality constraints and result in a nonconvex optimization prob-
lem, which is NP-hard [3] even for radial networks [4], [5].
Convex relaxations of power flow equations have been stud-
ied extensively for solving OPF problems [S]-[7]. The convex
relaxation provides an outer-approximation of the feasibility
set, and it is a necessary condition to satisfy the power flow
equations. Solving the optimization problem over the relaxed
set provides a lower bound on the optimal generation cost,
but the resulting solution may not be feasible and risks sys-
tem security [8]. Moreover, it provides only limited insights
and characterizations of the feasibility set because the noncon-
vex boundaries inside the feasibility set disappear in convex
relaxations [9].

This article is concerned with finding the inner approximation
of the feasibility set. The convex restriction is a convex subset
of the feasibility set, which provides a sufficient condition for
satisfying power flow equations with operational constraints.
Fig. 1 shows the comparison between the convex relaxation and
restriction. The benefit of studying the inner approximation is
that the security of the system is guaranteed, which is the top
priority in the operation of power grids. Moreover, it provides a
region where the system is safe to operate, and this region can
be used as a metric for robustness against uncertain power injec-
tions from renewables and loads. While there are many potential
applications of convex restriction, deriving a tractable sufficient
condition for the feasibility of the power flow equations has
remained a challenge.
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The search for a tractable convex restriction of the power flow
equations started in [10] to find the security region where the
system is safe to operate. In recent years, a number of efforts
have been made to find the inner approximation of the feasibility
set, but there has been severe limitations in terms of its appli-
cability to practical systems. Most of the progress was made
with certain modeling assumptions, such as a radial topology
[11]-[15], a lossless network [16], and a decoupled power flow
model [17]. Recent efforts made significant progress with gen-
eral meshed networks, but they still suffer from poor scalability
and conservatism [18]-[20]. In [21], the inner approximation
with Brouwer’s fixed point theorem showed promising results
for general power grid models. However, one of the limitations
of this approach was that it required solving a nonconvex op-
timization problem to construct the convex restriction. In this
article, we alleviate this limitation by describing the set in a
lifted space and giving a closed-form expression.

We propose an analytical procedure to construct convex re-
strictions of ac power flow equations with operational con-
straints. Our technique relies on envelopes over the nonlinearity
involved in the power flow equations and the sparse system
representation. Our envelopes show an interesting relation to
the quadratic convex (QC) relaxation for the OPF problem,
which employs convex envelopes to contain the nonlinearities
[7], [22]. It will be shown later in this article that the envelopes
for restriction have dual features compared to the ones used in
relaxations. Moreover, the construction relies on bounds over
intervals, which has been studied in interval analysis and uncer-
tainty propagation techniques [23], [24]. The interval analysis
also deals with finding the inner approximation of sets described
by the constraints, but the study has been limited to a subclass
of problems such as linear equations or decentralized nonlin-
ear equations [25]-[27]. To the best of the authors’ knowledge,
there is no tractable method available that computes the inner
approximation of a set defined by general nonlinear equality
constraints [24], [26].

Our technique is applied to power systems with a general
meshed network without any modification in the system data,
and the results are compared with the true feasibility sets ob-
tained by MATPOWER [28]. Our approach achieves drastic im-
provements on conservatism while retaining scalability to large
systems. The main advantages over the existing approaches are
summarized as follows.

1) The convex restriction is a convex closed-form condition
based on the local operating point and does not involve
any numerical algorithm. These properties bring advan-
tages to real-time security analysis where computational
capability is limited.

2) Our method is scalable to large-scale systems. We later
show that the number of quadratic constraints grows pro-
portionally to the system size. The convex restriction can
be used to solve the OPF problem, replacing the noncon-
vex power flow equations.

3) The convex restriction is guaranteed to be nonempty,
given that the system operates in a normal condition.
Moreover, the region is nonconservative and provides
practical margins for operation. The visualization of this

region shows that the restriction is tight along some of
the boundaries in IEEE test cases.

The rest of this article is organized as follows. In Section II,
the general formulation of the problem as well as its set-up in
power flow equations is provided. Section III provides a guide-
line for constructing convex restrictions for general constraints.
Section IV applies the proposed method to power flow equations
and visualizes the comparison between convex restrictions and
true feasibility sets. Section V provides the conclusion.

Il. CONVEX RESTRICTION OF FEASIBILITY SETS:
FORMULATION AND PRELIMINARIES

A. General Formulation

Consider the following general nonlinear equality and in-
equality constraints with control variables © € R™ and state
variables z € R"

f($7u) =0
h(z,u) <0

(1a)
(1b)

where f: (R*",R™) — R" and h : (R",R™) — R* are vec-
tors of functions that are continuous and differentiable. The
variables are divided into control variables and internal states.
Control variables are the subset of variables that can be deter-
mined freely by the system operators. State variables are the
subset of decision variables that are determined by the control
variables and the equality constraints in (1a). Notice that the
number of equality constraints and the number of state variables
are the same. Given the constraints and variables, the solvability
and feasibility of control variable u are defined as follows.

Definition 1: u is solvable if there exists at least one x that
satisfies the equality constraint f(z,u) = 0.

Definition 2: u is feasible if there exists at least one x that
satisfies f(z,u) = 0 and h(z,u) <0.

Feasibility and solvability sets refer to the set of all feasible
and solvable control variables «. Nonlinear equality constraints
create a nonlinear manifold in the space of (z,u), and a sin-
gleton (i.e., a set with one element) is the only possible convex
inner approximation in a general nonlinear manifold. Instead of
working with both x and wu, the feasibility set is defined as a
projection of the nonlinear manifold onto the control variable
space. This set is generally nonconvex, and the goal of this ar-
ticle is to find the convex restriction inside the projection of the
nonlinear manifold. The construction of the convex restriction
relies on the following assumptions.

Assumption 1: There is a known point (zg, ug ) that satisfies
the following:

D f(zo,uo) =0, h(zo,up) < 0;

2) Jro = Vaf(x,u)|z=z, is nonsingular.

The known operating point (xg, uy) will be referred to as the
base point.

Remark 1: From the implicit function theorem, there exists
an open neighborhood of the solvability set around u, when
Assumption 1 is satisfied [29].

Moreover, the equation is assumed to have the following
sparse representation.
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Assumption 2: Nonlinear equations have a sparse non-
linear representation. Namely, there exists a basis function
¥ (R",R™) — R such that

f(@,u) = My(2,u)

2)
h(z,u) = Li(x,u)

where M € R"*? and L € R"*? are constant matrices. More-
over, each v, is a function of a finite number of variables inde-
pendent of n and s.

Many systems of the equations have such sparse representa-
tions where the nonlinearity is associated with a small subset of
the variables. As an example, we will see that the nonlinearity
involved in power flow equations are associated with the trans-
mission lines and the variables involved in the two end nodes
of the line. Assumption 2 will later ensure the scalability of the
convex restriction.

B. Power Flow Equations and Operational Constraints

Consider a power network as a directed graph G(N, £) where
each node in \V represents a bus, and each edge in £ C N x N
represents a transmission line. For each transmission line [,
we will denote its from bus with superscript f, and its o bus as
superscript t. The buses are divided into slack, PV, and PQ buses
according to the conventional definitions in power systems. The
slack bus is denoted by N,k with the given values of voltage
magnitude and the reference phase angle. The reference phase
angle is assigned to zero. The set of non-slack buses is denoted
by Nas = N\ Niack- The set of PV bues is denoted by N,y with
the given values of the active power injection and the voltage
magnitude. The set of PQ bues is denoted by NV,q with the given
values of the active and reactive power injections. The set of
generator buses is denoted by Nz = Npy U Nyjack. Consider the
following ac power flow equations in polar coordinates with
operational constraints:

pi"j = Z v;vg (Gig cos0;, + By sinfy) i €N

keN
inj _ . ain O . . :
g = Zvlvk(sz sinb;r — By cos0;,) i€ N 3)
keN
g < gV < g™ i€Ng (4a)
Vit < gy < M i € Npq (4b)
P < 6 — 0 < o™ le€ (40

where p;” and ¢;" are the active and reactive power injection,
and 0; and v; are the phase angle and voltage magnitude at bus 1.
The variable 6;;, = 6, — ), represents the phase angle difference
between bus ¢ and k. Alternatively, the angle difference can be
represented by 0 — 0! where 6} and 6! denote the phase angle
at from and fo bus of the transmission line /. The operational
constraints considered here are reactive power limits and voltage
magnitude limits at the generators and phase angle difference
limits on transmission lines.

In the steady-state analysis of power grids, the system op-
erator has control over the generators, which is denoted by w.

In this article, the feasibility of active power injection at non-
slack buses will be considered so that u = pp¢. The reactive
power injection at the PQ buses and voltage magnitude at the
PV buses are assumed to be fixed to constant values although the

framework can be extended to include them. The corresponding

. T
internal states are x = [QHTS vaq] . The system operators need to

set the control variable subject to the power flow feasibility set
in (3) and (4). Our objective is to find a non-conservative subset
around some known base operating point. The base operating
point in Assumption 1 can be naturally chosen as the current
operating point. This implies that
1) the system is operating at a normal condition where the
operational constraints are respected, and
2) the system is not operating at the solvability boundary of
the power flow equation.

Assumption 2 is naturally satisfied for the power flow equa-
tions because it can be decomposed by the nonlinearity involved
in transmission lines and the shunt elements. The basis functions
can be chosen to be v;vy cos(6;;) and v; vy, sin(6;y;) for each
transmission line and the voltage magnitude squares. Since the
electric grid is a sparsely connected network, the number of
basis functions grows proportionally with respect to the number
of buses and number of transmission lines.

C. Fixed Point Representation

The power flow equations can be converted into an equivalent
fixed point form inspired by the Newton—Raphson method. Let
us define the residues of basis functions around the nominal
operating point as

g(xau) = d}(xa u) - Jw,Ox (5)

where Jy 0 = Va9 (x, up) |z, - Note that the power flow Ja-
cobian is a linear transformation of the basis function Jacobian
(i.e., Jy,0 = MJy o). The equality constraint can be written as

f(z,u) = Jpow + Mg(z,u) (6)

where the first term is the linearization of the equation and the
second term is the higher order residual. From Assumption 1,
the power flow Jacobian is invertable, and the equality constraint
can be written in the following fixed point form:

T = —J;})Mg(x,u). @)

The fixed point condition in (7) is an equivalent constraint to
the equality condition in (1a).

Remark 2: The fixed point form in (7) is in the same form
as a single iteration of Newton—Raphson method [29].

The Newton—Raphson method is one of the most popular
algorithms for solving nonlinear equations including steady-
state power flow equations [30]. It is widely used in practice
due to its fast convergence to the solution given a good initial
guess.

[ll. DERIVATION OF CONVEX RESTRICTION

In this section, we describe the procedure for constructing the
convex restriction of given equality and inequality constraints.
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Fig.2. Blue region is the epigraph of . (z, u) that satisfies the inequal-
ity constraint: (a) shows the convex relaxation in red and (b) shows the
convex restriction in green using envelopes.

A. Convex Restriction of Inequality Constraints

First, let us consider the convex restriction of inequality con-
straints and ignore equality constraints. This case is much more
straightforward than the convex restriction with equality con-
straints. Suppose that a vector of functions h(z, u) and h(z, u)
establishes bounds on h(x, u) such that

hk(l‘7u) < hk(xau) < Ek(xau)- 3)

The functions hy (z,u) and hi(z,u) are referred to as the
under-estimator and over-estimator of hy(x,u), respectively.
The following lemma shows an interesting comparison be-
tween the convex restriction and convex relaxation of inequality
constraints.

Lemma 1: Suppose that under- and over-estimators
hy.(z,u) and hy, (x, u) are convex functions. If (z,u) is feasible
for h(x,u) < 0, then

h(z,u) <0 €))

and the above condition forms the convex relaxation of the
feasibility set. If

h(z,u) <0 (10)
then (z, u) is feasible for h(z,u) < 0, and the above condition
forms the convex restriction of the feasibility set.

Lemma 1 shows a simple contrast between the relaxation
and restriction, and Fig. 2 graphically illustrates their differ-
ences. In this article, convex envelope refers to the convex
over-estimator and concave under-estimator, and concave en-
velope refers to the concave over-estimator and convex under-
estimator. Examples of these envelopes are shown in Fig. 3.
The convex envelope encloses a convex region, and it is widely
used in convex relaxations of nonconvex optimization prob-
lems [7], [31]. As was shown in Lemma 1, it turns out that
concave envelopes are necessary for constructing convex re-
strictions of inequality constraints. Later, we will show that
even for the restriction of nonlinear equality constraints, con-
cave envelopes need to be used to enforce convexity to the inner
approximation.

yk gk(CC,U) 9k gk(xau)

Iy \ z — x

@ (b)

Fig. 3. lllustrations of (a) the convex envelope and (b) the concave
envelope.

B. Preliminaries for Convex Restriction of
Equality Constraints

In this section, the convex restriction of equality constraints
will be presented. The derivation relies on Brouwer’s fixed point
theorem, which provides a sufficient condition for the solvability
of the equality constraint. Given the fixed point equation in (7),
the theorem states the following.

Theorem 1. (Brouwer’s Fixed Point Theorem): Let G :
P — P be a continuous map where P is a compact and convex
set in R". Then the map has a fixed point in P, namely, x =
G(z) has a solution in = € P.

Brouwer’s fixed point theorem provides a sufficient condition
for the existence of a solution in the internal states. The control
variables u can be considered as external parameters changing
the fixed point equation in (7), which leads to the following
lemma.

Lemma 2: If —J, (Mg(x,u) € P for all z € P, then u is
solvable and has at least one solution in x € P.

Proof: Let G(z) = fJJZéMg(x, u). Then, there exist a so-
lution = € P from Brouwer’s fixed point theorem. (]

The existence of any self-mapping set guarantees the exis-
tence of a state solution, and the self-mapping set is not unique.
This suggests the idea of proposing a class of convex and com-
pact sets parametrized by some variable denoted by b € R”.
Instead of finding a single self-mapping set, a class of sets can
be used to check Brouwer’s self-mapping condition, and the
solvability region will be the union of all control variables that
have a self-mapping set in the state space. The self-mapping set
will be denoted by P(b) to show that it is parametrized by b.
Then, the existence of b such that —Jff(l)Mg (P(b),u) C P(b)is
sufficient for the Brouwer’s self-mapping condition. This idea
can be interpreted as lifting the optimization variables to in-
clude an additional variable b where the construction of convex
restriction is less conservative.

C. Self-Mapping With Polytopes

While the self-mapping set can be any convex and compact
set, a polytope will be considered in this article. There is a
significant computational advantage of using a polytope because
the setis described by inequality constraints involving just linear
transformations. Let us consider a nonempty compact polytope
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LT o Mg(P(b), )

Fig. 4. Self-mapping in the domain of X is illustrated. Here, H(u) =
{z | h(z,u) < 0}, and the existence of the self-mapping set P(b) ensures
solvability and feasibility of w.

set P

Pb) ={z| Az < b} (11)

where A € RP*" is a constant matrix, and b € R? is a vector
of variables. The matrix A is chosen such that it forms intervals
that bound the nonlinearity involved in the basis functions. For
example, sin (6" — ') can be effectively bounded by choosing A
to be the incidence matrix. When the angle difference " — 0' =
ET 0 has tight upper and lower bounds, the term sin(#" — 6') can
also be tightly bounded. By fixing A to be a constant matrix, the
linear transformation does not introduce any extra complexity.

Lemma 2 provides a sufficient condition for the existence of
internal states in P (b). The condition can be extended to include
inequality constraints by ensuring the self-mapping set resides
inside the inequality constraints. If h(u, z) < O0forallz € P(b),
the existing internal state solution should also satisfy h(u, z) <
0. The self-mapping condition and the feasibility condition are
illustrated in Fig. 4, and these conditions are stated formally in
the following lemma.

Lemma 3: If there exists b € R? such that

Vo € P(b), —JJZ(I)Mg(x,u) € P(b)
Vo e P(b), h(z,u) <0

(12)

then w is feasible and there exists a corresponding state solution
that satisfies = € P(b).

Proof: The first condition ensures the self-mapping under
the map x — fJ';(I)Mg(x, u), and thus there exists z € P(b) by
Lemma 2. The second condition ensures that for all © € P(b),
h(z,u) < 0. The control variable u satisfies both constraints in
(1a) and (1b), and thus belongs to the feasibility set. U

Notice that these conditions are described as an intersection
of two containment conditions on the self-mapping set. The
self-mapping condition for solvability can be rewritten as the
following condition.

Lemma 4: The control variable v is solvable and there exists
a corresponding state solution that satisfies « € P(b) if there
exists some b € R? such that forall: =1,...,p

Kig(z,u) <b 13
o ig(w,u) < (13)
where K,; € R is the ith row of the matrix KX and

K =—AJ (M. (14)

5, gu (. 0)

gP,k(uv b)

9
\¥ )
?\
9p 1, (w0)
e \\

Fig. 5. Over- and under-estimators gp ; (u,b) and 9p , (u,b) provide

the bound on g, over the set P(b). The dashed box contains all the
nonlinearity over P. Note that the upper and lower bounds always occur
at the extreme points when the concave envelopes are used.

Proof: The above condition is a sufficient condition to
fAJ;éMg(x, u) < b for all € P(b), which shows the self-
mapping of the set P(b). Then, there exists a solution x € P(b)
from Lemma 3. ]

In the next section, we find the upper bound of the left-hand
side of the inequality in (13) by using the concave envelopes.

D. Enclosure of Concave Envelope

Consider an over- and under-estimator of g(z, ), denoted by
9(z,u) and g(x,u):

Qk(xa“) < gr(z,u) < Gp(z,u) (15)

where g, (z, u) is concave, and gy (z,u) is convex with respect
to  and w. This is the concave envelope presented in Fig. 3.
While the above envelope gives the bound for all x, the inequal-
ity condition in Lemma 4 requires the bound over the set P(b).
Suppose that the domain of x is restricted to P(b), and let us
establish the bound over the self-mapping set. These bounds are
given by the following definition:

g ,b) = g (z, 16
gp.x(u,b) max G (z,u) (16a)
8, (1:8) = 8, 0, 0) e
and the following holds
g'p’k(u?b) < gk(m,u) g???,k(“y b)? Ve P(b) (17)

This forms a compact region that contains the nonlinearity in
P(b) as illustrated in Fig. 5. The self-mapping set could be
interpreted as an intersection of intervals in some transformed
variables.

E. Enforcing Convexity by Vertex Tracking

This section introduces the vertex tracking, which is one of
the key concepts that allow the scalable construction of convex
restriction. Let us denote Py (b) the polytope formed in the
space of variables involved in gy, (x, u). Then the interval bounds
defined in (16) can be rewritten by the following lemma.
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Lemma 5: Suppose that gj (v,u) and g, (v,u) are con-
vex and concave functions. The interval bound 9p i (u,b) and
9p ; (4, ) in (16) are also convex and concave in (u,b) and are

given by

g b 18
Ip.(u, ) = e )gk(v ) (18a)
9p,,(u:b) = min g, (v,u) (18b)

where 9Pj, (b) denotes the vertices of polytope P (b).
Proof: Since g, (v,u) is a convex function and P(b) is
a convex set, its maximum always occurs at the extreme
points. Moreover, (18a) is a point-wise maximum over all
vertices, therefore the convexity is preserved with respect to
both w and b [32]. The function g, (v, u) can be proved in the
same way. 0
Remark 3: Given Assumption 2, the number of variables
involved in v, is finite and independent of n and s, which are the
number of constraints. Then, the number of vertices of Py (b) is
also finite independent of n and s.
Given the interval bound defined by (18), the convexity can
be enforced to the self-mapping condition in Lemma 4. First,
the positive and negative parts of matrix K € RP*? are defined

as Kt K~ € RP*? with
t 0 v 0 otherwise
(19)

where K;; refer to ¢th row and jth column of matrix K. Note
K =K' + K~ with Kfj >0 and K;; < 0. The next lemma
provides a convex upper bound for left-hand side of (13) in
Lemma 4.

Lemma 6: Given a matrix K € R?*9, the following in-
equality holds for: =1,...,p

if Kij >0
otherwise

isz'j <0

max K;g(z,u) < K. gp(u,b) + K; g, (u,b)

20
x€P(b) (20)

where the right-hand side of the equation is a convex function
with respect to (u, b).

Proof: Since gp(u,b) and g, (u, b) are the upper and lower
bounds on g(x, u)

max K;g(z,u) < max [K; g(u,b) + K; g(u,b)]
z€P(b) z€P(b)

+
<K; mg(x) g(u,b) + K, Trg)l(r}}) g(u,b)
for all z € P(b). Moreover, gp(u,b) and —g,,(u, b) are convex
and concave functions from Lemma 5, and K and — K~ have
nonnegative entries. Therefore, the convexity is preserved to the
right-hand side of (20) [32]. O
Lemma 6 provides a convex over-estimator of the self-
mapping condition. Let us first consider only the equality con-
straint in (la). The following theorem provides the convex
restriction of solvability sets.
Theorem 2: Given a nonlinear equality constraint in (1a), u
is solvable if there exists b € R? such that

K*gp(u,b) + K~ g,(u,b) <b. 21

Moreover, the corresponding state variable is © € P(b).
Proof: From Lemma 6
m;t(x) Kg(z,u) < K'gp(u,b) + K~ g, (u,b) <b.
re -
Thus max,cp(;) Kg(z,u) < b,and uis solvable with z € P(b)
from Lemma 4. O

In order to incorporate inequality constraints, let us define the
bound on ¢ (x, u) using Lemma 5

p g (u,b) = 61(1)17% )lffk(ﬂ ;) (22a)
Qp,k(uvb) = ve%g:l(b) Y, (v,u). (22b)

A convex sufficient condition for Ay (z,u) < 0 for all x €
P (b) can be derived using Lemma 6. This ensures that the self-
mapping set is contained in the feasibility set for the inequality
constraints (i.e., P(b) C H(u)). The following theorem pro-
vides the convex restriction of the feasibility set, which is the
main result in this article.

Theorem 3. (Convex Restriction): Given nonlinear equal-
ity and inequality constraints in (la) and (1b), u is feasible if
there exists b € R” such that

K" gp(u,b) + ngp(u,b) <b
Lt p(u,b) + L™, (u,b) <0.

Proof: The inequality condition K*1gp(u,b)+
K~g,(u,b) <b ensures the existence of the state solu-
tion according to Theorem 2. The second condition ensures that
the polytope P(b) lies within the feasible region of inequality

(23)

constraint. Thatis, fori =1,...,s
max Lijp(z,u) < L p(u,b) + L7 (u,b) <0
zeP(b) =P

Therefore, this is a sufficient condition for the solvability of
(1a) and the feasibility of (1b). O

Note that the left-hand side functions in inequalities (23) are
convex functions as shown in Lemma 6. Therefore, (23) provides
a convex sufficient convex condition for feasibility, which was
the objective of the convex restriction. Moreover, the convex
restriction is guaranteed to be nonempty given a feasible base
point stated in Assumption 1.

Remark 4: If G;(xo,uy) = g, (zo,up), and ¥;(xo,up) =
(o, up) (i.e., the concave envelopes are tight and feasible at
the base point), then the convex restriction in (23) is nonempty
and contains the base point.

Proof: Since P(b) = {x | Az < b} is closed, there exists b
such that P(b) = {x}. Given that the concave envelopes are
tight at the base point and the base point is feasible (Assump-
tion 1), it follows

K*gp(ug,b) + ngp(uoj?) =

L wP(u(M >+L w (U(), )

The condition in Theorem 3 is always satisfied at the base point,
and thus the convex restriction contains the base point and is
nonempty.

Kg(x()au(]) =b

L’(/}(wo, UO) < 0.
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From Remark 4, we can always construct a nonempty convex
restriction around a feasible base point. The current or planned
operating point can be naturally used as the base point for
power flow feasibility set, which is given to the system op-
erators through measurements. By changing the base point, the
convex restriction can be constructed at an arbitrary location in
the feasibility set.

IV. CONVEX RESTRICTION OF POWER FLOW
FEASIBILITY SET

In this section, the convex restriction is constructed for the ac
power flow equations in polar coordinates. The polar representa-
tion includes the voltage magnitudes explicitly in the equation,
and it is convenient to enforce the voltage magnitude and phase
angle limits. The ac power flow equations in (3) can be written
in the complex plane for all i €

inj . inj H —j0ir
pt g =Y Vi vivge I
keN

where Y. = Gyi. + jBi, and Y}/ is the conjugate of Yj. Sup-
pose that the feasible base point has the state 6y and vy, then

inj . inj H —j . — (0, — . .
p;nj +]q;nj _ Z (Y;k e .Jﬁo_m)vwke J0ik=00.ik) 5 N
keN

where the base point phase is combined with the admittance
matrix. "ljlen, thqphase-adjusted admittance matrix can be de-
fined as Gy + jBix = Y, e77%.ix  Letus define the difference
inangle as p = ET@ and $p = ET0 — ET 6, where E is the in-
cidence matrix of the network. The power flow equations can be
rewritten for i € N for active power and i € /\/pv for reactive
power as follows:

inj f, t(Ac . DS win % 2
P = g v (GY), cos @y + B;, singy) + Gy;v;
le€

inj f t/Ae o~ s - 9
q;" = Z v (GY, sin @ — B;), cos @) — Byv;
le€

(24)

where vf € Rl and v' € RI! are voltage magnitudes at the
from and to bus of transmission lines. The constant matrices
G, G* € RVIXEl are defined as

Gy ifi=1" Gik ifi =1
G5, =< Gy ifi=1' G, ={-Gy; ifi=101 (25
0 otherwise 0 otherwise

where {f and [! are the from and to bus of the transmission line
l. The matrices B¢, B® € R™I*l are defined in the same way
by simply replacing the letter G by B.

The advantage of using (24) over (3) is that the concave enve-
lope over the trigonometric function can be systematically de-
rived while ensuring zero gap between over- and under-estimator
at the base point. From the power flow equations, basis functions

1241
are chosen to be
- il’l‘ -
pnsJ
inj
dpq
Y(x,u) = |vfvtcos @ (26)
vivtsin @
L 0?

where ppy is the set of active power injections at nonslack
buses, and gpq is the set of reactive power injections at the PQ
buses. With the given basis functions, the equality constraint is

fz,u) = Myp(x,u) = 0 with

M= I 0 _/\Cjﬁs _éfs _ngs (27)
0 I qu _qu qu

where I and O are an identity matrix and a zero matrix with
appropriate sizes. The matrices G and B? are diagonal matrices
with its diagonal elements equal to the diagonals of GG and B,
respectively. The matrix G¢, denotes a matrix with only nonslack
bus rows from éc, and @;q denotes a matrix with only the PQ

bus rows from G¢. The matrices Eﬁs and qu are built in the
same way. Given the basis functions in (26), its residues can be
computed using (5)
~ inj -
ns
inj
dpq

g(z,u) = |vfvtcos @ — vt — vl (28)

vivtsin @ — vivlp

v? — 2upv i
where the omitted product is overloaded to an element-wise
product. For example, vv'cos ¢ is an element-wise product
of vf, v', and cos (. Here, we note that the maximum number
of variables associated with each basis function is four, which
are voltage magnitudes and phase angles at from and fo bus of
the associated transmission line. The self-mapping polytope is
chosen as P = {z | Az < b} where

Ei 0 ?
0o I Tpq
A= - and b= i (29)
—E 0 —¢
0 —I “Upq

and F is the incidence matrix with the rows chosen for only
nonslack buses. By choosing A as the above, we can interpret
b as the upper and lower bounds of ¢ and v,q. The operational
constraints on the voltage magnitudes and phase angles can be
written as Az < b™* where

(30)

max __ max” ,max? __, minT __ minT
o™ = [go Upq ¥ Upq

Authorized licensed use limited to: MIT Libraries. Downloaded on July 19,2020 at 22:44:35 UTC from IEEE Xplore. Restrictions apply.



1242

IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 3, SEPTEMBER 2019

The reactive power limits on PV buses can be written as
Lyp(z,u) < d where

ne As nd max

oo =By G SB[

0o o B, -G B —qp"
(31

The inequality constrained set is then H(u) = {z | Az <
™ Lp(x,u) < d}. The self-mapping set belongs to the
inequality constrained set (i.e., P C H(u)) if b < b™* and
L*4(u,b) + L~4(u,b) < d. The trigonometric terms and its
product with voltage magnitudes are bounded effectively by
the phase angle differences and voltage magnitudes. In the next
section, quadratic concave envelopes will be derived for bilinear
and trigonometric functions, and the convex restriction will be
constructed with convex quadratic constraints.

A. Quadratic Concave Envelopes

The main nonlinearities involved in the power flow equations
in polar coordinates are the quadratic, trilinear, and trigonomet-
ric functions. Following corollaries provide concave envelopes
for commonly used functions that can be used as the building
blocks for bounding more complicated functions.

Corollary 1: Unitary quadratic functions can be bounded
by the following concave envelopes with the base point at x

z? > 2x — al
(32)
x> < 2.

Corollary 2: Bilinear functions can be bounded by the fol-
lowing concave envelopes with some p;, p2 > 0 and the base
point g, Yo

1

1
Ty 2 —7 {Pl (x —x0) —

pr

(y—yo)}2

+ 2oy + Yo — ToYo

. ) (33)

1
zy < 1 [Pz(x—xo)ﬁ‘g(y—yo)}
+ xoy + Yo — ToYo-

1 —
—pj(y—yo) =

0, and the under-estimator is tight along p2 (z — o) + p%(y -
yo) = 0. Both the over- and under-estimators are tight at the
base point, (xg, Yo)-

Corollary 3: Trigonometric functions can be bounded by
the following quadratic concave envelopes for all ™ € [0, ]
and O™ € [—7, 0]

The over-estimator is tight along ps (z — )

sinf > 0 + <%) 0%, 0 < o™

. guin _ gni (34
) sin @min _ gmin 5 i
Sln9<9+<w>0,0>0

(@) (b)

1 1.2
1
0.5
0.8
> )
g0 806
0.4
-0.5
0.2
1 0
-1 0 1 -1 0 1
0 0
(© (d)
Fig. 6. lllustrations of concave envelopes of a (a) bilinear, (b) unitary

quadratic, (c) sine, and (d) cosine functions. In (c), #™3 and ™" are
marked with yellow dashed lines.

and for all

cosf >1— 192
2 (35)

cosf < 1.

Envelopes for unitary quadratic, bilinear and trigonometric
functions are illustrated in Fig. 6. More complicated functions,
such as trilinear functions can be bounded by cascading bilin-
ear concave envelope. For example, the term vlfv} cos ) can
bounded by defining an intermediate variable vv; = vfv!, and
the bilinear envelope can be applied to vv; and cos ¢;. In the
following corollary, we finally state the analytical expression of
the convex restriction of the power flow feasibility set.

Corollary 4. (QC Restriction of Power Flow Equations
with Operational Constraints): The control variable u = py
has at least one internal state solution, z = [0 v@T satisfying
power flow equations in (3) and operational constraints in (4) if
there exists b € R” such that

+_ —
K gp+K gpﬁb

_ (36)
LYPp+ L7, <d, b<b™
where
s _ T
b=[0" T @' -y
r T
_ T _gT _QT
gp=|pk 4 5 Tp TP ]
r T
T T T
e A (37)
- [ T —_gT _QT T
Ur=ph de Up Up Up }
r T
T T T
o= b ay uST ws we]
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(p-u.)
oW s

b b b L o =

inj
13

P

A5 <10 50 5 0 15 20

inj inj
M (o) P (pa)

300 2 00 0 10 20 30 20 B
11, 1)
Py (pu.) g (pu.)

(a) (b) © (d)
42
B
0 15 4
02+ o
04 1 5 Q 38
= = = °
506 & £
.Eg,o_g, .5&205 E£3 Eg
. 34
-1 2
-12¢ 0 » 1 32
-14} o 5
08 06 04 02 0 02 04 -1 05 .0 05 0 2 4 6 8 10 05 04 03 02 01 0
Y (pau) Y (pw) Py (pw.) P (pw.)
(e ® (8 ()

Fig. 7.

Top four figures show the convex restrictions of feasible active power injection sets in the (a) 14-bus, (b) 30-bus, (c) 39-bus, and

(d) 118-bus systems with voltage magnitude limits. The bottom four figures show the convex restrictions of the feasible active power injection sets in
the (e) 14-bus, (f) 30-bus, (g) 39-bus, and (h) 118-bus with voltage magnitude and reactive power injection limits. Thick blue lines show the solvability
boundary. Blue lines and yellow lines show voltage magnitude and reactive power injection limits with its upper limits in solid lines and its lower limits

in dashed lines.

Variables g%y R gf,y ;> and gg ; with overlines and underlines
denote the variables representing interval bounds of nonlin-
ear elements in (28). Their explicit bounds are provided in the
appendix.

Remark 5: The number of constraints grows linearly with
respect to the number of buses and the number of lines. The
number of constraints involved in Corollary 4 is less than
alN'| + b|€| where |[N| and |£| are the number of buses and
transmission lines, and a and b are constants independent of the
system size.

B. Visualization of Convex Restrictions

This section provides a visualization of the convex restric-
tion in two-dimensional space where the constraints were
implemented in JuMP/Julia [33]. The plots were drawn by vary-
ing two control variables and fixing all other control variables.
This creates a cross-section plot of the feasibility set that cuts
through the base point. The actual feasible set was solved using
the Newton—Raphson method with MATPOWER, and the same
data set was used for convex restriction [28].

Fig. 8 shows the convex restriction of the modified 9-bus
system. The voltage magnitude limits were set to 1% deviation
from the base point in order to create a clear nonconvexity in the
plot. The convex restriction was plotted by testing the feasibility
of the constraint by checking violation of any operational limits.
Fig. 7 shows test results in a larger system for IEEE 14-bus,
30-bus, 39-bus, and 118-bus systems. The operational limits
were provided in pglib library v19.01 without any modification.
The results show that the convex restriction is tight along some
of the boundaries compared to the true feasibility set.

05 Y
\\ \
\\\ \
\
—~ N \
] \ \
g 0 W
= A\ |
[=>] \\ |
[}
3 by !
M !
= 05 R
a U
g N
3 ! 1
B ! 1
o] Ny \
) VA )\\
4
1k I
P S vV
g A N
) A ;P
~ N A O ’ \
o ~ J 1
i = RERA /
F-15ps S E
B RN N ’ 1
~ "4
\\\\\‘“\\ / [
N ~ '
AN, ~ '
NI W — 4
Al ~ A A . . 21
-2 -1.5 -1 -0.5 0 05

Active Power Injection at Bus 8 (p.u.)

Fig. 8. Convex restriction of feasible active power injection set in a 9-
bus system with the voltage limit of 1% deviation from the base operating
point. The red dot denotes the base point. Solid blue lines show the
voltage magnitude upper limits and dashed blue lines show the voltage
magnitude lower limits.

V. CONCLUSION

This article proposed the convex restriction of a general
feasibility set and presented its application to the power flow
equations with operational constraints. These results give new
insights and understandings of power flow feasibility sets as
a counterpart to the convex relaxation. The convex restriction
of power flow feasibility sets was constructed in a closed-form
expression with convex quadratic constraints. The reliability of
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the power grid is the top priority in the operation and analysis,
and the convex restriction gives a guarantee for a steady-state so-
lution that respects operational constraints. Cross-section plots
of the convex restriction in IEEE test cases showed that our con-
struction is very close to the true feasible region along some of
the boundaries. For future work, our closed-form expression can
replace the power flow equations to design tractable algorithms
for the OPF proem and the steady-state security assessment.

APPENDIX

The bounds over the self-mapping set used in the convex
restriction of power flow feasibility sets are listed here. The
self-mapping set forms an intersection of intervals given by
@1 € ¢, @) and v; € [v;, ] for all | € € and i € N. These
are results directly from Lemma 5 with envelopes presented in
Corollary 1, 2, and 3. The constants p; = 1 and p; = 1 were
used for bounding bilinear functions.

A. Interval Bounds for Cosine Function
The function g;°> = cos ¢, — Lover; € [p,;, P;]is bounded
by the following inequalities for all [ € &:

(@ii — o)?

—COS COS
g =20, g <— 5

where ¢;; € {%;, ¢, }-

B. Interval Bounds for Sine Function

Assuming @ € [0, 7] and ¢ € [-m, 0], gj™ =sin@; over
(IS [fz’ ;] is bounded by the following 1nequalities for all
leé&:

min

—blll SlnSD — Somln
(507 1 — o, ’) ( (ipmm)z > (@71 - ()00-,1)2
l
. Sln (pmax wmax
_il < (@ig — wou) + (;mdx) = (pi — ‘PO,Z)Q
)

<P <<pmax 4,0 ><pm1“
where ¢; 1 € {@, ¢, }-

C. Interval Bounds for Bilinear Function
The function ¢"" = vjvf — v ,vf, over v; € [u;, T;] is

bounded by the following inequalities for all [ € &:

— 1 t )2 £ t [
i1 = 3 Vi AV ) T 4 v Al + Avg g

(A
1
4

IN

) 2
v t f t foot
95 (Av] = Av))" + v Av + Avj o,

—=UvU

g <gt g

—=UvU

—gjl

for each (v}, v},) € {(v], 7)), (¥}, v}), (v], ©}), (uj, vj)}
and Av; = v; — vy, denotes the difference respect to the base
point.

D. Interval Bounds for v/v' cos ¢

The function /¢ = v cos p and g¢ = vv' cos p — vivt —
vl over v; € [v;, D;] and ¢; € l¢,, 1] are bounded by the

following inequalities for all [ € &:
—C o
Yp, 2751+ Uo 1V0,1

1
C VU cos cos VU f ot
Yp, = —1(9]:,1 - )? + vf, 1000907+ 977 + v ,v0,

—C —vv fo ot fo .t f ot
gp1 = i1+ 0,00, — Yo,V — V5000,

1 .
VU cos co VU f t
95 < ——(gY) — gi™)? + v, 100,91 + 951 + o400,
2Pl 4 il 7 ) )
£t £t
— V0,1V, — Y51V,

for each combination of g;"

€{g/". g/} and g}
{755, o7+

E. Interval Bounds for v/v' sin ¢
The function ¢° = vfv'sin g and ¢° = viv'sinp — vivlp

over v; € [v;, U;] and ¢; € [, ;] are bounded by the follow-
ing inequalities for all l € &:

T2 706" + G + b b gl
U5, < e — g ol b0
Tho > 20" + g0+ oh gl — b b on
Q}S;JS_%(QIU — )P+ 00,000,195 — vV 11

for each combination of g/ € {g;", g/} and gSln
{y:1?7 leln}

F. Interval Bounds for v?

The function ¥? =v? and ¢% =v?> —2uyv over v; €
[v;, U;] are bounded by the following inequalities for all &k € N

—Q 2
Yp = v

ggk S QUO'Uk - Ug

gp p 2 vk — 2V

2
g'P,k = —%

where v, € {T, v, }.
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