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Abstract. Depressions – inwardly draining regions of digital elevation models – present difficulties for terrain

analysis and hydrological modeling. Analogous “depressions” also arise in image processing and morpholog-

ical segmentation, where they may represent noise, features of interest, or both. Here we provide a new data

structure – the depression hierarchy – that captures the full topologic and topographic complexity of depressions

in a region. We treat depressions as networks in a way that is analogous to surface-water flow paths, in which

individual sub-depressions merge together to form meta-depressions in a process that continues until they begin

to drain externally. This hierarchy can be used to selectively fill or breach depressions or to accelerate dynamic

models of hydrological flow. Complete, well-commented, open-source code and correctness tests are available

on GitHub and Zenodo.

1 Introduction

Depressions (see Lindsay, 2015, for a typology) are inward-

draining regions of a digital elevation model (DEM) that lack

an outlet to an ocean, map edge, or some other designated

boundary. Quantifying and understanding these depressions

and their structure can advance our understanding of wet-

lands (Wu and Lane, 2016), subglacial hydrology (Humbert

et al., 2018) and its links to sea level rise (Calov et al., 2018),

microscale water retention in soils (Valtera and Schaetzl,

2017), and flood extent (Nobre et al., 2016). This is par-

ticularly significant because lakes and wetlands host biodi-

versity, provide ecosystem services including denitrification

(Hansen et al., 2018) and recreation (Costanza et al., 2006;

Keeler et al., 2015), and impact sediment dynamics (Wickert

et al., 2019; Mishra et al., 2019), as well as drainage network

integration (Lai and Anders, 2018; Hilgendorf et al., 2020)

and realignment (Carson et al., 2018).

Likewise, in image processing and segmentation, regions

of differing image intensity and color can be modeled as de-

pressions that represent either noise or features of interest.

In this context, geomorphological algorithms for depression

handling (e.g., Barnes et al., 2014b) have been applied to

cosmic microwave background radiation (Giri et al., 2017),

nanoparticle chemistry (Svoboda et al., 2018), biological

membranes (Kulbacki et al., 2017), road-car segmentation

(Beucher, 1994), murder and crime statistics (Khisha et al.,

2017), remote sensing of buildings (Golovanov et al., 2018),

neuron mapping (Iascone et al., 2020), and metal defect map-

ping (Blikhars’kyi and Obukh, 2018). This multidisciplinary

set of uses demonstrates the broad potential of a generalized

algorithm that can compute depressions and their topology.

Depressions complicate algorithms for geomorphological

and terrain analysis, as well as hydrological modeling. Many

common methods route flow using only information about

local gradients and enforce downgradient flow (O’Callaghan
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and Mark, 1984; Mark, 1987; Freeman, 1991; Quinn et al.,

1991; Holmgren, 1994; Tarboton, 1997; Seibert and McG-

lynn, 2007; Orlandini and Moretti, 2009; Peckham, 2013).

As a result, flow entering a depression cannot leave; in an ex-

treme case, this could cause a continent-scale river, such as

the entire Mississippi, to disappear into a small depression.

Because correctly routing flow in depressions and flat ar-

eas requires nonlocal information, addressing the influence

of depressions on hydrological networks requires more work

than a simple downslope-routing algorithm. Depressions –

especially those in high-resolution datasets – are often treated

as aberrations. Algorithms to remove these features either

flood them until they are filled and flow paths can recon-

nect (Barnes et al., 2014b), carve deep channels through

them either by modifying the DEM’s data directly or by al-

tering flow directions to simulate carving (Lindsay, 2015;

Martz and Garbrecht, 1998) as in r.watershed, or per-

form some combination of these two options (Grimaldi et al.,

2007; Lindsay and Creed, 2005; Lindsay, 2015; Schwang-

hart and Scherler, 2017). However, depressions may also

represent actual landscape features such as prairie potholes,

lakes, wetlands, and soil microrelief (Shaw et al., 2012, 2013;

Valtera and Schaetzl, 2017). When this is the case, depres-

sions should be retained and leveraged to improve models

(Callaghan and Wickert, 2019; Arnold, 2010; Hansen et al.,

2018; Barnes et al., 2020).

Incorporating depressions into drainage analyses is non-

trivial. Depressions may have complex topographic struc-

ture. For instance, Vulcan Point is an island within Main

Crater Lake, which is on Taal Island in Lake Taal, which it-

self is on the island of Luzon in the Philippines. As another

example, Lake Nipigon (Ontario, Canada) contains Kelvin

Island, which in turn contains Firth Lake, which hosts its

own islands. High-resolution data can exacerbate the issue

by introducing high-frequency noise that cannot be reliably

distinguished from actual topographic features (Lindsay and

Creed, 2005, c).

This problem is similar to one in image processing,

in which a computer must reassemble multiple distinct-

looking features into a meaningful whole. For example, over-

segmentation can cause features such as cars to be frag-

mented into many small pieces (Beucher, 1994). Under-

standing the relationships between topographic depressions

can aid the general goal of building relational hierarchies

among adjacent objects and in so doing can reduce over-

segmentation by providing a principled way of merging small

features and extracting composite features of interest.

In response to these challenges, we present an efficient

method for constructing a depression hierarchy: a data struc-

ture that captures the full topologic and topographic com-

plexity of depressions in a region. The hierarchy can be

used to selectively fill or breach depressions or to acceler-

ate dynamic models of hydrological flow. This latter prop-

erty is demonstrated in an accompanying paper (Barnes et al.,

2020).

Prior researchers have developed structures with similar

purpose – and in some cases, function – as depression hierar-

chies, but these either yield nondeterministic results, are not

developed in a way to permit dynamic water flow through a

set of nested depressions, or are prohibitively slow. Beucher

(1994) presents a hierarchical segmentation algorithm for

images using a “waterfall” approach that merges adjacent

features by filling smaller local minima while maintaining

significant minima that can act as a sink over larger regions.

However, this waterfall algorithm does not produce a persis-

tent data structure to be used in subsequent operations nor

does it construct a full hierarchy as an intermediate product.

Salembier and Pardas (1994) use a kind of hierarchical seg-

mentation but generate the hierarchy via repeated simplifica-

tion of the source image. These simplifications are sufficient

to segment features but, in a hydrological context, can lead to

the unacceptable degradation of terrain information. Arnold

(2010) presents an algorithm similar to the one developed

here. However, no source code is provided, the generated hi-

erarchy is not formalized, and the algorithm generates circu-

lar topologies that require correction. Wu et al. (2015) and

Wu and Lane (2016) develop a method for extracting depres-

sion hierarchies by first smoothing a DEM and then extract-

ing vector contour lines from it. They then analyze the topo-

logical relationship of the contours. Wu et al. (2018) build on

this approach by developing a method to move a horizontal

plane upwards through topography and noting the elevations

at which depressions combine. Both methods are inaccurate

due to their reliance on discrete vertical steps – that is, both

the contour intervals and the finite distance over which the

plane is shifted upwards before checking for joined depres-

sions. The latter method is also inefficient because it requires

every cell of the terrain model to be parsed after each move-

ment of the plane. Cordonnier et al. (2019) present an algo-

rithm based on minimum spanning trees in a planar graph,

which can be used to construct a hierarchy of depressions.

However, the resulting data structure is not well-described,

and the algorithm has been optimized for use in contexts

in which the dynamic flow of water (described at greater

length in Sect. 6.5) does not need to be modeled explicitly.

Callaghan and Wickert (2019), in a companion paper to this,

describe an approach to move water among cells across the

landscape. This virtual water floods depressions, but its cell-

by-cell computation is expensive and slow, and the algorithm

does not obtain information on the topological structure of

the surface.

The depression hierarchy presented in this paper is dif-

ferentiated by several features. (1) Correctness: the DEM

does not require preprocessing and no arbitrary step length

needs to be defined. (2) Efficiency: the algorithm operates in

O(N ) time. (3) Degree of documentation: in addition to this

paper, 48 % of the lines in the accompanying source code

are or contain comments. (4) Availability of source code:

the completed, well-commented source code for the algo-

rithms described here, along with associated makefiles and
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correctness tests, is available on both GitHub and Zenodo

(Barnes and Callaghan, 2019). (5) Suitability for dynamic

models: by defining hydrological connectivity across a land-

scape, the depression hierarchy can be leveraged to acceler-

ate hydrological models, as described in an accompanying

paper (Barnes et al., 2020).

2 The depression hierarchy

The depression hierarchy consists of a forest of binary trees,

as shown in Fig. 1 and illustrated in Figs. 2 and 3. The leaves

of the trees are the smallest, most deeply nested depressions

(Fig. 2). During flooding, these would fill first. Non-leaf

nodes are formed when two depressions overflow into each

other. Here, this non-leaf node is termed a “parent” and each

of the overflowing depressions – whether they are leaves or

not – is termed a “child”. Eventually, a depression fills to the

level at which additional “water” would escape the initial set

of depressions and flow into either the ocean or another bi-

nary tree of depressions that already has a path to the ocean.

For example, in Fig. 1, node 12 flows into leaf node 4, which

(indirectly) flows into the ocean. When this happens, one bi-

nary tree cannot become the child of the other, since they

are not topographically nested. Instead, the root (the topmost

node) of the tree that does not yet link to the ocean takes

one of the leaf nodes of the other tree as its parent, and that

leaf node makes an oceanlink in the reverse direction. In ad-

dition to the primary structure of the depression hierarchy

(solid lines in Fig. 1), we define a set of geolinks that tie

an overflowing depression to the geophysically neighboring

depression into which its overflow ultimately flows. As in a

threaded binary tree (Fenner and Loizou, 1984), these links

can be used to accelerate traversals by eliminating recursion.

3 The algorithm

The depression hierarchy algorithm proceeds in several

stages, as detailed below: (1) ocean identification, (2) pit cell

identification, (3) depression assignment, and (4) hierarchy

construction. As a side effect, the algorithm determines flow

directions. Flowcharts showing the steps taken by the algo-

rithm can be found in Figs. 4, 5, and 6. We describe the algo-

rithm with reference to Fig. 7.

Several bookkeeping data structures are required to com-

pute the depression hierarchy. These are the following.

– DEM: a 2D array indicating the elevation of each cell

or, in the case of image segmentation, its intensity. The

data type is arbitrary.

– Label: an array with the same shape as the DEM, in-

dicating which leaf depression each cell belongs to.

Initially, all cells are labeled with the special value

NODEP.

Figure 1. A depression hierarchy of the topography depicted in

Fig. 2 generated by a process shown in Fig. 7. Dotted arrows in-

dicate geolinks, solid lines indicate links between depressions and

meta-depressions, and solid arrows indicate oceanlinks. (11), (12),

and (15) are all roots of binary trees. In each of several binary trees,

water fills the tree from bottom to top before overflowing into a

neighboring tree or the ocean. As (1) fills up, it overflows through

its geolink (the dotted arrow) into (2). Both of these then begin to

fill (10), a larger depression containing both, as indicated by the

solid lines between (10) and both (1) and (2). When (10) overflows,

it begins to fill (3) through the dotted geolink arrow. When (3) over-

flows, it tries to fill (2), but finds it full. Therefore, both (3) and (10)

begin to fill (12). Topologically, (12) flows into (4); however, the

reverse is not true. This is because the depression tree rooted at (12)

must actually be uphill of (4). Thus, (12) notes that (4) is its parent

(solid arrow) and the depression into which it overflows (geolink,

dotted arrow), and (4) makes an oceanlink to (12), as implied by the

solid arrow, but does not count it as a child. Both (11) and (15) flow

into the ocean (0), which may have an infinite number of children. A

cross-sectional view of the landscape described by this depression

hierarchy is shown in Fig. 2.

Figure 2. 1D topography representing the depression hierarchy pre-

sented in Fig. 1. Solid black lines represent topography. The thick

gray line represents the ocean, and the dotted line indicates that

this figure represents a single continuous profile that has been split

to better fit on the page. Following Fig. 1, numbers mark depres-

sions and meta-depressions, and “0” marks the ocean. A traditional

depression-filling flood-fill algorithm would simply fill each depres-

sion up to the level of the highest dotted line, thus losing informa-

tion on the structure within each depression.
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Figure 3. Cartoon of the left-hand side of the depression hierar-

chy from Figs. 1 and 2. In this case, we consider depressions to be

represented in topography. (a) Cross-sectional view. (b) Map view.

Numbering follows Figs. 1 and 2. Flood-fill algorithms used for

depression-filling would simply fill these depressions to the high-

est levels (labeled 11 and 12); the direction of flow and the structure

within each depression would not be considered.

– Flowdir: an array with the same shape as the DEM that

indicates the flow direction of each cell. Initially, all

cells are labeled with the special value NOFLOW. The

algorithm returns flow directions as an output. They are

determined in a standard way by requiring that each cell

direct its flow in a D8 fashion to the lowest of its eight

neighbors. In the case that the lowest neighbor is not

unique, one is chosen arbitrarily.

– PQ: a priority queue that orders cells such that the cell

of lowest elevation is always popped (i.e., removed from

the queue) first. In the event that two cells have the same

elevation, the cell added most recently is popped first.

– DH: the depression hierarchy, a forest of binary trees

that store the hierarchical relationships among depres-

sions alongside metadata about each depression.

– OC: a hash map of depression outlets. The hash map

is a relational data structure that links keys to values

(Cormen et al., 2009, pp. 253–285). Outlets are iden-

tified by the two depressions that they join. Therefore,

the depressions’ identifiers (IDs) are used as the hash

map’s keys, while the associated values contain infor-

mation such as the elevation of the spillway sill sepa-

rating two depressions. Though many potential outlets

between two depressions may be found, lower outlets

overwrite higher ones such that only the lowest is re-

tained.

– DS: a disjoint set data structure (also known as a union

find, set union, or merge–find) (Cormen et al., 2009,

pp. 561–585) is used to quickly determine the root of

a tree of depressions.

Figure 4. Main steps taken by the depression hierarchy algorithm.

More detail on the green and blue boxes can be seen in Figs. 5 and

6.

3.1 Ocean identification

All cells must have a drainage path to the “ocean”. This path

may be simple and direct when flow down a river terminates

directly in an ocean. It can also be indirect when flow enters

a depression, fills the depression, and then spills out towards

the ocean, possibly entering more depressions on its way.

The Label of all cells that constitute the ocean has the spe-

cial value OCEAN. For some applications, OCEAN cells can

be determined by comparing cell elevations with a value for

sea level (Mitrovica and Milne, 2003, p. 257). In other ap-

plications, especially in landlocked regions and image seg-

mentation applications, the edge cells of the DEM can be

marked as OCEAN to ensure that flow reaches the edge of the

area of interest. A hybrid of these may also be used, in which

all cells in contiguous regions of below-sea-level cells that
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Figure 5. Cell assignment to unique depressions. Each cell receives a number that is its leaf label. See Fig. 4 for a description of how this

process fits into the overall depression hierarchy algorithm.

touch an edge of the grid are labeled as ocean; this ensures

that below-sea-level basins in the continental interior remain

distinct from the ocean (Wickert, 2016).

All ocean cells are added to the priority queue (PQ) as

they are identified. A single depression representing the en-

tire ocean is added to the DH. Figure 7a depicts this initial

state before the start of the “flooding” process.

3.2 Pit cell identification

After the ocean – the ultimate sink – is selected, the depres-

sion hierarchy algorithm must identify all of the pits in the

DEM that can act as local sinks for water. For the purposes

of this paper, a pit cell is a cell that does not drain to any of

its neighbors: all of the neighbors’ elevations are equal to or

greater than that of the pit. All pit cells are added to the PQ

as they are identified, as depicted in Fig. 7a.

3.3 Depression assignment

Once all pit and ocean cells are identified, the depression hi-

erarchy algorithm places them in the PQ. The general strat-

egy now is to pop (i.e., select and remove) cells from the PQ,

label the popped cells’ unlabeled neighbors, add the previ-

ously unlabeled neighbors to the PQ, and repeat this process

until the PQ is empty. Once the PQ is empty, all of the cells of

the DEM will have been visited. See Fig. 5 for a flowchart de-

scribing this section of the algorithm. This operation is simi-

lar to the Priority-Flood algorithm (Barnes et al., 2014b).

For each cell c that is popped, one of three possibilities

must be true.

1. Label(c) = OCEAN.

2. Label(c) = NODEP.

3. Neither of the above.

If Label(c) = OCEAN, the cell c is either part of the ocean

or has already been proven to flow to the ocean. In this case,

nothing more need be done.

https://doi.org/10.5194/esurf-8-431-2020 Earth Surf. Dynam., 8, 431–445, 2020
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Figure 6. Construction of the forest of binary trees. This forest represents the links between individual depressions (Fig. 1). See Fig. 4 to see

how this process fits into the overall depression hierarchy algorithm.

If Label(c) = NODEP, cell c is a pit cell. Although all cells

begin with the NODEP label, a popped cell will label its

NODEP neighbors. Therefore, if we pop a NODEP cell, we

know that cell does not flow into any existing depression and

is the pit of a new one. This is also true of flat areas: the PQ

is designed such that if two cells have the same elevation the

cell added most recently is popped first. Therefore, the first

cell found in a flat greedily labels every other cell. As each

pit cell is found, a new depression is added to the DH and its

label is applied to Label(c). Therefore, for a given map, the

choice of which cell becomes the labeled pit in a flat area is

deterministic based on the regional topographic structure, but

the exact cell to have this label is not physically meaningful.

Figure 7b, c, f, and g depict situations in which new labels

are given to cells.

If Label(c) is neither OCEAN nor NODEP, cell c has al-

ready been assigned to a depression. This means one of the

following: (i) c is on the frontier of the traversal, and will

therefore have neighbors that have not yet been seen and

must be added to the PQ, (ii) c was part of a flat that has

already been processed and therefore all its neighbors have

been seen and none should be added to the PQ, or (iii) c

is at the edge of a depression and its neighbor has been la-

beled as a different depression. In this last case, c may be the

outlet between the two depressions if it is the lowest link be-

tween them. Figure 7d, e, and h–l represent the third case, in

which a previously labeled cell sees neighbors that are part

of a different depression. Of these, panels (e) and (j) include

the discovery of a new outlet. We discuss this further below.

After identifying the state of cell c and modifying it as

indicated above, Label(c) must be either OCEAN or the label

of a depression. If it is a depression, it is one of the leaves in

the depression hierarchy (gray circles in Fig. 1). If it is ocean,

we know that it sits at the uppermost end of the depression

hierarchy (gray diamond with black border in Fig. 1).

From this point, the next step is to consider how the

popped cell c interacts with each of its neighbors, n. As be-

fore, there are three distinct possibilities.

1. Label(n) = NODEP.

2. Label(n) = Label(c).
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Figure 7. Illustration of the “flooding” process as applied to the right-hand side of the topography shown in Fig. 2. Boldface lowercase letters

indicate progression through time. Capital letters label cells. Numbers at the top indicate the cells’ positions (if any) in a priority queue (PQ).

The little barbells indicate outlets between depressions with numbers to indicate their elevations. The black lines outlining the white regions

indicate elevation, with values shown on the y axis. Colors represent labels. (a) Initialization. C, E, G, and I are pit cells (they have no lower

neighbors), so they are added to the PQ. A and K are ocean cells, so they are labeled as such and added to the PQ. I is the lowest cell and

so has the highest priority. (b) I is popped. It is not already labeled, so it is a new depression and given a new label. H and J are labeled

and added to the PQ. H and J have the same elevation as C and E, but since they have been added to the PQ more recently, their priority

is higher. Arbitrarily, H is given the higher priority. (c) G is popped and given a new label. H shares I’s label, so it is ignored. F is labeled

and added to the PQ. An outlet between G and H is recorded with elevation 3. (d) H is popped. It is already labeled, so it is not altered. H’s

neighbors have already been labeled, so nothing is done to them. Nothing new is added to the PQ. The outlet between blue and orange has

already been noted, so no new outlet is recorded. (e) J is popped. It is already labeled, so it is not altered. Its neighbor, K, has a different

label (ocean), so an outlet of elevation 7 between the two depressions is noted. (f) C is popped and given a new label. B and D are a part of

C’s depression, so they are given its label and added to the PQ. (g) E is popped and given a new label. It was not yet labeled, so it is given

a new label. Its neighbors were already labeled, so an outlet of elevation 4 is noted between D and E, and an outlet of elevation 5 is noted

between E and F. Nothing new is added to the PQ. (h) D is popped. It is already labeled, as are both neighbors. An outlet between pink and

green is already recorded, so no new outlet is noted. (i) F is popped. It is already labeled, as are both neighbors. An outlet between blue and

green is already recorded. (j) B is popped. It is already labeled, so it is not relabeled. An outlet to the ocean at elevation 6 is noted. (k) A

is popped. It is already labeled, and the outlet between ocean and pink has already been recorded, so nothing happens. (l) K is popped. It is

already labeled, and the outlet between ocean and orange has already been recorded, so nothing happens. No cells are left in the PQ, so the

algorithm completes.

3. Neither of the above.

If Label(n) = NODEP, n has not previously been seen. Ac-

cordingly, Label(n) is set to Label(c), n is placed into the PQ,

and Flowdir(n) is set to point to c. This ensures that flow fol-

lows the path of steepest descent since c is the lowest un-

explored cell in the DEM. Figure 7b depicts one example

of this, in which the previously unlabeled cells H and J are

labeled as part of the orange depression. Another example,

provided in Fig. 7c, depicts the previously unlabeled cell F

being labeled as a part of the light blue depression.

If Label(n) = Label(c), n is skipped because it has either

already been visited or has already been added by another

cell. This also ensures that flats are processed only once. For

example, in Fig. 7d, neighbor cell I already has the same label

as H, the cell currently being considered, so I is skipped.

If neither of the above is true, Label(n)6=NODEP and

Label(n)6=Label(c). The remaining possibility is that La-

bel(n) equals the label of a depression that is distinct from

that of its newly popped neighboring cell, c. Therefore, this

indicates that two different depressions are meeting. For ex-

ample, in Fig. 7d, neighbor cell G already has a different la-

https://doi.org/10.5194/esurf-8-431-2020 Earth Surf. Dynam., 8, 431–445, 2020
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bel than H, the cell currently being considered; therefore, G

retains its label.

In this final case, we note where two different depressions

meet by creating a link between them. To do so, we deter-

mine whether the elevation of n or c is higher. The higher of

the two is the outlet cell, and its elevation is the depression’s

spill elevation (that is, the elevation to which water must rise

in order to flow out of the depression). The depression hierar-

chy algorithm then adds an object containing this information

to the hash map OC. The contents of the OC are hashed us-

ing the labels of the depressions that are joined by an outlet.

If any entry for an outlet is already present, only the outlet

of lower elevation is retained. Two depressions may share a

border across multiple cells (i.e., there are multiple poten-

tial spillways), but only the location of the lowest outlet is

recorded since this is the only location where overflow from

one depression to the other would naturally occur. Below, we

will transform this set of lowest inter-depression links into

geolinks since the set identifies which leaf depressions are

geophysical neighbors. Figure 7c, e, g, and j are examples of

this, but the one-dimensional elevation profile in Fig. 7 can-

not depict the case of multiple outlets of different elevation.

After completing this process, the depression assignment

algorithm then selects the next cell c from the priority queue

and repeats the above set of steps until the PQ contains no

more cells. Upon completion of the depression assignment

phase, the algorithm will have visited and labeled all of the

cells, assigned each of them a flow direction, and identified

the lowest outlet between each adjacent pair of depressions.

See Figs. 9 and 10 for examples of how the current labels

would appear.

3.4 Hierarchy construction

At this point Label associates every cell with the label of a de-

pression corresponding to an entry in the DH. These entries

will form the leaves of the depression hierarchy (gray cir-

cles in Fig. 1). Each depression contains all of the cells lower

than its spill elevation as well as all cells whose flow ulti-

mately terminates somewhere within the depression. Such a

set of cells can also be termed a “basin” (Cordonnier et al.,

2019). Figure 8a depicts this.

The next order of business is to identify the structure of

flow among the depressions. Pairs of depressions that flow

into one another – that is, those connected by links in Fig. 7

– will join to form meta-depressions. The elevations of these

meta-depressions extend from the spill elevation (i.e., the

height of the sill) between the two depressions to the ele-

vation of the next-highest contiguous sill. Pairs of leaf de-

pressions, meta-depressions, or a leaf and a meta-depression

can join to form higher-order meta-depressions recursively

to represent the structure of depressions in the landscape.

Not all depressions flow into each other because the bi-

nary tree stops growing when its root finds an outlet to the

ocean. Therefore, the DH is a forest of binary trees, and “for-

est” refers to the fact that multiple binary trees of depressions

and meta-depressions may exist that do not link directly. See

Fig. 6 for a flowchart describing this section of the algorithm.

All outlets are labeled with reference to the leaves of

the binary trees. However, some outlets will drain meta-

depressions rather than the leaf depressions that have been

used to label the outlets. As an example, in Fig. 8, 5 drains

into 6, but the cells that actually constitute the outlet will be

labeled 2 and 3.

A fast way to determine the hierarchical structure of a de-

pression set – such as determining that depression 6 in Fig. 8

contains depression 2 – is to implement a disjoint set data

structure (Galler and Fischer, 1964; Tarjan and van Leeuwen,

1984). A disjoint set, also known as a union find, set union,

or merge–find, quickly identifies which of its elements be-

long to the same set. In the case of the depression hierarchy,

each depression is an element of the disjoint set, and each of

these elements is initially marked as being its own set. Pairs

of these sets may be merged such that one set becomes the

parent of another. Repeating these merges forms the afore-

mentioned forest of trees.

Merges in a disjoint set are usually performed using

“union by rank”, but this discards information that is criti-

cal to building a depression hierarchy. When combining de-

pressions following union by rank, the shorter tree is made

a child of the taller tree, thereby ensuring that the height of

any tree is logarithmically bounded. While this is computa-

tionally advantageous, the downside of union by rank is that

it relabels the root nodes of trees in a way that would prevent

us from building the binary trees of the depression hierarchy.

We therefore use a disjoint set without union by rank.

To determine which set hosts an element, we follow the

chain of parents in the disjoint set from that element upwards

until we encounter an element that is its own parent. For the

depression hierarchy, this ultimate parent is a cell that con-

tains an oceanlink. Critically for computational efficiency,

the disjoint set then points all elements to the appropriate

root, ensuring that future queries on any element in the path

execute in O(1) time, a technique known as “path compres-

sion”. With the disjoint set in hand, an outlet’s depressions

can be updated to reflect the current state of the binary tree

by querying each depression label in the disjoint set.

We now sort the outlets in order of increasing elevation

and loop over them. Let the depressions linked by a given

outlet be called A and B; A and B are both leaf depressions

in the binary tree. Further, let R(A) and R(B) be the result

of querying the disjoint set; that is, R(A) and R(B) are the

meta-depressions at the roots of the trees to which A and

B belong. Based on this starting point, one of the following

three options must be true.

1. R(A) = R(B). In this case, the depressions are already

part of the same meta-depression and nothing needs to

be done (see Fig. 8f).
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Figure 8. Illustration of the hierarchy construction. Boldface lowercase letters indicate progression through time. Capital letters label cells.

The little barbells indicate outlets between depressions with numbers to indicate their elevations. The order of the outlets on the left represents

the outlet positions (if any) in the priority queue (PQ). The tree that is progressively built represents the depression hierarchy. The black lines

outlining the white regions indicate elevation, with values along the y axis. Colors represent labels, and the barbells on the left also indicate

the depression number associated with each label color. (a) Initialization. This reflects the state at the end of Fig. 7. The five outlets have

been sorted in order of increasing elevation. Five depressions are in the hierarchy, but none of them are connected yet. (b) The lowest outlet

(between 3 and 4) is popped. A new meta-depression, labeled 5, is made and becomes the parent of 3 and 4. All cells in 3 and 4 with

elevations equal to or greater than the outlet’s elevation implicitly become a part of 5. (c) The new lowest outlet (between 1 and 2) is popped.

A new meta-depression, labeled 6, is made and becomes the parent of 1 and 2. All cells in 1 and 2 become part of 6. (d) The lowest outlet is

now between 2 and 3. We note that 2 now has a parent and should actually be referred to as 6 (the disjoint set – DS – accelerates this lookup),

while 3 also has a parent and should be referred to as 5. A new meta-depression, labeled 7, is created. (e) The lowest outlet is now between

0 and 1. We refer to 1 by its parent’s label, 7. 0 is the ocean, so no new meta-depression is made; 7’s parent simply becomes 0. (f) The outlet

between 4 and 0 is the only one left. But 4’s parent is already 0, so nothing needs to be done.

2. R(A) = OCEAN or R(B) = OCEAN. Due to the previous

condition, only one of these two depressions may link

to the ocean.

3. Neither of the above is true. In this case, two depres-

sions are meeting and must be joined into a meta-

depression.

For Case 2 above – either R(A) = OCEAN or

R(B) = OCEAN and R(A) 6= R(B) – a few additional

steps must be taken to properly build the depression hi-

erarchy. First, for simplicity, the algorithm may swap A

and B to ensure that B is the depression that links to the

ocean (R(B) = OCEAN). This means that R(A) will connect

to the ocean through R(B). We make a note that R(A)

is ocean-linked (linked to the ocean) through B and also

geolinked (physically overflows) into B. This ensures that

flow from R(A) has an opportunity to fill the R(B) tree from

the bottom up. In the DS, R(A) is merged as a child of the

ocean. Figure 8d depicts this.

For Case 3 above – R(A) 6= OCEAN, R(B) 6= OCEAN, and

R(A) 6= R(B) – the algorithm recognizes that two depres-

sions are meeting and that a meta-depression must be formed.

To do so, the algorithm adds a new depression to the DH with

children R(A) and R(B) and performs a similar operation

on the DS. Finally, the algorithm notes that R(A) and R(B)

overflow into each other through the current outlet and that

R(A) geolinks to B and R(B) geolinks to A. Figure 8b and c

depict this.

Once complete, each cell has both a leaf label (its original

label) and a top label (the uppermost label on the depression

hierarchy) associated with it. For examples of both labels, see

Figs. 9 and 10.

4 Theoretical analysis

In computer science, the performance of algorithms can be

analyzed based on how they will scale as the amount of data
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Figure 9. Depression hierarchies applied to Madagascar: depres-

sion labels. The Label array of the depression hierarchy algorithm

is shown here for three situations. The top row depicts all of Mada-

gascar, while the bottom row depicts the zoomed areas identified by

the black boxes. Since there are too many labels to show in distinct

colors the labels have instead been colored so that no two adjacent

depressions have the same color using a largest-first greedy algo-

rithm (Kosowski and Manuszewski, 2004; Hagberg et al., 2008).

Panel (a) depicts the labels assigned to the leaf nodes of the depres-

sion hierarchy. Panel (b) depicts the labels assigned to the upper-

most parent depressions – those that connect directly to the ocean.

These are the top-level watersheds of the island. Panel (c) depicts

the labels after depressions less than a given threshold (30 cells in

area) are detected by filtering and removed via carving.

they process increases. In particular, if f (N ) is the exact run-

time of some complicated algorithm, then f (N ) = O(g(N ))

implies this runtime has an upper bound of c ·g(N ) for some

constant c and some N ≥ N0. The notation f (N ) = 2(g(N ))

implies both an upper and lower bound for appropriate con-

stants. Such bounds are referred to as the time complexity or

time of the algorithm (Skiena, 2012). This same notation can

be used to measure the space complexity of an algorithm: the

amount of memory it requires.

We apply this to the algorithms described here. Let the

number of cells in the DEM be N . The time complexity of

finding the ocean is then O(N ), since this requires a sin-

gle pass across the data. Similarly, the time required to find

pit cells is O(N ). For depression assignment, all N cells

must pass through the priority queue. Following Barnes et al.

(2014b), we use a radix heap (Akiba, 2015) constructed to

have O(1) operations for both integer and floating-point data.

Therefore, depression assignment takes O(N ) time for both

integer and floating-point data. The OC is a hash table, so ad-

ditions and accesses are O(1). Additions and accesses to DS

using only path compression are 2(n + f · (1 + log2+f/nn))

for n set and f find operations (Cormen et al., 2009, pp. 571–

572). Since depression merges are always directly preceded

by find operations, n and f are small constants, so manip-

ulations on DS take O(N ) time. Finally, all of the outlets

need to be processed in order to build the forest of binary

trees. The number of outlets is unknown but certainly has

an O(N ) worst case. Therefore, the entire algorithm runs in

O(N ) space and time.

Figure 10. An example of depression hierarchies as applied to a

small region of the Sangamon River basin, Illinois (see Lai and An-

ders, 2018). (a) The leaf labels assigned to each cell. Each color

(i.e., each leaf label) represents the catchment of a single pit cell

within the domain. (b) The top labels of cells. Cells that are not part

of any depression are colored white, while colored cells are part of

a depression and have the potential to retain water. (c) Land surface

elevation in meters above sea level. Several of the depressions seen

in panel (b) are clearly visible in the topography in panel (c). The

depression hierarchy makes it possible to take these depressions into

consideration when considering the hydrology of the region. Tradi-

tional depression-filling methods would simply flood all of the de-

pressions without denoting their structural hierarchy or their asso-

ciated hydrological sub-catchments. The vertical line seen just left

of center is a road, and other roads appear as more subtle vertical

and horizontal lines. Panels (a) and (b) show that this road modifies

the depression hierarchy and therefore impacts water and sediment

routing.

5 An alternative design

Using a priority queue, even one that is O(N ), serializes the

algorithm. Steps 1–8 of the following alternative design can

each be parallelized. The design involves three stages: iden-

tifying flats, identifying basins, and building the hierarchy.

This can be done as follows: (1) cells are assigned flow direc-

tions. (2) Cells without flow directions are identified – these

are flats. (3) Each cell in the flat performs a disjoint set merge

with all its neighbors of the same elevation using the cells’

array indices as their keys. If a cell’s neighbor has a flow di-

rection (meaning that the particular cell is on the edge of the

flat), the neighboring cell is added to a queue and a note is

made that this flat can drain. (4) At this point, all flats are

represented by the index of one of their member cells. If a

flat cannot drain, this representative cell is also added to the

queue. (5) A breadth-first traversal is begun for the cells in

the queue and used to apply shortest-path flow directions to

all the flat cells. (6) At this point, all flats either drain to the

ocean or a single, unique pit cell. (7) The ocean and each pit
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cell each have a unique label. A breadth- or depth-first traver-

sal can be used to apply this label to every cell flowing into

a given pit cell or the ocean, forming basins. (8) Exactly as

above, the lowest outlet between each basin is identified and

(9) the depression hierarchy is constructed.

Unfortunately, load balancing the parallel traversals can be

nontrivial. Therefore, we include preliminary source code for

a parallel implementation here but defer developing a perfor-

mant algorithm to future work.

6 Applications

Once the hierarchy has been generated, it can be used to

rapidly produce a number of outputs of interest. This includes

three different methods for DEM preconditioning, such as

those used for hydrological calculations: filling depressions,

carving depressions, and depression filtering. In addition,

this approach can be used to compute depression statistics

and to model water flow across a landscape.

6.1 Depression filling

Depression filling raises the elevation of all cells within a de-

pression to the level of the depression’s lowest outlet. This

ensures that all cells have a monotonically descending flow

path to the edge of the DEM. Barnes et al. (2014b) review

depression-filling algorithms and offer a general algorithm

unifying previous work. This has since been accelerated for

serial execution (Zhou et al., 2016; Wei et al., 2018) and par-

allelized for large datasets (Barnes, 2016a).

The depression hierarchy algorithm can be used to per-

form depression filling by raising each cell c of the DEM

to the elevation of its ultimate outlet to the ocean (i.e., the

outlets above 11, 12, or 15 in Fig. 1 or the elevation of meta-

depression 7 in Fig. 8). This operation will leave flat areas

behind, which can be resolved by other algorithms (Barnes

et al., 2014a). Alternatively, since the location of the outlet

is known, a breadth-first traversal from that point over the

depression’s cells will yield a drainage surface.

6.2 Depression carving

Depressions can be removed in O(N ) time by carving paths

from the pit cells of the depression hierarchy’s leaves to the

ocean. To do so, the elevation of each depression’s pit cell

should be noted. Since the location of the depression’s out-

let is known and every cell has been assigned a flow direc-

tion, these flow directions can be followed from the outlet

to the pit cell. To remove the depression, the flow directions

along this path should be reversed (if they flow away from

the ocean) or retained (if they flow towards the ocean). Fur-

thermore, once the reversed path has been built, the original

DEM can be altered to enforce drainage by traversing the

path from the pit cell to the ocean and decrementing each

cell along the way, being careful to use a function similar to

C++’s std::nextafter to prevent floating-point cancel-

lation. This will produce flow fields similar to those result-

ing from previous works (Braun and Willett, 2013; Lindsay,

2015). See Fig. 9 for an example.

6.3 Filtering depressions

Depressions can be selectively removed by traversing the de-

pression hierarchy. Typically, small or shallow depressions

are considered to be artifacts; these can be identified by

checking whether a depression’s area or volume falls below a

threshold. If so, the depression can be filled to the level of its

outlet or breached (Lindsay, 2015) by using a priority queue

seeded with any of the depression’s pit cells in a way that is

similar to Priority-Flood (Barnes et al., 2014b). See Fig. 9 for

an example.

6.4 Depression statistics

The number of cells in a depression, the area the depression

covers, and the volume of the depression can all be calculated

by adapting the depression-filling method above. To do so,

a cell c’s elevation is compared with the outlet elevations of

the depressions in the hierarchy. The lowest such depression-

containing cell c is identified. This depression’s cell count is

then incremented, and the cell’s areas and elevation are added

to the depression’s summed elevation and summed area.

The foregoing process produces marginal values: the ar-

eas, volumes, and cell counts associated uniquely with each

node in the depression hierarchy. To generate totals, the val-

ues of each depression below a given node in the hierarchy

must be summed. To do so, the depression hierarchy is tra-

versed in depth-first fashion from its leaf depressions up-

wards to the ocean. Each depression’s cell count Dc, summed

elevation De, and summed area Da are then the sum of those

cells that belong uniquely to the depression (per the above)

and those that belong to the depression’s children. If the out-

let elevation of the depression is Do, the volume of the de-

pression is then given by Da(Dc · Do − De).

6.5 Flow modeling

When water falls on a landscape, it flows downhill to the pit

cells of depressions. Depressions then begin to fill up until

they spill over into neighboring depressions. The combined

depression then fills until it too spills over. This continues

until the water finds an outlet to the sea. The depression hier-

archy described here, with its geolinks, has been optimized to

model this dynamic process of filling, spilling, and merging,

as described in an accompanying paper (Barnes et al., 2020).

7 Empirical tests

We have implemented the algorithm described above in

C++17 using the Geospatial Data Abstraction Library
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Table 1. Datasets used, their dimensions, and algorithm wall time on the Comet cluster run by XSEDE (see main text for full specifications).

Topographic data for Madagascar, the US Great Basin, Australia, Africa, and North and South America were clipped from the global

GEBCO_08 30 arcsec global combined topographic and bathymetric elevation dataset (GEBCO, 2010). The Minnesota 30 m topobathy

data are the merged result of two data sources. The topography is resampled from the Minnesota Geospatial Information Office’s 1 m lidar

elevation dataset (Minnesota Geospatial Information Office, 2019). Bathymetric data were provided by the Minnesota Department of Natural

Resources (Minnesota Department of Natural Resources, 2014). Richard Lively of the Minnesota Geological Survey merged and combined

these datasets. The GEBCO_14 global 30′′ topobathy dataset was drawn directly from GEBCO (2014). Wall times are compared against

several depression-filling algorithms, as described in the text.

Dataset Dimensions Cells Time (s) Barnes et al. Zhou et al. Wei et al.

(2014b) (s) (2016) (s) (2018) (s)

Madagascar 2000 × 1000 2.0 × 106 0.2 0.2 0.2 0.1

US Great Basin 1920 × 2400 4.6 × 106 1.0 1.0 0.9 0.4

Australia 5640 × 4200 2.3 × 107 2.4 2.0 2.6 1.2

Africa 9480 × 9000 8.5 × 107 17.7 16.2 11.8 5.6

N and S America 18720 × 17400 3.2 × 108 47.7 48.3 37.8 19.0

Minnesota 30 m topobathy 34742 × 23831 8.2 × 108 117.3 119.7 101.4 39.4

GEBCO_14 global 30′′ topobathy 86400 × 43200 3.7 × 109 1881.5 1879.9 1508.5 629.1

(GDAL) (GDAL/OGR contributors, 2020) to read and

write data. For efficiency we use a radix heap (Akiba,

2015) and an optimized hash table (Popovitch, 2019).

There are 981 lines of code, 48 % of which are or con-

tain comments. The code, along with correctness tests and

a makefile, can be acquired from GitHub (https://github.

com/r-barnes/Barnes2019-DepressionHierarchy, last access:

20 May 2020) or Zenodo (Barnes and Callaghan, 2019).

Tests were run on the Comet machine of the Extreme

Science and Engineering Discovery Environment (XSEDE)

(Towns et al., 2014). Each node of Comet has 2.5 GHz

Intel Xeon E5-2680v3 processors with 24 cores per node

and 128 GB of DDR4 RAM. Code was compiled using

GNU g++ 7.2.0 with full optimizations enabled. The datasets

used and timing results are shown in Table 1. Datasets were

chosen for the large number of depressions they contained.

Runtime scales linearly across datasets, ranging in size over

3 orders of magnitude, in agreement with theory. The smaller

datasets run quickly enough that they indicate that the de-

pression hierarchy algorithm may be suitable for use in land-

scape evolution models.

Wall times of the depression hierarchy algorithm are com-

pared against RichDEM’s (Barnes, 2016b) implementations

of several depression-filling algorithms. The structure of the

depression hierarchy algorithm is most directly comparable

to the improved variant of the Priority-Flood algorithm pre-

sented by Barnes et al. (2014b) and exhibits almost no over-

head in comparison, showing that constructing the depres-

sion hierarchy data structure is inexpensive. While running

in a comparable amount of time to the Barnes et al. (2014b)

algorithm, the depression hierarchy algorithm produces sig-

nificantly more data on the landscape topology, including in-

dividual cell labels and the depression hierarchy data struc-

ture itself. Later algorithms from Zhou et al. (2016) and Wei

et al. (2018) improve on Priority-Flood by using more com-

plex logic to decrease the number of cells that need to be pro-

cessed by the priority queue. Incorporating these improve-

ments into the depression hierarchy algorithm would have

made it more difficult to describe and verify, so we do not

pursue them here.

8 Conclusions

In summary, this paper presents a data structure – the depres-

sion hierarchy – that captures the topologic and topographic

complexities of depressions in the context of natural land-

scapes with potential extensions to image processing. The

algorithm used to generate this data structure offers advan-

tages in efficiency, correctness, documentation, and reusabil-

ity when compared against previous work. A follow-on paper

will describe how the depression hierarchy can be leveraged

to accelerate hydrological models and rapidly compute the

effects of depression structures on drainage networks.

Code availability. Complete, well-commented source code, an

associated makefile, and correctness tests are available from GitHub

(https://github.com/r-barnes/Barnes2019-DepressionHierarchy)

and Zenodo (Barnes and Callaghan, 2019).
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