Getting More Performance with Polymorphism from
Emerging Memory Technologies

Iyswarya Narayanan Aishwarya Ganesan Anirudh Badam
Penn State UW-Madison Microsoft
Sriram Govindan Bikash Sharma Anand Sivasubramaniam
Microsoft Facebook Penn State

ABSTRACT

Storage-intensive systems in data centers rely heavily on
DRAM and SSDs for the performance of reads and persistent
writes, respectively. These applications pose a diverse set of
requirements, and are limited by fixed capacity, fixed access
latency, and fixed function of these resources as either mem-
ory or storage. In contrast, emerging memory technologies
like 3D-Xpoint, battery-backed DRAM, and ASIC-based fast
memory-compression offer capabilities across several dimen-
sions. However, existing proposals to use such technologies
can only improve either read or write performance but not
both without requiring extensive changes to the application,
and the operating system. We present PolyEMT, a system
that employs an emerging memory technology based cache
to the SSD, and transparently morphs the capabilities of this
cache across several dimensions — persistence, capacity, la-
tency — to jointly improve both read and write performance.
We demonstrate the benefits of PolyEMT using several large-
scale storage-intensive workloads from our datacenters.

CCS CONCEPTS

« Information systems — Storage class memory; Hier-
archical storage management; Data compression; « Com-
puter systems organization — Cloud computing; - Soft-
ware and its engineering — Memory management;

ACM Reference Format:

Iyswarya Narayanan, Aishwarya Ganesan, Anirudh Badam, Sri-
ram Govindan, Bikash Sharma, and Anand Sivasubramaniam. 2019.
Getting More Performance with Polymorphism from Emerging

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SYSTOR 19, June 3-5, 2019, Haifa, Israel

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6749-3/19/06...$15.00
https://doi.org/10.1145/3319647.3325826

Memory Technologies. In Proceedings of The 12th ACM Interna-
tional Systems and Storage Conference (SYSTOR "19). ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3319647.3325826

1 INTRODUCTION

Data-intensive applications like key-value stores, cloud stor-
age, back-ends of popular social media services that run on
cloud datacenters are latency critical, and require fast access
to store and retrieve application data. The memory and stor-
age requirements of these data-intensive applications are
fast outpacing the limits of existing hardware. For instance,
growing data volume for these applications pose increasing
pressure on the capacity needs of the memory and storage
subsystems, and adversely impact application latency. This is
further exacerbated in applications with persistent writes to
storage (file writes/flushes, and msynecs) as even the fastest
storage resource in contemporary servers (SSD) is an order
of magnitude slower than its volatile counterpart (DRAM).
Further, cloud applications are diverse in their resource re-
quirements (e.g. memory and storage working set sizes). In
contrast, existing memory and storage resources are rigid
in their characteristics in terms of persistence capability,
accesses latency, and statically provisioned capacity. There-
fore, datacenter operators are faced with the question of how
to better serve data-intensive cloud applications that pose
diverse resource requirements across multiple dimensions.
Emerging memory technologies offer better performance
along several dimensions (e.g. higher density compared to
DRAM [63, 64], higher performance than SSDs [4, 5, 9], or
even both). Realizing their potential, prior works [18, 28, 70]
have exploited Non-Volatile Memory (NVM) technologies
to jointly improve both read and write performance! of an
application by relying on their byte addressability and non-
volatility. NVMs that offer higher density than DRAM benefit
applications bottle-necked by memory capacity, and improve
their read performance. And, their non-volatility benefits
applications bottle-necked by writes to the persistent stor-
age. While these solutions offer attractive performance for
both reads and writes, these are insufficient for widespread
adoption in current datacenters for two main reasons.

1We refer to all persistent writes as writes.

SYSTOR ’19, June 3-5, 2019, Haifa, Israel

First, many of these proposals consider file systems that
reside entirely on NVMs[39, 75, 77] to benefit both reads and
writes. Note that the cost per unit capacity of NVMs is still an
order of magnitude higher than SSDs. Therefore, replacing
a large fleet of SSDs with NVM will be cost prohibitive for
applications requiring massive storage capacities. Instead, we
require a design that requires only a limited NVM capacity.

Second, to extract high performance, many of these pro-
posals require extensive code changes to port the appli-
cation [18, 28, 70], operating system [39, 77] or the file-
system [74-76] which may not be immediately feasible at
scale. These limit faster and wider on-boarding of these tech-
nologies in current datacenters. Therefore, we require trans-
parent mechanisms and policies that can effectively utilize
limited NVM capacity available within each server.

While there are several proposals that enable transparent
integration of limited capacity NVMs into existing memory
and storage stack [15, 63, 79], they are insufficient in the
context of cloud datacenters. The reason is, they focus on
single aspect whereas cloud applications pose diverse set of
requirements which can be met eftectively by tapping into
the potential of these technologies to morph across several
dimensions — persistence, latency, and capacity.

NVMs with performance similar to that of DRAM and
persistence similar to that of SSDs can morph dynamically
either as persistent block cache to SSDs or as additional
byte-addressable volatile main memory — we call this func-
tional polymorphism. Existing transparent solutions focus
on one function by employing these devices either as storage
caches for SSDs [15, 16, 50] or as extension of DRAM to aug-
ment main memory capacity[27, 63, 79]. Employing NVM as
storage cache accelerates persistent accesses to the storage
device. But, these incur additional software overheads for
read accesses [17, 36, 73], despite their ability to allow direct
hardware access using byte addressability.

Transparently integrating NVM as byte addressable mem-
ory is beneficial only for volatile memory access, and does
not benefit any persistent writes to the storage medium de-
spite being non-volatile. However, dynamically re-purposing
all or part of NVM as memory or storage can benefit a diverse
set of applications. Unlike existing such proposals [39, 67],
we target a design that neither requires high NVM provi-
sioning costs to replace entire SSD with NVM as file system
storage medium nor requires changes to existing file system.
Theretfore, we employ limited NVM capacity as a storage
cache to SSD, where the challenge is to carefully apportion
this resource between competing memory and storage access
streams, whereas in existing proposals it is only determined
by one of those.

There exists other trade-offs in emerging memory tech-
nologies that offer fast access times at lower density or slow

I. Narayanan and A. Ganesan et al.

access times at higher density depending on data representa-
tion (e.g. Compressed memory [68], SLC vs. MLC [62]). We
refer to this as representational polymorphism. This poses
opportunity to improve tail performance for latency sensi-
tive applications that are limited by fixed latency and ca-
pacity of existing hardware. While this has been studied
previously [23, 49, 62, 68], a holistic solution that exploits
polymorphism across several dimensions is missing.

Given the rigidity of existing hardware and the diversity
of cloud applications, it is essential to fully benefit from the
polymorphic capabilities of these technologies to effectively
serve applications. Towards that, we employ NVM as a cache
to the SSD, and exploit its capability to morph in its function
(as volatile vs. non-volatile cache) and data representation
(high density/slow vs. low density/fast). But, to benefit from
polymorphism, we need to navigate the trade-offs along
several dimensions to adapt the cache characteristics based
on the needs of individual applications. Moreover, we need
mechanisms to transparently enforce these capabilities with-
out requiring any application, OS or file system level changes.
Contributions: Towards these goals, we present:

o A detailed characterization of production storage traces to
show that cloud operators can effectively serve heteroge-
neous applications by exploiting polymorphic emerging
memory technology based cache in front of SSD.

e A functional polymorphism solution that allows trans-
parent integration of limited capacity NVM as persistent
block-based write-back cache to SSDs. It dynamically con-
figures available cache capacity in volatile and non-volatile
forms to simultaneously improve performance for reads
and persistent writes.

e A representational polymorphism knob that helps tune
the latency and capacity within each function to further
optimize performance for applications with working set
sizes exceeding the physical capacity of the resources.

e A dynamic system that traverses the design space offered
by both functional and representational polymorphism,
and apportions resources across persistence, latency, and
capacity dimensions to maximize application performance.

e A systematic way of reaching good configurations in the
above dynamic system: starting with the full capacity in
one single form that addresses the most significant bottle-
neck first and then gradually morphing into other forms
until the performance increases, enables a way to search
for the ideal configuration systematically.

e A prototype in real hardware available in today’s datacen-
ters as a transparent memory and storage-management
runtime in C++ for Linux. Our solution does not require
any application, OS, or file system changes for its usage. Our

Getting More Performance with Polymorphism from EMT

1.5
z ;1
a p ©
- 2 o8
w ! —"
3 3-_ 0.6
o
= =
E E o2 3
g o E o
[} 50 100 0 50 100

% polymorphic memory used as storage

(b) YCSB-loading phase

% polymorphic memory used as storage

(a) TPC-C

Figure 1: Applications benefit from different capacities of NVM
in memory and storage. This split is different across applications.

experiments with the prototype show significant improve-
ments to the tail latencies for representative workloads,
by up to 57% and 70% for reads and writes, respectively.

2 THE NEED TO EXPLOIT
POLYMORPHISM

Our goal is to aid datacenter operators to effectively serve
data-intensive cloud applications using emerging memory
technologies without incurring significant capital invest-
ments and intrusive software changes. While there are prior
proposals that meet these constraints, they often extract sub-
optimal performance as they focus on one aspect, whereas
these resources can morph across several dimensions - per-
sistence, capacity and latency. In this work, we consider
ballery-backed DRAM (BB-DRAM) [4, 9, 54] and [asl meimn-
ory compression as the Emerging Memory Technologies
(EMTs), backed up by SSDs [58], as seen in today’s datacen-
ters. It presents us with the following two trade-offs?.

2.1 Why Functional Polymorphism?

Much like other NVMs, BB-DRAM can function both as
a regular volatile medium and as a specialized non-volatile
medium using an energy storage device (e.g., ultra-capacitor).
The battery capacity is used to flush data from DRAM to
SSDs upon power loss. This can be dynamically configured
to flush only a portion of (non-volatile) DRAM with the re-
maining used as volatile memory, thereby creating a seamless
transition between these modes. The battery-backed portion
offers persistence at much faster latency than SSDs.

One can transparently add such NVM to existing servers as
an extension of main memory or as a block-granular cache to
the SSD. While the former implicitly benefits reads, the latter
is expected to implicitly benefit both reads and persistent-
writes. However, note that all reads to NVM would then incur
software penalty by having to go through the storage stack,
despite their ability to allow direct CPU-level access for reads.
So, explicitly partitioning it between the volatile memory
and storage tiers would offer better read performance.

These trade-offs exist for other emerging memory technologies as well.

SYSTOR 19, June 3-5, 2019, Haifa, Israel

In Fig. 1, we show the benefits of such explicit partitioning
using TPC-C, a ready heavy workload as well as a write-
heavy YCSB workload using a server provisioned with 24
GB volatile DRAM and 24 GB non-volatile BB-DRAM. We
manually varied the non-volatile capacity between an SSD
block cache (managed by dm-cache [69]) and physical mem-
ory (managed by OS). Fig. 1a shows that TPC-C suffers a loss
of 30% in performance when using all of the BB-DRAM as
SSD-cache compared to when using it as main memory. In
contrast, Fig. 1b shows that using BB-DRAM as SSD-cache
is optimal for the write-heavy YCSB workload.

The results demonstrate that different "static" splits not
only change the performance of applications differently, but
also that the best split is different across applications. Fur-
thermore, the results also show that the extremes are not
always optimal. For instance, we see that the write-intensive
YCSB-loading phase requires entire BB-DRAM capacity in
the storage tier, whereas read-intensive TPCC requires a split
of 75% and 25% between memory and storage to meet both
read and persistent-write requirements satisfactorily.

This is especially important in cloud datacenters, as we
observe that most real-world applications have a heteroge-
neous mix of reads and writes. We show this by analyzing
the storage access characteristics of four major production
applications from our datacenters: (i) A public cloud storage
(Cloud-Storage); (ii) A map-reduce framework (Map-Reduce);
(iii) Search data indexing application (Search-Index), and (iv)
Search data serving application (Search-Serve).

We observe that file system read and write working set
sizes vary across applications. Fig. 2a shows that the total
number of unique pages required to serve 90°", 95, and
99*" percentile of access for reads and writes respectively,
normalized to total unique pages accessed for a duration of
30 minutes. As we can see, the working set sizes vary across
applications. Similarly, Fig. 2b captures the difference in the
access intensities of total read and write volumes per day;
the read and write volumes varies between 0.18 TB to 6 TB
and 0.45 TB to 4 TB, respectively. Moreover, these access
intensities vary over time; Fig. 3 shows this in Search-Serve
for a 12 hour period as an example. Together, these moti-
vate the need to exploit the ability of these technologies to
morph dynamically between storage and memory functions
to effectively serve diverse set of applications.

2.2 Why Representational Polymorphism?

In addition to the above trade-off, there exist trade-off be-
tween data representation and access latency in emerging
technologies. For example, fast memory compression (using
ASICs [2]) enable larger capacity using compressed high-
density data representation. However, it incurs longer la-
tency to work with the compressed representation. Thus, the

SYSTOR ’19, June 3-5, 2019, Haifa, Israel

M Reads W Writes 1 Both M Reads M Writes ¥ Both M Reads M Writes
1
3 ! H g !
g 08 g 08 2 08
@
g 06 g 0.6 o 06
]] &
E;a 0.4 630 0.4 o 04
€ 02 g 02 g 02
g 0 g 0] 0
2 90th 95th 99th -2 90th 95th 9sth & 90th 95th
= Percentile of accesses > Percentile of accesses =

(i) Cloud Storage (ii) Map Reduce

Percentile of accesses

(iii) Search-Index

I. Narayanan and A. Ganesan et al.

Both M Reads M Writes M Both

3 1 % 10

% 08 = Cloud- Map-

g 06 E Storage Reduce

g 04 s 1

g 0.2 g Search- Search

g 0 s Index -Serve
99th .2 90th 95th 99th 2 0.1

= Percentile of accesses ,;_' 0.1 1 10

(iv) Search-Serve Read Volume (TB/day)

(a) Heterogeneity in read vs persistent-write capacity requirements to serve 907% 9577 and 997" per- (b) Heterogeneity in the volume of

centile of read, persistent-write and total accesses over a 30 minutes window.

read and persistent-write accesses.

Figure 2: Need for application aware memory and storage resource provisioning.

@ 100

o —-o-Writes -a—Reads

[

£ so

o

2 <

e 0

E 0 100 200 300 400 500 600 700

Time (minutes)

Figure 3: Temporal variations in read and persistent-write access
intensities in Search-Serve.

same memory can provide either the higher capacity (with
compression) or, the faster access (without compression).

This is especially important in the context of tail sensitive
applications constrained by static capacities and latencies
of today’s hardware. For instance, existing servers have lim-
ited capacities of DRAM (in the order of 10s of GBs) and are
backed up using SSDs (in the order of 100s of GBs) or over
the network which are 500x slower. The static capacities
of DRAM, non-volatile EMT, and SSDs form strict latency
tiers. Consequently, the tail latency of data-intensive appli-
cations with working sets that do not fit in the DRAM is
now determined by the slower tier. We illustrate this us-
ing Fig. 4a. It plots latency vs probability of pages accessed
at this latency when the working set of an application is
spread between two latency tiers. Here, the tail latency of
the application is determined by the SSDs which are order
of magnitudes slower than DRAM. One way to optimize the
tail performance in such systerns is to increase the effective
capacity of the faster tier using high density data representa-
tion (e.g. compression) while maintaining latency well below
that of the slowest tier using fast compression techniques as
illustrated in Fig. 4a.

We observe that real-world applications in our datacenter
can increase lheir elleclive capacily by 2-7x (see Fig. 4b) us-
ing compression while incurring significantly lower latency
compared to accessing the slowest tier. Fig. 4c shows that in
contrast to SSDs which incur more than 80us and 100us for
reads and writes, compressed DRAM based memory incurs
4us for reads (decompression), and 11us for writes (compres-
sion). This can be further tuned based on the application
needs by exploiting parallelism.

While existing works have studied such latency vs. ca-
pacity trade-off only in isolation, the additional challenge
for us here is to identify which functional layer can benefit
from exploiting representational polymorphism. Towards
that, we explore a holistic approach for flexible memory and
storage provisioning within a server to exploit both kinds of
polymorphism, not only for static application configurations
but also for dynamic variations in application behavior.

3 POLYMORPHIC EMT DESIGN

Our goal is to identify the optimal configuration of a limited-
capacity EMT across its various polymorphic forms, both
spatially and temporally, to extract maximum application
performance. The challenge here is to navigate a huge search
space as jointly determined by the polymorphism knobs. We
use the following insight to decouple the search space: start
with the full capacity in one single form that addresses the
most significant bottleneck in the system. Then gradually
morph into other forms to further improve effectiveness.

3.1 Using Functional Polymorphism

In today’s servers (Fig. 5(a)), all persistent writes (tusyncs)
must hit the SSD synchronously, while reads have some
respite since only those that miss DRAM buffer cache hit
the SSD. Also, SSDs by nature have higher tail latencies for
writes compared to reads. Fig. 6 shows that reads to be 2x
faster than the writes even in their average latencies, and up
to 8x faster at the 95" percentile for the fio benchmark [14].
This can be alleviated by using BB-DRAM as a persistent
cache, to avoid accessing the SSD in the critical path.
However, in a persistent storage cache (Fig. 5(b)), both
reads (those that miss in the DRAM buffer cache) and writes
to the SSD will be cached. But, caching SSD reads in this
storage layer is sub-optimal, as going through software adds
significant latency penalty [17, 36, 73]. Ideally, such reads
should be served directly via CPU load/store by bypassing
the software stack. Fig. 5(c) shows such a system, where the
BB-DRAM based write cache is just large enough to absorb
bursts of application writes, buffer them, and write data to the

Getting More Performance with Polymorphism from EMT

1. Application’s working set split between two
fixed latency tiers

2. Faster tier morphs
to hold more working set

95" percentile

Probability

N R O

95t percentile

o

3. Tail latency reduces

wrt uncompressed capacity

Effective increase in capacity

Map Reduce

Access Latency

(a) Representational polymorphism.

(b) Compressibility of application contents

SYSTOR 19, June 3-5, 2019, Haifa, Israel

[CWrite Access ZRead Access =-CompressionRatio

12 04
= o
210 -
= s 03
g 8
2 6 02 3
- L H
g 4 7 01 B
S 2 T g
o =1
<, | 0o ©

4096 2048 1024 512

Search Compressed Access Granularity (bytes)

(¢) Performance characteristics.

Figure 4: Representational polymorphism (compression) to increase working set in the fast tier. Latencies measured on 2.2 GHz Azure VM.

HMAvg. 795 m99

[DRAM |] DRAM | [DrRAM T EMT | DRAM | EMT 8
read read read Compressed EMT 7
; msyncs ; msyncs - msyncs read

misses misses misses misses msyncs 76
Es
Block FS Blo >4
EMT (BB-DRAM) EMT (BB-DRAM) EMT (BB-DRAM) § s

disk disk Compressed EMT ®
reads writes disk disk disk disk 1 _ -2
reads writes reads writes disk disk 1

reads writes
o L mm [|
SSD SsD SSD SSD Reads Writes

(a) Existing Servers

SSD in the background such that the applications do not have
to experience the high write-tails of SSDs in the critical path.
Its remaining capacity can be morphed to extend volatile
main memory to accelerate reads. While the system shown in
Figure 5(c) conceptually exploits functional polymorphism,
its benefits depends on the ability to match the volatile and
non-volatile cache sizes to application needs as discussed in
Section 2.1 (see Fig. 2). Further, as applications themselves
evolve temporally (see Fig. 3), these capacities need to be
adapted to continuously meet changing application needs.
Therefore, our solution (PolyEMT) starts with the entire
emerging memory capacity as write-cache, while gradually
re-purposing some of its capacity to function as volatile (even
though physically non-volatile) main memory. To minimize
performance consequences of such a dynamic reduction in
the write-cache capacity, we need to effectively utilize avail-
able write-cache capacity. Towards that, PolyEMT uses a
perfect LRU policy to identify blocks for revocation. It peri-
odically writes them back to the SSD in the background to
make those blocks free and adds them to the free list.
Simultaneously, the re-purposed EMT pages (moved out
of the free list of the storage cache) serve as DRAM exten-
sion managed by the OS. The virtual memory management
component of the OS is well-equipped to effectively man-
age the available main memory capacity, and even handle

(b) EMT Write Cache (c) Dynamic Write Cache (d) Virtual Expansion
Figure 5: PolyEMT design: (a) Today’s servers have a high read and write traffic to SSD in the
critical path. (b) We begin with EMT as Write-Cache to reduce persistent writes to SSD. (¢) We
then re-purpose underutilized Write-Cache blocks to extend DRAM capacity reducing DRAM
read misses. (d) We then employ EMT compression to further reduce SSD traffic.

Figure 6: Read/Write asymmetry: 4K
reads incur an average of 400us with 95¢%
percentile at 500us, whereas average 4K
writes incur as high as 85045 with 95! 7
centile at 4200us at high load.

per-

heterogeneous latency tiers [40, 71]. Such buffer manage-
ment policies maintain only the most recently accessed pages
(volatile accesses) in memory, to improve access latency.
Hence, the sweet spot for partitioning the EMT is identi-
fied by incrementally revoking least recently written write-
cache pages and re-purposing them as volatile main mem-
ory by probing application-level request latencies. PolyEMT
stops the re-purposing when the performance of the ap-
plication stops increasing; this is the point where the read
bottleneck is mitigated and persistent writes re-start to im-
pact the application’s performance, as shown in Fig. 7. We
observe a convex behavior, as in Fig. 11, for a wide range of
applications. This is because LRU is a stack algorithm which
does not suffer from Belady’s anomaly, i.e., the capacity vs.
hit rate has a monotonic relationship for both memory capac-
ity and write cache capacity under steady access conditions.
Therefore, a linear (incremental) search is suffices to identify
the sweet spot between volatile and non-volatile capacities.

3.2 Using Representational Polymorphism

PolyEMT leverages representational polymorphism to vir-
tually expand capacities when the read and write working
set sizes of application exceed available physical memory
and write-cache capacities. The compressed data represen-
tation reduces the capacity footprint of data (refer Fig. 4);
thus more data can be held in EMT instead of being paged

SYSTOR ’19, June 3-5, 2019, Haifa, Israel

% EMT in Memory
100 75 50 25 0

% EMT in Memory
100 75 50 25 0

o X
2 1 12 1 — 1
Eg s g§ t\
2§ o s 8
8 E 38§
£ £
25 ‘ 575 ¢
4w [= T}
o o 2 qCa
oo \ 03 0 0
0 25 50 75 100 0 25 50 75 100

% EMT in Storage % EMT in Storage

Figure 7: To partition EMT between memory and storage, incre-
mentally re-purpose write-cache pages as volatile memory until
performance start to decrease. This point balances the impact of
persistent writes and volatile reads on application performance.

to the slowest tier (i.e., SSD). Towards that, PolyEMT uses a
caching hierarchy as shown in Fig. 5(d) where 3 latency tiers
- EMT, Compressed EMT and SSD - exist in both volatile and
non-volatile forms. Here, a capacity bottleneck at the fast tier
will move least-recently-used pages to the slower represen-
tation to make room for hot pages. And, a hit access at the
slow tier will result in its conversion to fast representation.

Unlike existing compressed memory systems [12, 60, 68]
and tiered storage systems [42, 59], we face the additional
challenge of deciding where to spend the limited compute cy-
cles available for compression/decompression - in the write
cache or in the volatile memory? Exploiting representational
polymorphism in either modes is viable when the benefits
of holding more data using slower representation are higher
than the benefits of holding fewer data using a faster repre-
sentation. This is conceptually similar to the capacity parti-
tion problem of the functional polymorphism.

However, unlike functional polymorphism, asymmetry in
read and write accesses are not important. This is because,
the penalty of a cache miss is the samme in both functions (the
read or the write cache), which is primarily determined by the
software latency to go and fetch the page/block to the faster
tier. PolyEMT uses this key insight when determining the
capacities of each tier in representational polymorphism - by
using a combined faster/slower representation of both read
and write caches rather than exploiting them independently
(as in functional polymorphism). This has the natural side
effect of using the minimum compute resources and EMT
capacity to meet a target tail latency and throughput.

PolyEMT uses LRU based ranking of accesses across all the
non-compressed pages in both volatile memory and write-
back cache to decide data movement between the faster and
slower tiers. Note that when using representational poly-
morphism in volatile main memory, PolyEMT does not have
complete information on the data accessed in the fast tier -
hardware loads and stores bypasses software stack to track
exact LRU. Instead, PolyEMT uses page reference informa-
tion in the page table and uses an approximate LRU algo-
rithm in the fast tier (i.e., Clock [21, 37]). This information

I. Narayanan and A. Ganesan et al.

is used to not only identify EMT pages to move from mem-
ory to storage, but also to identify DRAM pages in volatile
memory that can benefit from compression. The best split
occurs when there is sufficient fast tier capacity to serve hot
data accesses while optimizing the tail performance with the
capacity reclaimed from using compressed representation.
To summarize PolyEMT design, the first three optimiza-
tion steps - write-back cache, functional and representation
polymorphisms are applied one after another sequentially,
and the LRU-based capacity management is used in all com-
ponents to cope with limited capacity and latency hetero-
geneities of the underlying resources. PolyEMT first exploits
functional polymorphism and then within each of the func-
tions it exploits representational polymorphism. The sys-
tem re-configures the memory and storage characteristics
to dynamic changes within an application. Once the change
is detected, the PolyEMT runtime begins with the EMT as
write-cache and finely tunes the capacities and latencies of
memory and storage resources based on the current needs.

4 PROTOTYPING POLYEMT

We next describe the key aspects of PolyEMT prototype.
PolyEMT API: One of our goals is to retain application
read/write API semantics to aid in faster and seamless on-
boarding of EMTs. Our prototype modifies the behavior of
the traditional mmap and msync APIs commonly used in many
cloud storage applications [1, 6-8]:

o mmap(filename) maps a file in persistent storage (SSD)
into the application’s virtual memory. This allows directly
access to the mapped region using loads/stores, avoiding
software overheads of read/write system calls.

e msync(address, length) invocation guarantees persis-
tence of writes to the application’s virtual memory. Modi-
fied memory pages in the application’s mapped address
space within the given length offset is persisted immedi-
ately as part of this API call. Typically, such msync oper-
ations are often bottlenecked by the writes to SSD. EMT
used as a transparent persistent block cache below the file
system layer can help improve msync performance.

PolyEMT Runtime: We implement PolyEMT logic as an
application-level runtime without requiring any changes
to application, file system, and OS. The initial allocation of
DRAM, EMT/BB-DRAM, and SSD for an application is spec-
ified via a global configuration. The runtime tunes these
allocations based on the instantaneous needs of the applica-
tion, using the following modules for resource management.
Physical resource managers: To manage physical capacity,
PolyEMT uses a DRAM manager and a BB-DRAM manager
which maintains the list of free pages in DRAM and BB-
DRAM, respectively. The DRAM and BB-DRAM memory
regions allocated to PolyEMT are pinned to physical {rames.

Getting More Performance with Polymorphism from EMT

e Unprotect page o Populate data
Applicati
FRICEEEE e Free list empty?
Evict page

o g Protect pages [List of free volatile pages)
mmapfie_name) DEoDom. | [
———————) i3
mmap_address __ BERVE g resel
Cie— 0 E 5 = Compression-

address eGet Free Page Store

region

Figure 8: PolyEMT operation for volatile accesses

e Access address
——)

P Vrite e Hit? elnvalidate
Application page Update Compression ssp
Write-Cache St
mmaped e

o msync address Miss?
(addr, len) region Get free page

Evict

Figure 9: PolyEMT operation for persistent accesses

Buffer-Cache: This cache serves as the set of DRAM and
BB-DRAM pages used as volatile memory by the application,
accessible by the CPU directly via loads/stores.
Write-Back Cache: This cache is a block storage device
which caches persistent writes to SSD (write-back). The ap-
plication msyncs() calls are served using this Write-Cache.
Compression-Store: This resides in BB-DRAM so it can
serve as a slow (but higher capacity) tier for both volatile
buffer cache and persistent write-back cache. It employs
dictionary-based Lempel-Ziv compression [81] at 4KB gran-
ularity as it provides higher effective capacity (compared to
pattern-based ones [12, 60]). To handle the resulting variable-
sized compressed pages which increase fragmentation, we
compress 4K pages down only to multiples of a fixed sector
size by appending zeros when needed. We determine the
best sector size to be 0.5 KB based on the distribution of
compression benelits for applicalions analyzed in Sec. 2.2.
Enabling fast access to volatile memory. PolyEMT places
the most frequently read pages from the SSD in DRAM and
the EMT/BB-DRAM extension of volatile memory. The fol-
lowing process shown in Fig. 8 explains how this works: An
application initially maps a file from the persistent storage
(SSD) into main memory (1] using mmap. PolyEMT creates
an anonymous region in virtual memory without allocating
physical memory resources, set its page protection bits @,
and returns a virtual address. When the application first ac-
cesses any page in this virtual address region @, it incurs a
page fault @, which is handled by a user-level fault handler
(using sigaction system call).

The page fault handler obtains a free volatile page from the
physical memory manager @ and maps its physical address
to the faulting virtual address referenced by the application
using a kernel driver for managing application page table
in software [34, 41]. In case the free list is empty, PolyEMT
evicts a page @. Next, to populate the contents of the page, it
brings in the data to the relevant physical page by searching

SYSTOR 19, June 3-5, 2019, Haifa, Israel

from slower tiers in the order of Write-Cache, Compression-
Store (if used) and SSD @. It then unsets the protection bits
in page table and returns the control to the application @.

Pages are evicted from the buffer-cache as follows. A least

recently used page is chosen for eviction based on an LRU-
like Clock [21, 37] policy implemented using the referenced
bit in the page table which is reset periodically. Eviction
maintains the look-up order of Write-Cache, Compression-
Store, and SSD during page faults. Towards that, dirty pages
that are already present in write-cache (from a previous
msync call to the page) are updated in place. Otherwise, they
are directly evicted to the SSD. The process is similar when
using compression. But, even clean pages are evicted to the
compression store.
Handling persistent writes. To persist a page, applications
call msync() with a virtual address and length, as shown in
Fig. 9 @. PolyEMT handles this call by writing @ the pages in
this region from Buffer-Cache to Write-Cache €. For write
misses at the write cache, it allocates a new page from the
free list of non-volatile pages @ in rare cases when there
are no free pages @ it evicts a least-recently-used page to
the slower tier ® (either Compression-Store or SSD).

The candidate for eviction is chosen based on LRU for
persistent writes in the Write-Cache. Note that, much like
traditional msync, PolyEMT does not remove the synced
pages from the Buffer-Cache unless they were retired implic-
itly by the higher tier. However, for correctness, the virtual
addresses involved are write-protected first, written to the
Write-Cache, marked as clean, and then unprotected again.
Pages flushed from compressed volatile memory to Write-
Cache are maintained in a compressed state until further
read operations to save resources.

Handling dynamic capacity variations: PolyEMT dynam-
ically manages the capacity of Buffer-Cache, Write-Cache,
and Compression-Store by pursuing two knobs at runtime

— the knob that splits BB-DRAM between volatile and non-
volatile layers and the knob that controls how much BB-
DRAM is compressed across both volatile and non-volatile

layers. The runtime described in the previous section sweeps

through different values of these two knobs and moves the

system to higher-performance configurations — detected

transparently by monitoring latencies of SSD operations.
It maintains the configurations until such latencies change

significantly (a configurable threshold).

5 EVALUATION

We run all experiments using Azure VMs running Linux
4.11 on E8-4s_v3 instances (4 CPU cores, 64GB memory and
128GB SSD at 16000 IOPS). We emulate a part of DRAM as
BB-DRAM using Linux persistent memory emulation [3]. In
addition to using the workloads presented in Sec. 2, we use

SYSTOR ’19, June 3-5, 2019, Haifa, Israel

Properties

50% reads, 50% updates
95% reads, 5% updates
100% reads

95% reads, 5% inserts
95% scans, 5% inserts
50% reads,

50% read-modify-writes

Table 1: YCSB benchmark
characteristics.

QN & O ®

Normalized Throughput
wrt DRAM-Ext

(a) Throughput
Figure 10: Performance of different transparent EMT integration designs normalized to DRAM-Ext.

the YCSB [20] cloud storage benchmark (see Table 1) on Re-
dis [10] populated with 1 million 1KB records, and we report
the performance for 1 million operations. We use a persistent
version of Redis built using the file mmap interface that we
transparently hijack to invoke PolyEMT’s mmap () /msync ()
APIs. We evaluate the performance of PolyEMT on the met-
rics of application throughput, read and write tail latencies.

5.1 PolyEMT convergence time

We first study the optimal allocations of the EMT between
memory and storage cache

under an Voﬂline search and ?::;ge (Tl;lff)
PolyEMT for the storage traces Cloud-Storage | 4
analyzed in Sec.- 2. The on- Map-Reduce | 7.5
line run time of PolyEMT con- Search-Index | 6
verges to the same allocation Search-Serve | 8

Table 2: Convergence
time.

of BB-DRAM between mem-
ory and storage functions com-
pared to the optimal partitions identified offline. Table 2
shows that it takes 4 to 8 minutes to identify the partition
sizes, with read-intensive applications requiring longer time
as more of the write-cache is re-purposed as memory.

5.2 Performance benefits of polymorphism

We study the performance benefits of polymorphism using
YCSB benchmark. We use a server provisioned with capac-
ities of DRAM (26 GB) and BB-DRAM (6 GB) for a total of
32GB. The application’s dataset size (= 38 GB) exceeds the
capacity of these memories. We study the following designs
to transparently utilize limited EMT available in the server®:
1. DRAM-Ext: EMT serves as main memory extension.

2. Write-Cache: EMT serves as persistent write-back cache.

3. Functional-only — performs a linear search to partition
EMT between memory and storage cache functions.

4. Functional+Representational — partitions EMT between
memory and storage functions and also identifies the fast
and slow tier capacities within each function.

Impact on application performance: We first study the
impact of these designs on application throughput for YCSB

3 As the data set size exceeds BB-DRAM capacity, transparent NVM based
file system solutions are infeasible.

Normalized Read Latency

Write-Cache Functional

wrt DRAM-Ext

(b) 90th Percentile Read Latency

I. Narayanan and A. Ganesan et al.

B Functional+Representational

0.2
0

0

1 1
0.8
ol] 7 % 0.8
d g § i T 0 T 0.6
0.4 |} 4 - . =
4 M g 04
02 it i &
i i b 5 <
2

Normalized Write Latency

(c) 90th Percentile Write Latency

benchmarks in Fig. 10(a). The x-axis shows the benchmark,
and the y-axis shows its throughput normalized with respect
to the DRAM-Ext policy. We find that using the non-volatile
BB-DRAM as Write-Cache provides an average speed-up
of around 2.5x over using it as a memory extension. This
implies that even when using this resource readily without
any software modifications, adding it to the most bottle-
necked function (i.e. persistent msyncs) delivers better per-
formance. Further partitioning it between memory and stor-
age by exploiting functional polymorphism improves it by
up Lo 70%. Adding represenlational polymorphism improves
performance by 90% compared to Write-Cache policy. This
indicates the importance of exploiting polymorphic proper-
ties of EMTs to derive higher performance from hardware
infrastructure by adapting their characteristics at runtime.
We next present the impact on the tail performance of
these benchmarks in Figures 10(b) and 10(c). The x-axis
presents the YCSB benchmark and the y-axis presents 90*"
percentile tail latency for writes and reads, respectively, nor-
malized to that of DRAM-Ext. As can be seen, the tail latency
for reads and writes when using Write-Cache reduces by 40%
and 36%, respectively, when compared to EMT as DRAM-Ext.
In contrast, employing functional polymorphism reduces
read tail latency by an average of 80%. This reduction is
significant across all benchmarks as more of their working
size fits in memory and access to EMT memory extension is
done via load/stores without any kernel/storage stack over-
head. Compared to read performance, the reduction in write
latency at tail is only modest, as the write misses at the write-
cache still has to go to the slowest tier (i.e. SSD). However, by
incorporating both functional and representational polymor-
phism write performance at tail improves significantly, with
an average latency drop of 85%. Workload C, being read-only
is not included for the write latency results in Fig. 10(c).
Resulting memory and storage configurations: We next
study the resulting configuration of memory/storage re-
sources for individual applications. Fig. 11 shows the applica-
tion performance when exploiting functional polymorphism.
The x-axis shows the % of EMT morphed as memory and
the y-axis shows the average application performance. We
see that performance initially increases as more EMT is con-
verted to memory, and beyond which it starts to decrease. As

Getting More Performance with Polymorphism from EMT

SYSTOR 19, June 3-5, 2019, Haifa, Israel

O Write-Cache 8 Compression-Store B Buffer-Cache
100

80

60

40
20

EMT allocation in %

F-only
FHR
F-only
FHR
F-only
FHR
F-only
FHR
F-only
FHR
F-only
FHR

m
n

}/A\‘\] A 5 c 5
4

56 58 58
w4 ® 57} L
S S5 4 < 5 4
o2 ° 2 e >
>
Eo Eo Y €o A g
£ 0 20 40 60 80 100 E 0 20 40 60 80 100 € O 20 40 60 80 100
2 %EMTasDRAM-Ext = %EMTas DRAM-Ext = % EMT as DRAM-Ext
(a) YCSB-A (b) YCSB-B (c) YCSB-C 0
- - -
S 6 S 6 S 4
o o | [%
w4 4/’_1\’\1 54 /_‘_1)
S > 5 2
g2 8 24 e
L4
£o £ o T Eo
E o0 2040 60 80100 E 0 20 40 60 80100 £ ©0 20 40 60 80 100
2 %EMTas DRAM-Ext = % EMT as DRAM-Ext = % EMT as DRAM-Ext

(d) YCSB-D (e) YCSB-E

Figure 11: Exploiting functional polymorphism only. PolyEMT search space when traversing

different EMT capacity splits between memory and storage.

Figure 12: Comparison of ideal EMT
split across Buffer-Cache, Write-Cache
and Compression-Store between func-
tional polymorphism only (F-only) and
functional+Representational polymor-
phism (F+R).

(f) YCSB-F

§i‘2‘ F-only| YCSB-A-Reads YCSB-A Updates [0 Write-Cache B Compression-Store B Buffer-Cache
S10 F+R - 1'% —e—YCSB-C Reads

=8 F a E o8

s 6 F-only._ = - -y §

2 4 P 0o g 0.6 tvcsa-c——vcss-A— g

s 2 = g 0.4 N — o

20 YCSB- YCSB-A | & 0.2 ! G

S 0

S s

= 0 15 30 45 0 15 30 45 ¥ 1234567 8 910111213

Time (minutes)

(a) Average performance

Time (minutes)

(b) Performance at tail

Runtime Adaptation Steps
(c) Resulting split

Figure 13: Adapting to dynamic changes as YCSB transitions from read-only YCSB-C workload to a read-write YCSB-A workload. PolyEMT
identifies YCSB-C benefits from direct access to volatile EMT pages via load/store, where-as YCSB-A benefits from 80% of EMT as Write-Cache
and 20% as Compression-Store within twenty minutes. F-only: Functional-only; F+R: Functional+Representational.

expected, the best split (indicated with up-arrow) is different
across these applications as expected. However, as the search
space is convex with a single maximal point, linear search
finds the ideal split with regard to overall throughput.

Fig. 12 presents the partitions identified across Write-
Cache, Compression-Store, and Buffer-Cache. Exploiting
functional polymorphism alone suffices for read intensive
YCSB-C and YCSB-E; this is because the re-purposed ca-
pacity fits the entire working size in DRAM. In contrast,
benchmarks with write operations employ representational
polymorphism as their combined working set for reads and
writes exceed the total physical capacity. e.g., YCSB-A and
YCSB-F use representational polymorphism with 20% of EMT
in compressed form and the rest as write-cache. This shows
the ability of the PolyEMT to tune memory and storage re-
source characteristics based on the application needs.

5.3 Adapting to dynamic phase changes

We next illustrate run time re-configuration using PolyEMT
in Fig. 13 for a server running YCSB-C. PolyEMT runtime
begins with a full Write-Cache, and subsequently exploits
functional polymorphism. As YCSB-C is read-only, direct
access to volatile BB-DRAM pages via hardware increases its

throughput from 4K operations per second to 11.5K opera-
tions per second (F-only for YCSB-C in Fig. 13a) resulting in
80% of BB-DRAM as volatile memory extension and 20% in
Write-Cache (refer to runtime adaptation step-5 in Fig. 13c).

At this point, the server gets a burst of writes as its phase
changes to 50% reads and 50% updates (YCSB-A). So, PolyEMT
starts with a full Write-Cache and exploits functional poly-
morphism, until it reaches a split of 40% EMT in storage and
60% in memory. This partition balances the relative impact
of the reads and writes and achieves highest throughput (F-
only for YCSB-A in Fig. 13a). However, PolyEMT observes
that the tail latency of update requests are much higher than
volatile reads as shown in Fig. 13b at around 30 minutes
time in x-axis. At this point, PolyEMT exploits representa-
tional polymorphism within the storage cache to alleviate
the high update latency. It identifies 20% of total EMT pages
in compressed form to have better tail performance with-
out impacting the average performance. PolyEMT further
re-apportions EMT between non-volatile region (80%) and
the shared compressed region (20%) to bring down the tail
latency of both reads and writes within 180us. This demon-
strates the ability of PolyEMT to adapt to dynamic changes.

SYSTOR ’19, June 3-5, 2019, Haifa, Israel

5.4 Cost benefits of polymorphism

We next study the cost benefits of PolyEMT by comparing
the following provisioning strategies:

(i) Application-specific static provision: Each applica-
tion runs on a dedicated server with the DRAM, BB-DRAM
and SSD capacity right-sized to meet the the application
needs. This hardware right-sizing is primarily suited for ap-
plications that run on private datacenters to reduce costs.
But, it is impractical at scale. Hence, we consider two other
strategies that provision uniform set of physical servers for
all applications.

(ii) Application-oblivious static provision: This employs
anidentical set of servers to meet the needs of all applications.
Here, both DRAM and BB-DRAM capacities are sized based
on the maximum capacity needs across all applications.
(iii) Application-oblivious dynamic provision: Here, the
servers are provisioned with BB-DRAM based on the peak
Write-Cache needs of the applications. However, the servers
are under-provisioned in their DRAM capacity as BB-DRAM
can also function as DRAM using PolyEMT. This strategy
can serve diverse applications using a uniform fleet as in the
second design, but with reduced upfront capital costs.

We consider SSD to cost 25 cents per GB [65], DRAM to
cost $10 per GB [32], and BB-DRAM to cost 1.2X to 2x corn-
pared to DRAM [25, 55]. Table 3 presents the datacenter level
total cost of ownership (TCO) [31] when hosting the work-
loads under each of these designs. As expected, right sizing
the server for each application results in the lowest TCO
— which increases by 1.19% even if the cost of BB-DRAM
increases from 1.2X to 2x as DRAM. Although attractive
from cost perspective, this strategy is difficult in practice
due to diversity applications. Among the practical alterna-
tives, App-Oblivious-Dynamic translates to 1.97% reduction
in datacenter TCO compared to App-Oblivious-Static.

Cost-ratio (BB-DRAM/DRAM)

Provisioning Strategy 1.2% [1.5% [2%
App-Specific-Static 0 0.435% 1.19%
App-Oblivious-Static 2.18% | 2.925% 4.15%
App-Oblivious-Dynamic | 0.205% | 0.947% 2.18%

Table 3: Datacenter TCO under various provisioning strategies
and cost ratios. Baseline: App-Specific-Static with cost-ratio of 1.2x.

6 RELATED WORK

Datacenter resource provisioning: To overcome the chal-
lenges in scaling the physical capacity of datacenters [66, 72],
prior efforts optimized the static provisioned capacity [29,
56, 57], enable dynamic sharing of capacity using novel tech-
niques such as re-purposing remote memory [52], memory
disaggregation [47, 48], compute reconfiguration [38, 80],
etc. We complement these works by exploring a knob for dy-
narmic provisioning of memory and storage resources within
a server using polymorphic emerging memory technologies.

I. Narayanan and A. Ganesan et al.

Employing Emerging Memory Technologies: There is
a rich body of work on readily exploiting emerging memory
technologies [4, 5, 9, 11, 12, 24, 30, 41, 45, 51, 60, 61, 68] as
DRAM replacement [22, 43, 45] or extension [22, 53], stor-
age caches [16, 50] and flash/storage replacement [39]. This
includes systems and mechanisms to exploit heterogeneous
latency when employing these technologies as DRAM ex-
tension [27, 40] or storage caches [42, 59]. Further, there is a
large body of research on using byte-addressable persistent
programming techniques at the file system [19, 26, 33, 44, 46,
75, 76] and application levels [13, 18, 25, 28, 35, 70, 74, 78]
to achieve performance close to that of the raw hardware.
Complementary to such works, we exploit the polymorphic
nature of these technologies at system software level without
changes to file systems or applications to get closer to raw
hardware performance than existing transparent approaches.
Exploiting Polymorphism: Prior works [39, 49, 62, 67]
have studied EMT polymorphism. Morphable memory [62]
proposes new hardware to trade capacity for latency in PCM,
by exploiting single level (SLC) and multi level (MLC) repre-
sentations. Memorage [39] and SAY-Go [67] propose mem-
ory and file system changes to increase the effective volatile
memory capacity by using the free space from an NVM based
file system volume. In these approaches, the capacity of NVM
available for volatile memory decreases over time as the file
system is used, and is also determined only by memory pres-
sure in a two-tier architecture. In PolyEMT, we focus on a
three-tier architecture where NVM is used as a cache to SSDs
running on unmodified file systems and hardware.

7 CONCLUSION

Low tail latency of reads and writes is critical for the pre-
dictability of storage-intensive applications. The performance
and capacity gaps between DRAM and SSDs unfortunately
lead to high tail latency for such applications. Emerging
memory technologies can help bridge these gaps transpar-
ently. However, existing proposals have targeted solutions
that either benefit read or write performance but not both
since they exploit only one of the many capabilitics of such
technologies. PolyEMT on the other hand exploits several
polymorphic capabilities of EMTs to alleviate both read and
write bottlenecks. It dynamically adjusts the capacity of EMT
within each capability layer to tailor to application needs for
maximal performance. Our evaluation with a popular stor-
age benchmark shows that PolyEMT can provide substantial
improvements in throughput and tail latencies of both read
and write operations. In the future, we want to include more
forms of polymorphism like latency vs. retention.

8 ACKNOWLEDGMENTS
This work has been supporled in parl by NSF grants 1439021,
1526750 1763681, 1629129, 1629915, and 1714389.

Getting More Performance with Polymorphism from EMT

REFERENCES

[1] [n.d.]. ArangoDB. https://www.arangodb.com/.

[2] [n.d.]. Helion LZRW Compression cores. https://www.heliontech.
com/comp_lzrw.htm.

[3] [n. d.]. How to emulate Persistent Memory. https://pmem.io/2016/02/
22/pm-emulation.html/.

[4] [n.d.]. HPE Persistent Memory. https://www.hpe.com/us/en/servers/
persistent-memory.html.

[5] [n.d.]. Intel Optane/Micron 3d-XPoint Memory. http://www.intel.
com/content/www/us/en/architecture-and-technology/non-volatile-
memory.html..

[6] [n.d.]. Lightning Memory-Mapped Database Manager (LMDB). http:

/fwrww.mdb.tech/doc/.

[n. d.]. MapDB. http://www.mapdb.org/.

[n. d.]. MonetDB. https://www.monetdb.org/Home.

[n. d.]. Netlist Expressvault PCIe (EV3) PCI Express (PCle) Cache Data

Protection. http://www.netlist.com/products/vault-memory- storage/

expressvault-pcle-ev3/default.aspx.

[n. d.]. Redis. https://redis.io/.

Bulent Abali, Hubertus Franke, Xiaowei Shen, Dan E Poff, and T Basil

Smith. 2001. Performance of hardware compressed main memory.

In High-Performance Computer Architecture, 2001. HPCA. The Seventh

International Symposium on. IEEE, 73-81.

[12] AlaaR Alameldeen and David A Wood. 2004. Frequent pattern com-
pression: A significance-based compression scheme for L2 caches.
(2004).

[13] Joy Arulraj, Andrew Pavlo, and Subramanya R Dulloor. 2015. Let’s
talk about storage & recovery methods for non-volatile memory data-
base systems. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 707-722.

[14] Jens Axboe. 2014. Fio-flexible IO tester. URLhttp://freecode.com/
projects/fio.

[15] Mary Baker, Satoshi Asami, Etienne Deprit, John Ouseterhout, and

Margo Seltzer. 1992. Non-volatile memory for fast, reliable file systems.

In ACM SIGPLAN Notices. ACM, 10-22.

Meenakshi Sundaram Bhaskaran, Jian Xu, and Steven Swanson. 2013.

Bankshot: Caching slow storage in fast non-volatile memory. In Pro-

ceedings of the 1st Workshop on Interactions of NVM/FLASH with Oper-

ating Systems and Workloads. ACM, 1.

Adrian M Caulfield, Arup De, Joel Coburn, Todor I Mollow, Rajesh K

Gupta, and Steven Swanson. 2010. Moneta: A high-performance stor-

age array architecture for next-generation, non-volatile memories. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium

on Microarchitecture. IEEE Computer Society, 385-395.

[18] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
making persistent objects fast and safe with next-generation, non-
volatile memories. ACM Sigplan Notices 46, 3 (2011), 105-118.

[19] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,

Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O

through byte-addressable, persistent memory. In Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles. ACM,

133-146.

Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.

ACM, 143-154.

[21] Fernando J Corbato. 1968. A paging experiment with the multics system.
Technical Report. Massachusetts Institute of Technology.

[22] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM: A
hybrid PRAM and DRAM main memory system. In Proceedings of the

— = —
R = e
[N R

—
=
<

=

(11

—

(16

=

(17

[}

[20

=

SYSTOR 19, June 3-5, 2019, Haifa, Israel

46th Annual Design Automation Conference. ACM, 664-469.

Xiangyu Dong and Yuan Xie. 2011. AdaMS: Adaptive MLC/SLC phase-

change memory design for file storage. In Proceedings of the 16th Asia

and South Pacific Design Automation Conference. IEEE Press, 31-36.

[24] Fred Douglis. 1993. The Compression Cache: Using On-line Compres-

sion to Extend Physical Memory. Usenix Winter.

Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B Nightingale,

Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Cas-

tro. 2015. No compromises: distributed transactions with consistency,

availability, and performance. In Proceedings of the 25th Symposium on

Operating Systems Principles. ACM, 54-70.

[26] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems. ACM, 15.

[27] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, JeffJackson, and Karsten
Schwan. 2016. Data tiering in heterogeneous memory systems. In
Proceedings of the Eleventh European Conference on Computer Systems.
ACM, 15.

[28] Ru Fang, Hui-I Hsiao, Bin He, C Mohan, and Yun Wang. 2011. High
performance database logging using storage class memory. In Proceed-
ings of the 2011 IEEE 27th International Conference on Data Engineering.
IEEE Computer Society, 1221-1231.

[29] Inigo Goiri, Kien Le, Jordi Guitart, Jordi Torres, and Ricardo Bianchini.
2011. Intelligent placement of datacenters for internet services. In 2011
31st International Conference on Distributed Computing Systems. IEEE,
131-142.

[30] Erik G Hallnor and Steven K Reinhardt. 2005. A unified compressed
memory hierarchy. In High-Performance Computer Architecture, 2005.
HPCA-11. 11th International Symposium on. IEEE, 201-212.

[31] James Hamilton. [n. d.]. Overall data center costs. https://perspectives.
mvdirona.com/2010/09/overall-data-center-costs/.

[32] Sarah Harris and David Harris. 2015. Digital design and computer
architecture: arm edition. Morgan Kaufmann.

[33] YHu, Z Zhu, I Neal, Y Kwon, T Cheng, V Chidambaram, and E Witchel.
2018. TxFS: Leveraging File-System Crash Consistency to Provide
ACID Transactions. In USENIX Annual Technical Conference (ATC) .

[34] Jian ITuang, Anirudh Badam, Moinuddin K Qureshi, and Karsten
Schwan. 2015. Unified address translation for memory-mapped SSDs
with FlashMap. In ACM SIGARCH Computer Architecture News. ACM,
580-591.

[35] Jian Huang, Karsten Schwan, and Moinuddin K Qureshi. 2014. NVRAM-
aware logging in transaction systems. Proceedings of the VLDB Endow-
ment 8, 4 (2014), 389-400.

[36] Intel. 2017. Application latency comparison, Introduc-

tion to Programming with Persistent Memory from In-

tel. https://software.intel.com/en-us/articles/introduction-to-
programming-with-persistent-memory-from-intel.

Theodore Johnson and Dennis Shasha. 1994. 2Q): a low overhead high

performance bu er management replacement algorithm. In Proceedings

of the 20th International Conference on Very Large Data Bases. 439-450.

[38] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al
Borchers, et al. 2017. In-datacenter performance analysis of a tensor
processing unit. In Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on. IEEE, 1-12.

[39] Ju-Young Jung and Sangyeun Cho. 2013. Memorage: Emerging persis-
tent ram based malleable main memory and storage architecture. In
Proceedings of the 27th international ACM conference on International
conference on supercomputing. ACM, 115-126.

(23

=

(25

[}

(37

[}

SYSTOR ’19, June 3-5, 2019, Haifa, Israel

[40] SudarsunKannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
2017. Heteroos: Os design for heterogeneous memory management
in datacenter. In ACM SIGARCH Computer Architecture News. ACM,
521-534.

Rajat Kateja, Anirudh Badam, Sriram Govindan, Bikash Sharma, and
Greg Ganger. 2017. Viyojit: Decoupling battery and DRAM capacities
for battery-backed DRAM. In ACM SIGARCH Computer Architecture
News. ACM, 613-626.

Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and
Anand Sivasubramaniam. 2011. ITybridStore: A cost-efficient, high-
performance storage system combining SSDs and HDDs. In Modeling,
Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011 IEEE 19th International Symposium on. IEEE, 227
236.

Emre Kiiltirsay, Mahmut Kandemir, Anand Sivasubramaniam, and
Onur Mutlu. 2013. Evaluating STT-RAM as an energy-efficient main
memory alternative. In Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on. IEEE, 256-267.
Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 460-477.

Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009.
Architecting phase change memory as a scalable dram alternative. In
ACM SIGARCH Computer Architecture News. ACM, 2-13.

Eunji Lee, Hyokyung Bahn, and Sam H Noh. 2013. Unioning of the
buffer cache and journaling layers with non-volatile memory.. In FAST,
Vol. 13.

Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K Reinhardt, and Thomas F Wenisch. 2009. Disaggregated
memory for expansion and sharing in blade servers. In ACM SIGARCH
Computer Architecture News. ACM, 267-278.

K Lim, P Ranganathan, J Chang, C Patel, T Mudge, and S Reinhardt.
2008. Understanding and Designing New Server Architectures for
Emerging Warehouse-Computing Environments. In International Sym-
posium on Computer Architecture.

Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-
Yuan Michael Wang. 2014. NVM Duet: Unified working memory
and persistent store architecture. In n Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems.

Zhuo Liu, Bin Wang, Patrick Carpenter, Dong Li, Jeffrey S Vetter, and
Weikuan Yu. 2012. PCM-based durable write cache for fast disk I/0. In
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2012 IEEE 20th International Symposium on. IEEE,
451-458.

Thanos Makatos, Yannis Klonatos, Manolis Marazakis, Michail D
Flouris, and Angelos Bilas. 2010. Using transparent compression to
improve SSD-based I/O caches. In Proceedings of the 5th European
conference on Computer systems. ACM, 1-14.

EP MARKATOS. 1996. Implementation of a Reliable Remote Memory
Pager. In USENIX 1996 Annual Technical Conference.

Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan. 2012. Enabling efficient and scalable
hybrid memories using fine-granularity DRAM cache management.
IEEE Computer Architecture Letters 11, 2 (2012), 61-64.

Microsoft Server and Cloud Platform Team . 2015. Microsoft
Reinvents Datacenter Power Backup with New Open Compute Project
Specification. https://blogs.technet.microsoft.com/hybridcloud/2015/
03/10/microsoft-reinvents-datacenter-power-backup-with-new-
open-compute-project-specification/.

[41

—

[42

[t}

[43

=

[44

[}

[45

[}

[46

=

[47

[}

[48

[}

[49

[}

(50

=

(51

—

(52

[t}

(53

=

(54

[}

[55]

[56]

[57]

(58]

[59]

(60

=

(61

—

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70

=

(71]

I. Narayanan and A. Ganesan et al.

Timothy Prickett Morgan. 2015. NVDIMM price. https:
/Iwww.nextplatform.com/2015/12/07/nvdimm-cant-wait- for-
3d-xpoint- cant-rely-on-dram-alone/.

Iyswarya Narayanan, Aman Kansal, and Anand Sivasubramaniam.
2017. Right-Sizing Geo-distributed Data Centers for Availability and
Latency. In 2017 IEEE 37th International Conference on Distributed Com-
puting Systems (ICDCS). IEEE, 230-240.

Iyswarya Narayanan, Aman Kansal, Anand Sivasubramaniam, Bhu-
van Urgaonkar, and Sriram Govindan. 2014. Towards a leaner geo-
distributed cloud infrastructure. In 6th {USENIX} Workshop on Ilot
Topics in Cloud Computing (HotCloud 14).

Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash Sharma, Laura
Caulfield, Anand Sivasubramaniam, Ben Cutler, Jie Liu, Badriddine
Khessib, and Kushagra Vaid. 2016. SSD failures in datacenters: What?
when? and why?.In Proceedings of the 9th ACM International on Systems
and Storage Conference. ACM, 7.

Yongseok Oh, Jongmoo Choi, Donghee Lee, and Sam H Noh. 2012.
Caching less for better performance: balancing cache size and update
cost of flash memory cache in hybrid storage systems.. In FAST, Vol. 12.
Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons,
Michael A Kozuch, and Todd C Mowry. 2012. Base-delta-immediate
compression: practical data compression for on-chip caches. In Pro-
ceedings of the 21st international conference on Parallel architectures
and compilation techniques. ACM, 377-388.

Gennady Pekhimnko, Vivek Seshadri, Yoonqu Kim, Hongyi Xin, Onur
Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry.
2013. Linearly compressed pages: a low-complexity, low-latency main
memory compression framework. In Microarchitecture (MICRO), 2013
46th Annual IEEE/ACM International Symposium on. IEFE, 172-184.
Moinuddin K Qureshi, Michele M Franceschini, Luis A Lastras-
Montarfio, and John P Karidis. 2010. Morphable memory system: A
robust architecture for exploiting multi-level phase change memories.
In ACM SIGARCH Computer Architecture News. ACM, 153-162.
Moinuddin K Qureshi, Vijayalakshmi Srinivasan, and Jude A Rivers.
2009. Scalable high performance main memory system using phase-
change memory technology. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA).

Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page
placement in hybrid memory systems. In Proceedings of the interna-
tional conference on Supercomputing. ACM, 85-95.

Drew Robb. 2018. SSD and Flash in Enterprise Storage Environ-
ments. http://www.enterprisestorageforum.com/storage-technology/
ssd-in-enterprise-storage-environments.html.

Kevin Simon. 2018. Project Natick: Microsoft’s Self-sufficient Under-
water Datacenters. IndraStra Global 4, 6 (2018), 4.

Hyeonho Song and Sam H. Noh. 2018. Towards Transparent and
Seamless Storage-As-You-Go with Persistent Memory. In 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage
18). USENIX Association, Boston, MA. https://www.usenix.org/
conference/hotstorage18/presentation/song

Irina Chihaia Tuduce and Thomas Gross. 2005. Adaptive main memory
compression. In Proceedings of the annual conference on USENIX Annual
Technical Conference. USENIX Association, 29-29.

Eric Van Hensbergen and Ming Zhao. 2006. Dynamic policy disk
caching for storage networking. (2006).

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H Campbell. 2011. Consistent and durable data structures for non-
volatile byte-addressable memory. In Proceedings of the 9th USENIX
conference on File and stroage technologies. USENIX Association, 5-5.
Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.
1996. Operating system support for improving data locality on CC-
NUMA compute servers. In ACM Sigplan Notices. ACM, 279-289.

Getting More Performance with Polymorphism from EMT

[72]

(73]

(74]

[75]

[76]

(77

[}

(78

[}

[79

[}

(80]

Kashi Venkatesh Vishwanath, Albert Greenberg, and Daniel A Reed.
2009. Modular data centers: how to design them?. In Proceedings of the
Ist ACM workshop on Large-Scale system and application performance.
ACM, 3-10.

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M
Swift. 2014. Aerie: Flexible file-system interfaces to storage-class
memory. In Proceedings of the Ninth European Conference on Computer
Systems. ACM, 14.

ITaris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne:
Lightweight persistent memory. In ACM SIGARCH Computer Architec-
ture News. ACM, 91-104.

Jian Xu and Steven Swanson. 2016. NOVA: a log-structured file sys-
tem for hybrid volatile/non-volatile main memories. In Proceedings of
the 14th Usenix Conference on File and Storage Technologies. USENIX
Association, 323-338.

Jian X, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff.
2017. NOVA-Fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 478-496.

Dongliang Xue, Chao Li, Linpeng Huang, Chentao Wu, and Tianyou
Li. 2018. Adaptive Memory Fusion: Towards Transparent, Agile Inte-
gration of Persistent Memory. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 324-335.
Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A reliable and highly-available non-volatile memory
system. In ACM SIGARCH Computer Architecture News. ACM, 3-18.
Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and
energy efficient main memory using phase change memory technology.
In Proceedings of the International Symposium on Computer Architecture
(ISCA).

Yanqi Zhou, Henry Hoffmann, and David Wentzlaff. 2016. CASH:
Supporting laaS customers with a sub-core configurable architecture.
In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on. IEEE, 682-694.

[81] Jacob Ziv and Abraham Lempel. 1978. Compression of individual

sequences via variable-rate coding. IEEE transactions on Information
Theory 24, 5 (1978), 530-536.

SYSTOR 19, June 3-5, 2019, Haifa, Israel

