
0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3000415, IEEE Journal

on Selected Areas in Communications

RL-Cache: Learning-Based Cache Admission

for Content Delivery
Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, Member, IEEE, and Ramesh K. Sitaraman, Fellow, IEEE

Abstract—Content delivery networks (CDNs) distribute much
of the Internet content by caching and serving the objects
requested by users. A major goal of a CDN is to maximize the
hit rates of its caches, thereby enabling faster content downloads
to the users. Content caching involves two components: an
admission algorithm to decide whether to cache an object and
an eviction algorithm to determine which object to evict from
the cache when it is full. In this paper, we focus on cache
admission and propose a novel algorithm called RL-Cache that
uses model-free reinforcement learning (RL) to decide whether
or not to admit a requested object into the CDN’s cache. Unlike
prior approaches that use a small set of criteria for decision
making, RL-Cache weights a large set of features that include
the object size, recency, and frequency of access. We develop a
publicly available implementation of RL-Cache and perform an
evaluation using production traces for the image, video, and web
traffic classes from Akamai’s CDN. The evaluation shows that
RL-Cache improves the hit rate in comparison with the state of
the art and imposes only a modest resource overhead on the CDN
servers. Further, RL-Cache is robust enough that it can be trained
in one location and executed on request traces of the same or
different traffic classes in other locations of the same geographic
region. The paper also reports extensive analyses of the RL-
Cache sensitivity to its features and hyperparameter values. The
analyses validate the made design choices and reveal interesting
insights into the RL-Cache behavior.

Index Terms—Content delivery network; caching; cache ad-
mission; hit rate; object feature; neural network; direct policy
search; Monte Carlo sampling; stochastic optimization; traffic
class; image; video; web; production trace.

I. INTRODUCTION

Today’s Internet heavily relies on content delivery networks

(CDNs) to provide low-latency access to its content for billions

of users around the globe. A large CDN deploys hundreds of

thousands of servers worldwide so that at least some servers

of the CDN lie in each user’s network proximity. When a user

requests an object such as an image, video, or web page, the

user’s request goes to a nearby server of the CDN [1]. If the

cache of the CDN server stores the requested object, i.e., a

hit happens, the user promptly receives the object from the

server’s cache. On the other hand, if the requested object is

The first two authors contributed equally to the paper.
Vadim Kirilin started this research at IMDEA Networks Institute, Spain

and is currently with Yandex LLC, Russia (email: durrdurr@yandex-team.ru).
Aditya Sundarrajan performed this research at the University of Massachusetts
Amherst, USA and is currently with Facebook, Inc., USA (email: asun-
dar@cs.umass.edu). Sergey Gorinsky is with IMDEA Networks Institute,
Spain (email: sergey.gorinsky@imdea.org). Ramesh K. Sitaraman is with the
University of Massachusetts Amherst and Akamai Technologies, Inc., USA
(email: ramesh@cs.umass.edu).

This research was supported in part by the Regional Government of
Madrid (grant P2018/TCS-4499, EdgeData-CM) and U.S. National Science
Foundation (grants CNS-1763617 and CNS-1717179).

not in the server’s cache, i.e., a miss occurs, the CDN server

delivers the object to the user after fetching the object from

the content provider’s origin server, and the delivery might be

slow because the origin server might be far away.

Decreasing the user-perceived latency of content delivery

constitutes the main goal of the CDN. Hence, the CDN strives

to maximize the server’s hit rate defined as the percentage of

requests that are served straight from the cache. When the

CDN server receives an object request, the server might need

to make admission and eviction decisions. If the request is

a miss, the server must decide whether to admit the fetched

object into the cache. Furthermore, if the server decides to

cache the fetched object, and the cache is already full, the

server must decide which object(s) it should evict from the

cache to make space for the new arrival. For example, Least

Recently Used (LRU) is a simple eviction policy that discards

the least recently served object. Major CDNs employ LRU

and its variants, such as Segmented LRU (SLRU) [2], for

cache eviction. Researchers have proposed a large number of

more sophisticated eviction algorithms that are more difficult

to implement in practice, e.g., Greedy-Dual-Size-Frequency

(GDSF) [3]. The work on admission algorithms is less exten-

sive and includes SecondHit [4] and AdaptSize [5].

Our goal is to investigate whether Machine Learning (ML)

techniques can increase cache hit rates in typical CDN pro-

duction settings, without adding excessive overhead or re-

quiring major software changes. This paper examines ML-

based algorithms for cache admission, leaving the question

of eviction improvement for future work. Despite the exten-

sive prior research on cache eviction, nearly all production

content caches – including Akamai caches [6], Varnish [7],

Memcached [8], and Nginx [9] – use LRU variants as their

default eviction algorithm. LRU’s popularity arises due to

easy implementation combined with very good hit rates in

production settings. Consequently, similar to the state-of-

the-art AdaptSize admission algorithm, we assume LRU as

the eviction algorithm throughout our paper. Our work is

complementary to recent ML-based caching proposals that

learn popularity of objects and/or determine the cache eviction

order, e.g., DeepCache [10] and PopCache [11].

Our Contributions. We formulate cache admission as a

model-free Reinforcement Learning (RL) problem and solve

it via direct policy search that combines Monte Carlo (MC)

sampling and stochastic optimization. Unlike prior works that

require complex object ordering and eviction strategies, our

goal is to create a simple practicable cache-admission front

end for an existing CDN server. This approach is easier

to implement in a production setting because such cache-

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 20,2020 at 00:11:40 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3000415, IEEE Journal

on Selected Areas in Communications

ject within a fixed time interval. SecondHit employs a Bloom

filter as a front end of the cache to track objects that have

been requested before. Another frequency-based approach is

TinyLFU [16]. AdaptSize [5] is a size-based admission policy

that uses a Markov model to adjust a threshold for the size of

admitted objects. Unlike the previous work that considers one

or two features of requested objects, our RL-Cache algorithm

combines a broader set of eight features from the frequency,

size, and recency classes to make an admission decision.

Previous ML-based caching solutions, which also com-

monly focus on eviction policies, optimize for proxy metrics of

the hit rate. For example, DeepCache uses popularity predic-

tion to prefetch popular objects into the cache [10]. PopCache

caches objects with popularity-dependent probabilities [11].

FNN-based caching [17], NNPCR-2 [18], and KORA-2 [19]

also rely on popularity prediction. LFO [20] uses supervised

learning to make admission decisions by mapping object

features to optimal decisions learned offline.

RL-Cache differs from some of the above ML-based

schemes in optimizing for the hit rate directly, rather than

via a proxy metric such as object popularity. Our design

aligns perfectly with the RL paradigm because cache hits

constitute a natural form of RL rewards. RL-Cache combines

MC sampling with stochastic optimization to search directly

for a policy that maximizes the hit rate. Further, RL-Cache

focuses on cache admission, which is easier to implement as

a front end for an existing CDN cache. In addition, much

of the prior work uses less realistic traffic assumptions, such

as uniform object sizes or synthetic workloads that do not

accurately capture characteristics of real-world traffic classes

in a CDN. Finally, some prior schemes require functionality

that is hard to implement efficiently, such as creation of

fake requests for popular objects [10] or modification of the

eviction order based on object popularity [18].

III. RL-CACHE

We follow the RL paradigm because of its natural fit

with the cache-admission problem. In RL, an agent acts on

the current state to maximize the sum of discounted future

rewards that arise from the action [21]. The sequential decision

making in model-free RL is highly suitable for networking

problems in general because of the common necessity to make

a sequence of online decisions in an uncertain environment

where benefits from the made decisions become clearer only

as time progresses further [22], [23]. Additionally, cache

admission has special traits that make the problem more

amenable to RL. Whereas formulation of some networking

problems in terms of actions and rewards of the RL paradigm

is far from straightforward [24], [25], cache admission submits

itself to a natural RL formulation where admission decisions

represent RL actions, and cache hits constitute RL rewards. In

formulating and solving the problem, we keep close attention

to the imposed computation overhead so that the derived

solution is not only effective but also practical.

A. Feature Selection

Before formulating the cache-admission problem in RL

terms, we select features u to characterize objects in a re-

Feature Meaning

sj Size of object j in bytes

hj Temporal recency, time in seconds since the previous request
for object j

ηj Exponential smoothing of hj so far

dj Ordinal recency, the number of all requests for objects since
the previous request for object j

δj Exponential smoothing of dj so far

fj Frequency, the fraction of requests for object j among all
requests so far

fj/sj Ratio of the frequency to size for object j

fj · sj Product of the frequency and size for object j

TABLE I: Features in our model.

quest trace. Caching algorithms typically describe a requested

object with features belonging to the following three classes:

(1) object size, (2) request recency, and (3) request frequency.

The algorithms use these feature classes in either isolation

or combination. For example, AdaptSize considers only the

object size, LRU relies on recency, SecondHit is based on

frequency, and GDSF combines the size and frequency. The

strength of our approach is in simultaneously considering a

broad set of eight features from these three classes, as defined

in Table I. Compared to the object size, request recency is

a vaguer notion amenable to diverse definitions. For instance,

when exactly the same temporal gap separates two consecutive

requests for object j, the number of all requests for objects

between the two requests for object j can be very different

depending on whether the other object requests arrive in the

trace sparsely or in a burst. Besides, recency is different if

defined with respect to the most recent request for object j
as opposed to a series of such recent requests. Hence, we

consider four recency features: temporal recency hj , ordinal

recency dj , and their exponentially smoothed variants ηj
and δj . Furthermore, a combination of primitive features might

result in learning a dramatically different algorithmic behavior.

Thus, we mix size sj and request frequency fj to also consider

combined features fj/sj and fj · sj . Later in the paper,

we thoroughly evaluate the sensitivity of RL-Cache to the

selection of features.

B. RL Problem Formulation

In our RL formulation of the cache-admission problem, a

state is a vector of object features. An action on the state refers

to a decision whether to admit the requested object into the

cache. To tremendously reduce the computation overhead, the

state excludes cache occupancy because this allows RL-Cache

to precompute the action probabilities for states and thereby

avoid repeated computation of the probabilities for each run-

time cache occupancy during the model training. Immediate

reward ri for an action signals whether the next request is a

cache hit or miss. Then, we express the return as:

R =
∞
X

i=1

γiri (1)

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 20,2020 at 00:11:40 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3000415, IEEE Journal

on Selected Areas in Communications

where γ denotes the discount factor of future rewards. The

objective is to design an RL algorithm so that its policy

function of states and actions maximizes the expected return,

which directly corresponds to maximizing the expected hit rate

of the cache.

C. Narrowing Down the RL Approach

One can roughly classify model-free RL algorithms into TD

(Temporal Difference), MC (Monte Carlo), and DPS (Direct

Policy Search) types [26]. To narrow down our approach

within the RL paradigm, we gear the design towards specifics

of the formulated cache-admission problem. Because RL states

are just the features of requested objects, an action on the

current state has an extremely weak correlation with the

immediate reward in the next state: the action of admitting the

currently requested object triggers an immediate hit only when

the next request is for the same object, which is extremely

rare in real CDN request traces. Q-learning [27], and other

TD algorithms that rely on bootstraping [21], might estimate

action values too imprecisely under such noisy reward signals.

Indeed, our experimentation with Q-learning reveals no signif-

icant improvements in the hit-rate performance compared to

the state-of-art non-ML algorithms.

A potential direction for tackling the challenge of extremely

noisy rewards is to adopt a different kind of rewards than cache

hits. However, it is unclear how to design more informative

rewards. The various rewards that we can think of require

significant computation time, e.g., logarithmic in the number

of cached objects. Due to the excessive computation overhead,

we dismiss this direction and keep using cache hits as rewards.

An alternative is an MC learning algorithm that updates

an action value based on longer sequences of state-action

pairs. Such an algorithm observes the sequence-long returns

of all sampled sequences and uses the average return for

updating the action value. The drawbacks of MC learning

algorithms include large overhead of computing the returns

over long sequences to update only one state-action pair as

well as vulnerability to high variance in the returns. Similarly

to Q-learning, the MC learning algorithms in our experiments

perform weakly.

Hence, we turn to and follow the DPS approach. Our RL-

Cache algorithm also simulates long sequences of state-actions

and records their sequence-long returns. Instead of averaging

the returns to update one state-action pair as in the MC

learning algorithms, RL-Cache utilizes the individual returns

to segregate a subset of sequences with high returns and then

leverages this subset to directly search for a better policy in the

policy space. We represent a policy as a feedforward neural

network that computes admission probability A(u,w) ∈ [0, 1]
as a function of features u of the requested object (which

capture the state) and weights w of the neural network. Our

training algorithm employs the neural network to simulate suf-

ficiently many sequences of admission decisions (i.e., actions)

and then adjusts the neural-network weights to learn a new

policy on a high-performance subset of these sequences.

Note that RL-Cache is a DPS algorithm where MC sampling

serves a different role than in MC learning algorithms. The

latter consider all generated samples to update the state-action

pair without bias. On the other hand, RL-Cache deliberately

considers only high-return samples to steer its direct search

towards a policy that reproduces actions leading to maximal

rather than average returns. Later in the paper, we quantify

the performance benefits of this intentional bias. Within the

DPS paradigm, RL-Cache aligns closely with the CE (Cross-

Entropy) method which also combines MC sampling and

stochastic optimization [28].

D. Neural-Network Architecture

The network architecture in our solution is a fully connected

ANN (Artificial Neural Network) with ELU (Exponential

Linear Unit) activation functions in each of its five hidden

layers. We select ELU over ReLu (Rectified Linear Unit) and

Leaky ReLu to resolve the zero-gradient problem of ReLu

on negative inputs without introducing the potential result

inconsistency under Leaky ReLu [29]. With n denoting the

number of neurons in the input layer, the l-th hidden layer

contains 5(6 − l)n neurons, i.e., the hidden layers narrow

linearly along the forward pass. To avoid overfitting, we apply

L2 regularization as it can provide better generalization in

RL than with dropout or batch normalization [30]. While the

eight features selected in Subsection III-A are continuous, we

quantize their value spaces into ten or less bins and use each

bin value as an ANN input. For each feature, additional inputs

similarly discretize its historical version that exponentially

weights the feature value over the history of object requests (as

we noticed later, benefits from this extension were relatively

low, and it could be removed to make the network smaller).

Thus, n in our network is at most 8 · 10 · 2 = 160 inputs. The

output layer uses the softmax activation function and contains

two neurons that produce probabilities for the two respective

outcomes of admitting or not admitting the requested object

into the cache. Based on limited experimentation, our choice

of the above ANN architecture strives to support effective

learning on moderate computing resources, rather than to

identify an optimal network design.

E. Training Algorithm

The objective of the training algorithm is to adjust

weights w of the neural network so that the admission prob-

abilities computed for object requests by the network realize

a cache-admission policy with the maximum hit rate. Even

though we envision training RL-Cache in the cloud, periodi-

cally and not in real time, the computation overhead remains

a key consideration and guides our design choices. RL-Cache

learns at the granularity of multiple consecutive requests,

rather than a single request, simulates many sequences of

admission decisions for every considered sequence of requests,

and evaluates each of these admission-decision sequences by

computing its long-term hit rate.

More specifically, we train the network on a window of K
consecutive requests and slide the window along the training

trace by K requests at a time. As the window slides from

the beginning to the end of the training trace, the algorithm

keeps updating weights w. To compute the return for any

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 20,2020 at 00:11:40 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3000415, IEEE Journal

on Selected Areas in Communications

RL-Cache @ Ericsson KISS, Budapest, Hungary

. . .
Window of K requests

Trace

p samples with

highest hit rates

not converged

m samples

of admission

decisions for

the window

Admission decisions

with discounted rewards

for L extra requests

Sampling

. . .

Learning

Weights w

5 September 2019

• Sliding to the next window

• Refilling the cache every q windows

converged

Selection

Fig. 2: Training algorithm of RL-Cache.

sample sequence of K admission decisions generated for a

K-request window, we also simulate admission decisions for

the L requests that immediately follow this window. Thus, the

return computation for the sample of K admission decisions

considers an extended sequence of K+L admission decisions.

Depending on whether the next request after the i-th decision

in the sequence is a cache hit or miss, we express immediate

reward ri for this decision as:

ri =

(

1

K+L
for a cache hit,

0 for a cache miss.
(2)

The first K immediate rewards in the extended sequence

contribute to the return without a discount, i.e., one can view γ

for these “native” immediate rewards as equal to 1. The return

contributions by the last L rewards are discounted with factor

γ between 0 and 1, which is common for future rewards in RL.

We consider any rewards further in the future as negligible.

With this, the return for the K-decision sample becomes:

R =

K
P

i=1

1hits(reward i) +
K+L
P

i=K+1

γi−K
1hits(reward i)

K + L
(3)

where 1 is an indicator function. This return captures the long-

term hit rate of the admission-decision sample. We refer to

the γL factor of the last of these K +L contributing rewards

as hyperparameter c and derive γ from c. The training algo-

rithm uses the extra L admission decisions in each extended

admission-decision sequence solely to compute return R of

the “native” K-decision sample.

Figure 2 describes how the training algorithm operates in

each position of the K-request window. The operation consists

in iterating over three steps. The first step uses MC sampling

to generate m admission-decision sequences, with each sample

containing K admission decisions. Then, the second step of

the iteration selects the p-th percentile of these K-decision

samples with the highest returns (computed over the extended

sequences of K + L admission decisions) to steer the policy

search towards an optimal policy with the maximum hit rate.

The final third step utilizes the selected K-decision samples

for learning the new policy via the backpropagation algorithm

that uses binary cross-entropy loss as the loss function [31].

The three-step iterations continue until the neural-network

weights converge. Upon the convergence within a threshold

(or when the number of iterations reaches an upper bound),

the algorithm slides the window to the next K requests in

the training trace. In the expected case when L exceeds 0,

the extended admission-decision sequences of consecutive

windows overlap, thereby connecting the consecutive learning

episodes. Because the neural-network weights change as the

window slides along the training trace, the cumulative effect of

the weight changes might undermine the training effectiveness.

Thus, the training algorithm simulates refilling the cache after

every q windows under the current weights for all the requests

from the beginning of the trace.

The presented training algorithm gears its design choices

towards specifics of the cache-admission problem. Regardless

of these adjustments, RL-Cache is essentially a CE algorithm

and has the same theoretical properties as the general CE

method [28]. Also despite the various design optimizations, the

training algorithm is computationally intensive. We envision

the training to be periodically performed in the cloud, with an

updated version of the trained network provided to the CDN

server at the end of each period.

F. Real-Time Operation

Whereas the training of RL-Cache is computationally inten-

sive, the usage of RL-Cache to make online cache-admission

decisions is simple and can be done efficiently in real time

without a significant demand on the resources in the CDN

server. Upon receiving a request for an object, the CDN server

applies the trained neural network to the object features to

compute the admission probability for the request and then

rounds the computed probability to 1 or 0 to decide whether

to admit or not to admit the requested object into the cache.

G. Implementation

We implement RL-Cache using the TensorFlow library [32]

without requiring any extensions. Our implementation is pub-

licly available with open access at its GitHub repository [12].

The implementation of RL-Cache in the cache server main-

tains a database with feature statistics, which are needed to

compute the frequency and recency metrics, and applies the

most recently obtained neural network to arriving requests.

Upon receiving an object request, the cache computes the

features of the object, updates the feature-statistics database,

and uses the neural network to make an admission decision

for the object. The usage of the neural network contributes the

most to the processing overhead imposed by RL-Cache on the

cache.

To keep the neural-net processing overhead low, our RL-

Cache implementation leverages pipelining and batching. RL-

Cache is invoked only for those requests that result in a cache

miss and trigger fetching of the missed object from its origin

over the WAN, with typical fetching latency above 100 ms.

Further, RL-Cache makes admission decisions asynchronously

with serving the requested object to the user, since the server

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 20,2020 at 00:11:40 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3000415, IEEE Journal

on Selected Areas in Communications

sj fj fj · sj fj/sj hj ηj dj δj

sj 1.00 -0.02 0.07 -0.20 0.03 0.01 0.02 0.00

fj -0.02 1.00 1.00 0.66 0.19 0.30 0.34 0.41

fj · sj 0.07 1.00 1.00 0.64 0.19 0.30 0.35 0.41

fj/sj -0.20 0.66 0.64 1.00 -0.14 -0.10 -0.04 0.00

hj 0.03 0.19 0.19 -0.14 1.00 0.90 0.97 0.87

ηj 0.01 0.30 0.30 -0.10 0.90 1.00 0.93 0.98

dj 0.02 0.34 0.35 -0.04 0.97 0.93 1.00 0.95

δj 0.00 0.41 0.41 0.00 0.87 0.98 0.95 1.00

A) EU-video trace

sj fj · sj fj fj/sj hj ηj dj δj

sj 1.00 0.6 0.08 -0.4 0.05 0.05 0.06 0.06

fj · sj 0.6 1.00 0.84 0.47 0.35 0.42 0.47 0.50

fj 0.08 0.84 1.00 0.86 0.41 0.49 0.55 0.58

fj/sj -0.4 0.47 0.86 1.00 0.28 0.35 0.40 0.43

hj 0.05 0.35 0.41 0.28 1.00 0.95 0.97 0.94

ηj 0.05 0.42 0.49 0.35 0.95 1.00 0.97 0.98

dj 0.06 0.47 0.55 0.40 0.97 0.97 1.00 0.98

δj 0.06 0.50 0.58 0.43 0.94 0.98 0.98 1.00

B) US1-image trace

TABLE IV: Pearson correlation coefficients for all pairs of the eight features on the first 20M requests of two traces.

RL-Cache on US1-web, US2-web, or US1-video, Figure 16

shows that the hit rate on US1-web remains about the same.

Hence, we can train RL-Cache in one location and run the

algorithm on traces of the same or different traffic classes in

other locations of the same geographic region.

We also consider scenarios where the training is done on

a different continent. Figure 17 reveals that the hit rate on

US1-web degrades significantly when RL-Cache is trained on

EU-video rather than US1-web. The degradation is smaller

when the traffic class is kept the same, as shown for the hit

rate on US1-video when we train RL-Cache on EU-video

rather than US1-video. Swapping the training and testing

locations, Figure 17 also reports substantially lower hit rates on

EU-video when RL-Cache is trained on US1-video or US1-

web rather than EU-video. While the robustness across the

continents is weak, the CDN can improve the scalability of

its operation by training RL-Cache on a subset of the servers

in the same geographic region, rather than across geographic

regions.

C. Processing Overhead of RL-Cache

This section evaluates how effectively our RL-Cache im-

plementation leverages modern multi-core CPUs and GPUs

to keep the per-request neural-net processing overhead low.

Figure 18 depicts the impact of the batch mode on the

neural-net processing overhead. As the batch size increases,

we use the same number of cores as the batch size until

utilizing all the cores. Whereas the separate processing of

each request takes 620 µs and 510 µs on an AMD Ryzen

7 1700X CPU (which has 16 cores with 64 threads) and

GeForce GTX 1080 Ti GPU (with 3584 cores) respectively, the

corresponding per-request overhead with 1024-request batches

falls to 64 µs and 4 µs on the CPU and GPU. Such low per-

request neural-net overhead already empowers modern cache

servers to sustain their current rates of request processing.

When batches are sized to 4096 requests, the per-request

neural-net processing time becomes 16 µs and 4 µs for the

CPU and GPU respectively.

D. Sensitivity to Features

In the above evaluation, RL-Cache uses the full set of its

eight features presented in Table I. To understand how the

selection of features affects the hit-rate improvements provided

by RL-Cache, this section first examines correlation between

the features, then quantifies feature importance, and finally

assesses the RL-Cache performance on smaller sets of features.

1) Feature Correlation: Table IV-A reports Pearson corre-

lation coefficients for all pairs of the eight features on the first

20M requests of the EU-video trace. Expectedly, frequency fj
has high positive correlation with features fj · sj and fj/sj
that combine the frequency with size sj of object j. Also as

expected, each pair formed among four recency metrics hj ,

ηj , dj , and δj exhibits strong positive correlation.

Table IV-B similarly evaluates Pearson correlation coeffi-

cients for the US1-image trace. Frequency fj is strongly

correlated with either fj · sj or fj/sj . On the other hand,

correlation between fj · sj and fj/sj is weaker than in the

EU-video trace. Besides, size sj is strongly correlated with

fj · sj whereas such correlation does not exist in EU-video.

To understand the latter result, we compare Figure 4 with

Figure 13 and observe that while the object sizes in US1-image

differ by two orders of decimal magnitude, almost all objects

in EU-video have the same size. Hence, it is not surprising that

fj · sj and sj do not exhibit strong correlation in EU-video.

The above feature-correlation studies prompt a hypothesis

that RL-Cache might be able to sustain its performance when

operating with a reduced set of three features representing

the size, frequency, and recency classes. Later in this section,

we evaluate this hypothesis. Specifically, we consider a basic

feature set that consists of size sj , frequency fj , and temporal

recency hj .

2) Feature Importance: We now assess importance of fea-

tures for admission decisions made by RL-Cache. Again, we

consider the EU-video and US1-image traces. The weights of

the neural network unfortunately do not shed light on feature

importance. To estimate the impact of each feature, we em-

ploy an algorithm that natively calculates feature importance.

While decision trees constitute a reasonable choice for such

estimation, their generalization ability might be insufficient for

reproducing the output of the neural network, and we instead

use random forests [33] as a proxy for the model. Because

random forests depend on the initial seed, each run of the

algorithm might produce different feature-importance values.

To tackle this issue, we run random forests multiple times with

different initial seeds on different portions of the trace.

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 20,2020 at 00:11:40 UTC from IEEE Xplore. Restrictions apply.

0733-8716 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2020.3000415, IEEE Journal

on Selected Areas in Communications

a smaller number of generated decision samples induces

lower computational overhead on each step of any sampling-

selection-learning iteration, smaller m values are preferable.

Overall, the sensitivity analysis points toward generating a

relatively small number of decision samples.

(p) Percentage of the samples selected for learning. The

selection step of the RL-Cache training algorithm segregates

the top pth percentile of the generated decision samples with

the highest hit rates and utilizes the segregated samples for

learning. Figure 26 reports the average hit rate and training-

accuracy dynamics for the p values of 1%, 5%, 10% (default),

20%, and 50%. Selecting the top half of the generated samples

yields the lowest average hit rate. This is consistent with our

above observation for hyperparameter m: expanding the seg-

regated pool with samples that have lower hit rates interferes

with effective learning of an admission strategy that maximizes

the average hit rate. Besides, the setting of p = 50% exhibits

the slowest accuracy convergence: not only the training span

needs to be the longest for the accuracy to rise to the same

level but also the computational overhead of any sampling-

selection-learning iteration is the highest due to dealing with

the largest number of samples at the learning step.

On the other hand, the smallest examined setting of p =
1% results in a low average hit rate as well. We attribute

this to overfitting to the small set of decision samples and,

consequently, not being able to predict future near-optimal

admission decisions reliably. The sensitivity study indicates

that intermediate p settings around the default value of 10%

are preferable because of providing a high average hit rate

without imposing a large training overhead.

(q) Number of subsequent windows for the cache refill.

Hyperparameter q specifies how frequently the RL-Cache

training algorithm refills the cache to keep the cache state

close to what it would have been if the most recently learned

admission strategy were used from the very beginning. The

design incorporates this hyperparameter with the expectation

that smaller q values should yield higher hit rates. Figure 27

depicts a rather different outcome. While the larger q values

of 10 and 100 windows indeed provide lower hit rates than

the default q setting of 4 windows, the hit rate is the lowest

with the smallest q value of 1 window. Across all examined

q values, the qualitative pattern of the accuracy convergence

remains similar. Because simulating a cache refill imposes an

extra computational overhead, larger q values are preferable.

Overall, refreshing the cache state every 4 windows or so

seems appropriate.

To sum up, the above extensive sensitivity analyses justify

the relevance of all six hyperparameters and corroborate that

their default values constitute a near-optimal configuration

for RL-Cache. The sensitivity studies also offer various in-

teresting insights into the RL-Cache behavior. Sizing of the

window presents a trade-off between the training effort and

hit rate delivered by the accurately trained network. The

consideration of additional subsequent requests to compute

the hit rates of decision samples improves the average hit-

rate performance. However, looking too far ahead into the

future is counterproductive. The sampling and selection steps

of the RL-Cache training algorithm are subject to a balance

between (a) identifying samples with sufficiently high hit rates

to enable effective learning that maximizes the average hit rate

and (b) keeping the pool of such samples sufficiently diverse

to avoid overfitting. While the cache refilling helps in general,

it should not be done for every window.

V. CONCLUSION

This paper designed and evaluated RL-Cache, an algorithm

that applies model-free RL to cache admission in an edge CDN

server. RL-Cache relies on direct policy search that combines

MC sampling with stochastic optimization to maximize the

cache hit rate. The algorithm considers a broad set of features

including the object’s size, frequency, and recency characteris-

tics. Our publicly available RL-Cache implementation supports

batch processing of requests to keep the processing overhead

low. Our evaluation used Akamai’s production traces from the

image, video, and web traffic classes. We introduced the notion

of active bytes to characterize the cache size needed to achieve

a high hit rate on a trace. Our results for different cache

sizes showed that RL-Cache performed better than, or at least

as well as, state-of-the-art admission algorithms. Thus, RL-

Cache is highly suitable for production settings where request

patterns and cache partitions for traffic classes vary.

We extensively evaluated sensitivity of RL-Cache to various

factors, such as the location and traffic class used for its

training and/or execution. The evaluation showed that the CDN

can operate scalably by training RL-Cache in one location

and running the algorithm on traces of the same or different

traffic classes in other locations of the same geographic

region. Also, after assessing feature correlation and feature

importance, we considered promising reduced sets of object

features and determined that RL-Cache achieves the best hit-

rate performance when using the full set of its eight features.

Our analysis of the RL-Cache sensitivity to its hyperpa-

rameter values unveiled interesting insights into the algorithm

behavior. We showed that choosing the window size was

subject to a trade-off between the training effort and hit

rate provided by the accurately trained network. While RL-

Cache improved its average hit-rate performance by involving

extra subsequent requests into calculation of the hit rates

for decision samples, looking too far into the future had

a negative effect. The training algorithm faced the tension

between the need to learn from samples with sufficiently high

hit rates and the danger of overfitting when the pool of samples

selected for the learning step was insufficiently diverse. We

also demonstrated that refilling of the cache according to the

latest learned admission strategy was useful if not done too

frequently.

This paper constitutes a good first step that opens ways

for generalizing the RL-Cache algorithm to cache eviction,

distributed caching in multiple servers, and joint optimization

of caching and cache deployment [34]. Complementing the

reported results on feature importance, we plan to work on

better explainability of RL-Cache admission decisions via

techniques used in [35] and more recent approaches [23].

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 20,2020 at 00:11:40 UTC from IEEE Xplore. Restrictions apply.

