
67

From Theory to Practice: Improving Bitrate Adaptation

in the DASH Reference Player

KEVIN SPITERI, University of Massachusetts, Amherst

RAMESH SITARAMAN, University of Massachusetts, Amherst & Akamai Technologies

DANIEL SPARACIO, CBS Interactive

Modern video streaming uses adaptive bitrate (ABR) algorithms that run inside video players and continu-

ally adjust the quality (i.e., bitrate) of the video segments that are downloaded and rendered to the user. To

maximize the quality-of-experience (QoE) of the user, ABR algorithms must stream at a high bitrate with low

rebuffering and low bitrate oscillations. Further, a good ABR algorithm is responsive to user and network

events and can be used in demanding scenarios such as low-latency live streaming. Recent research papers

provide an abundance of ABR algorithms but fall short on many of the above real-world requirements.

We develop Sabre, an open-source publicly available simulation tool that enables fast and accurate simula-

tion of adaptive streaming environments. We empirically validated Sabre to show that it accurately simulates

real-world environments. We used Sabre to design and evaluate BOLA-E and DYNAMIC, two novel ABR algo-

rithms. We also developed a FAST SWITCHING algorithm that can replace segments that have already been

downloaded with higher-bitrate (thus, higher-quality) segments. The new algorithms provide higher QoE to

the user in terms of higher bitrate, fewer rebuffers, and lesser bitrate oscillations. In addition, these algorithms

react faster to user events such as startup and seek, and they respond more quickly to network events such as

improvements in throughput. Further, they perform very well for live streams that require low latency, a chal-

lenging scenario for ABR algorithms. Overall, our algorithms offer superior video QoE and responsiveness

for real-life adaptive video streaming, in comparison to the state-of-the-art. Importantly, all three algorithms

presented in this article are now part of the official DASH reference player dash.js and are being used by video

providers in production environments. While our evaluation and implementation are focused on the DASH

environment, our algorithms are equally applicable to other adaptive streaming formats such as Apple HLS.

CCS Concepts: • Information systems → Multimedia streaming;

Additional Key Words and Phrases: Video streaming, video QoE, bitrate adaptation

A preliminary version of this article appeared in ACM Multimedia Systems Conference, 2018 [21].

This work was performed when Daniel Sparacio was at Akamai Technologies.

This work is supported in part by the NSF under Grants No. CNS-1413998 and No. CNS-1763617.

Authors’ addresses: K. Spiteri, College of Information and Computer Sciences, University of Massachusetts Amherst,

Computer Science Building, 140 Governors Drive, Amherst, MA 01003, USA; email: kspiteri@cs.umass.edu; R. Sitaraman,

College of Information and Computer Sciences, University of Massachusetts Amherst, Computer Science Building, 140

Governors Drive, Amherst, MA 01003, USA & Akamai Technologies, 150 Broadway, Cambridge, MA 02142, USA; email:

ramesh@cs.umass.edu; D. Sparacio, CBS Interactive, 235 Second Street, San Francisco, CA 94105, USA; email: daniel.

sparacio@cbsinteractive.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1551-6857/2019/07-ART67 $15.00

https://doi.org/10.1145/3336497

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:2 K. Spiteri et al.

ACM Reference format:

Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From Theory to Practice: Improving Bitrate

Adaptation in the DASH Reference Player. ACM Trans. Multimedia Comput. Commun. Appl. 15, 2s, Article 67

(July 2019), 29 pages.

https://doi.org/10.1145/3336497

1 INTRODUCTION

Online video viewership is growing at a rapid pace and video traffic now dominates the Internet.
Videos accounted for 75% of all Internet traffic (both business and consumer) in 2017 and that
share is predicted to increase to 82% by 2022 [3]. The rapid increase in online video viewership
has resulted in a major rise in the diversity of users who watch videos. Users use a wide range of
devices to watch videos, including Internet-enabled televisions, desktops, tablets, and cell phones.
Further, they are connected to the Internet with widely different data rates. Such connections
include multiple generations of cellular technology, WiFi, cable, DSL, and fiber-to-the-home.
Video providers are equally diverse and include movie sites (such as Hulu and Netflix), news

portals (such as CNN and BBC), social networks (such as Facebook), and live sports channels
(such as ESPN and MLB). The quality of experience (QoE) of users who watch videos is a central
concern for video providers. Recent research [7, 15] has underscored the impact of poor video QoE
on users. It is known that a video that starts up slowly, or rebuffers (i.e., freezes) in the middle, or
plays at a low quality (i.e., bitrate) can lead users to abandoning the video or watching less of it.
Consequently, video providers who rely on engaging their audience for their business goals place
strong emphasis on providing a high QoE for their users.
Maximizing the QoE of the user involves factors that are often in conflict. On the one hand,

it is desirable to play the video at the best quality at the highest encoded bitrate. On the other
hand, it is also desirable to play the video continuously without the freezes caused by rebuffering.
However, these two factors can conflict. For instance, playing the video at high-definition (HD)
quality at a few Mbps provides a richer experience than playing it at standard definition (SD) of
a few hundred kbps. However, playing a video at a high bitrate that is more than the sustainable
network throughput between the server and the client (i.e., video player) will cause the client to re-
buffer, since the client is unable to download the video at the rate at which it is being played. Thus,
providing good QoE requires dynamically adapting the video bitrate to the network throughput,
providing the highest video quality without rebuffering.

1.1 Adaptive Video Streaming

Adaptive video streaming is a popular approach for adapting the video presentation to the user’s
device and connectivity. In this approach, each video is partitioned into segments where each seg-
ment corresponds to a few seconds of play. Each segment is encoded in a number of different
bitrates to accommodate the vastly different devices and network connectivities. Video bitrates
range widely from 4K quality (∼25Mbps) to SD quality (∼ few hundred kbps). When a client plays
a video, it fetches the segments in sequence over HTTP. An adaptive bit rate (ABR) algorithm that
is executed within the client can vary the bitrate of each downloaded segment in accordance with
the current network throughput. Specifically, during the course of the video playback, the client
steps down the bitrate when the network connection degrades and steps up the bitrate to provide
a richer experience when the network improves.
To prevent video freezes, the client has a buffer that can store a number of segments. The client

prefetches segments from the server ahead of when they need to be played out and stores them in
the buffer. The segments are removed from the buffer in FIFO order and played out for the user.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:3

If the buffer is empty and there are no more segments to play out, then the video playback must
freeze until the next segment is received, resulting in a rebuffering event.

1.1.1 ABR Algorithms. The design and implementation of ABR algorithms is the focus of our work.

A key goal of the ABR algorithm is to play the video at the highest bitrates without rebuffering. To
achieve that end, the ABR algorithm carefully orchestrates what segments are downloaded, when,
and at what bitrates. Additionally, ABR algorithms also attempt to minimize bitrate oscillations
where the bitrates are switched frequently causing the user to perceive frequent changes in video
quality. ABR algorithms have received significant attention in recent years and are classified into
three broad categories: throughput-based, buffer-based, and hybrid schemes.

(1) Throughput-based algorithms work by estimating the network throughput available be-
tween the client and server and using that estimate to decide on the bitrate of next segment
that is to be downloaded. Such algorithms include Festive [14], PANDA [16], and Squad

[29].
(2) Buffer-based algorithms predominantly use the level to which the buffer is full to decide

on the bitrate of the next segment. Note that the buffer level is an (indirect) indicator of
network throughput, as a lower (respectively, higher) buffer level would indicate that the
network throughput has recently been less (respectively, more) than anticipated. Thus, a
buffer-based algorithm would choose a higher bitrate when the buffer level is higher and
lower if buffer level is lower. Such algorithms include BBA [13] and BOLA [22].

(3) Hybrid algorithms use both throughput prediction and buffer levels in an attempt to ex-
ploit the advantages of both. Such algorithms include ELASTIC [6], MPC [30], and ABMA+ [2].

1.1.2 Adaptive Video Streaming Formats. A significant fraction of the world’s online videos
uses HTTP adaptive streaming (HAS). The popular proprietary formats include Apple HTTP Live
Streaming (HLS) [19], Microsoft Smooth Streaming [31], and AdobeHTTPDynamic Streaming [1].
In 2012, the International Organization for Standardization (ISO) ratified a new open standard for
adaptive video streaming called MPEG-DASH (or, simply, DASH) [23]. While both the proprietary
formats and DASH are similar in technology, DASH has enormous potential for being the single
open standard that could replace multiple proprietary standards in the future.
The significant potential of DASH has brought together most of the major players in the video

industry together to form the DASH Industry Forum (DASH-IF) that maintains and promotes
the DASH standard. In particular, it maintains a DASH reference client (i.e., video player) called
dash.js [9] that encapsulates the standard and its best practices. Video providers wishing to use
DASH often use the reference client dash.js to build their own video players. While our work
on ABR algorithms is applicable to any HAS protocol, we implement and empirically evaluate our
approach within the DASH framework.

1.2 Our Contributions

The primary contributions of our work are as follows.

(1) We design and implement two novel ABR algorithms: BOLA-E and DYNAMIC. Both algo-
rithms effectively minimize rebuffering and bitrate oscillations, while maximizing the av-
erage bitrate of the video stream viewed by the user. Further, both algorithms respond
quickly to user events such as when the user starts or seeks in a video. Finally, we show
that both BOLA-E and DYNAMIC provide a high QoE even for videos with the most stringent
requirements, such as low-latency live streaming.

(2) We design and implement a segment replacement algorithm called FAST SWITCHING

that judiciously replaces low-bitrate segments in the client’s buffer with high-bitrate

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:4 K. Spiteri et al.

ones, whenever possible. If the network throughput increases during playback, then
FAST SWITCHING responds quickly to the network event and allows a user to experience
the positive effects of that increase more quickly, since the low-bitrate segments in the
client’s buffer can be replaced with high-bitrate ones when the throughput is high. In our
experiments, we showed that when the network throughput increases during playback,
the client would see a higher-quality video 50s soonerwith FAST SWITCHING thanwithout.

(3) We have created a tool called Sabre that is valuable for simulating ABR environments. Its
architecture is similar to that of the DASH reference player dash.js and it can be used to
develop and evaluate ABR algorithms. Sabre simulates the player environment accurately
for any specified video description and network traces. It outputs QoE metrics of interest
such as segment bitrates and rebuffer events. We validated Sabre by showing that the QoE
metrics that it produced closely agrees with the same metrics produced by a real-world
production video player (dash.js). We published the tool as an open-source project that is

available publicly at https://github.com/UMass-LIDS/sabre so that others can use it for ABR

algorithm development. While the tool can be used with any adaptive streaming format,
we expect it to be particular useful to the DASH community.

(4) Finally, the foremost contribution of our work is that we have implemented BOLA-E,
DYNAMIC and FAST SWITCHING in the standard DASH reference player dash.js. As of
the current version (dash.js version 3.0.0) [9], DYNAMIC is the default ABR algorithm
provided by the standard player. Both BOLA-E (referred to as just BOLA in the standard
implementation) and FAST SWITCHING are options that users can select.1 Consequently,
our work has significantly improved the standard DASH reference player, as noted by
the dash.js community [8]. And, the algorithms described in this article are actively used

by video providers (including Akamai, BBC, CBS, and Orange) in production, as they build

their own video players based on the standard reference player. In Appendix A, we describe
the dash.js architecture that is of independent interest, and we describe how we imple-
mented our algorithms within that architecture.

Roadmap. The rest of the article is organized as follows. First, we provide some background
on adaptive bitrate streaming and describe our approach to designing ABR algorithms (Section 2).
Next, we describe Sabre, a tool that we developed for simulating ABR environments and that will
be publicly available as open source (Section 3). Sabre is used for evaluating our algorithms in
the rest of the article. We then develop and evaluate BOLA-E (Section 4), DYNAMIC (Section 5), and
FAST SWITCHING (Section 6). We then describe related work (Section 7) and conclude (Section 8).
Finally, we describe how we implemented our algorithms in dash.js (Appendix A) and give im-
plementation details about Sabre (Appendix B).

2 OUR APPROACH TO IMPROVING ABR ALGORITHMS

Our goal is to improve ABR algorithms that are currently used in practice. While our algorithmic
techniques apply equally to both proprietary and open adaptive video streaming formats, we focus
our implementation and evaluation on DASH. Our focus on DASH is for two reasons. First, we be-
lieve that the open standard allows for greater flexibility for trying out new ideas and innovations.
In fact, the ABR algorithms described in this article (BOLA-E, DYNAMIC, and FAST SWITCHING) are
currently part of the standard reference player dash.js. Second, we believe that the DASH open
standard will become increasingly important as more video providers migrate to the standard,
amplifying the real-world impact of our work.

1The ABR algorithms can be selected by clicking the “Show Options” button in Reference [9].

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:5

2.1 Requirements for ABR Algorithms

We started our ABR research by getting extensive feedback from video providers and users across a
spectrum of themedia industry. Particularly, we utilized a biweekly conference call by the dash.js
community for feedback [10]. There was near consensus on the requirements for a good ABR
algorithm that we state below.

(1) High Bitrate. Should play the video at the highest sustainable quality (i.e., bitrate).
(2) Low Rebuffering. Should avoid rebuffering events (i.e., freezes) that occur due to the client

buffer being empty.
(3) Low Oscillations. Should avoid excessive bitrate oscillations where the video quality is

frequently modified during the playback.
(4) Responsiveness to Network Events. Should react quickly to network events. For instance, if

the network throughput suddenly drops (respectively, increases), the ABR algorithm shou-
ld decrease (respectively, increase) the video bitrate to adjust to the new network state.

(5) Responsiveness to User Events. Should react quickly to user events. For instance, if a user
starts up a new video, or seeks to a new spot within the same video, the playback should
start to play quickly at the highest sustainable bitrate.

(6) Low-Latency Live Streaming. Should performwell when streaming live videos that requires
low latency, where latency is the maximum time between when the video is captured and
when the user sees it. A key challenge is that since latency must be low, the client buffer is
necessarily small and can hold nomore than a few segments. Thus, video segments cannot
be fetched by the client well in advance of when they are played out. A small buffer leaves
little room for error as a single suboptimal ABR decision could result in draining the buffer,
resulting in rebuffering. The precise definition of low latency is subjective and depends
on the use case [26, 27]. In this article, by low latency, we mean latencies under 10s.

State-of-the-art ABR algorithms known in the literature often fall short on some of these require-
ments. For example, BBA, BOLA, and MPC [13, 22, 30] all respond in a delayed fashion to network
events addressed in Section 6. These requirements formed the guiding principle for the ABR algo-
rithm development and implementation we describe in the rest of the article.

2.2 Overview of Our Design and Implementation of ABR Algorithms

We started out by implementing a buffer-based scheme called BOLA [22] that is to our knowledge
the only known online ABR algorithm with provable optimality guarantees within a utility frame-
work. BOLA utilizes Lyapunov optimal control to make ABR decisions based on buffer levels to
maximize an arbitrary utility function that combines the two key QoE metrics of video bitrate and
rebuffering. In particular, it is shown in Reference [22] that BOLA asymptotically achieves utility
that is within an additive factor of optimal. While BOLA achieves near-optimal utility in steady-
state conditions, the theory does not apply to transient conditions. Theoretical models generally
cannot capture all the complexity of production systems. But, our approach is to start with the
sound theoretical foundations provided by BOLA and then adapt it to practical implementations
that model the intricacies of production settings [17].

Like other buffer-based ABR algorithms, BOLA uses a bitrate selection function that maps the
current buffer level to the bitrate (in kbps) of the next segment to be downloaded, where buffer
level is the total number of seconds of video segments stored in the buffer. The buffer may not
exceed the buffer capacity,which is the total number of seconds2 of video that the buffer can store.
As noted earlier, buffer capacity is a lower bound on live stream latency, and so a live stream that

2By convention, we measure the buffer in seconds rather than in bytes.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:6 K. Spiteri et al.

Fig. 1. Example of a bitrate selection function with a buffer capacity is 18s and with thresholds at 5, 10,

and 15s.

Fig. 2. Overview of our design

and production implementation of

ABR algorithms for dash.js.

Fig. 3. Sabre: Inputs, Outputs, and

Primitives.

uses low latency can only use a small buffer. Figure 1 shows an example of a bitrate selection
function for a video that is encoded in three bitrates (1,000, 2,500, and 5,000 kbps) and has a buffer
capacity of 18s.
Video segments typically enter and exit the buffer in FIFO fashion. As segments get played out

from the front of the buffer, new segments get added to the tail of the buffer. Segment length is the
number of seconds of video in the segment, and segment size is the number of bits in the segment.
Note that segment lengths are usually fixed (say, 3s), while segment sizes can vary, especially for
VBR videos. As the buffer level increases, the ABR algorithm views that as a sign of good network
throughput, and it increases the video bitrate by consulting its bitrate selection function. The buffer
levels where the bitrate changes are called thresholds. In Figure 1, the thresholds are 5, 10, and 15s.
We started out by implementing and evaluating BOLA in the DASH reference player dash.js.

While BOLA provided a high bitrate without significant buffering or oscillations, it fell short on the
other requirements of Section 2.1 that are important for a real-world production implementation.
In particular, since BOLA predominantly used the buffer levels for decision making, it did not re-
spond quickly to user events such as startup and seeking when the buffer starts out empty. It also
did not respond quickly enough to rapid changes in the network throughput profile. Further, it
did not perform sufficiently well in the live streaming context where the low-latency requirement
mandates small buffers. Such deficiencies are not specific to BOLA and are common in other known
state-of-the-art algorithms such as BBA [13]. To improve BOLA, we took different approaches shown
in Figure 2 and described below.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:7

2.2.1 Algorithm BOLA-E. We introduced the notion of a virtual segment that contains no
video data. We developed a new placeholder algorithm that judiciously adds and removes virtual
segments to change the buffer levels used by BOLA for bitrate switching decisions. The placeholder
algorithm significantly improves the responsiveness of BOLA to network and user events. Further,
we devised the insufficient buffer rule that helps avoid rebuffering when buffer levels are low, es-
pecially in live streaming situations when buffers are small. BOLA with the placeholder algorithm
and the insufficient buffer rule constitutes an enhanced version of BOLA that we call BOLA-E.
BOLA-E was first released as an experimental version in dash.js version 2.0.0 on February 12,

2016. A stable version was released in version 2.6.0 on September 1, 2017, and has been in use by
video providers since. BOLA-E is not turned on in the DASH reference player by default, but it is
one of two optional ABR algorithms available for video providers. We present BOLA-E and evaluate
it in Section 4.

2.2.2 Algorithm DYNAMIC. Another approach to improving BOLA is to use a throughput-based
ABR algorithm when the buffer level is low and then dynamically switch to BOLA when the buffer
level is high. The rationale for this approach is that throughput-based ABR performs better in
situations such as startup and seek when the buffer is low or empty. And BOLA performs better
when the buffer levels are sufficient large. DYNAMIC was also first released as part of dash.js
version 2.6.0 on September 1, 2017, and has been in use by video providers since. DYNAMIC is
currently the primary ABR algorithm in the DASH reference player and is turned on by default
for video providers. We present DYNAMIC and evaluate it in Section 5.

2.2.3 Algorithm FAST SWITCHING. We developed a technique called FAST SWITCHING that can
be used with any ABR algorithm to improve video quality by replacing lower-bitrate segments in
the client buffer with higher-bitrate segments. Consider a situation where a wireless client has
downloaded a sequence of low-bitrate video segments when the connectivity was poor. Suppose
now that the client’s connectivity improves. FAST SWITCHING allows the client to replace the low-
bitrate segments in the buffer by higher-bitrate segments that can now be downloaded with the
improved connectivity. Thus, FAST SWITCHING allows the user to switch to higher-quality viewing
sooner than it would have been otherwise possible. We implemented FAST SWITCHING in dash.js

version 2.2.0 on July 6, 2016. FAST SWITCHING can be turned on by video providers in conjunction
with any ABR algorithm, including the default DYNAMIC or the optional BOLA-E. We present FAST
SWITCHING and evaluate it in Section 6.

3 SABRE: AN OPEN-SOURCE TOOL FOR SIMULATING ABR ENVIRONMENTS

An accurate simulation tool for ABR is critical for algorithm development. However, simulation
results are not useful if the simulation tool does not reflect the conditions of a practical player. We
developed Sabre, an accurate tool for simulating ABR environments that can be used for design-
ing and evaluating new ABR algorithms. For simulation accuracy, we based the design of Sabre
on the architecture of the DASH reference player dash.js. However, other video players, such
as Google’s Shaka Player and the HLS player hls.js, are functionally similar to dash.js, al-
lowing Sabre to be used as an effective tool for simulating other players as well. Further details
about Sabre are provided in Appendix B.We made Sabre open source and publicly available to the

community on GitHub, so that others can use and continue to develop the tool. We also used Sabre to

empirically evaluate algorithms presented in this article prior to their production implementation in

dash.js.

Using Sabre offers several major benefits. Playing a long video can be simulated in a fraction
of the time, e.g., a one-hour video can be simulated in less than one second. Further, it is easy
to simulate very specific network conditions in a reliable and reproducible way. In addition, it is

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:8 K. Spiteri et al.

possible to perform simulations at a large scale using several videos and thousands of network
traces, as we do in our work.
To simulate video streaming, Sabre invokes the ABR algorithm before downloading a segment.

The ABR algorithm provides the bitrate of the segment to be downloaded. If segment replacement
is enabled, then it also provides information on whether the segment to be downloaded is new
or a replacement for an existing segment. As the segment is being downloaded, Sabre collects
and periodically reports metrics to the ABR algorithm for use in its decision making. Similar to
dash.js, Sabre allows abandonment of a segment download in progress. Further, dash.js uses
the XMLHTTPRequest progress events provided by the browser. Sabre simulates the progress events
to allow simulation of segment abandonment strategies.

3.1 Inputs

The inputs to Sabre are described below, and are described in more detail in Appendix B.

(1) Network Trace. Sabre requires a network trace to simulate a video session. A trace should
have a sequence of records where each record contains the time duration, and network
throughput and latency for that duration. The traces allows reproducible simulation of real-
world network conditions, facilitating comparison between different algorithms or between
different settings for tuning a particular algorithm. The network traces can be measured
from an actual system or they can be synthetic.

(2) Video Description. Sabre also requires a video description that is analogous to the DASH
manifest. The video description includes the segment length (in seconds), the encoded bi-
trates, and a segment size matrixC[i, j]. 1 ≤ i ≤ N , 1 ≤ j ≤ M , where N is the total number
of segments in the video andM is the number of encoded bitrates. The value ofC[i, j] repre-
sents the size (in bits) of the ith segment of the video encoded at the jth bitrate. By allowing
the segment size matrix to be specified, we enable Sabre to accurately simulate variable bi-
trate (VBR) videos. Note that the video description could represent an actual video or could
be generated synthetically.

(3) ABR Algorithm. The ABR algorithm is invoked before downloading a new segment. The
algorithms in this article such as BOLA-E and DYNAMIC are available with the Sabre software.
However, the user may also develop their own ABR algorithms as Python modules and test
them with Sabre.

3.2 Outputs

Sabre continuously collects and reports a detailed list of events and metrics such as bitrate, down-
load time, and size of each downloaded segment, the duration of each rebuffer event, each change
in bitrate as the segments are played out, and all segment abandonments and replacements.
The Sabre output includes three important metrics that we use throughout the article. The

rebuffer ratio is the fraction of time a video session spends in the rebuffer state. The rebuffer ratio
equals the total rebuffer time divided by the sum of the total rebuffer time and the total play time.
The average bitrate is the average of the encoded segment bitrate over all rendered segments.
The average bitrate oscillation is the average difference in the bitrates of consecutively rendered
segments. That is, the average oscillation equals

1

N − 1

N−1∑

i=1

�
�
�
bitrate(i) − bitrate(i + 1)

�
�
�
,

where bitrate(i) is the encoded bitrate of the ith rendered segment and N is the number of
segments.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:9

Note that the bitrate itself may not be directly proportional to QoE. For example, the QoE im-
provement obtained by upgrading a 1Mbps video to a 2Mbps video is much larger than the QoE
improvement obtained by upgrading a 10Mbps video to an 11Mbps video, even though the bi-
trate increase is the same. However, the bitrate-to-QoE relationship is generally monotonic and
increasing one increases the other. Thus, we use bitrate as a measure of QoE thoughout this article.

3.3 Primitives

Sabre also provides primitives that capture common functions that an ABR algorithm developer
can use. Currently, we only offer three throughput estimation primitives. These primitives pro-
duce a network throughput estimate based on the history of past segment download times. The
sliding-window throughput primitive produces an estimate by averaging the achieved throughput
for the past k successful segment downloads, where k is the window size specified by the user.
The exponential-window throughput primitive produces an estimate by exponentially averaging
the past downloads with a half-life of λ, where λ can be specified by the user. We also support the
dual-exponential throughput primitive that uses the exponential-window throughput primitive
with half-lives of λ1 and λ2 and takes the smaller of the two estimates. We support this primitive,
since it is used in Google’s Shaka Player [12] and in the open source HLS player hls.js [5].
The implementation of Sabre is modular enough for the user to provide additional throughput or
other primitives.

3.4 Caveats

Sabre does not simulate low-level protocols such as TCP, and relies on download traces collected
by the player during real-world testing. Also, Sabre does not simulate low-level implementation
details such as the exact behavior of the browser’s Media Source Extensions buffer. However, omit-
ting that level of detail does not significantly affect ABR algorithm performance. See Appendix B
for more details.
Sabre does not simulate audio. The DASH standard requires that video and audio are delivered

separately, and the audio download usually happens on a TCP session, which runs parallel to the
video download. Again, simulating the interaction accurately requires simulation of lower-level
protocols. However, the size of the audio stream is usually only a small fraction of the size of
the video stream, allowing a simple workaround. Consider an example video that is accompanied
by a 160kbps audio. We can reduce the network bandwidth available by 160kbps throughout the
network trace to simulate the video in Sabre.

3.5 Network Traces Used with Sabre in Our Work

(1) 3G traces. We use 3G traces from Reference [20], a collection of 86 traces gathered in
Norway using a 3G/HSDPA connection on trips by bus, metro, tram, ferry, car and train.
The traces have a 1s granularity.

(2) 4G traces.We use 4G traces from Reference [28], a similar collection of 40 traces gathered
in Belgium using a 4G/LTE connection on trips by bicycle, bus, car, train, tram, and on
foot, with a 1s granularity.

(3) FCC traces. The FCC provides a public set of broadband traces [4]. We obtain throughput
traces frommeasurements in the web browsing category,3 with each data point represent-
ing the throughput for 5s. The traces have a 5s granularity.

3We parse and use the traces in a manner similar to Reference [18] (https://github.com/hongzimao/pensieve/tree/master/

traces/fcc).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:10 K. Spiteri et al.

Table 1. Segment Bitrates for the Big Buck Bunny Movie

SD Mean 6.00 5.03 2.96 2.06 1.43 0.99 0.69 0.48 0.33 0.23
Bitrate(Mbps) Std. dev. 1.08 0.89 0.56 0.39 0.28 0.18 0.12 0.10 0.05 0.04

HD Mean 35.0 16.0 8.0 5.0 2.5 1.0
Bitrate(Mbps) Std. dev. 6.3 2.8 1.5 1.0 0.5 0.2

3.6 Video Descriptions for Sabre in Our Work

We used the Big Buck Bunny Movie [11], a 10min movie, for our simulations. Table 1 shows the
bitrates for both the SD and HD video descriptions, with the standard deviation caused by VBR.We
use a standard definition (SD) encoding4 with ten bitrates ranging from 230kbps to 6Mbps, with a
segment length of 3s. The input to Sabre contains the size in bits for each segmentC[i, j]. We also
generated a high definition (HD) video description with six bitrates5 ranging from 1 to 35Mbps
by scaling the sizes of the SD video segments drawn from the highest six SD bitrates. Using this
scaling, we obtained HD bitrates while still maintaining the VBR variability.

3.7 Sabre Validation

For Sabre to be useful during development of ABR algorithms, we need to ensure that its results
accurately predict the results that would be obtained by an actual real-world video player. In this
section, we evaluate how accurately Sabre emulates real-world video players such as dash.js.
We first ran 20 video sessions in dash.js. We used a step function to modulate the network

throughput, spending 2min each at 5, 10, 20, and 10Mbps, then repeating from the start. By fre-
quentlymodulating the throughput, we can test the accuracy of Sabre under a circumstancewhere
the ABR algorithm is frequently switching bitrates. We used the Big Buck Bunny Movie that can
be loaded in the reference dash.js player [9], a 10min, 34s video with an encoding that uses ten
bitrates ranging from 250kbps to 15Mbps. We selected the BOLA-E algorithm and set the buffer ca-
pacity to 25s. For each video session, we recorded the throughput as seen by the player and three
QoE metrics: rebuffer ratio, average bitrate and average bitrate oscillations.
To compare our results from the dash.js video player with Sabre, we simulated the same 20

video sessions in Sabre using BOLA-E and a 25s buffer. To give Sabre a matching video description
input, we measured the size of each video segment. Then, we generated the network trace inputs
from the throughput measurements made during the corresponding dash.js sessions. After sim-
ulating each session, we compared the QoE metrics given by the Sabre simulation to the QoE
metrics recorded in the corresponding dash.js session.

Figure 4 shows the bitrates selected by the ABR algorithm for a typical session as measured on
dash.js and Sabre. The actual player (dash.js) and the simulated player (Sabre) show similar
bitrate switching behavior, as network conditions change in accordance with the step-modulated
network throughput. Table 2 shows the error between QoE measurements derived from dash.js

and the corresponding Sabre session. The average bitrate reported by Sabre has an average error
of 2.3%, while the average bitrate oscillation has an average error of 5.0%. We also ran test sessions
with network conditions corresponding to the 3G and 4G traces described in Section 3.5. For these
traces as well, the QoE metrics given by Sabre closely match the metrics given by dash.js. Thus,
Sabre produces QoE metrics that accurately reflect measurements from the real-world dash.js

player.

4We use the same encoding used by Reference [22].
5We use the set of bitrates recommended for YouTube (https://support.google.com/youtube/answer/1722171).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:11

Fig. 4. The bitrate of the segments downloaded and played by the dash.js player and by the Sabre simulator

for a typical session. The throughput shown is what we measured in dash.js to be replayed by Sabre.

Table 2. The Error in QoE Metrics between dash.js

and the Corresponding SabreMeasurements

Network Rebuffer Ratio Average Bitrate Average Oscillation
condition Error % Error % Error

Mean Std. dev. Mean Std. dev. Mean Std. dev.
Step 88 × 10−6 307 × 10−6 2.32 2.83 5.03 11.39
3G 14 × 10−3 22 × 10−3 1.88 1.68 5.25 7.01
4G 0 0 1.41 1.72 5.91 11.49

4 BOLA-E: ENHANCEMENTS TO BOLA

Buffer-based ABR algorithms such as BOLA work best during steady-state conditions, but are not
very responsive to user events such as startup and seeking. The buffer is usually empty at these
events, and a naive buffer-based ABR algorithm might download many lower-bitrate segments
before reaching a sufficient buffer level to download at the highest sustainable bitrate. A num-
ber of heuristics have been proposed to mitigate slow startup in buffer-based algorithms [13, 22],
but the heuristics still fall short of the performance achieved by throughput-based algorithms in
the transient period. In Section 4.1, we design and implement the placeholder algorithm as an
improvement to BOLA to overcome this issue.
Further, buffer-based algorithms require a sufficient buffer capacity for stable operation. How-

ever, this is not possible for live streams, such as live sporting events, that require low latency. In
this case, the buffer capacity must be smaller than the latency bound that we are trying to achieve.
If the buffer capacity is small, then the thresholds between different bitrate choices get too close.
Consider a typical video encoded at ten bitrates with a segment length of 3s being streamed to
a video player with a 10s buffer capacity. This buffer capacity allows less than 1s separation be-
tween many consecutive thresholds as seen in Figure 5(a). Even small segment size variability due
to VBR could cause variability in the buffer level. With a small separation between thresholds,
this buffer level variability would then be enough to make the ABR algorithm frequently switch
between bitrates, causing excessive oscillations. In Section 4.2, we design and implement the in-
sufficient buffer rule and use it, together with buffer expansion, to overcome this issue. Figure 6
graphically shows how we put together the new algorithm BOLA-E from the original BOLA using
the placeholder algorithm, and the insufficient buffer rule.

4.1 The Placeholder Algorithm

A fundamental problem with buffer-based algorithms is that the buffer level is not a good
proxy for the available network throughput in certain situations. In particular, the buffer level

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:12 K. Spiteri et al.

Fig. 5. Buffer expansion allows BOLA-E to have a larger separation between thresholds, reducing oscillations.

Fig. 6. The evolution of BOLA-E. (a) The original BOLA. (b) Adding the placeholder algorithm for BOLA-PL.

(c) Adding the insufficient buffer rule for BOLA-E.

underestimates or provides no information about the current throughput when the user starts up
or seeks a video. In fact, in the case of a startup or a seek the buffer starts out empty. The main
idea of the placeholder algorithm is that the buffer levels could be made to appear larger by ju-
diciously inserting and removing virtual placeholder segments in the buffer, as and when needed.
The buffer level used for ABR decisions includes both placeholder and actual video segments. Note
that placeholder segments have no video content and cannot be played out. They are used purely
to manipulate the buffer level that is used for decision making by the ABR algorithm.
The placeholder algorithm improves responsiveness to startup and seek events by inserting

placeholder segments using the following steps.

(1) Obtain a throughput estimate.
(2) Choose the appropriate bitrate corresponding to the throughput estimate derived in

step (1).
(3) Calculate the buffer level that would allow BOLA to pick the chosen bitrate. To do that, it

uses the bitrate selection function used by BOLA, such as the one shown in Figure 5(a). We
can pick the buffer level (x-axis) that corresponds to the bitrate (y-axis) chosen in step (2).

(4) Insert enough virtual placeholder segments in the buffer to obtain the desired buffer level.
That is, the number of placeholder segments that are inserted equals the desired buffer
level from step (3) minus the total size of the actual segments in the buffer.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:13

Fig. 7. Bitrate of the video playout as a function of the video play time. BOLAwith the placeholder algorithm

(BOLA-PL) reacts more quickly by reaching the highest sustainable bitrate within a much shorter period of

time after a startup or a seek than BOLA alone.

Note that the algorithm needs to download one low-bitrate segment at startup to obtain a through-
put estimate in step (1) above. However, in the case of seek, it will already have a good estimate
available from prior segment downloads.
The placeholder algorithm also removes placeholder segments when a situation demands that

the bitrate must be held steady and not stepped up. One such situation is when BOLA disallows
switching up to a bitrate when such a switch is likely to be followed by a switch to a lower bitrate
within a short time. In this situation, the placeholder algorithm attempts to reduce the buffer level
to the appropriate value by removing placeholder segments.

4.1.1 Evaluation. We now evaluate the placeholder algorithm for responsiveness to user events
such as startups and seeks. First, we use a synthetic network trace that keeps the throughput
relatively steady at 8Mbps. We use the SD video described in Section 3.6. We then use Sabre to
evaluate BOLAwithout the placeholder algorithm and BOLA-PL, which is BOLAwith the placeholder
algorithm. Both algorithms use a buffer capacity of 25s in the evaluation. Ideally, the video should
start playing as quickly as possible after the startup/seek event at a bitrate of 6Mbps, which is the
highest encoded bitrate of the SD video.
Figure 7 evaluates BOLA-PL and BOLA for a startup event when the user clicks the start button

and for a seek event where the user seeks to the 3min point in the video. BOLA-PL starts playing
at the highest bitrate at 3.1s for the startup scenario. Specifically, it switched to high quality from
the second segment onwards. That is because the placeholder algorithm needed the first segment
download to obtain an initial throughput estimate. However, BOLA-PL started to play at the highest
bitrate starting from the first segment after a seek, i.e., the high bitrate playback started after the
2.4s it took to complete downloading the first segment. However, BOLA is much less responsive for
both startup and seek scenarios as it has to wait for the buffer level to rise before switching to the
highest bitrate. In particular, it took BOLA 24.1s to switch the highest bitrate for both the startup
and seek scenarios.
Figure 8 compares the startup and seek performance of BOLA and BOLA-PL for the 4G traces

described in Section 3.5. We repeated the startup and seek experiments for the HD video for each
of the 40 traces and computed the CDF of the reaction time, where the reaction time is the time
that it takes for the video to play at the highest sustainable bitrate. The median startup reaction
time for BOLA-PL is 9.3s, whereas BOLA took much longer to respond at 21.3s. The median seek
reaction time for BOLA-PL is 3.1s, BOLA again took much longer to respond at 21.1s.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:14 K. Spiteri et al.

Fig. 8. CDFs of the reaction time for BOLA versus BOLA-PL during startup and seek for 40 4G network traces.

BOLA-PL reacts much more quickly and streams at the highest sustainable bitrate sooner than BOLA.

4.2 Insufficient Buffer Rule

We now propose a solution to the problem of avoiding oscillations in low-latency live streaming.
The low latency requirement implies that the buffer capacity must be small. For any buffer-based
algorithm such as BOLA, this means that thresholds where the bitrate changes are made are close
together, and even a small variance in segment size or network throughput can cause oscillations.
Using placeholder segments allows a novel approach to this problem by allowing the buffer

capacity to be large, but still restricting the total size of the actual segments in the buffer to be
no more than a small value. That is, we allow a large buffer with significant separation between
thresholds for bitrate switching. However, we let only a small number of actual segments to be
stored in the buffer, the remainder being placeholder segments. With this approach, the latency is
kept small, since only the actual segments contribute to latency. Note that since only a few actual
segments can be stored in a buffer of much larger size, there will be instances when there is enough
space in the buffer and the network throughput is high enough for a segment to be downloaded.
But, the algorithm must pause as a new segment is not yet available as it falls outside the latency
window. In these instances, a placeholder segment is placed in buffer to indicate that an actual
segment could have been downloaded if that segment was available.

We now illustrate the buffer expansion described above with an example. Figure 5(a) shows an
example of BOLA’s bitrate switching thresholds for a low latency live stream with a buffer capacity
of 10s. Figure 5(b) shows how it can be “stretched” to a larger buffer by modifying BOLA’s pa-
rameters V and γ . The thresholds in Figure 5(b) are at least 2s apart, reducing the potential for
oscillations. However, the total size of the actual segments that can be stored in the buffer is still
at most the original buffer capacity of 10s.
Unfortunately, buffer expansion results in a large buffer with many placeholder segments but

with few actual segments. This can increase rebuffering, even though it cuts down on the os-
cillations. Placeholder segments induce BOLA-PL to download at a higher bitrate as shown in Fig-
ure 5(b), but it can cause rebuffering when the video segments run out, as the placeholder segments
are virtual and cannot be played out. We propose the insufficient buffer rule to solve this rebuffer-
ing issue. The rule verifies each ABR choice by BOLA-PL to make sure the download is unlikely to
cause a rebuffering event using the following steps.

(1) Multiply the current throughput estimate by 50% to obtain a safe throughput.
(2) Multiply the safe throughput by the video buffer level (not counting the placeholder seg-

ments) to obtain a safe download size.
(3) Limit the ABR choice to segments with size not larger than the safe download size, always

allowing the lowest bitrate.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:15

Fig. 9. CDFs of the QoE metrics for BOLA, BOLA-PL and BOLA-E when streaming the SD video with a buffer

capacity of 10s for 86 3G traces. BOLA-E significantly reduces oscillations.

Fig. 10. The DYNAMIC algorithms combines BOLA and THROUGHPUT.

Combining a buffer-based algorithm with the placeholder algorithm and the insufficient buffer
produces a hybrid algorithm, which has the benefits of buffer-based algorithms while avoiding
their usual drawbacks.

4.2.1 Evaluation. We now compare BOLA-E that includes the buffer expansion and the insuf-
ficient buffer rule with BOLA-PL that does not include either. First, we note that we empirically
confirmed that the responsiveness of BOLA-E to startup and seek events are identically to that
of BOLA-PL shown in Figures 7 and 8. Next, we evaluated these algorithms on both 3G and 4G
traces described in Section 3.5 with a 10s buffer capacity to evaluate their potential for rebuffering
and oscillations. Figure 9 shows that BOLA-PL and BOLA-E have nearly identical rebuffering and
average bitrate behavior for the 3G traces. However, BOLA-E that uses the buffer expansion and
the insufficient buffer rule has much fewer oscillations than BOLA-PL. In particular, BOLA-E had a
median bitrate oscillation of 65 versus 95kbps for BOLA-PL. We also included metrics for BOLA in
Figure 9 to show that, while BOLA-E improves reaction time, it does not degrade the steady-state
QoE metrics. In fact, it reduces bitrate oscillations. Note that BOLA-PL without buffer expansion
and without the insufficient buffer rule increases bitrate oscillations when compared to BOLA. The
empirical results for 4G traces were similar to that of the 3G traces, and we do not include them
here due to space limitations.

5 DYNAMIC: BOLA WITH THROUGHPUT

Section 4 introduced enhancements to the buffer-based algorithm BOLA to mitigate issues with
startup, seek and low-latency streaming and created a new algorithm BOLA-E. In this section, we
describe a different approach to mitigate the same issues, leading to the creation of DYNAMIC that
is currently the default ABR algorithm in the DASH reference player dash.js (see Figure 2).

We observed that throughput-based algorithms perform well in low-buffer-level situations,
whereas buffer-based algorithms such as BOLA perform better at larger buffer levels. Thus, we
propose the DYNAMIC algorithm that uses a simple throughput-based algorithm called THROUGHPUT
when the buffer levels are low (such as during startup and seek events), and uses BOLA when the
buffer levels are high as shown in Figure 10.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:16 K. Spiteri et al.

Fig. 11. CDF of the reaction time for BOLA versus THROUGHPUT versus DYNAMIC during startup and seek for 40

4G network traces. THROUGHPUT and DYNAMIC react muchmore quickly and stream at the highest sustainable

bitrate sooner than BOLA.

THROUGHPUT is a simple heuristic that first estimates the network throughput by using the
sliding-window primitive described in Section 3.3 and then picks the highest encoded bitrate that
is lower than a safety factor of 90% of the estimated throughput.
Algorithm DYNAMIC works as follows. At startup, DYNAMIC starts by invoking THROUGHPUT. At

this stage, BOLA still prefers a bitrate that is too low. When the buffer level reaches 10s or more6

and BOLA chooses a bitrate at least as high as the bitrate chosen by THROUGHPUT, DYNAMIC switches
to BOLA. DYNAMIC switches back to THROUGHPUT when the buffer level falls below 10s and BOLA

chooses a bitrate lower than THROUGHPUT.

5.1 Evaluation

First, we study the reaction time of DYNAMIC with respect to BOLA and THROUGHPUT for startup and
seek events using a 25s buffer. Figure 11 plots the CDF of the reaction timewhen the ABR algorithm
reaches the highest sustainable bitrate. As expected, both THROUGHPUT and DYNAMIC provide fast
reaction time(s), while BOLA responds slower, since it needs to build up its buffer to a sufficient
level to switch up to the highest sustainable bitrate. Note that the improvement in reaction time
does not incur degradation in other QoE metrics, as shown in Figure 12.

Figure 12 compares DYNAMIC, BOLA and THROUGHPUT individually for two scenarios on 40 4G
traces and plots the CDFs for the rebuffer ratio, average bitrate, and average bitrate oscillations.
The first scenario, shown in Figure 12(a), is derived by simulating our HD video over 4G traces with
a buffer capacity of 25s to emulate a typical VOD viewing experience. In this scenario, all three
algorithms achieve similar rebuffer ratios. However, both BOLA and DYNAMIC achieve a greater
throughput than THROUGHPUT. In particular, both BOLA and DYNAMIC achieve 19% and 22% more
median throughput, respectively, than THROUGHPUT. Further, THROUGHPUT has more oscillations
than either BOLA or DYNAMIC. In particular, at the 90th percentile, both BOLA and DYNAMIC have
less oscillations of 1,301 and 1,421kbps, respectively, while THROUGHPUT has higher oscillations at
1929kbps. In summary, for a typical VOD setting, both BOLA and DYNAMIC perform consistently
better than THROUGHPUT.
The second scenario, shown in Figure 12(b), evaluates the three algorithms over the 4G traces

with a small 10s buffer to simulate a low-latency live streaming scenario. Note that with this low
buffer capacity DYNAMIC can never cross the 10s buffer level threshold to select BOLA. In this sce-
nario, all three algorithms achieve similar rebuffer ratios. BOLA achieves a greater throughput than

6We choose 10s because BOLA can have issues with lower buffer capacities (https://github.com/Dash-Industry-Forum/dash.

js/issues/1204).

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:17

Fig. 12. DYNAMIC combines strengths of BOLA and THROUGHPUT: It has the higher bitrate of BOLA for VOD

with a large buffer capacity and the low oscillations of THROUGHPUT for live streaming with a small buffer

capacity.

THROUGHPUT and DYNAMIC. In particular, THROUGHPUT and DYNAMIC achieve 11% (i.e., 2,049kbps)
less median throughput than BOLA. However, BOLA’s high throughput comes at the cost of exces-
sive oscillations. BOLA has more oscillations than THROUGHPUT and DYNAMIC. In particular, at the
median value, THROUGHPUT and DYNAMIC have 1089kbps bitrate oscillations, while BOLA has higher
oscillations at 2,465kbps. In summary, for a typical live setting, THROUGHPUT and DYNAMIC perform
consistently better than BOLA.
The main conclusion we can draw from our experiments is that, while BOLA works better in

a VOD scenario with larger buffers, and THROUGHPUT works better for smaller buffer scenarios
like low-latency live streaming, DYNAMIC combines the advantage of both and works well in both
situations. DYNAMIC also provides a fast response in startup and seek scenarios, making it a good
choice overall as an ABR algorithm.

6 FAST SWITCHING: A SEGMENT REPLACEMENT ALGORITHM

A large buffer can improve stability in ABR performance, because it can absorb minor variations
in network conditions, but it may deteriorate the video player responsiveness to network events. If
the network throughput suddenly increases significantly, then the ABR algorithm may download
segments at a higher bitrate. However, the video playermust first play out the low-bitrate segments
that are already in the buffer before it can render the newly-fetched high-bitrate segments. The
bigger the buffer capacity, the more low-bitrate segments it might hold, and the longer the wait
before the user can switch to a higher quality.
We propose an algorithm called FAST SWITCHING that improves the video player responsiveness

to higher network throughput by replacing segments already in the buffer. In particular, FAST
SWITCHING allows video providers to have larger buffers for reasons of ABR stability, but yet have

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:18 K. Spiteri et al.

quicker response times to network events. We have found that FAST SWITCHING is particularly
useful for video providers with longer VOD content, such as TV episodes and movies, where larger
buffers are desirable and there is no low latency requirement. Note that FAST SWITCHING can be
used with any bitrate selection strategy, including BOLA-E, THROUGHPUT, and DYNAMIC. In fact, the
current implementation of dash.js allows FAST SWITCHING to be added to all three options.

FAST SWITCHING works using the following steps.

(1) Decide whether to download a new segment or a replacement segment. Before downloading
a segment, the algorithm invokes a bitrate selection algorithm (e.g., BOLA-E) to determine
the bitrate b that can be used at the current time. If there is segment in the buffer with a
bitrate lower than b and if such a segment can be safely replaced, then FAST SWITCHING

decides that the next segment downloaded will be a replacement. Otherwise, the next
segment downloaded will be a new segment that is appended to the end of the buffer.
Intuitively, a segment cannot be safely replaced if it is too close to the play head and it will
likely start to be played out before the replacement can be downloaded. That would result
in a wasted download. FAST SWITCHING considers any segment that is scheduled to start
rendering within the next 1.5× (the segment length) seconds to be not safely replaceable.

(2) Determine which segment to replace. If it is determined in step (1) that a segment needs to
be replaced, then FAST SWITCHING downloads a replacement for the earliest segment in
the buffer that is both safely replaceable and has a lower bitrate than the current bitrate b.

The choice of 1.5× (the segment length) in defining a safe replacement gives a 50% safety fac-
tor to account for possible variations in the download time due to network and/or segment size
variability. Note also that FAST SWITCHING replaces segments in the earliest-deadline-first (EDF)
order, starting from the segment that has the earliest deadline to be played out (i.e., closest to the
play head). This ordering may make it possible to replace more segments, since segments further
down in the ordering have more time for replacement.
The FAST SWITCHING algorithm works with both throughput-based and buffer-based ABR al-

gorithms. However, buffer-based algorithms might need adjustments. When FAST SWITCHING

chooses to replace an existing segment, the buffer level is depleted, since segments are being played
out, but the buffer level is not increased by the downloaded segment. This lower buffer level might
induce buffer-based ABR algorithms to choose a lower bitrate and thus increasing oscillations.
We handle this problem using two different approaches when integrating FAST SWITCHING

with BOLA-E and DYNAMIC. BOLA-E inserts one placeholder segment in the buffer after every suc-
cessful segment replacement. This solution does not work for DYNAMIC, because it does not use
the placeholder algorithm. Instead, DYNAMIC switches to THROUGHPUT whenever there is segment
replacement, till the buffer level stabilizes, after which it can switch back to BOLA.

When using FAST SWITCHING, the player discards some lower-bitrate segments by replacing
them with higher-bitrate segments, increasing the total bits downloaded by the client. In the SD
example below, when the client experiences a 48% improvement in median average bitrate, 10% of
the bits were downloaded and discarded by the client. However, bits are downloaded and discarded
only for the short period of time when network throughput changes drastically and segment re-
placement is necessary. So, the overall impact of FAST SWITCHING on server-client traffic is less
significant.

6.1 Evaluation

We now evaluate FAST SWITCHING by integrating it with both BOLA-E and DYNAMIC. To effec-
tively simulate FAST SWITCHING, we need to generate scenarios where the network throughput
increases. We use two videos for the simulation, the SD video and the HD video described in

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:19

Fig. 13. CDFs of reaction time when increasing the network throughput using BOLA-E and DYNAMICwith and

without FAST SWITCHING using a 25s buffer. The reaction time shows how long it takes to start rendering at

the highest sustainable bitrate after the network throughput increases.

Section 3.6. For the SD video, we use the FCC traces described in Section 3.5 to generate 1,000
network traces, where each trace consists of 60s at a low average throughput less than 1Mbps and
120s at a high average throughput between 6 and 12Mbps. For the HD video, we use the FCC traces
to generate 1,000 network traces, where each trace consists of 60s at a low average throughput less
than 2.5Mbps and 120s at a high average throughput above 16Mbps. For each video, the 1,000 net-
work traces were generated by randomly picking two traces with the desired properties from the
FCC traces, one trace that is randomly picked for the low throughput period that is concatenated
with another that is randomly picked for the high throughput period. The traces are picked ran-
domly without replacement, so that we do not have the same trace picked twice and all the 1,000
traces that are picked for a video are unique.
For each trace, some time after the network throughput increases, the viewer starts to see the

video at a higher bitrate that can be sustained by the higher throughput. We measure the reaction
time as the elapsed time from when the network throughput increased to when the user started
viewing the video at the highest sustainable bitrate. Specifically, for the SD (respectively, HD)
video, we measure the time until the video starts rendering at 6Mbps (respectively, 16Mbps). In
both cases, we simulate a video player with a 25s buffer.
Figure 13 shows the reaction times for BOLA-E and DYNAMIC with FAST SWITCHING, denoted by

“BOLA-E-FS” and “DYNAMIC-FS,” respectively, in comparison with BOLA-E and DYNAMIC by them-
selves. We can see that FAST SWITCHING improves the median reaction time by about 50s for both
ABR algorithms and for both the SD and the HD videos. This means that the user will see a higher
quality video about 50s earlier with FAST SWITCHING than without.

Note that the improvement of 50s is more than the buffer capacity of 25s. This is possible because
there are two components to the reaction time for an ABR algorithm without FAST SWITCHING.
First, the ABR algorithm needs to determine that the throughput has increased and choose the
corresponding higher bitrate. Second, the low-bitrate segments already in the buffer need to be
played out before the new higher-bitrate segments can be played. FAST SWITCHINGmitigates both
components of the reaction time, as it can replace low-bitrate segments downloaded in both phases.
Since FAST SWITCHING switches to a higher bitrate sooner, we expect it to also improve the

average bitrate for the above experiments. In fact, the middle column in Figure 14 shows it gives
a significant improvement. It improves the median bitrate by about 45% for both ABR algorithms
and for both the SD and HD videos.
Figure 14 also shows that for the experiments above, for all cases FAST SWITCHING does

not noticeably increase rebuffering and for most cases it does not significantly increase bitrate

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:20 K. Spiteri et al.

Fig. 14. CDF of QoE metrics with and without FAST SWITCHING using a 25s buffer.

Fig. 15. CDF of QoE metrics with FAST SWITCHING using 4G traces. The discarded fraction is the fraction of

total downloaded bits that were replaced and hence never played back to the viewer.

oscillations. It only increases the bitrate oscillations significantly for some of the DYNAMIC tests for
the HD video. In particular, at the 90th percentile, it increases bitrate oscillations by 306kbps.
Note that while the QoE metrics for BOLA-E and DYNAMIC are similar, there is a noticable

differene in bitrate oscillations in Figure 14(b). FAST SWITCHING causes the buffer level to drop,
leading DYNAMIC to switch to the THROUGHPUT algorithm. Since the network traces have high
bandwidth variability, the THROUGHPUT algorithm gives higher bitrate oscillations. This problem
does not affect BOLA-E.
A drawback of FAST SWITCHING is download overhead. When a replacement segment is down-

loaded, the previously-downloaded segment is discarded and never played back to the viewer. Thus
such an overhead induces additional bandwidth costs. To measure the overhead, we tested FAST

SWITCHING with the 4G traces; the 4G traces have throughput variations occurring at frequencies
that are typical in real-world scenarios. Figure 15 shows the discarded fraction; the discarded frac-
tion is the number of discarded bits as a fraction of the total downloaded bits for a session. The

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:21

Fig. 16. CDF of QoE metrics of BOLA-E with FAST SWITCHING with different replacement offsets.

median discarded fraction is 6%. The benefits obtained from this overhead are faster reactions times
and an improvement in the average bitrate, with a 5% improvement in bitrate in the median case.

6.2 Rationale for the Design Choices Made in FAST SWITCHING

Figures 13 and 14 show that using FAST SWITCHING improves the reaction time to network events
and consequently also improves the QoE metrics. In this section, we outline and evaluate the
different design choices that are possible within the context of segment replacement and justify
the choices made in FAST SWITCHING.

(1) Replacement offset. FAST SWITCHING replaces segments in an earliest-deadline-first (EDF)
fashion, starting with segments that are closest to the play head. However, starting with
segments that are “too close” to the play head entails the risk of the segment being played
out before the download of the replacement is complete. Therefore, we use a time offset
to determine the distance (in seconds) from the play head that a segment must have to
be considered to be safely replaceable. We experimented with different values for the offset
including 0×, 1.5×, and 3× (the segment length) using the FCC traces used in Section 6.1 that
step up from low throughput to high throughput. A 0× offset means that the first segment
after the currently playing segment is replaced. Figure 16 shows the QoE metrics for the
different factors when using BOLA-E with FAST SWITCHING for the SD video. A 0× offset
introduces excessive oscillations and causes a significant drop in average bitrate for half
the traces. However, a 3× offset is slow to react and does not get the full average bitrate
improvement from replacement. We also ran tests for other videos such a HD video, and
other ABR algorithms such as DYNAMIC and other replacement offsets between 0× and 3×.
We found that a 1.5× offset is the sweet spot. It is the lowest factor that consistently has
oscillations as low as the 3× offset, but has a faster reaction time and higher average bitrate.
Thus, we choose a replacement offset of 1.5× in our production implementation of FAST
SWITCHING.

(2) Replacement order. Besides EDF, we explored other ways of ordering the segments that need
to be replaced. In particular, we evaluated latest-deadline-first (LDF) order where replace-
ment starts from the segments that are farthest from the play head. We also evaluated
lowest-quality-first (LQF) where the lowest quality segments in the buffer are replaced first,
though no segment that is within a replacement offset of 1.5× (the segment length) can be
replaced. When there are several LQF candidates with the same low bitrate, we replaced the
segment that would give the lowest oscillation metric after replacement. We evaluated and
compared EDF, LDF, and LQF empirically, again with the FCC network traces used in Sec-
tion 6.1. Figure 17 shows the QoE metrics for the different replacement orders when using
BOLA-E with FAST SWITCHING for the SD video. EDF reacts faster than LDF and LQF. For

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:22 K. Spiteri et al.

Fig. 17. CDF of QoE metrics of BOLA-E with FAST SWITCHING for different replacement orders.

example, the median reaction time for EDF is 21s (respectively, 33s), whereas LDF took 24s
(respectively, 42s) and LQF took 22s(respectively, 36s) when playing the SD (respectively,
HD) video. Consequently, we chose EDF for our production implementation of dash.js.

7 RELATEDWORK

Throughput-based algorithms use past download history to predict the future. Festive [14] is
one such algorithm that also aims to aid fairness by delaying downloads. PANDA [16] is another
throughput-based approach that aims to improve fairness by probing the network capacity. By
accounting for fairness, Festive and PANDA choose bitrates conservatively. Squad [29] performs
bitrate switching while minimizing bitrate variability using a novel metric called spectrum.
Alternatively, buffer-based algorithms use a bitrate selection function to choose the bitrate based

on the buffer level. One such algorithm is BBA [13]. It needs a large buffer capacity (a four-minute
buffer is used for evaluation) for stable operation. BOLA [22] derives a bitrate selection function,
presenting a utility framework and using Lyapunov optimization techniques to prove the approach
is asymptotically near-optimal in steady-state. It also uses some throughput information to prevent
oscillations, enabling stable streaming at lower buffer capacities.
Other ABR algorithms are hybrid using both throughput and buffer level information.

ELASTIC [6] designs a feedback control system to keep the buffer level close to a predefined set-
point. However, it can be slow to react to some throughput changes. MPC [30] presents another
utility framework and uses a model predictive control algorithm to optimize utility within a finite
horizon. MPC uses the buffer level by allowing the algorithm to be more or less aggressive. One
drawback of MPC is that the optimization process requires significant computation, which has to
be precomputed offline and delivered to the video player. ABMA+ [2] starts with the goal of mini-
mizing rebuffer probability. Similar to MPC, it relies on complex estimation calculations, which are
precomputed offline. The offline computations make the implementation more complex for both
MPC and ABMA+.

There are also recent machine-learning algorithm for ABR. C2SP [25] involves learning a Hidden
Markov Model for throughput prediction. It performs ABR in three stages: an offline prediction
engine that does model training and clustering model learning, an online throughput prediction
stage, and a bitrate selection stage. Pensieve [18] trains a neural-network to choose the bitrate
based on the video description and recent download metrics. Note that [2, 18, 25, 30] require pre-
computed tables, introducing additional complexity for deployment in production systems.
Regarding evaluation tools, MACI [24] provides an emulation environment that allows automatic

loading and evaluation of complete players such as dash.js. MACI and Sabre serve complementary
roles in ABR algorithm development. MACI is a complete environment that plays the videos, while

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:23

Sabre is a simulation environment that can more quickly test ABR algorithm for wide range of
videos and network traces without actually playing the videos.

8 CONCLUSION

We designed and implemented Sabre, an open-source publicly available tool that can be used by
researchers to run accurate simulations of ABR algorithms using a player architecture similar to
dash.js. We used Sabre to design and test BOLA-E and DYNAMIC, two algorithms that enhance
the buffer-based ABR algorithm BOLA. We also developed a FAST SWITCHING algorithm that can
replace segments that have already been downloaded with higher-bitrate (thus higher-quality)
segments. The new algorithms provide higher QoE to the user in terms of higher bitrate, fewer
rebuffers, and lesser bitrate oscillations. In addition, these algorithms react faster to user events
such as startup and seek, and respond more quickly to network events such as improvements in
throughput. Further, they perform well for live streams that require low latency, a challenging
problem for ABR algorithms, since the client buffer needs to be kept very small. Overall, the algo-
rithms presented in our article offers superior video QoE and responsiveness for real-life adaptive
video streaming. All three algorithms presented in this article are now part of the official DASH
reference player dash.js and are being used by video providers in production environments. For
video providers wanting to choose BOLA-E versus DYNAMIC in the production player, we also com-
pared them head-to-head. BOLA-E is slightly better than DYNAMIC when the network bandwidth
has higher variability, a situation that is also very challenging for the THROUGHPUT algorithm. How-
ever, DYNAMIC is slightly better for small buffer capacities, a situation that can be challenging for
all buffer-based algorithms including BOLA-E. While DYNAMIC is currently the default choice, we
found both algorithms performed similarly well in the QoE and responsiveness metrics.

APPENDIXES

A ABR ALGORITHMS IN DASH.JS

The algorithms described in this article are implemented in dash.js that is the reference player
of the MPEG-DASH standard that is maintained by DASH Industry Forum (DASH-IF). DASH-
IF is a consortium that includes most major participants in the video streaming industry and
currently has 60+ members. Our code is part of the dash.js project repository that can be
found at https://github.com/Dash-Industry-Forum/dash.js. Extensive documentation is available
at https://github.com/Dash-Industry-Forum/dash.js/wiki, andAPI documentation is also available.
The current version is 3.0.0 released on June 28, 2019.
The dash.js player is written in JavaScript and runs inside a web browser. Video rendering

is delegated to the Media Source Extensions (MSE) as implemented by the browser. The player
functionality7 is handled by a number of modules internally known as controllers. We describe
these controllers as they interact with our algorithms.
Figure 18 shows a simplified overview of the player architecture. A streaming session starts

when the player loads a manifest file, which describes the video, known as the Media Presentation
Description (MPD) . The DashAdapter parses the MPD to obtain information such as video length,
segment length, encoded bitrates, and possible live-streaming details.
Our algorithms are incorporated in the ScheduleController and abrController as described

below. The ScheduleControllermanages the high-level task of segment download. To download
a segment, the ScheduleController queries the abrController to choose a bitrate, then instructs

7We will not describe a number of dash.js features such as DRM support and subtitles; while these features are crucial

for commercial streaming, their details are beyond the scope of this article.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:24 K. Spiteri et al.

Fig. 18. The simplified dash.js player architecture.

Our work is incorporated in the Schedule and ABR

controllers.

Fig. 19. The Sabre architecture.

the FragmentLoader8 to download the video segment at that bitrate. Once the segment is down-
loaded, the BufferController receives it and sends the bytes to the MSE buffer. After the MSE
buffer has been updated, the ScheduleController can restart the process for the next segment.
This process might need to be scheduled in the future for a number reasons. For example, the next
segmentmight not yet be available in a live stream, or the buffer levelmight have reached the buffer
capacity. The ScheduleController is the module where we implemented the FAST SWITCHING al-
gorithm described in Section 6. It can be found in the source tree at src/streaming/controllers/
ScheduleController.js.
The abrController manages a collection of ABR rules, which can be found in the source tree

at src/streaming/rules/abr. Figure 20 shows how the controller uses the rules to choose a
bitrate. The controller maintains a collection of ABR rules, the first three of which were designed
and implemented by us as described in the article.

(1) ThroughputRule: Select bitrate based on the THROUGHPUT algorithms described in Sec-
tion 5.

(2) BolaRule: Select bitrate based on the BOLA-E algorithm described in Section 4.
(3) InsufficientBufferRule: Limit bitrate based on the insufficient buffer rule described in

Section 4.
(4) SwitchHistoryRule: Additional heuristic to detect and avoid any extreme bitrate oscil-

lations allowed by the ABR algorithms.
(5) DroppedFramesRule: Additional heuristic to avoid using bitrates that exceed the device

computational resources.

8In dash.js segments are sometimes referred to as fragments.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:25

Fig. 20. The abrController in the current dash.js player provides the video provider a choice of the three

ABR algorithms described in this article.

Wemodified the abrController to offer the video provider the choice of using DYNAMIC, which
is turned on by default, BOLA,9 or THROUGHPUT. As shown in Figure 20, when DYNAMIC is chosen,
either THROUGHPUT or BOLA is selected according to the criteria described in Section 5. When the

9The algorithm described as BOLA-E in Section 4 is labeled as simply BOLA in the actual production implementation of

dash.js.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:26 K. Spiteri et al.

video provider optionally chooses either THROUGHPUT or BOLA, only the chosen algorithm is exe-
cuted as shown in the figure.
Using ourABRalgorithms in dash.js.An example player implementation based on dash.js

can be found at http://reference.dashif.org/dash.js/. The implementation provides options to
choose between the different ABR algorithms described in this article. Developers can build their
own video players based on dash.js as described on the project repository front page. The docu-
mentation indicates the development dependencies required and also provides a quick-start guide
to setting up a basic player. The API documentation also shows how the ABR algorithm can be
changed using a simple JavaScript command.

B SIMULATING ABR ALGORITHMS IN SABRE

Sabre is an open-source simulation environment for ABR algorithms licensed under the Sim-
plified BSD License. It is a Python tool that facilitates initial development and quick evaluation
of algorithms in an environment similar to real production players, without requiring the al-
gorithm researchers to learn the often complex implementation details of a production player.
Sabre takes a video description, network trace, and an ABR algorithm as inputs and gives a
collection of QoE metrics as output. The software and documentation are available at https://
github.com/UMass-LIDS/sabre.

Figure 19 shows an overview of the Sabre architecture. The video adapter can read a simplified
manifest for the video that is being simulated. We simulate the download of video segments using
a network model that can emulate network conditions from a trace file. Python modules for the
ABR algorithm and for the segment replacement algorithm inside the schedule controller can be
provided as inputs to Sabre, allowing new algorithms to be evaluated.

Sabre’s architecture is similar to that of dash.js, as can be seen from the similarities between
Figures 18 and 19. This helps algorithms developed within the Sabre environment to be easily
implementable in dash.js. However, other video players, such as Google’s Shaka Player and the
HLS player hls.js, are functionally similar to dash.js, allowing Sabre to be used as an effective
tool for simulating other players as well.

B.1 Using Sabre for Video Player Simulations

Sabre can be used either through the command line or programmatically. The inputs and outputs
of Sabre are described below.

B.1.1 Video Manifest. The input video specification is given as a file in the JavaScript Object
Notation (JSON) format. An example is shown below.

{

"segment_duration_ms": 3000,

"bitrates_kbps": [1000, 2000, 4000],

"segment_sizes_bits": [

[3000000, 6000000, 12000000],

[3177800, 6311760, 12310936],

[2932704, 5854096, 11732072],

[2667248, 5652216, 11217520],

[3222248, 6181928, 12739472]

]

}

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:27

The file contains three fields: the segment duration, the list of bitrates, and the size of each video
segment available. In the example, each video segment is 3s long, and the video is encoded at
three bitrates: 1,000, 2,000, and 4,000kbps. The video is 15s long, and there are five segments
available at each bitrate. Note that the segments sizes for a particular bitrate might be differ-
ent because of VBR. The video manifests used in this article are provided in the source tree at
example/tomm19/{bbb,bbb4k}.json.

B.1.2 ABR Algorithm. The ABR algorithms that are described in this article are provided as
Python classes in the main module src/sabre.py. The user can provide a new ABR algorithm as
input by creating a new Python module. Detailed documentation of the interface is available at
https://github.com/UMass-LIDS/sabre/wiki. An example of a simple user-defined ABR module is
provided below.

import sabre

class CustomAbr(sabre.Abr):

def get_quality_delay(self, segment_index):

manifest = self.session.manifest

bitrates = manifest.bitrates

throughput = self.session.get_throughput()

quality = 0

while (quality + 1 < len(bitrates) and

bitrates[quality + 1] <= throughput):

quality += 1

return (quality, 0)

B.1.3 Segment Replacement Algorithm. The FAST SWITCHING algorithm described in this article
is provided as a Python class in the main module src/sabre.py. A new replacement algorithm
can be provided by the user as an input by creating a new Python module. Detailed documentation
of the interface is available at https://github.com/UMass-LIDS/sabre/wiki. An example of a simple
user-defined replacement module is provided below.

import sabre

class CustomReplacement(sabre.Replacement):

def check_replace(self, quality):

buffer = self.session.get_buffer_contents()

for i in range(2, len(buffer)):

if buffer[i] < quality:

return -ve index from end of buffer

return i - len(buffer)

if we arrive here, no switching occurs

return None

B.1.4 Network Trace. The input network trace is given as a file in the JSON format. An example
is shown below.

[

{"duration_ms": 30000, "bandwidth_kbps": 5000, "latency_ms": 75},

{"duration_ms": 30000, "bandwidth_kbps": 3000, "latency_ms": 150},

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

67:28 K. Spiteri et al.

{"duration_ms": 30000, "bandwidth_kbps": 1500, "latency_ms": 200},

{"duration_ms": 30000, "bandwidth_kbps": 3000, "latency_ms": 150}

]

The file contains a list of four records representing different time periods and the network state
in each of those periods. The first period lasts 30s, and while in this state the network allows a
throughput of 5,000kbps, with a round-trip latency of 75ms. When the four periods come to an end
after two minutes, Sabre restarts at the top. The network traces used in this article are provided
in the source tree at example/tomm19/{3Glogs,4Glogs,sd_fs,hd_fs}/.

B.1.5 Outputs. While Sabre runs a session for the provided inputs, it collects a set of QoE
metrics. An example output is shown below.

total played bitrate: 1765337

time average played bitrate: 2956

total play time: 1791

total rebuffer: 0

rebuffer ratio: 0

time average rebuffer: 0

total rebuffer events: 0

time average rebuffer events: 0

total bitrate change: 341760

time average bitrate change: 572

reaction time: 3.252272

Sabre can also provide a detailed history of all downloads (successful or abandoned) and which
segments were played back.

B.2 A Sabre Script Example

To generate the plots for this article, we used an automated script that can be found in the source
tree at example/tomm19/generate.py. Documentation about the script can be found at https:
//github.com/UMass-LIDS/sabre/wiki/TOMM-19-Plots.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their valuable comments and helpful suggestions.

REFERENCES

[1] Adobe. 2013. HTTP Dynamic Streaming Specification Version 3.0 FINAL. Retrieved from https://www.adobe.com/

devnet/hds.html.

[2] Andrzej Beben, P. Wiśniewski, J. Mongay Batalla, and Piotr Krawiec. 2016. ABMA+: Lightweight and efficient al-

gorithm for HTTP adaptive streaming. In Proceedings of the 7th International Conference on Multimedia Systems.

ACM, 2.

[3] Cisco. 2019. Cisco Visual Networking Index: Forecast and Trends, 2017–2022. Retrieved from https://www.cisco.com/

c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html.

[4] Federal Communications Commision. 2016. Raw Data—Measuring Broadband America 2016. Retrieved from https://

www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-

2016.

[5] Dailymotion. 2017. hls.js, from Dailymotion to Beyond. Retrieved from https://medium.com/dailymotion/

hls-js-from-dailymotion-to-beyond-384c0b2eeaa6.

[6] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. 2013. Elastic: A client-side controller for

dynamic adaptive streaming over http (dash). In Proceedings of the 20th International Packet Video Workshop (PV’13).

IEEE, 1–8.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

From Theory to Practice: Improving Bitrate Adaptation in the DASH Reference Player 67:29

[7] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam, Jibin Zhan, and Hui Zhang. 2011.

Understanding the impact of video quality on user engagement. InACM SIGCOMMComputer Communication Review,

vol. 41. ACM, 362–373.

[8] DASH Industry Forum. 2016. September 13, 2016 dash.js Meeting Minutes. Retrieved from https://github.com/

Dash-Industry-Forum/dash.js/wiki/Meeting-Minutes.

[9] DASH Industry Forum. 2019. DASH Reference Client 3.0.0. Retrieved from https://reference.dashif.org/dash.js/v3.0.

0/samples/dash-if-reference-player/index.html.

[10] DASH Industry Forum. accessed 2019. dash.js Meeting Minutes. Retrieved from https://github.com/

Dash-Industry-Forum/dash.js/wiki/Meeting-Minutes.

[11] Blender Foundation. 2008. Big Buck Bunny Movie. Retrieved from https://peach.blender.org/.

[12] Google. 2015. Shaka Player. Retrieved from https://opensource.google.com/projects/shaka-player.

[13] Te-Yuan Huang, Ramesh Johari, NickMcKeown, Matthew Trunnell, andMarkWatson. 2015. A buffer-based approach

to rate adaptation: Evidence from a large video streaming service.ACM SIGCOMMComput. Commun. Rev. 44, 4 (2015),

187–198.

[14] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency, and stability in http-based adaptive

video streaming with festive. In Proceedings of the 8th International Conference on Emerging Networking Experiments

and Technologies. ACM, 97–108.

[15] S. Shunmuga Krishnan and Ramesh K. Sitaraman. 2013. Video stream quality impacts viewer behavior: Inferring

causality using quasi-experimental designs. IEEE/ACM Trans. Netw. 21, 6 (2013), 2001–2014.

[16] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C. Begen, and David Oran. 2014. Probe and adapt: Rate

adaptation for HTTP video streaming at scale. IEEE J. Select. Areas Commun. 32, 4 (2014), 719–733.

[17] Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic nuggets in content delivery. ACM SIGCOMM Comput.

Commun. Rev. 45, 3 (2015), 52–66.

[18] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive video streaming with pensieve. Pro-

ceedings of the ACM Annual ACM Conference of the Special Interest Group on Data Communication (SIGCOMM’17).

[19] R. Pantos and W. May. 2017. HTTP Live Streaming. RFC 8216. RFC Editor.

[20] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. 2013. Commute path bandwidth traces from 3G

networks: Analysis and applications. In Proceedings of the 4th ACM Multimedia Systems Conference. ACM, 114–118.

[21] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From theory to practice: Improving bitrate adaptation

in the DASH reference player. In Proceedings of the 9th ACM Multimedia Systems Conference. ACM, 124–137.

[22] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2016. BOLA: Near-optimal bitrate adaptation for online

videos. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFO-

COM’16). IEEE, 1–9.

[23] Thomas Stockhammer. 2011. Dynamic adaptive streaming over HTTP—Standards and design principles. In Proceed-

ings of the 2nd Annual ACM Conference on Multimedia Systems. ACM, 133–144.

[24] Denny Stohr, Alexander Frömmgen, Amr Rizk, Michael Zink, Ralf Steinmetz, and Wolfgang Effelsberg. 2017. Where

are the sweet spots? A systematic approach to reproducible DASH Player comparisons. In Proceedings of the ACM on

Multimedia Conference. ACM.

[25] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P:

Improving video bitrate selection and adaptationwith data-driven throughput prediction. In Proceedings of the Annual

ACM Conference of the Special Interest Group on Data Communication (SIGCOMM’16).

[26] Wowza Media Systems. accessed 2019. Low Latency Streaming. Retrieved from https://www.wowza.com/

low-latency.

[27] Wowza Media Systems. accessed 2019. What is Low Latency, andWho Needs It? Retrieved from https://www.wowza.

com/blog/what-is-low-latency-and-who-needs-it.

[28] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen, and F. De Turck. 2016. HTTP/2-

based adaptive streaming of HEVC video over 4G/LTE networks. IEEE Commun. Lett. 20, 11 (2016), 2177–2180.

[29] Cong Wang, Amr Rizk, and Michael Zink. 2016. Squad: A spectrum-based quality adaptation for dynamic adaptive

streaming over HTTP. In Proceedings of the 7th International Conference on Multimedia Systems. ACM.

[30] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-theoretic approach for dynamic adaptive

video streaming over HTTP. ACM SIGCOMM Comput. Commun. Rev. 45, 4 (2015), 325–338.

[31] Alex Zambelli. 2009. IIS smooth streaming technical overview. Technical report, Microsoft Corporation.

Received November 2018; revised March 2019; accepted May 2019

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 2s, Article 67. Publication date: July 2019.

