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simple and fixed decision rules based on simplified mathematical

modeling of the underlying problem. Thus, they fail to capture

general scenarios, e.g., negative energy pricing and selling back to

the grid. In this paper, we pursue a new direction and study the

general problem of energy procurement for data centers using a

supervised learning approach.

We make the following key contributions.

1)Our primary contribution is an approach for energy procurement

using the concept of learning from the optimal [8]. While prior work

focused on designing fixed control rules based on simplified models,

we devise a supervised learning approach that derives the optimal

buy/sell/store decisions for training data consisting of historical

energy prices, data center energy demands, and renewable genera-

tion. We then use these optimal decisions on the training inputs as

labels to train our learning algorithms. Thus, our algorithms learn

from a provably-optimal offline decision maker.

2)We define price-, demand-, storage-, and time-related features

and devise two classes of learning algorithms: LearnBuy that at-

tempts to learn how much energy to buy/sell to the grid at each

time step; and LearnStore that attempts to learn what storage

level should be maintained at each step. For both LearnBuy and

LearnStore, we explore the effectiveness of different learning mod-

els such as decision trees, k-nearest neighbors, linear regression,

and deep neural networks, and present results for the best model

in each case.

3) To derive the real-world efficacy of our algorithms, we evaluate

them using extensive data traces of electricity prices from the New

York market (NYISO [24]), energy demands from multiple data

centers of Akamai’s CDN [23], and renewable production values

from wind installations [4]. As the metric of evaluation, we use the

notion of normalized cost which is ratio of the cost achieved by our

algorithmwith the cost achieved by the offline optimal algorithm for

the same set of inputs.1 We also consider two scenarios: a general

case scenario where the data center is able to both buy and sell

energy to the grid; and a special case scenario where the data center

is only able buy from the grid and selling back is disallowed.

a) For the general case scenario, LearnStore performs better

than LearnBuy achieving a normalized cost of 1.13 (resp.,

1.45) in the case where 5% (resp., 10%) of the storage can

be charged/ discharged at each time step. In both cases,

LearnStore performs 10.34% to 16.18% better than PreDay,

an intuitive data-driven heuristic that uses the optimal deci-

sions of the previous day to perform actions in the current

day.

b) For the special case scenario, LearnBuy performs better

than LearnStore achieving a normalized cost of 1.16 (resp.,

1.19) in the case where 5% (resp., 10%) of the storage can

be charged/discharged. LearnBuy achieves a cost 3.20% to

3.67% better than PreDay. Unlike the general scenario where

there are no known theoretically-validated algorithms, the

special case scenario has had some recent literature. In par-

ticular, an online algorithm BatManRate [32] is known to

have the smallest competitive ratio for the problem. However,

1Note that the cost ratio is always at least 1. However, no online algorithm may able
to achieve a value of 1, since the offline optimal algorithm has the benefit of knowing
the future values of all inputs.

LearnBuy is achieves a cost that is 7.18% to 7.26% smaller

than BatManRate.

2 THE ENERGY PROCUREMENT PROBLEM

An optimal energy procurement algorithm minimizes the energy

procurement cost, i.e., purchased cost subtracted by the revenue of

selling back to the grid, over the time horizon T . We can formulate

the energy procurement problem as follows.

EP : min

∑

t ∈T

p(t)(x(t) − bg(t))

s.t. : ∀t ∈ T :

x(t) = xd(t) + xb(t), (1)

d(t) = xd(t) + bd(t), (2)

b(t) = b(t − 1) + xb(t) − bd(t) − bg(t), (3)

0 ≤ xb(t) ≤ min{ρc ,B − b(t − 1)}, (4)

0 ≤ bd(t) + bg(t) ≤ min{ρd ,b(t − 1)}, (5)

0 ≤ b(t) ≤ B, (6)

vars. : {x(t),xd(t),xb(t),bd(t),bg(t),b(t)} ∈ R≥0.

The objective is to minimize the purchased cost from the electric

grid, i.e., p(t)x(t), and maximize the revenue from selling back to

the grid, i.e., p(t)bg(t). Constraints (1)-(2) determine the procure-

ment strategy. Constraint (3) dictates the evolution of the storage.

By denoting B, ρc , and ρd as the capacity of storage, charging, and

discharging rates, constraints (4)-(6) enforce the capacity and rate

limits of the energy storage. Since EP is a linear program, it can be

solved efficiently in an offline manner. The real-world practical set-

ting, however, is online, since the future price p(t), the total energy

demand dtot(t), and the renewable generation u(t) are not known

a priori. As compared to the simplified problem introduced in [32],

EP comes with two important generalizations: (1) in EP, we have

an additional optimization variable that captures the possibility of

selling back to the grid, i.e., bg(t); (2) in contrast to the problem

studied in [32], EP captures a more general pricing model in which

the real-time prices can be negative. In our experiments, we eval-

uate the performance of our proposed solutions as compared to

the state-of-the-art algorithms for the special cases of no negative

pricing and no selling back to the grid. For the general case, we

compare our results with the simple baseline heuristic PreDay.

3 OUR MACHINE LEARNING APPROACH

The key challenge in applying a machine learning approach to

the energy procurement problem is that an action, such as storing

energy in the storage, and its potential reward, such as not having

to purchase that energy from the grid at a higher price, can be

significantly separated in time, i.e., the reward does not manifest

until long after the action is taken. However, by solving our LP

formulation EP offline, one can derive the optimal set of actions for

any time sequence of demand, renewable generation, and energy

prices. Our main idea is to use supervised learning approach where

we train our algorithm to learn from the optimal decisions made by

EP.

Feature Selection. To be able to use supervised learning, we

choose a set of features as described below.
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Price-related Features. Energy price is a significant determinant

of the procurement strategy since we should buy and store energy

when the price is low, and discharge and sell when the price is high.

Demand-related Features. Demand is an important factor as our

energy procurement strategy must satisfy the demand at every step.

We use the current energy demand which averages demand over the

current 5-minute slot as a feature.

Storage-related Features. The amount of charge in the storage is a

key determinant of energy procurement since we are more likely to

buy and charge when the storage levels are low, and sell/discharge

when the storage levels are high. We use the storage level at the

beginning of the time step as a feature.

Time-related Features. Energy prices are set by matching supply

and demand and may have diurnal patterns. Further, month of

the year is indicative of seasons that could influence renewable

generation. Therefore, we use both the time of day, with each day

divided into 5-minute intervals, and month of the year as features.

Learning Algorithms. We present two classes of learning al-

gorithms for energy procurement: learning how much to buy, and

learning how much to store. We describe both approaches.

1) Learning to Buy Energy . Our algorithm LearnBuy computes

the desired buy amount of x̂(t) at time t using the learned model

that uses the features described earlier. Depending on whether x̂(t)

is positive or negative we do the following.

(1) If x̂(t) ≥ 0, we need to buy energy from the grid.We compute

the maximum amount that can bought from the grid:MAX =

d(t) +min{B − b(t − 1), ρc }. We also compute the minimum

amount that should be bought from the grid:MIN = d(t) −

min{b(t − 1), ρd }. If x̂(t) is within the acceptable range, i.e.,

MIN ≤ x̂(t) ≤ MAX , we buy x̂(t) from the grid. Otherwise,

we buy min{max{x̂(t),MIN },MAX } from the grid.

(2) If x̂(t) < 0, we need to sell energy to the grid. The most you

can draw from the battery for a sale is MAX = min{b(t −

1), ρd }, accounting for the maximum discharge rate and the

amount in the battery. We sell min{|x̂(t)|,MAX } to the grid.

2) Learning to Store Energy . LearnStore computes the desired

storage level b̂(t) at time t using the learned model that uses the

above features. Based on the value of b̂(t), it does the following.

(1) If b̂(t) ≥ b(t − 1), an additional amount of energy must be

stored in the battery. The amount that the battery can be

charged is C = min{b̂(t) − b(t − 1), ρc }, accounting for the

maximum charge rate. The algorithm buys the amount of

x(t) = d(t) +C from the grid that is required to cover both

the demand and the increase in the storage level.

(2) If b̂(t) < b(t − 1), some amount of energy must be removed

from battery. The amount that can be removed from the bat-

tery isD = min{b(t−1)−b̂(t), ρd }, accounting for maximum

discharge amount.We use themin{d(t),D} of the discharged

amount to serve the demand, and sell the remaining amount

of D −min{d(t),D} to the grid. Any demand that is not yet

satisfied is served from the grid.

In the case that selling to the grid is not an option, the selling is

skipped in step 2 and that amount is left in the battery. Note that

the actual amount b(t) at time t could be larger than the desired

learned amount b̂(t) when restricted by the maximum discharge

amount or when selling is not option.

Learning Models. For both LearnBuy and LearnStore, we ex-

perimented with different learning models, in particular, decision

trees (DT), k-nearest neighbors (KNN), linear regression (LR), and

deep neural networks (DNN). For DT, KNN, and LR, we used scikit-

learn [26], which is a Python library containing standard implemen-

tations of the most common machine learning models. For DNN,

we used TensorFlow [6] with Keras [11] on top. TensorFlow is a

library for implementing neural networks, and Keras is a high level

library that can use TensorFlow as the back-end to make neural

network implementation easier. For the DNN model, we tested

with a different number of layers, but we went with 4 feed-forward

dense layers as it results in the best performance for our model.

The loss function used is the mean squared error, and we used the

initialization proposed by He et al. [16] for the initial weights of the

neurons. We used ReLU as the activation function for all the layers,

and the RMSprop optimizer with a learning rate of 0.001. For all

the other models, we used the default parameters from scikit-learn.

4 EXPERIMENTAL EVALUATION

Data Traces. The energy consumption is gathered from Akamai

data centers for a 1 month period, at 5 minute intervals, which is

based on real-time settlement intervals of the US electricity markets.

The Akamai data traces contain the workload of the server clusters

at each time slot, hence, to obtain energy usage as a function of

load, we use the standard linear model [7]. For our experiments,

we report results for an Akamai data center in New York City and

electricity prices from NYISO [24] for New York for 2016-2018.

In addition to the total energy usage of data center, we assume

that at each location there is on-site renewable installation with 30%

penetration, i.e., if renewable generates at its maximum capacity,

it can satisfy 30% of the peak energy demand. We collected the

renewable generation values from Eastern andWestern data sets [4].

TrainingMethodology. The key idea of our training is to learn

from the optimal. Our training inputs consist of the real-time energy

prices, data center energy demand, and renewable data traces from

wind. We derive the optimal decisions for the training inputs by

solving EP. We run the offline optimal solution OPT on the input

traces to derive the optimal amounts to buy or sell and the optimal

battery level at that time step. We use two-thirds of the data (2016

and 2017) to train our learning models, and we report our results

by testing on the remaining one-third (2018).

Evaluation. In all experiments, we evaluate our algorithms

based on the normalized cost that they achieve, where the nor-

malized cost is defined as the cost of our (online) algorithm divided

by the optimal offline cost. The offline optimal cost is calculated

using Gurobi optimization software [15] to solve EP by providing

it the entire input to the problem. Thus, the offline optimal cost is

a lower bound on the cost of any online algorithm. Moreover, no

online algorithm may be able to achieve the optimal online cost.

However, normalized cost is still a very useful way of viewing the

costs in our setting.

We consider the following four different experimental scenarios:

(G5) General case where ≤ 5% of the storage can be charged or

discharged at each time step, i.e., ρc = ρd = B/20.
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