RL-Cache: Learning-Based Cache Admission
for Content Delivery

Vadim Kirilin®*, Aditya Sundarrajan’™, Sergey Gorinsky®, and Ramesh K. Sitaraman®

SIMDEA Networks Institute, Spain

ABSTRACT

Content delivery networks (CDNs) distribute much of the Internet
content by caching and serving the objects requested by users. A
major goal of a CDN is to maximize the hit rates of its caches,
thereby enabling faster content downloads to the users. Content
caching involves two components: an admission algorithm to decide
whether to cache an object and an eviction algorithm to decide
which object to evict from the cache when it is full. In this paper, we
focus on cache admission and propose a novel algorithm called RL-
Cache that uses model-free reinforcement learning (RL) to decide
whether or not to admit a requested object into the CDN’s cache.
Unlike prior approaches that use a small set of criteria for decision
making, RL-Cache weights a large set of features that include the
object size, recency, and frequency of access. We develop a publicly
available implementation of RL-Cache and perform an evaluation
using production traces for the image, video, and web traffic classes
from Akamai’s CDN. The evaluation shows that RL-Cache improves
the hit rate in comparison with the state of the art and imposes only
a modest resource overhead on the CDN servers. Further, RL-Cache
is robust enough that it can be trained in one location and executed
on request traces of the same or different traffic classes in other
locations of the same geographic region.

CCS CONCEPTS

« Networks — Network services; « Computing methodolo-
gies — Reinforcement learning.

KEYWORDS

Content delivery network; caching; cache admission; hit rate; object
feature; feedforward neural network; Monte Carlo method; batch
processing; traffic class; image; video, web; production trace.

ACM Reference Format:

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitara-
man. 2019. RL-Cache: Learning-Based Cache Admission for Content De-
livery. In NetAI 2019: ACM SIGCOMM 2019 Workshop on Network Meets Al
& ML, August 23, 2019, Beijing, China. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3341216.3342214

“Both authors contributed equally to the paper. The first author is now with Yandex
LLC, Russia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NetAI 2019, August 23, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6872-8/19/08...$15.00
https://doi.org/10.1145/3341216.3342214

fUMass Amherst, USA

57

$ Akamai Technologies, USA
1 INTRODUCTION

Today’s Internet heavily relies on content delivery networks (CDNs)
to provide low-latency access to its content for billions of users
around the globe. A large CDN deploys hundreds of thousands of
servers worldwide so that at least some servers of the CDN lie in
each user’s network proximity. When a user requests an object
such as an image, video, or web page, the user’s request goes to
a nearby server of the CDN [4]. If the cache of the CDN server
stores the requested object, i.e., a hit happens, the user promptly
receives the object from the server’s cache. On the other hand, if
the requested object is not in the server’s cache, i.e., a miss occurs,
the CDN server delivers the object to the user after fetching the
object from the content provider’s origin server, and the delivery
might be slow because the origin server might be far away.

Decreasing the user-perceived latency of content delivery consti-
tutes the main goal of the CDN. Hence, the CDN strives to maximize
the server’s hit rate defined as the percentage of requests that are
served straight from the cache. When the CDN server receives
an object request, the server might need to make admission and
eviction decisions. If the request is a miss, the server must decide
whether to admit the fetched object into the cache. Furthermore,
if the server decides to cache the fetched object, and the cache is
already full, the server must decide which object(s) it should evict
from the cache to make space for the new arrival. For example,
Least Recently Used (LRU) is a simple eviction policy that discards
the least recently used object. Major CDNs employ LRU and its
variants, such as Segmented LRU (SLRU) [15], for cache eviction.
Researchers have proposed a large number of more sophisticated
eviction algorithms that are more difficult to implement in practice,
e.g., Greedy-Dual-Size-Frequency (GDSF) [5]. The work on admis-
sion algorithms is less extensive and includes SecondHit [13] and
AdaptSize [3].

Our goal is to investigate whether Machine Learning (ML) tech-
niques can increase cache hit rates in typical CDN production
settings, without adding excessive overhead or requiring major
software changes. This paper examines ML-based algorithms for
cache admission, leaving the question of eviction improvement
for future work. Despite the extensive prior research on cache
eviction, nearly all production content caches — including Akamai
caches [17], Varnish [23], Memcached [9], and NGINX [18] - use
LRU variants as their default eviction algorithm. LRU’s popular-
ity arises due to easy implementation combined with very good
hit rates in production settings. Consequently, similar to the state-
of-the-art AdaptSize admission algorithm, we assume LRU as the
eviction algorithm throughout our paper. Our work is complemen-
tary to recent ML-based caching proposals that learn popularity
of objects and/or determine the cache eviction order, e.g., Deep-
Cache [16] and PopCache [21].

NetAl 2019, August 23, 2019, Beijing, China

Our Contributions. We formulate cache admission as a Re-
inforcement Learning (RL) problem solvable with Monte Carlo
methods. Unlike prior works that require complex object ordering
and eviction strategies, our goal is to create a simple practicable
cache-admission front end for an existing CDN server. This ap-
proach is easier to implement in a production setting because such
cache-admission front ends already exist in practice, e.g., Akamai’s
Bloom-filter implementation of SecondHit [13].

We design RL-Cache, a cache-admission algorithm that trains
a feedforward neural network which outputs a binary decision
upon receiving a request for an object: 1 (admit) or 0 (do not admit).
Training of the neural network on request traces from CDN servers
is a non-real-time and computationally intensive task. We expect
the training to be periodically performed in the cloud. However,
after the training phase, RL-Cache can efficiently process batches of
requests and make admission decisions with small computational
overhead, e.g., per-request processing time of 16 ys and 4 ps on
CPU and GPU platforms respectively with batches of 4096 requests.
This additional processing does not impose a significant demand
on the resources of CDN servers.

We develop a publicly available implementation of RL-Cache,
provide open access to it [12], and perform an evaluation on real-
world request traces from Akamai’s production CDN. CDNs host
traffic classes that have very different object-size distributions and
object-access patterns, requiring different caching strategies [22].
We test our approach on three major CDN-traffic classes: web,
images, and videos. We also define a notion of active bytes that
characterizes the cache size needed to achieve a high hit rate on a
particular trace. For the examined traffic classes and cache sizes, our
evaluation shows that RL-Cache successfully learns to outperform
or at least match (e.g., when the cache is abundant for the needs of
the trace) the hit rate achieved by state-of-the-art algorithms. Our
evaluation also demonstrates robustness of RL-Cache in the sense
that RL-Cache can be trained in one location and executed, without
a significant loss in the hit-rate performance, on traces of the same
or different traffic classes in other locations of the same geographic
region.

In summary, RL-Cache is a promising approach to improving
cache hit rates by learning an admission policy and is the first such
scheme to be validated on real-world CDN traces across multiple
traffic classes.

Roadmap. We organize the rest of this paper as follows. Sec-
tion 2 provides background and discusses related work. Section 3
presents our RL-Cache algorithm. Section 4 empirically evaluates
the proposed scheme. Section 5 concludes the paper with a sum-
mary of its contributions.

2 BACKGROUND AND RELATED WORK

Caching is related to the knapsack problem [14] which makes
optimal caching computationally intractable, even in the offline
setting where the entire request sequence is known beforehand.
CDN caching faces additional online challenges due to uncertainty
about future object requests. Further, CDNSs host traffic classes with
diverse object-size distributions and object-access patterns, mak-
ing it hard for any particular caching policy to work well for all
classes [22].

58

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitaraman

Existing work in caching predominantly focuses on design of
eviction policies, e.g., LRU, SLRU, TLRU, S4LRU, GDSF, ARC, and
Clifthanger (cf. Table 2 in [3]). Such eviction-focused algorithms
typically employ the basic admission policy of caching all requested
objects. Recently, there has been an increased interest in more so-
phisticated cache-admission policies. SecondHit [13], an admission
policy implemented by Akamai, uses the access frequency of an
object and admits the object into the cache only upon a repeated
request for the object within a fixed time interval. SecondHit em-
ploys a Bloom filter as a front end of the cache to track objects that
have been requested before. Another frequency-based approach is
TinyLFU [7]. AdaptSize [3] is a size-based admission policy that
uses a Markov model to adjust a threshold for the size of admitted
objects. In contrast to prior work that uses one or two object fea-
tures, RL-Cache combines a broader set of eight features that use
the object’s size, request recency, and frequency characteristics to
make an admission decision.

Previous ML-based caching solutions, which also commonly
focus on eviction policies, optimize for proxy metrics of the hit rate.
For example, DeepCache uses popularity prediction to prefetch
popular objects into the cache [16]. PopCache caches objects with
popularity-dependent probabilities [21]. FNN-based caching [8],
NNPCR-2 [6], and KORA-2 [11] also rely on popularity prediction.
LFO [2] uses supervised learning to make admission decisions by
mapping object features to optimal decisions learned offline.

RL-Cache differs from some of the above ML-based schemes in
optimizing for the hit rate directly, rather than via a proxy met-
ric such as object popularity. Our design aligns perfectly with the
RL paradigm because cache hits constitute a natural form of RL
rewards. Specifically, Monte Carlo methods of RL support optimiza-
tion of the hit rate by learning directly from sample sequences of
admission decisions. Further, RL-Cache focuses on cache admission
that is easier to implement as a front end for an existing CDN cache.
In addition, much of the prior work uses less realistic traffic assump-
tions, such as uniform object sizes or synthetic workloads that do
not accurately capture characteristics of real-world traffic classes
in a CDN. Finally, some prior schemes require functionality that is
hard to implement efficiently, such as creation of fake requests for
popular objects [16] or modification of the eviction order based on
object popularity [6].

3 RL-CACHE ADMISSION ALGORITHM

To decide whether to cache a requested object, RL-Cache uses a
feedforward neural network that computes admission probabil-
ity A(u,w) € [0,1] as a function of features u of the object and
weights w of the neural network. The features of an object include
metrics related to its size as well as frequency and recency of its
requests. Once the neural network is trained, RL-Cache computes
admission probability A(u, w) for each received request and then
rounds it to make a binary decision of 1 (admit) or 0 (do not admit
the requested object).

3.1 Feature Selection

First, we select features u that characterize each requested object.
Traditional caching heuristics describe an object with its request

RL-Cache: Learning-Based Cache Admission for Content Delivery

’ Notation ‘ Meaning

sj Size of object j in bytes
fi Frequency, the fraction of requests for object j among
all requests so far

rj Temporal recency, time in seconds since the previous
request for object j

Pj Exponential smoothing of r; so far
d; Ordinal recency, the number of requests since the pre-
vious request for object j
dj Exponential smoothing of d; so far
fj/sj |Ratio of the frequency to size for object j
fj-sj |Product of the frequency and size for object j

Table 1: Features of an object in our model.

recency, frequency, and object size and use these features in iso-
lation or combination, e.g., LRU (recency), SecondHit (frequency),
AdaptSize (size), and GDSF (frequency and size). The strength of our
approach is in simultaneously considering a broad set of eight fea-
tures (cf. Table 1) that capture various aspects of recency, frequency,
and size to make admission decisions.

3.2 Training Algorithm

Now, we show how to train our feedforward neural network us-
ing a Monte Carlo approach. The training objective is to learn
weights w of the network which computes admission probability
function A(u, w) for an object with features u. The training data
set is a sequence of object requests i characterized by their fea-
tures u;. To keep the training overhead manageable, we traverse
this sequence of requests by applying a sliding window. We initially
position the window to start at the first request and iteratively slide
the window forward by K requests at a time, until the training
algorithm considers all requests in the trace. As the window slides
along the trace, the algorithm learns weights w more accurately.
Because the less accurate weights learned during previous windows
affect the cache state, and the cumulative effect of these inaccura-
cies might undermine the training effectiveness, we refill the cache
after every g windows by simulating admission decisions under the
current weights for all the requests preceding the current window.
For each window, our training algorithm performs the following
four steps.

1) Sampling: Let w be the current weights and u; denote the
features of the i request in the current window, where 1 < i < K.
For each of these K requests, we admit the requested object with
probability A(u;, w), i.e., the non-admission probability for request i
is 1 — A(uj, w). As a result, we receive a decision sample for the
K requests. Altogether, we generate m such samples, where m is
significantly smaller than 2K which is the number of all possible
samples.

2) Selection: Whereas our objective is to train the neural net-
work to maximize the hit rate of the cache, we now select the p
percentile of the m decision samples that produce the highest hit
rates. Because the admission decisions in a K-request decision sam-
ple also affect the cache performance beyond the decision sample,
we also simulate admission decisions for the L subsequent requests
to compute the hit rate over the extended window of K + L requests.

59

NetAl 2019, August 23, 2019, Beijing, China

For each request i such that K < i < K + L, we multiply its contri-
bution to the hit rate by y? =X where 0 < y < 1, to give diminishing
importance to requests that are farther into the future. We consider
such extended windows of K + L requests solely for the sample
selection. Note that consecutive windows overlap because the win-
dow size exceeds the number of requests by which the window
advances each time.

3) Learning: Utilizing the K-request samples selected at the
previous step, we update weights w. Specifically, we train the neural
network with a backpropagation algorithm [20] which uses binary
cross-entropy loss as the loss function.

4) Termination check: If the absolute change in weights w
falls below threshold €, the algorithm terminates. Otherwise, we
repeat the above three steps.

3.3 Implementation

We implement RL-Cache using the TensorFlow library [1] without
requiring any extensions. Our implementation is publicly available
with open access at its GitHub repository [12].

In the main mode envisioned for RL-Cache online operation,
the CDN periodically trains the neural network on cloud infras-
tructure and sends the most recently trained network to the cache
server. The server-side implementation of RL-Cache maintains a
database with feature statistics, which are needed to compute the
frequency and recency metrics, and applies the most recently ob-
tained neural network to arriving requests. Upon receiving an object
request, the cache computes the features of the object, updates the
feature-statistics database, and uses the neural network to make
an admission decision for the object. The usage of the neural net-
work contributes the most to the processing overhead imposed by
RL-Cache on the cache.

To keep the neural-net processing overhead low, our RL-Cache
implementation allows for configurations that leverage pipelining
and batching. RL-Cache is invoked only for those requests that
result in a cache miss and trigger fetching of the missed object from
its origin over the wide area network, with typical fetching latency
above 100 ms. Further, RL-Cache can make admission decisions
asynchronously with serving the requested object to the user, since
the server can cache the object already after delivering it to the user.
Hence, RL-Cache can be run in a batch mode where the cache ac-
cumulates arriving requests into a batch and sends them jointly, as
one batch, for the neural-net processing. The batch mode exploits
architectural properties of the multi-core processors in modern
CDN servers. The parallel processing of the batch requests, further
enhanced by potential sharing of memory banks among the pro-
cessor cores, enables the modern CDN servers to adopt RL-Cache
without reducing their request-processing rates.

4 EMPIRICAL EVALUATION

To evaluate RL-Cache, we start with three traces collected over a pe-
riod of 4 days from a US-based edge server in Akamai’s production
network. These US1-image, US1-video, and US1-web traces repre-
sent the image, video, and web traffic classes respectively. Table 2
sums up characteristics of the three request traces.

We demonstrate the diversity of the considered traffic classes
by plotting the object-popularity and object-size distributions for

NetAl 2019, August 23, 2019, Beijing, China

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitaraman

g100f e arrar F 100 P
% 80 ”__,—’ a 80 _,II' <50
) : PPt g :;I s
. - - (]
g 60| 7 g 60] ® .
= l, 5 o =4a0f ¥
o 40 E,l o 40) < \
= f -—- USl-image g i —-=- USl-image % -.l/! 4 :
*5’ 201 | US1-video S 20 '} US1-video & 301 —-- AdmitAll -== AdaptSize
o R P US1-web < & e US1-web SecondHit = —— RL-Cache
& of' g 0f=—-= =7 \
0 20 40 60 80 100 10? 104 106 108 0 1 2 3
Percentage of objects (%) Object size (B) Time (day)

Figure 1: Object-popularity distribution Figure 2: Distribution of object sizes for
for US1-image, US1-video, and US1-web. US1-image, US1-video, and US1-web.

| Request trace | US1-image | US1-video | US1-web |

Requests (10°) 85.48 4985 | 144.87
Unique objects (10°) 33.20 7.13 11.11
Unique bytes (TB) 0.64 2.35 2.56
Traffic volume (Gbps) 0.06 0.21 1.69

Table 2: Characteristics of US1-image, US1-video, and US1-web.

each of the traces. For US1-video and US1-web, Figure 1 shows that
80% of the requests are for less than 10% of the objects, indicating
that a relatively small subset of such objects needs to be cached to
achieve a high hit rate. On the other hand, 80% of the requests in
the US1-image trace are for nearly 60% of the objects, suggesting
that a larger fraction of objects belonging to the image traffic class
should be cached to provide the high hit rate. Figure 2 reveals that
objects of the examined traffic classes can vary in size by up to
two orders of decimal magnitude. The extreme variability in the
object-popularity and object-size distributions among traffic classes
makes cache management challenging in production settings. We
later show that RL-Cache is able to adapt to the varying popularity
and size characteristics to achieve good hit rates.

Evaluation Methodology. We train RL-Cache with LRU as the
eviction algorithm, because most production systems employ LRU
variants. RL-Cache is trained on three cache sizes: 2 GB, 16 GB, and
128 GB that correspond to typical in-memory hot-object caches [3]
and Solid-State Drive (SSD) caches in CDN servers. The cache size
used in the training can be thought of as an aggressiveness knob for
the admission algorithm. Smaller cache sizes force the admission
algorithm to admit objects with a lower probability, while the oppo-
site happens with larger cache sizes. The optimal admission policy
for an infinitely large cache is to admit all objects. We refer to this
admission policy as AdmitAll; this is a common basic admission
policy for eviction-focused caching algorithms. Thus, the advan-
tages of any sophisticated admission policy decrease as the cache
size increases. We train RL-Cache on the first ten million requests
of each trace and test the trained model on the rest of the trace, i.e.,
the training and testing sets do not overlap. When testing RL-Cache,
we choose the model that gives the highest hit rate for every cache
size. The testing is done on caches sized to 2 GB, 16 GB, and 128 GB.
We compare RL-Cache with AdmitAll, frequency-based SecondHit,
and adaptive size-based AdaptSize.

60

Figure 3: Dynamics of the hit rate for the
US1-image trace on the 16-GB cache.

Parameter Settings. The values of the RL-Cache parameters de-
scribed in Section 3 are chosen as follows: ¢ = 4 windows; m = 250
decision samples are generated for each window; top p = 20% of the
samples are selected for the learning step; each sample covers K =
25,000 requests; extra L = 175,000 requests are used to compute the
hit rate for each window; factor y for the discounted hit-rate con-
tributions is 0.99997; threshold € for the per-window termination
check is set to 107,

4.1 Hit-Rate Performance

Figure 3 illustrates hit-rate dynamics for the US1-image trace on
the cache sized to 16 GB, where the hit rate is computed over 1-hour
intervals. RL-Cache successfully adapts to the diurnal patterns in
image requests and consistently outperforms AdmitAll, SecondHit,
and AdaptSize under the varying load.

We now turn our attention to the average hit rate of the algo-
rithms over the entire testing trace. For US1-image, Figure 4 shows
that RL-Cache outperforms AdmitAll and AdaptSize by 9.7% and
4.5% respectively on the 2-GB cache, and by 7.5% and 3.4% respec-
tively on the 16-GB cache. This corroborates the ability of RL-Cache
to benefit from using a more diverse set of object features, includ-
ing recency and frequency characteristics, as opposed to AdaptSize
which considers only object sizes. With the cache sized to 128 GB,
RL-Cache outperforms both SecondHit and AdaptSize and performs
similarly to AdmitAll.

To understand the observed performance, we introduce a notion
of active bytes. First, we view an object as active at time t of a trace
if this t lies, inclusively, between the first and last requests for the
object in the trace. Then, we define active bytes as the total size
of the objects active at time ¢. Active bytes are relevant because
they capture the cache size sufficient to preclude any avoidable
misses (i.e., those upon the second and all subsequent requests
for each object) by the offline algorithm that uses AdmitAll for
cache admission and evicts every object upon its last request in
the trace. Figure 7 reveals that the active bytes remain significantly
below 128 GB throughout the US1-image trace, suggesting that
the AdmitAll admission should be nearly optimal on the 128-GB
cache when combined with LRU eviction as well. Correspondingly,
Figure 4 confirms that, unlike SecondHit or AdaptSize, RL-Cache
successfully learns that admitting all objects is nearly optimal when
the cache is abundant for the needs of US1-image. On the other
hand, the active bytes in Figure 7 exceed 2 GB and even 16 GB during

RL-Cache: Learning-Based Cache Admission for Content Delivery

NetAl 2019, August 23, 2019, Beijing, China

30 260
2 40 g
c ° 40
£30 e AdmitAll 2
220 SecondHit 2
® m AdaptSize @ 20
010 (@]
B RL-Cache
0 0

2 16
Cache size (GB)

Figure 4: Average hit rate for US1-image.

128

Cache size (GB)
Figure 5: Average hit rate for US1-video.

80
9
o 60
[
m AdmitAll E40 B AdmitAll
SecondHit g SecondHit
I AdaptSize 520 I AdaptSize
B RL-Cache B RL-Cache
16 128 0 16 128

Cache size (GB)
Figure 6: Average hit rate for US1-web.

103 103 103
8 102 128 B a0 128 8 102 128
g ™ 3 g 6
o 16 o
1 L~ 1
210 2 10t 2 10
2 A 2 2. 2
g g 10 g
1071 107! 1071
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time (day) Time (day) Time (day)

Figure 7: Active bytes for US1-image.

Figure 8: Active bytes for US1-video.

Figure 9: Active bytes for US1-web.

25
| Request trace | US2-web | EU-video | 10° m AdmitAll
Requests (10°) 8B669] _ 906] @ 10 820 SecondHit
Unique objects (10°) 56.42 252 T 10° g 15| - AdaptSize
Unique bytes (TB) 8.90 2416| £ 102 128 S B RL-Cache
2 =
Traffic volume (Gbps) 3.07 368] @ 1, 16 5 10
Table 3: Properties of US2-web and EU-video. z-' 0 2 S
10 8 5
1071 0
0O 3 6 9 12 15 18
Time (day) 2 16 128

Figure 10: Active bytes for EU-video.

most of the trace, except the expected sharp rise and drop at the
start and finish respectively. Thus, when the cache size decreases
to 16 GB and further to 2 GB, RL-Cache learns different admission
strategies and outperforms not only SecondHit and AdaptSize but
also AdmitAll, with relatively larger gains on smaller caches.

For US1-video, Figures 5 and 8 depict the same qualitative behav-
ior as for US1-image. RL-Cache consistently outperforms SecondHit
and AdaptSize. Also, RL-Cache beats AdmitAll by 5.6% and 2.9% on
the 2-GB and 16-GB cache respectively and performs similarly to
AdmitAll on the 128-GB cache which, as Figure 8 indicates, is plen-
tiful for the needs of US1-video, making AdmitAll nearly optimal
for the given combination of the request trace and cache size.

For US1-web, the qualitative picture changes. As Figures 6 and 9
show, the active bytes exceed 128 GB during most of the trace, and
RL-Cache consistently outperforms AdmitAll for all three examined
cache sizes: from 4.5% with the 128-GB cache to nearly 20% for the
2-GB cache. RL-Cache also consistently outperforms SecondHit
and performs at least as well as AdaptSize.

61

Cache size (GB)

Figure 11: Average hit rate for EU-video.

Overall, the above results for the three traces show that RL-
Cache performs better than, or at least as well as, the state-of-the-
art admission algorithms. Hence, RL-Cache is excellently suited for
production settings where request patterns and cache partitions for
traffic classes vary.

4.2 Robustness of RL-Cache

To assess the robustness of RL-Cache, we consider additional US2-
web and EU-video traces characterized in Table 3. Whereas US2-web
is a 4-day web trace from a different US-based data center than for
US1-web, EU-video is a 18-day video trace from Ireland.

EU-video diversifies our study in regard to not only geography
but also the cache size needed to achieve a good performance on a
trace. Figure 10 shows that the active bytes during EU-video remain
significantly above 128 GB, implying that the cache has to be much
larger to achieve a high hit rate. Figure 11 corroborates this: the
examined algorithms support hit rates of around 20% on the 128-GB
cache, with RL-Cache outperforming the second-best AdaptSize

NetAl 2019, August 23, 2019, Beijing, China

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitaraman

80 25

80 I EU-video_EU-video
? S $20 US1-video_EU-video
v 60 w60 @ | mmm USl-web_EU-video
- -
© e @ 15
= kS)
E40 =40 Bmm US1-web_US1-web = 10
g s US1-web_US1-web 2 EU-video_US1-web g
820 US2-web_US1-web 820 B US1-video_USl-video | & 5

B US1-video_US1-web s EU-video_US1-video
0 — e | 0 0 u
2 16 128 2 16 128 2 16 128

Cache size (GB)

Figure 12: Robustness of RL-Cache
within a geographic region.

103
3 = CPU
= GPU
§ 102
o
ol
g10?
(]
£
|_
10°

1 8 16 64 256 1K 4K
Batch size (requests)

Figure 14: Per-request neural-net processing of RL-Cache.

algorithm by 6%. For the needs of EU-video, the 2-GB and 16-GB
caches are too tiny as they support meaningless hit rates of just
few percents.

Now, we examine the sensitivity of RL-Cache to being trained
in a different geographic location and on a different traffic class.
When labeling the plots for these experiments, we use format A_B
where A and B refer to the training and testing traces respectively.
Regardless of whether we train RL-Cache on US1-web, US2-web, or
US1-video, Figure 12 shows that the hit rate on US1-web remains
about the same. Hence, we can train RL-Cache in one location and
run the algorithm on traces of the same or different traffic classes
in other locations of the same geographic region.

We also consider scenarios where the training is done on a dif-
ferent continent. Figure 13 reveals that the hit rate on US1-web
degrades significantly when RL-Cache is trained on EU-video rather
than US1-web. The degradation is smaller when the traffic class is
kept the same, as shown for the hit rate on US1-video when we
train RL-Cache on EU-video rather than US1-video. Swapping the
training and testing locations, Figure 13 also reports substantially
lower hit rates on EU-video when RL-Cache is trained on US1-video
or US1-web rather than EU-video. While the robustness across the
continents is weak, the CDN can improve the scalability of its oper-
ation by training RL-Cache on a subset of the servers in the same
geographic region, rather than across geographic regions.

4.3 Processing Overhead of RL-Cache

This section evaluates how effectively our RL-Cache implemen-
tation leverages modern multi-core CPUs and GPUs to keep the
per-request neural-net processing overhead low. Figure 14 depicts

Cache size (GB)

62

Cache size (GB)

Figure 13: Robustness of RL-Cache across geographic regions: (left) testing in the
US1 location and (right) testing in the EU location.

the impact of the batch mode on the neural-net processing overhead.
As the batch size increases, we use the same number of cores as the
batch size until utilizing all the cores. Whereas the separate pro-
cessing of each request takes 620 s and 510 us on an AMD Ryzen
7 1700X CPU (which has 16 cores with 64 threads) and GeForce
GTX 1080 Ti GPU (with 3584 cores) respectively, the correspond-
ing per-request overhead with 1024-request batches falls to 64 ps
and 4 ps on the CPU and GPU. Such low per-request neural-net
overhead already empowers modern cache servers to sustain their
current rates of request processing. When batches are sized to 4096
requests, the per-request neural-net processing time becomes 16 ys
and 4 ps for the CPU and GPU respectively.

5 CONCLUSION

This paper proposed RL-Cache, an RL-based algorithm for cache
admission in a CDN server. RL-Cache uses a Monte Carlo method
to train a feedforward neural network for maximizing cache hit
rates. The algorithm considers a broad set of features including the
object’s size, frequency, and recency characteristics. Our publicly
available RL-Cache implementation supports batch processing of
requests to keep the processing overhead low. Our evaluation used
Akamai’s production traces from the image, video, and web traffic
classes. We introduced the notion of active bytes to characterize the
cache size needed to achieve a high hit rate on a trace. Our results
for different cache sizes showed that RL-Cache performed better
than, or at least as well as, state-of-the-art admission algorithms.
Thus, RL-Cache is highly suitable for production settings where
request patterns and cache partitions for traffic classes vary. We
also studied robustness of RL-Cache and showed that the CDN
can operate scalably by training RL-Cache in one location and run-
ning the algorithm on traces of the same or different traffic classes
in other locations of the same geographic region. This paper is a
good first step that opens avenues for generalizing the RL-Cache
approach to cache eviction, distributed caching in multiple servers,
and joint optimization of caching and cache deployment [10]. An-
other direction for future work is to analyze feature contributions
and explain RL-Cache decisions with tools such as LIME [19].

ACKNOWLEDGMENTS

This research was supported in part by the Regional Government
of Madrid (grant P2018/TCS-4499, EdgeData-CM) and U.S. National
Science Foundation (grants CNS-1763617 and CNS-1717179).

RL-Cache: Learning-Based Cache Admission for Content Delivery

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]
(71
(8]
(]
[10]
(1]

M. Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. URL : www.tensorflow.org.

D. Berger. 2018. Towards Lightweight and Robust Machine Learning for CDN
Caching. HotNets 2018.

D. Berger, R. K. Sitaraman, and M. Harchol-Balter. 2017. AdaptSize: Orchestrating
the Hot Object Memory Cache in a Content Delivery Network. NSDI 2017.

F. Chen, R. K. Sitaraman, and M. Torres. 2015. End-User Mapping: Next Generation
Request Routing for Content Delivery. SIGCOMM 2015.

L. Cherkasova. 1998. Improving WWW Proxies Performance with Greedy-Dual-
Size-Frequency Caching Policy. HP Technical Report.

J. Cobb and H. ElAarag. 2008. Web Proxy Cache Replacement Scheme Based on
Backpropagation Neural Network. Journal of Systems and Software 81, 1539-1558.

G. Einziger, R. Friedman, and B. Manes. 2015. TinyLFU: A Highly Efficient Cache
Admission Policy. CoRR 2015.

V. Fedchenko, G. Neglia, and B. Ribeiro. 2018. Feedforward Neural Networks for
Caching: Enough or Too Much? arxiv.org.

B. Fitzpatrick and Memcached Community. 2019. Memcached. GitHub. URL :
https://github.com/memcached/memcached.

S. Hasan, S. Gorinsky, C. Dovrolis, and R. K. Sitaraman. 2014. Trade-offs in
Optimizing the Cache Deployments of CDNs. INFOCOM 2014.

H. Khalid and M. S. Obaidat. 1999. KORA-2: A New Cache Replacement Policy
and Its Performance. ICECS 1999.

63

[14
[15
[16

(17

[19
[20
[21

[22

[23

)

]
]
]

]
]

NetAl 2019, August 23, 2019, Beijing, China

V. Kirilin. 2019. RL-Cache. GitHub. URL : https://github.com/W Vadim/RL-Cache.
B. M. Maggs and R. K. Sitaraman. 2015. Algorithmic Nuggets in Content Delivery.
SIGCOMM 2015.

G. B. Mathews. 1897. On the Partition of Numbers. Proceedings of the London
Mathematical Society. 28, 486—490.

K. Morales and B. K. Lee. 2012. Fixed Segmented LRU Cache Replacement Scheme
with Selective Caching. IPCCC 2012.

A.Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang. 2018. DeepCache:
A Deep Learning Based Framework For Content Caching. NetAI 2018.

E. Nygren, R. K. Sitaraman, and J. Sun. 2010. The Akamai Network: A Platform
for High-performance Internet Applications. SIGOPS Oper. Syst. Rev. 44, 3, 2-19.
W. Reese. 2008. Nginx: The High-Performance Web Server and Reverse Proxy.
Linux J. 2008, 173, Article 2.

M. T. Ribeiro, S. Singh, and C. Guestrin. 2016. "Why Should I Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Representations
by Back-Propagating Errors. Nature 323, 6088, 533-536.

K. Suksomboon et al. 2013. PopCache: Cache More or Less Based on Content
Popularity for Information-Centric Networking. LCN 2013.

A. Sundarrajan, M. Feng, M. Kasbekar, and R. K. Sitaraman. 2017. Footprint De-
scriptors: Theory and Practice of Cache Provisioning in a Global CDN. CoNEXT
2017.

F. Velazquez, K. Lyngstol, T. Fog Heen, and J. Renard. 2016. The Varnish Book
for Varnish 4.0. Varnish Software AS.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 RL-Cache Admission Algorithm
	3.1 Feature Selection
	3.2 Training Algorithm
	3.3 Implementation

	4 Empirical Evaluation
	4.1 Hit-Rate Performance
	4.2 Robustness of RL-Cache
	4.3 Processing Overhead of RL-Cache

	5 Conclusion
	Acknowledgments
	References

