
RL-Cache: Learning-Based Cache Admission
for Content Delivery

Vadim Kirilin§∗, Aditya Sundarrajan†∗, Sergey Gorinsky§, and Ramesh K. Sitaraman†$
§IMDEA Networks Institute, Spain †UMass Amherst, USA $Akamai Technologies, USA

ABSTRACT

Content delivery networks (CDNs) distribute much of the Internet

content by caching and serving the objects requested by users. A

major goal of a CDN is to maximize the hit rates of its caches,

thereby enabling faster content downloads to the users. Content

caching involves two components: an admission algorithm to decide

whether to cache an object and an eviction algorithm to decide

which object to evict from the cache when it is full. In this paper, we

focus on cache admission and propose a novel algorithm called RL-

Cache that uses model-free reinforcement learning (RL) to decide

whether or not to admit a requested object into the CDN’s cache.

Unlike prior approaches that use a small set of criteria for decision

making, RL-Cache weights a large set of features that include the

object size, recency, and frequency of access. We develop a publicly

available implementation of RL-Cache and perform an evaluation

using production traces for the image, video, and web tra�c classes

fromAkamai’s CDN. The evaluation shows that RL-Cache improves

the hit rate in comparison with the state of the art and imposes only

a modest resource overhead on the CDN servers. Further, RL-Cache

is robust enough that it can be trained in one location and executed

on request traces of the same or di�erent tra�c classes in other

locations of the same geographic region.

CCS CONCEPTS

• Networks → Network services; • Computing methodolo-

gies → Reinforcement learning.

KEYWORDS

Content delivery network; caching; cache admission; hit rate; object

feature; feedforward neural network; Monte Carlo method; batch

processing; tra�c class; image; video, web; production trace.

ACM Reference Format:

Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitara-

man. 2019. RL-Cache: Learning-Based Cache Admission for Content De-

livery. In NetAI 2019: ACM SIGCOMM 2019 Workshop on Network Meets AI

& ML, August 23, 2019, Beijing, China. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3341216.3342214

∗Both authors contributed equally to the paper. The �rst author is now with Yandex
LLC, Russia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

NetAI 2019, August 23, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6872-8/19/08. . . $15.00
https://doi.org/10.1145/3341216.3342214

1 INTRODUCTION

Today’s Internet heavily relies on content delivery networks (CDNs)

to provide low-latency access to its content for billions of users

around the globe. A large CDN deploys hundreds of thousands of

servers worldwide so that at least some servers of the CDN lie in

each user’s network proximity. When a user requests an object

such as an image, video, or web page, the user’s request goes to

a nearby server of the CDN [4]. If the cache of the CDN server

stores the requested object, i.e., a hit happens, the user promptly

receives the object from the server’s cache. On the other hand, if

the requested object is not in the server’s cache, i.e., a miss occurs,

the CDN server delivers the object to the user after fetching the

object from the content provider’s origin server, and the delivery

might be slow because the origin server might be far away.

Decreasing the user-perceived latency of content delivery consti-

tutes the main goal of the CDN. Hence, the CDN strives to maximize

the server’s hit rate de�ned as the percentage of requests that are

served straight from the cache. When the CDN server receives

an object request, the server might need to make admission and

eviction decisions. If the request is a miss, the server must decide

whether to admit the fetched object into the cache. Furthermore,

if the server decides to cache the fetched object, and the cache is

already full, the server must decide which object(s) it should evict

from the cache to make space for the new arrival. For example,

Least Recently Used (LRU) is a simple eviction policy that discards

the least recently used object. Major CDNs employ LRU and its

variants, such as Segmented LRU (SLRU) [15], for cache eviction.

Researchers have proposed a large number of more sophisticated

eviction algorithms that are more di�cult to implement in practice,

e.g., Greedy-Dual-Size-Frequency (GDSF) [5]. The work on admis-

sion algorithms is less extensive and includes SecondHit [13] and

AdaptSize [3].

Our goal is to investigate whether Machine Learning (ML) tech-

niques can increase cache hit rates in typical CDN production

settings, without adding excessive overhead or requiring major

software changes. This paper examines ML-based algorithms for

cache admission, leaving the question of eviction improvement

for future work. Despite the extensive prior research on cache

eviction, nearly all production content caches – including Akamai

caches [17], Varnish [23], Memcached [9], and NGINX [18] – use

LRU variants as their default eviction algorithm. LRU’s popular-

ity arises due to easy implementation combined with very good

hit rates in production settings. Consequently, similar to the state-

of-the-art AdaptSize admission algorithm, we assume LRU as the

eviction algorithm throughout our paper. Our work is complemen-

tary to recent ML-based caching proposals that learn popularity

of objects and/or determine the cache eviction order, e.g., Deep-

Cache [16] and PopCache [21].

57

NetAI 2019, August 23, 2019, Beijing, China Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky, and Ramesh K. Sitaraman

Our Contributions. We formulate cache admission as a Re-

inforcement Learning (RL) problem solvable with Monte Carlo

methods. Unlike prior works that require complex object ordering

and eviction strategies, our goal is to create a simple practicable

cache-admission front end for an existing CDN server. This ap-

proach is easier to implement in a production setting because such

cache-admission front ends already exist in practice, e.g., Akamai’s

Bloom-�lter implementation of SecondHit [13].

We design RL-Cache, a cache-admission algorithm that trains

a feedforward neural network which outputs a binary decision

upon receiving a request for an object: 1 (admit) or 0 (do not admit).

Training of the neural network on request traces from CDN servers

is a non-real-time and computationally intensive task. We expect

the training to be periodically performed in the cloud. However,

after the training phase, RL-Cache can e�ciently process batches of

requests and make admission decisions with small computational

overhead, e.g., per-request processing time of 16 µs and 4 µs on

CPU and GPU platforms respectively with batches of 4096 requests.

This additional processing does not impose a signi�cant demand

on the resources of CDN servers.

We develop a publicly available implementation of RL-Cache,

provide open access to it [12], and perform an evaluation on real-

world request traces from Akamai’s production CDN. CDNs host

tra�c classes that have very di�erent object-size distributions and

object-access patterns, requiring di�erent caching strategies [22].

We test our approach on three major CDN-tra�c classes: web,

images, and videos. We also de�ne a notion of active bytes that

characterizes the cache size needed to achieve a high hit rate on a

particular trace. For the examined tra�c classes and cache sizes, our

evaluation shows that RL-Cache successfully learns to outperform

or at least match (e.g., when the cache is abundant for the needs of

the trace) the hit rate achieved by state-of-the-art algorithms. Our

evaluation also demonstrates robustness of RL-Cache in the sense

that RL-Cache can be trained in one location and executed, without

a signi�cant loss in the hit-rate performance, on traces of the same

or di�erent tra�c classes in other locations of the same geographic

region.

In summary, RL-Cache is a promising approach to improving

cache hit rates by learning an admission policy and is the �rst such

scheme to be validated on real-world CDN traces across multiple

tra�c classes.

Roadmap. We organize the rest of this paper as follows. Sec-

tion 2 provides background and discusses related work. Section 3

presents our RL-Cache algorithm. Section 4 empirically evaluates

the proposed scheme. Section 5 concludes the paper with a sum-

mary of its contributions.

2 BACKGROUND AND RELATED WORK

Caching is related to the knapsack problem [14] which makes

optimal caching computationally intractable, even in the o�ine

setting where the entire request sequence is known beforehand.

CDN caching faces additional online challenges due to uncertainty

about future object requests. Further, CDNs host tra�c classes with

diverse object-size distributions and object-access patterns, mak-

ing it hard for any particular caching policy to work well for all

classes [22].

Existing work in caching predominantly focuses on design of

eviction policies, e.g., LRU, SLRU, TLRU, S4LRU, GDSF, ARC, and

Cli�hanger (cf. Table 2 in [3]). Such eviction-focused algorithms

typically employ the basic admission policy of caching all requested

objects. Recently, there has been an increased interest in more so-

phisticated cache-admission policies. SecondHit [13], an admission

policy implemented by Akamai, uses the access frequency of an

object and admits the object into the cache only upon a repeated

request for the object within a �xed time interval. SecondHit em-

ploys a Bloom �lter as a front end of the cache to track objects that

have been requested before. Another frequency-based approach is

TinyLFU [7]. AdaptSize [3] is a size-based admission policy that

uses a Markov model to adjust a threshold for the size of admitted

objects. In contrast to prior work that uses one or two object fea-

tures, RL-Cache combines a broader set of eight features that use

the object’s size, request recency, and frequency characteristics to

make an admission decision.

Previous ML-based caching solutions, which also commonly

focus on eviction policies, optimize for proxy metrics of the hit rate.

For example, DeepCache uses popularity prediction to prefetch

popular objects into the cache [16]. PopCache caches objects with

popularity-dependent probabilities [21]. FNN-based caching [8],

NNPCR-2 [6], and KORA-2 [11] also rely on popularity prediction.

LFO [2] uses supervised learning to make admission decisions by

mapping object features to optimal decisions learned o�ine.

RL-Cache di�ers from some of the above ML-based schemes in

optimizing for the hit rate directly, rather than via a proxy met-

ric such as object popularity. Our design aligns perfectly with the

RL paradigm because cache hits constitute a natural form of RL

rewards. Speci�cally, Monte Carlo methods of RL support optimiza-

tion of the hit rate by learning directly from sample sequences of

admission decisions. Further, RL-Cache focuses on cache admission

that is easier to implement as a front end for an existing CDN cache.

In addition, much of the prior work uses less realistic tra�c assump-

tions, such as uniform object sizes or synthetic workloads that do

not accurately capture characteristics of real-world tra�c classes

in a CDN. Finally, some prior schemes require functionality that is

hard to implement e�ciently, such as creation of fake requests for

popular objects [16] or modi�cation of the eviction order based on

object popularity [6].

3 RL-CACHE ADMISSION ALGORITHM

To decide whether to cache a requested object, RL-Cache uses a

feedforward neural network that computes admission probabil-

ity A(u,w) ∈ [0, 1] as a function of features u of the object and

weightsw of the neural network. The features of an object include

metrics related to its size as well as frequency and recency of its

requests. Once the neural network is trained, RL-Cache computes

admission probability A(u,w) for each received request and then

rounds it to make a binary decision of 1 (admit) or 0 (do not admit

the requested object).

3.1 Feature Selection

First, we select features u that characterize each requested object.

Traditional caching heuristics describe an object with its request

58

RL-Cache: Learning-Based Cache Admission for Content Delivery NetAI 2019, August 23, 2019, Beijing, China

Notation Meaning

sj Size of object j in bytes

fj Frequency, the fraction of requests for object j among

all requests so far

r j Temporal recency, time in seconds since the previous

request for object j

� j Exponential smoothing of r j so far

dj Ordinal recency, the number of requests since the pre-

vious request for object j

�j Exponential smoothing of dj so far

fj/sj Ratio of the frequency to size for object j

fj · sj Product of the frequency and size for object j

Table 1: Features of an object in our model.

recency, frequency, and object size and use these features in iso-

lation or combination, e.g., LRU (recency), SecondHit (frequency),

AdaptSize (size), and GDSF (frequency and size). The strength of our

approach is in simultaneously considering a broad set of eight fea-

tures (cf. Table 1) that capture various aspects of recency, frequency,

and size to make admission decisions.

3.2 Training Algorithm

Now, we show how to train our feedforward neural network us-

ing a Monte Carlo approach. The training objective is to learn

weightsw of the network which computes admission probability

function A(u,w) for an object with features u. The training data

set is a sequence of object requests i characterized by their fea-

tures ui . To keep the training overhead manageable, we traverse

this sequence of requests by applying a sliding window. We initially

position the window to start at the �rst request and iteratively slide

the window forward by K requests at a time, until the training

algorithm considers all requests in the trace. As the window slides

along the trace, the algorithm learns weights w more accurately.

Because the less accurate weights learned during previous windows

a�ect the cache state, and the cumulative e�ect of these inaccura-

cies might undermine the training e�ectiveness, we re�ll the cache

after every q windows by simulating admission decisions under the

current weights for all the requests preceding the current window.

For each window, our training algorithm performs the following

four steps.

1) Sampling: Let w be the current weights and ui denote the

features of the i th request in the current window, where 1 ≤ i ≤ K .

For each of these K requests, we admit the requested object with

probabilityA(ui ,w), i.e., the non-admission probability for request i

is 1 − A(ui ,w). As a result, we receive a decision sample for the

K requests. Altogether, we generatem such samples, wherem is

signi�cantly smaller than 2K which is the number of all possible

samples.

2) Selection: Whereas our objective is to train the neural net-

work to maximize the hit rate of the cache, we now select the pth

percentile of them decision samples that produce the highest hit

rates. Because the admission decisions in a K-request decision sam-

ple also a�ect the cache performance beyond the decision sample,

we also simulate admission decisions for the L subsequent requests

to compute the hit rate over the extended window of K +L requests.

For each request i such that K < i ≤ K + L, we multiply its contri-

bution to the hit rate by � i−K , where 0 < � < 1, to give diminishing

importance to requests that are farther into the future. We consider

such extended windows of K + L requests solely for the sample

selection. Note that consecutive windows overlap because the win-

dow size exceeds the number of requests by which the window

advances each time.

3) Learning: Utilizing the K-request samples selected at the

previous step, we update weightsw . Speci�cally, we train the neural

network with a backpropagation algorithm [20] which uses binary

cross-entropy loss as the loss function.

4) Termination check: If the absolute change in weights w

falls below threshold � , the algorithm terminates. Otherwise, we

repeat the above three steps.

3.3 Implementation

We implement RL-Cache using the TensorFlow library [1] without

requiring any extensions. Our implementation is publicly available

with open access at its GitHub repository [12].

In the main mode envisioned for RL-Cache online operation,

the CDN periodically trains the neural network on cloud infras-

tructure and sends the most recently trained network to the cache

server. The server-side implementation of RL-Cache maintains a

database with feature statistics, which are needed to compute the

frequency and recency metrics, and applies the most recently ob-

tained neural network to arriving requests. Upon receiving an object

request, the cache computes the features of the object, updates the

feature-statistics database, and uses the neural network to make

an admission decision for the object. The usage of the neural net-

work contributes the most to the processing overhead imposed by

RL-Cache on the cache.

To keep the neural-net processing overhead low, our RL-Cache

implementation allows for con�gurations that leverage pipelining

and batching. RL-Cache is invoked only for those requests that

result in a cache miss and trigger fetching of the missed object from

its origin over the wide area network, with typical fetching latency

above 100 ms. Further, RL-Cache can make admission decisions

asynchronously with serving the requested object to the user, since

the server can cache the object already after delivering it to the user.

Hence, RL-Cache can be run in a batch mode where the cache ac-

cumulates arriving requests into a batch and sends them jointly, as

one batch, for the neural-net processing. The batch mode exploits

architectural properties of the multi-core processors in modern

CDN servers. The parallel processing of the batch requests, further

enhanced by potential sharing of memory banks among the pro-

cessor cores, enables the modern CDN servers to adopt RL-Cache

without reducing their request-processing rates.

4 EMPIRICAL EVALUATION

To evaluate RL-Cache, we start with three traces collected over a pe-

riod of 4 days from a US-based edge server in Akamai’s production

network. These US1-image, US1-video, and US1-web traces repre-

sent the image, video, and web tra�c classes respectively. Table 2

sums up characteristics of the three request traces.

We demonstrate the diversity of the considered tra�c classes

by plotting the object-popularity and object-size distributions for

59

RL-Cache: Learning-Based Cache Admission for Content Delivery NetAI 2019, August 23, 2019, Beijing, China

REFERENCES
[1] M. Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. URL : www.tensor�ow.org.
[2] D. Berger. 2018. Towards Lightweight and Robust Machine Learning for CDN

Caching. HotNets 2018.
[3] D. Berger, R. K. Sitaraman, and M. Harchol-Balter. 2017. AdaptSize: Orchestrating

the Hot Object Memory Cache in a Content Delivery Network. NSDI 2017.
[4] F. Chen, R. K. Sitaraman, andM. Torres. 2015. End-UserMapping: Next Generation

Request Routing for Content Delivery. SIGCOMM 2015.
[5] L. Cherkasova. 1998. Improving WWW Proxies Performance with Greedy-Dual-

Size-Frequency Caching Policy. HP Technical Report.
[6] J. Cobb and H. ElAarag. 2008. Web Proxy Cache Replacement Scheme Based on

Backpropagation Neural Network. Journal of Systems and Software 81, 1539–1558.
[7] G. Einziger, R. Friedman, and B. Manes. 2015. TinyLFU: A Highly E�cient Cache

Admission Policy. CoRR 2015.
[8] V. Fedchenko, G. Neglia, and B. Ribeiro. 2018. Feedforward Neural Networks for

Caching: Enough or Too Much? arxiv.org.
[9] B. Fitzpatrick and Memcached Community. 2019. Memcached. GitHub. URL :

https://github.com/memcached/memcached.
[10] S. Hasan, S. Gorinsky, C. Dovrolis, and R. K. Sitaraman. 2014. Trade-o�s in

Optimizing the Cache Deployments of CDNs. INFOCOM 2014.
[11] H. Khalid and M. S. Obaidat. 1999. KORA-2: A New Cache Replacement Policy

and Its Performance. ICECS 1999.

[12] V. Kirilin. 2019. RL-Cache. GitHub. URL : https://github.com/WVadim/RL-Cache.
[13] B. M. Maggs and R. K. Sitaraman. 2015. Algorithmic Nuggets in Content Delivery.

SIGCOMM 2015.
[14] G. B. Mathews. 1897. On the Partition of Numbers. Proceedings of the London

Mathematical Society. 28, 486–490.
[15] K. Morales and B. K. Lee. 2012. Fixed Segmented LRU Cache Replacement Scheme

with Selective Caching. IPCCC 2012.
[16] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang. 2018. DeepCache:

A Deep Learning Based Framework For Content Caching. NetAI 2018.
[17] E. Nygren, R. K. Sitaraman, and J. Sun. 2010. The Akamai Network: A Platform

for High-performance Internet Applications. SIGOPS Oper. Syst. Rev. 44, 3, 2–19.
[18] W. Reese. 2008. Nginx: The High-Performance Web Server and Reverse Proxy.

Linux J. 2008, 173, Article 2.
[19] M. T. Ribeiro, S. Singh, and C. Guestrin. 2016. "Why Should I Trust You?":

Explaining the Predictions of Any Classi�er. KDD 2016.
[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning Representations

by Back-Propagating Errors. Nature 323, 6088, 533–536.
[21] K. Suksomboon et al. 2013. PopCache: Cache More or Less Based on Content

Popularity for Information-Centric Networking. LCN 2013.
[22] A. Sundarrajan, M. Feng, M. Kasbekar, and R. K. Sitaraman. 2017. Footprint De-

scriptors: Theory and Practice of Cache Provisioning in a Global CDN. CoNEXT
2017.

[23] F. Velazquez, K. Lyngstol, T. Fog Heen, and J. Renard. 2016. The Varnish Book
for Varnish 4.0. Varnish Software AS.

63

	Abstract
	1 Introduction
	2 Background and Related Work
	3 RL-Cache Admission Algorithm
	3.1 Feature Selection
	3.2 Training Algorithm
	3.3 Implementation

	4 Empirical Evaluation
	4.1 Hit-Rate Performance
	4.2 Robustness of RL-Cache
	4.3 Processing Overhead of RL-Cache

	5 Conclusion
	Acknowledgments
	References

