

1 **Accurate and sensitive quantitation of glucose and glucose phosphates derived from storage
2 carbohydrates by mass spectrometry**

3
4 Lyndsay E.A. Young¹, Corey O. Brizzee¹, Jessica K. A. Macedo¹, Robert D. Murphy¹, Christopher J.
5 Contreras^{4,5}, Anna A. DePaoli-Roach^{4,5}, Peter J. Roach^{4,5}, Matthew S. Gentry^{1,3,5,6}, and Ramon C. Sun^{2,6, #}
6

7 From the ¹Department of Molecular and Cellular Biochemistry, University of Kentucky College of
8 Medicine, Lexington, KY 40536, USA; ²Department of Neuroscience, University of Kentucky College of
9 Medicine, Lexington, KY 40536, USA; ³University of Kentucky Epilepsy & Brain Metabolism Alliance,
10 University of Kentucky College of Medicine, Lexington, KY 40536, USA; ⁴Department of Biochemistry
11 and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 and ⁵Lafora
12 Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
13 ⁶Markey Cancer Center, Lexington, KY 40536, USA

14
15 #To whom correspondence should be addressed: Ramon Sun: Department of Neuroscience BBSRB
16 B179, University of Kentucky, Lexington, KY, 40536-0509 USA; ramon.sun@uky.edu; Tel. +1
17 (859)562-2298 Fax. +1 (859)323-5505

18
19 **Abstract**

20 The addition of phosphate groups into glycogen modulate its branching pattern and solubility which all
21 impact its accessibility to glycogen interacting enzymes. As glycogen architecture modulates its
22 metabolism, it is essential to accurately evaluate and quantify its phosphate content. Simultaneous direct
23 quantitation of glucose and its phosphate esters requires an assay with high sensitivity and a robust
24 dynamic range. Herein, we describe a highly-sensitive method for the accurate detection of both
25 glycogen-derived glucose and glucose-phosphate esters utilizing gas-chromatography coupled mass
26 spectrometry. Using this method, we observed higher glycogen levels in the liver compared to skeletal
27 muscle, but skeletal muscle contained many more phosphate esters. Importantly, this method can detect
28 femtomole levels of glucose and glucose phosphate esters within an extremely robust dynamic range with
29 excellent accuracy and reproducibility. The method can also be easily adapted for the quantification of
30 plant starch, amylopectin or other biopolymers.

31
32 **Keywords:** GCMS; glycogen; glucose; glucose phosphate esters; Lafora disease; laforin

33
34 **1. Introduction**

35 Glycogen is a branched polymer of glucose moieties that functions as an energy reserve in mammals.
36 Glycogen is found in most tissues, including liver (Costill, Gollnick, Jansson, Saltin, & Stein, 1973; Frost,
37 2004), muscle (Hultman & Nilsson, 1971), kidney (Krebs, Bennett, De Gasquet, Gascoyne, & Yoshida,
38 1963), brain (Brown & Ransom, 2007), and white blood cells (Gibb & Stowell, 1949). The synthesis and
39 breakdown of glycogen involves several enzymes and regulatory proteins (Peter J Roach, Skurat, &
40 Harris, 2001). Glycogen is composed of glucose moieties joined by α -1,4-glycosidic linkages, formed by
41 glycogen synthase, and branches occurring every 12-14 units via α -1,6-glycosidic branches, catalyzed by
42 glycogen branching enzyme. This unique organization allows cells to store molecules of up to \approx 55,000
43 glucose units in a water-soluble form with high packing density for maximum storage (Peter J Roach,
44 2002). During glycogenolysis (glycogen breakdown), glycogen phosphorylase (GP) (Johnson, 1992)
45 releases glucose-1-phosphate molecules to fuel a wide range of metabolic processes (Agius, 2015).
46 Glycogen synthesis and degradation either consumes or produces free glucose-6-phosphate (G6P) and
47 glucose 1-phosphate, respectively, key metabolites essential for energy production, lipid generation, and
48 nucleotide biosynthesis important for cellular physiology.

51 Glycogen contains phosphate monoester groups covalently attached to the C2-, C3-, and C6-position of
52 glucose hydroxyls (DePaoli-Roach et al., 2015; Nitschke et al., 2013; Peter J Roach, 2015; Tagliabracci et
53 al., 2011). Glycogen-bound phosphate modulates glycogen architecture by affecting branching and chain
54 length that define glycogen granular size, solubility, and its accessibility to glycogen interacting enzymes
55 (Deng et al., 2015; Li, Powell Prudence, & Gilbert Robert, 2017; Powell et al., 2015; Worby, Gentry, &
56 Dixon, 2006). Liver glycogen has an average chain length of 13 residues (Nitschke et al.; Peter J. Roach,
57 Depaoli-Roach, Hurley, & Tagliabracci, 2012) and approximately 1 phosphate per 1,000-10,000 glucose
58 residues (Nitschke et al.; Tagliabracci et al., 2011). These properties allow liver glycogen to maintain
59 maximum solubility for rapid turn-over during periods of starvation. Muscle glycogen is architecturally
60 distinct from liver glycogen. Muscle glycogen has higher levels of phosphate esters and altered branching
61 pattern compared to liver glycogen. It is a fuel storage depot for the fight-or-flight response and does not
62 contribute to the regulation of blood glucose (Raja, Bräu, Palmer, & Fournier, 2003; Tagliabracci et al.,
63 2011). While the mechanism of phosphate incorporation into glycogen remains unresolved, glycogen
64 phosphorylation is intimately linked with the biophysical properties and biological utilization of glycogen
65 (A. Blennow & Engelsen, 2010; Nitschke et al., 2013; Silver, Kotting, & Moorhead, 2014; Sullivan et al.,
66 2019). The importance of regulating glycogen architecture and phosphorylation is highlighted in Lafora
67 disease (LD). LD is an early onset neurodegenerative disease resulting from the accumulation of
68 hyperphosphorylated, aberrant glycogen aggregates that drive disease pathogenesis in the form of
69 myoclonic seizures, neuroinflammation, and premature death (Matthew S Gentry, Dixon, & Worby,
70 2009; Matthew S. Gentry, Guinovart, Minassian, Roach, & Serratosa, 2018; Nitschke, Ahonen, Nitschke,
71 Mitra, & Minassian, 2018).

72
73 Glucose-2-phosphate (G2P), glucose-3-phosphate (G3P) and glucose-6-phosphate (G6P) are the
74 hydrolyzed monomeric forms of glycogen. Although G2P, G3P and G6P are biochemically similar, G6P
75 is a naturally occurring free metabolite that participates in glycolysis and the pentose phosphate pathway.
76 G6P can be measured via spectrophotometric methods utilizing G6P dehydrogenase and NADP/NADPH
77 conversion or a resorufin fluorescence assay (DePaoli-Roach et al., 2015; Zhu, Romero, & Petty, 2011).
78 Conversely, no enzyme that utilizes G2P or G3P has been discovered, so the two cannot be distinguished
79 by conventional biochemical enzymatic assays. Current technologies that can unambiguously distinguish
80 G2P, G3P and G6P are 2D-nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). 2D-
81 NMR is time consuming, requires a minimum of micrograms to milligrams of glycogen for accurate
82 assignment, and it is challenging to adapt for routine laboratory analysis (Roden & Shulman, 1999).
83 Currently, fluorescence-assisted capillary electrophoresis (FACE) is the gold standard to quantify C3 and
84 C6 phosphorylation of glucose residues in starch (Verbeke, Penverne, D'Hulst, Rolando, & Szydłowski,
85 2016). For FACE, starch is hydrolyzed and the glucose moieties are conjugated to 8-aminopyrene-1,3,6-
86 trisulfonic acid (APTS). The APTS-conjugated glucose moieties can then be quantified using CE with
87 accurate measurements as low as 1 glucose phosphate/100-1,000 glucose residues in plant starch.
88 However, mammalian glycogen often contains much less glucose-bound phosphate, on the order of 10- to
89 100-fold less, which is below the dynamic range for CE. In addition, the presence of free APTS and
90 inherent variation in retention time both add additional difficulties for batch processing, especially with
91 low phosphate levels. Therefore, a higher-throughput, more accessible assay is needed that yields a more
92 robust dynamic range with higher reproducibility and simultaneous quantitation of glucose, G2P, G3P,
93 and G6P.

94
95 Herein, we introduce a workflow for the extraction and quantitation of glycogen and its phosphate esters.
96 Glycogen was hydrolyzed to glucose, G2P, G3P, and G6P monomers and separated by gas-
97 chromatography coupled to a highly sensitive mass spectrometry (GCMS) that can analyze a robust
98 dynamic range and sensitivity for all three metabolites. With the addition of an auto-sampler, this GCMS-
99 based method can profile up to 120 samples/day with accuracy, reliability, and reproducibility for routine
100 interrogation of glucose moieties from mammalian glycogen and other glucose-based biopolymers.
101

102 **2. Experimental Procedures**

103 **2.1. Materials**

104 Analytical standards of D-glucose from Sigma Aldrich (Cas# 50-99-7), Glucose-2-phosphate synthesized
105 by Christopher Contreras, Glucose-3-phosphate synthesized by Chiroblock, and D-Glucose-6-phosphate
106 disodium salt, $C_6H_{11}Na_2O_9P \cdot xH_2O$, from Sigma Aldrich (CAS #3671-99-6) were used throughout the
107 study. Wild-type potato starch from Sigma Aldrich (CAS #9005-25-8) was purchased to test versatility of
108 the method. *gwd*−/− *Arabidopsis* starch was a generous gift from Drs. Sam Zeeman and Diana Santelia.
109 Mice were housed in a climate-controlled environment with a 14/10-hour light/dark cycle (lights on at
110 0600 hours) with water and solid diet provided *ad libitum* throughout the study. The Institutional
111 Animal Care and Use Committee at University of Kentucky has approved all of the animal procedures
112 carried out in this study under PHS Assurance #A3336-01.

113 **2.2. Chemical synthesis of Glucose-2-phosphate**

114 Cyclic glucose-1,2 phosphate was synthesized using a method previously described by Zmudzka and
115 Shugar (Zmudzka & Shugar, 1964). Briefly, glucose-1-phosphate (0.2g/ml), was converted to its free
116 acid by cation exchange chromatography, neutralized immediately with pyridine and concentrated
117 volume of approximately 10 ml in a vacuum centrifuge. 30 ml of pyridine and 3 g of
118 dicyclohexylcarbodiimide was added, mixed and incubated at 0°C for 48 hours. Following removal of
119 insoluble material, the barium salt of the glucose cyclic phosphate was precipitated using acetone by
120 centrifugation for 5 minutes at 5,000 x g. The cyclic phosphate was washed in ethanol and acetone
121 followed by acid hydrolysis to produce glucose-2-phosphate (De Clercq & Shugar, 1972; Piras, 1963).

122 **2.3. Glycogen Purification**

123 Mice were sacrificed by spinal dislocation, and liver and muscle were removed immediately post-
124 mortem, and washed once with PBS, twice with diH₂O, blotted dry, and snap frozen in Liquid
125 nitrogen. The frozen tissues were pulverized to 5 μm particles in liquid N₂ using a Freezer/Mill
126 Cryogenic Grinder (SPEX SamplePrep). Twenty milligrams of each pulverized tissue were extracted
127 in 50% methanol/chloroform (V/V 1:1) and separated into polar (aqueous layer), lipid (chloroform
128 layer) and protein/DNA/glycogen (interfacial layer) fractions. Glycogen is further purified from
129 protein/DNA using 1.5ml of ice cold 10% trichloroacetic acid. The glycogen fraction and polar fraction
130 were dried by vacuum centrifuge at 10^{−3} mBar for hydrolysis and derivatization.

131 **2.4. Glycogen and Starch Hydrolysis**

132 Hydrolysis of glycogen and starch was performed by first resuspending the pellet in diH₂O followed by
133 the addition equal parts 2N HCl. Samples were vortexed thoroughly and incubated at 95 °C for 2 hours.
134 The reaction was quenched with 100% methanol with 40 μM L-norvaline (as an internal control). The
135 sample was then incubated on ice for at least 30 minutes. The supernatant was collected by centrifugation
136 at 15,000 rpm at 4°C for 10 minutes and subsequently dried by vacuum centrifuge at 10^{−3} mBar.

137 **2.5. Sample Derivatization**

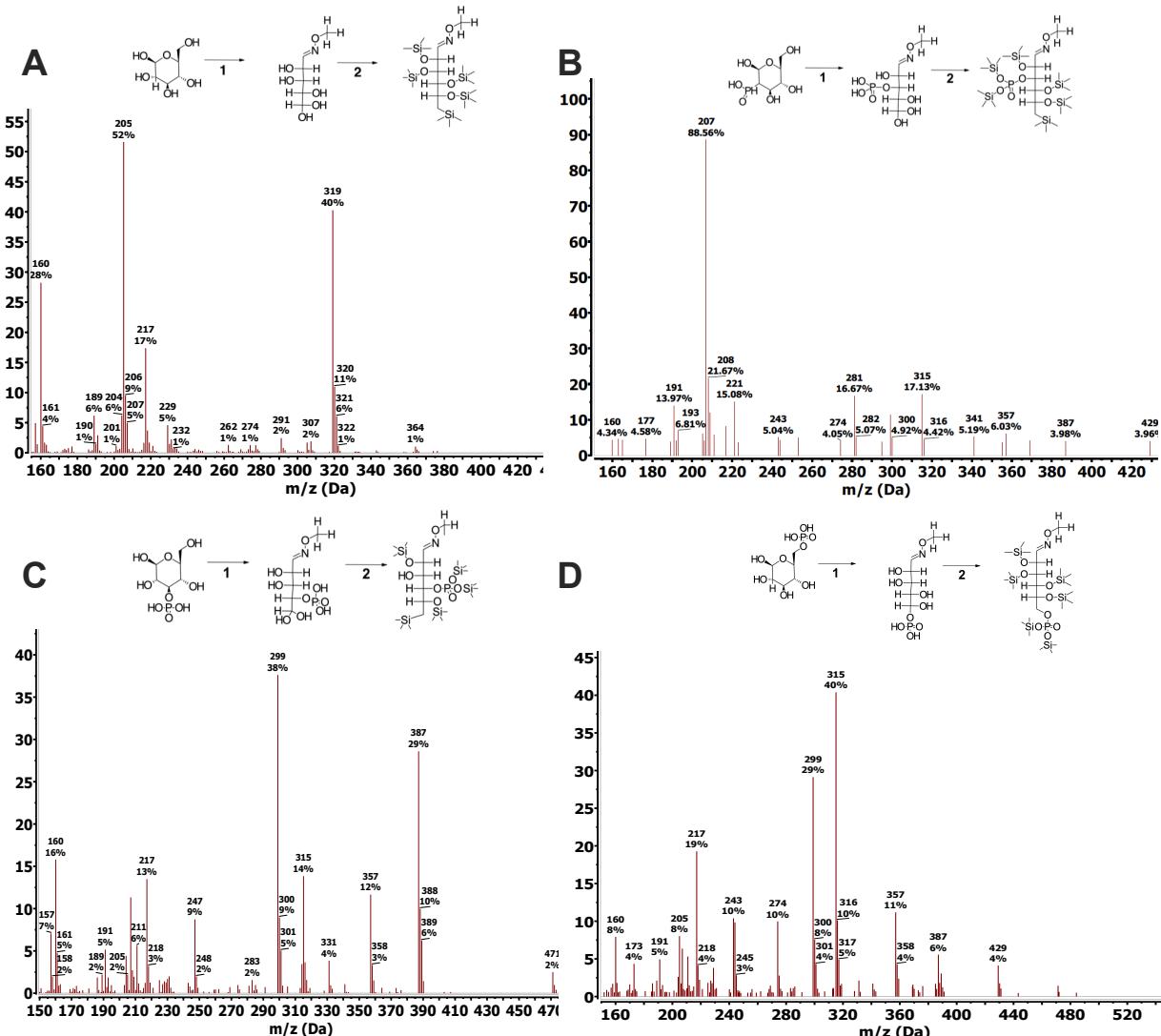
138 Dried hydrolyzed glycogen samples were derivatized by the addition of 20mg/ml methoxyamine in
139 pyridine and sequential addition of N-methyl-trimethylsilylation (MSTFA). Both steps were incubated for
140 60 minutes at 60 °C with thorough mixing in between addition of solvents. The mixture was then
141 transferred to a v-shaped glass chromatography vial and analyzed by the GCMS.

142 **2.6. GCMS Quantitation**

143 Initial GCMS quantitation of the analytical standards, glycogen and starch are described previously from
144 the Fiehn metabolomics GC method with the following modifications: the initial rate was held at 60 °C for
145 1 minute followed by 1-minute of run time, rising at 10 °C/minute to 325 °C and holding for 10 minutes
146 followed by a run for 37.5 minutes (Fiehn et al., 2000; Kind et al., 2009). Adaptation of the Fiehn method

153 is the following for rapid separation of Glucose-, G3P-, and G6P-6TMS;1MEOX: the initial rate was held
154 at 60 °C for 1 minute followed by a 1-minute run. Ramp 1: rising at a rate of 60 °C/minute reaching 220 °C
155 and running for 3.67 minutes. Ramp 2: rising at 30 °C/minute reaching 270 °C and running for 5.33
156 minutes. Ramp 3: rising at 30 °C/minute to 325 °C, holding for 5 minutes and running for 12.2 minutes
157 followed by a post run of 60 °C for 1 minute. The electron ionization was set to 70eV. Select ion
158 monitoring mode was used for quantitative measurement. Ions used for the metabolites that represent
159 glycogen are: glucose (319, 364), G3P, and G6P (315, 357, 387), and L-norvaline (174). Batch data
160 processing was performed Masshunter software from Agilent. Glucose, G3P, and G6P were standardized
161 to procedural control, norvaline, before quantitated using standard curve generated from known standards.
162

163 **2.7. Statistics**


164 Statistical analyses were carried out using GraphPad Prism. All numerical data are presented as mean
165 ± SD. Grouped analysis was performed using two-way ANOVA. Column analysis was performed
166 using one-way ANOVA or t-test. A P-value less than 0.05 was considered statistically significant.
167

168 **3. Results**

169

170 **3.1. Chemical derivatization of Glucose, G2P, G3P, and G6P**

171 Previous work utilizing multiple tissues demonstrated the reliable and sensitive separation of free sugar-
172 phosphates after chemical derivatization for metabolomics applications (Fiehn, 2016). We hypothesized
173 that this method could also separate G2P, G3P and G6P following hydrolysis of glycogen. Since G2P is
174 not commercially available, we chemically synthesized G2P from G1P using a 2-step cyclic reaction with
175 dicyclohexylcarbodiimide and barium salt (De Clercq & Shugar, 1972; Piras, 1963; Zmudzka &
176 Shugar, 1964). The three glucose phosphate were subjected to a two-step derivatization procedure using
177 analytical standards to convert them to volatile trimethylsilyl (TMS) derivatives that can be detected by a
178 mass spectrometer (Quéro et al., 2014; Zarate et al., 2017). In the first step, the methoxylamination
179 reaction replaces the oxygen atom of the alpha-carbonyl groups with methoxyamine (MEOX). Then
180 silylation is performed in the second derivatization step using N-methyl-N-trimethylsilylation (MSTFA)
181 to introduce trimethylsilyl groups to the remaining 6 carboxyl groups, replacing the acidic hydrogens
182 (**Fig. 1A-D**). Methoxylamination generates both the syn- and ant-forms of MEOX at the alpha-carbonyl
183 group, therefore resulting in the formation of a second much smaller peak with a small retention time shift
184 that does not affect the quantification step (**Fig. 2B**). Trimethylsilylated metabolites are subjected to
185 electron ionization (EI), where electrons fragment the molecules so that they can be registered by the
186 mass spectrometer detector as molecular ions. The fragmentation pattern is consistent and reproducible
187 across different GCMS platforms (**Fig. 1A-D**). In selected ion monitoring (SIM) mode, only specific
188 fragment ions are detected by the mass spectrometer, significantly improving accuracy and sensitivity.
189 Fragment ions (*m/z*) 319, 364 (glucose), 299, 357 and 387 (G2P, G3P, and G6P) were the major ions
190 produced from EI-MS (**Fig. 1A-D**), and were used for the rest of the study in SIM mode to improve
191 sensitivity of the GCMS.


192
193 **Fig. 1. Derivatization and fragmentation pattern of glucose, G2P, G3P, G6P.**

194 Trimethylsilylation of analytical grade standards of glucose (A), G2P (B), G3P (C), and G6P (D) (-
195 6TMS;1MEOX). Two μ moles of each standard were derivatized with 20mg/ml MEOX in pyridine for 1-
196 hour (reaction 1), followed by silylation by MSTFA for 1-hour (reaction 2). Both reaction steps took
197 place in a 60°C dry heat block. Fragmentation pattern for each silylated standard was obtained on a single
198 quadrupole mass spectrometer with an electron ionization (EI) energy of 70 eV, mass range of 30-650
199 AMU, and 1.47 scan/s.

200 **3.2. Gas chromatography separation of Glucose, G2P, G3P, and G6P**

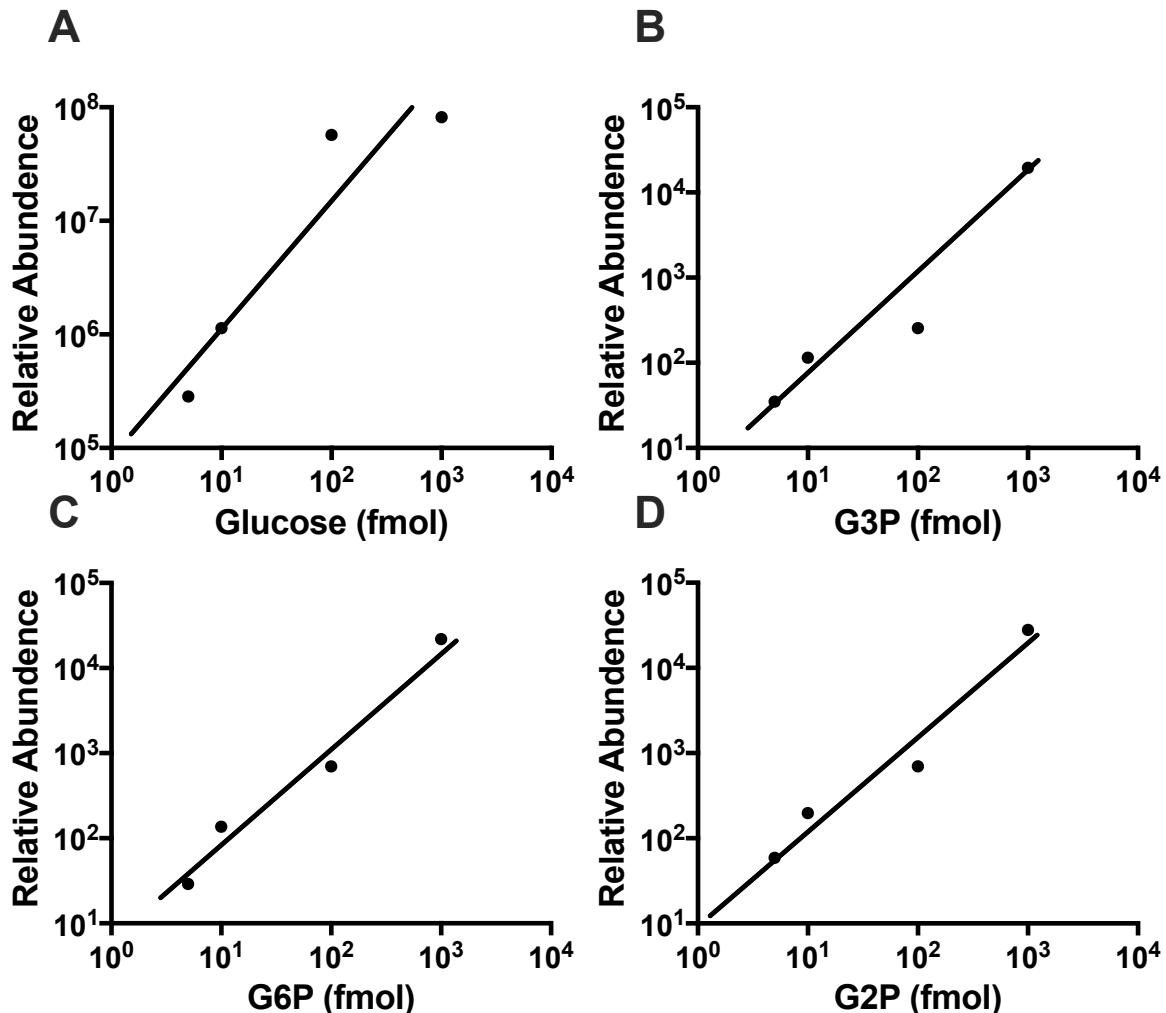
201 G2P, G3P and G6P share similar chemical properties and specific detection has proven to be difficult. We
202 hypothesized that the unique TMS derivatized form of G2P, G3P and G6P could be separated via gas
203 chromatography (GC) given the appropriate temperature gradient. Each TMS derivative was analyzed
204 separately using an adapted-Fiehn metabolomics GC method in full scan mode to confirm retention time
205 (**Fig. 2A**) (Fiehn et al., 2000; Kind et al., 2009). Glucose-, G2P-, G3P-, and G6P-6TMS;1MEOX eluted at
206 17.6, 21.2, 20.1, and 21.9 minutes respectively (± 0.05 sec) and confirmed the utility of the GC to separate
207 glucose and glucose phosphate esters (**Fig. 2B**). We identified the optimal separation temperature as 180-
208 280°C with a ramp speed of 1°C/minute. These parameters were adapted and reduced the processing time
209 to 12 minutes to provide a more rapid separation of the glucose moieties (**Fig. 2C**). We tested the ability
210

211 of the rapid method to separate all three TMS derivatives with the new fast GCMS method using SIM
 212 mode. The retention times for glucose, G2P, G3P, and G6P were 6.25, 7.23, 7.11, and 7.39 minutes (\pm
 213 0.05sec), respectively (Fig. 2D). Thus, the rapid method yields a clear separation between glucose and
 214 each of the three phosphate esters.
 215

216
 217 **Fig. 2. Standard and rapid gas chromatography separation of glucose, G2P, G3P, G6P.**

218 (A) Temperature gradient for standard separation of glucose, G3P, and G6P: Initial temperature was 60°
 219 C, held for 1 minute, rising at 10° C/minute to 325° C, held for 10 minutes. Total run time: 37.5 minutes.
 220 Grey bar indicates window of separation.

221 (B) Stacked chromatography spectra for silylated glucose, G2P, G3P, and G6P using the temperature
 222 setting in (A). Twenty nmoles of each silylated standard were injected into the GC column.

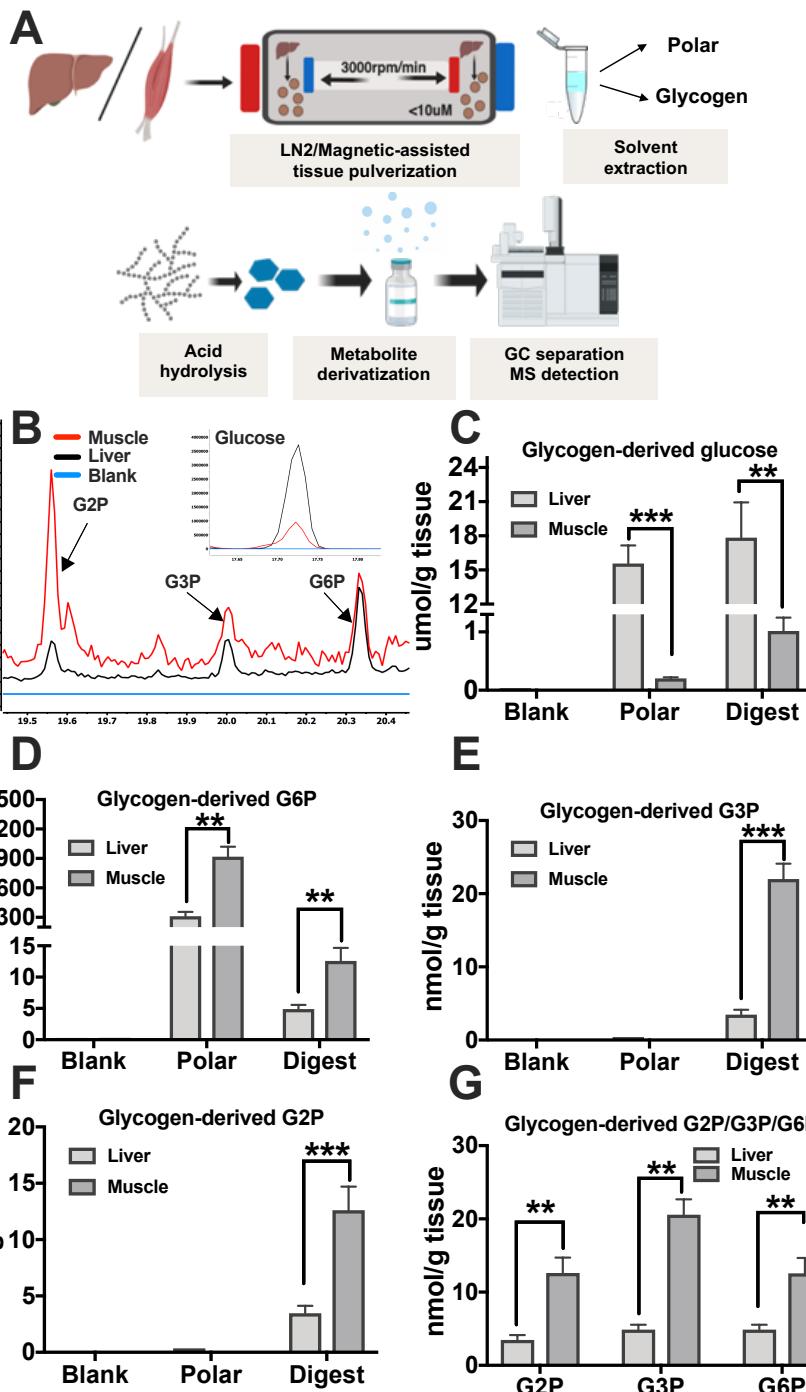

223 (C) Temperature gradient setting for rapid separation of glucose, G3P, and G6P: initial temperature was
 224 60° C, held for 1 minute, rising at 60° C/minute to 220° C, continued rising at 30° C/minute to 270° C,
 225 and finished rising at 30° C/minute to 325° C, held for 5 minutes. Total run time: 12.2 minutes. Grey bar
 226 indicates window of separation.

227 (D) Stacked chromatography spectra for silylated glucose, G2P, G3P, and G6P combined into one sample
 228 using the temperature setting in (C). Two nmoles of each silylated standard were injected into the GC
 229 column.

230
 231 **3.3. Dynamic range of Glucose, G2P, G3P, and G6P**

232 Mammalian glycogen contains 1 phosphate ester/1,000-10,000 glucose residues, approximately 10- to
 233 100-fold lower glucose-bound phosphate than potato starch (DePaoli-Roach et al., 2015; Tagliabracci et
 234 al., 2011). To simultaneously detect glucose, G2P, G3P, and G6P monomers from glycogen, an assay
 235 with a robust and dynamic range is needed. Following the successful separation of TMS derivatized
 236 glucose moieties, we proceeded to determine the sensitivity and dynamic range for each molecule.
 237 Current GCMS models offer 10^6 dynamic range, which would be sufficient to measure glucose and
 238 phosphate esters simultaneously. We tested the limit of detection and dynamic range using the traditional
 239 10:1 split mode of the GC inlet. In split mode, the limit of detection was 10 fmol for all three compounds
 240 with a dynamic range of 10 fmol to 1 μ mol (Fig. 3A-D). We did not test the range any lower or higher as
 241 it is either beyond the physiological range or potentially damaging to the ion source of the mass
 242 spectrometer. Cumulatively, these data confirm that GCMS analysis is extremely versatile for the

243 separation of glucose, G2P, G3P, and G6P and it possesses a robust dynamic range that is well-suited for
244 the analysis of a wide range of biopolymers.


245
246 **Fig. 3. Dynamic range of GCMS analysis of glucose, G3P, and G6P.**
247 Silylated glucose (A), G3P (B), G6P (C), and G2P (D) standards at multiple concentrations were injected
248 into the GC using split mode with a ratio of 10:1.
249

250 **3.4. Quantitation of glycogen and phosphate from mouse skeletal muscle and liver**

251 Glycogen architecture gives rise to unique physiochemical properties that cause barriers to its own
252 purification. The current method of glycogen purification from tissue uses 10% trichloroacetic acid
253 (TCA) for low phosphate glycogen such as liver, and boiling the tissue in potassium hydroxide for muscle
254 or other high phosphate containing glycogen molecules (DePaoli-Roach et al., 2015). Both techniques
255 require 0.1g-1g of tissue material due to low solubility of glycogen in each of the solvent, and they
256 introduce variations in extraction efficiency and ambiguity in purity. In this study, we adapted a 2-step
257 purification procedure that is highly efficient, and yields glycogen from as low as 20mg input from
258 multiple tissues.
259

260 First, mouse liver and skeletal muscle were pulverized to 5 μ m particles (subcellular volume) using a
261 liquid nitrogen magnetic assisted tissue-grinding mill (Fig. 4A). After pulverization, 20mg of tissue was
262 used for the glycogen purification method. Free polar metabolites and lipids were removed by the
263 addition of polar and organic solvents, 50% Methanol:Chloroform (1:1). The insoluble glycogen-

264 containing layer was collected and washed with 50% methanol and allowed to air dry. The glycogen was
265 extracted with the addition of 10% trichloroacetic acid followed by vigorous mixing. The glycogen-
266 containing TCA fraction was then separated from other insoluble material by centrifugation, and the
267 glycogen was dried by vacuum centrifuge at 10^{-3} mBar, hydrolyzed to monomers by first resuspending in
268 deionized H₂O followed by the addition of an equal part of 2N HCl and the reaction was carried out at
269 95°C for 2 hours. Hydrolysis was quenched with 100% methanol, 40uM L-norvaline (as an internal
270 control), and the sample was incubated on ice for 30 minutes. The supernatant was collected following a
271 10-minute 15,000 rpm spin at 4°C and dried by vacuum centrifuge at 10^{-3} mBar. The dried glucose
272 moieties were derivatized by MEOX and MSTFA as described above, and then analyzed by GCMS (**Fig.**
273 **4A**). The polar fraction and the last wash were also analyzed as positive and negative controls (blank),
274 respectively. The analysis found that liver glycogen contains 18 ± 3 μ mol of glucose, 4 ± 1 nmol of G2P,
275 4 ± 1 nmol of G3P, and 5 ± 1 nmol of G6P per g of wet tissue weight (**Fig. 4B-G**). Muscle stores lower
276 levels of glycogen (1 ± 0.12 μ mol glucose/g of wet tissue weight), but contains higher levels of phosphate
277 esters with 12 ± 1 nmol G2P and G6P per g of wet tissue weight, and strikingly G3P is the most abundant
278 glucose phosphate ester in muscle with around 20 ± 1 nmol per g of wet tissue weight (**Fig. 4B-G**). These
279 levels are in the ranges of previously published results and confirm previous findings that demonstrated
280 higher phosphate content in muscle glycogen (Carroll, Longley, & Roe, 1956; DePaoli-Roach et al.,
281 2015; Nitschke et al., 2013; Pederson et al., 2005; Stapleton et al., 2014; Tagliabracci et al., 2011; Vernia
282 et al., 2011). Finally, we observed G6P in both polar fractions of muscle and liver extracts, but G2P and
283 G3P were not detected in the fractions as expected.

284

285

Fig. 4. Extraction and GCMS analysis of liver and muscle glycogen.

286

287

288

289

290

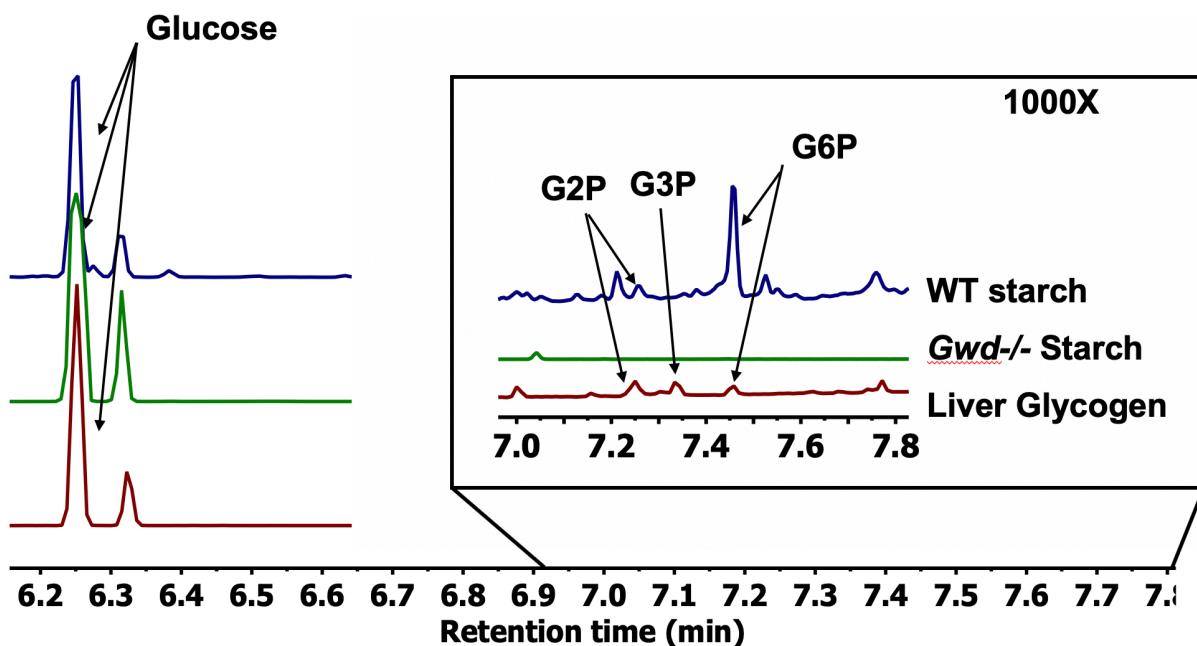
291

292

(A) Schematics of glycogen extraction: mouse liver or skeletal muscle were milled to 10 μ m particles by liquid N₂ Freezer/Mill Cryogenics Grinder magnetic assisted tissue-grinding mill, followed by polar and organic solvent removal of free polar metabolites and lipids. Glycogen was then extracted by 10% TCA. Isolated glycogen was hydrolyzed to monomers by mild hydrolysis, derivatized by MEOX and MSTFA, and analyzed by GCMS (B).

Quantitation of liver or muscle derived glucose (C), G6P (D), G3P (E), G2P (F) the third wash of tissue pellet is served as blank, and free polar metabolite fraction serves as negative control for G3P and G2P

293 and a positive control for G6P. (F) Muscle contains higher G2P, G3P and G6P than liver when
294 standardized to tissue weight. Data shown in (C-G) are from three experiments and are shown as mean
295 \pm SEM.


296 * $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$; two-tailed t -test.

297

298 While the mechanism of glycogen phosphorylation is unresolved, reversible starch phosphorylation is
299 well-characterized and thought to be integral for starch metabolism (Andreas Blennow, 2015; Mahlow,
300 Orzechowski, & Fettke, 2016; Pfister & Zeeman, 2016). Transitory starch is synthesized during the day
301 and degraded at night, and reversible starch phosphorylation is necessary for efficient degradation.
302 Glucan water dikinase (GWD) phosphorylates hydroxyls at the C6-position of glucose moieties on the
303 outer surface of starch (Ritte et al., 2002). This phosphorylation event triggers phosphorylation at the C3-
304 position by phosphoglucan water dikinase (PWD) (Baunsgaard et al., 2005; Kötting et al., 2005). These
305 coordinated phosphorylation events allow amylases to more efficiently liberate glucose from starch until
306 they reach the phosphate moieties. The glucan phosphatases starch excess 4 (SEX4) and like-sex four2
307 (LSF2) then liberate the phosphate so that the process continues (M. Gentry & Vander Kooi, 2015;
308 Santelia et al., 2011). Plants lacking GWD activity lack starch phosphorylation at the C6- and C3-position
309 (Baunsgaard et al., 2005).

310

311 To test the versatility of this method, we performed a similar GCMS analysis on starch and glycogen. We
312 analyzed wild-type (WT) starch from potato, starch from *Arabidopsis* leaves lacking glucan water
313 dikinase (*gwd*-/-), and liver glycogen to determine if this method can distinguish the difference between
314 different phosphate levels. As predicted, the method detected the highest level of phosphate content in
315 WT starch followed next by liver glycogen. The *gwd*-/- *Arabidopsis* starch contained no detectable G2P,
316 G3P, or G6P (Fig. 5). These data confirm the application of this novel GCMS-based method to quantify
317 glucose-based polymers beyond mammalian glycogen and demonstrate that it can be used for the
318 quantitation of plant starch.

319

320 **Fig. 5. Comparison between plant starch and mammalian liver glycogen.**

321 Stacked spectra overlay between WT potato starch, *gwd*-/- *Arabidopsis* starch, and mammalian liver
322 glycogen to demonstrate versatility of the approach. All three samples were standardized to total glucose.

323 The region between 7-7.8 minutes demonstrates that WT plant starch contains 10-fold higher phosphate
324 than liver glycogen, while no detectable phosphate was observed in the *gwd*-/- *Arabidopsis* starch.
325

326 **4. Discussion**

327 GCMS instruments are routinely used in analytical chemistry and known for their resolution, dynamic
328 range, reproducibility, and durability. A new generation of autosampler-enabled GCMS units are
329 designed to provide a workhorse-platform that offer unmatched consistency and performance for a wide
330 range of analytical needs. Basic and clinical researchers have developed GCMS-based methods for
331 profiling an impressive array of small metabolites to study perturbations in cellular metabolism (Garcia &
332 Barbas, 2011; Lisec, Schauer, Kopka, Willmitzer, & Fernie, 2006) and to uncover disease biomarkers
333 (Dunn et al., 2011). In this study, we adapted the GCMS analytical platform for the analysis of glycogen
334 architecture. We employed a two-step derivatization process utilizing MEOX and MSTFA yielded
335 derivatives that were more phase volatile and chemically stable forms of glucose, G2P, G3P, and G6P (-
336 6TMS;1MEOX). This procedure has been shown previously to dramatically reduce the boiling point,
337 improve the thermal stability, and enhance the chromatography separation of metabolites. We
338 demonstrate the distinct separation of glucose, G2P, G3P, and G6P using a 12-minute chromatography
339 method with a 10 fmol to 10 μ mol dynamic range. This method is extremely robust, medium-throughput
340 (120 samples/day), and can be adapted for the characterization of plant starch and amylopectin.
341

342 Accurate quantitation of carbohydrate polymers and phosphate esters remains challenging due to their
343 unique biochemical and biophysical properties. We developed a workflow to purify glycogen from only
344 20mg of mouse tissue and accurately quantified the glycogen-derived glucose and glucose phosphate
345 esters using GCMS. Based on the dynamic range of GCMS, this method can be further adapted to utilize
346 even less sample input, perhaps at the single cell level. We demonstrate an unambiguous measurement of
347 glycogen-derived glucose, G2P, G3P, and G6P from muscle and liver. Our results align with previously
348 published results, except with the higher levels of G3P detected by GCMS. This is not surprising as
349 muscle glycogen varies with age (Cartee, 1994), sex (Ramamani, Aruldas, & Govindarajulu, 1999), and
350 circadian rhythm (Takahashi et al., 2015). This new method utilizes less tissue to purify the glycogen and
351 allows simultaneous quantification of glucose, G2P, G3P, and G6P. The application of this method is
352 further demonstrated by the analysis of wild type potato starch, liver glycogen, and *gwd*-/- starch (Ritte et
353 al., 2006). This analysis confirms previous results that *gwd*-/- starch lacks phosphate and demonstrates the
354 range in defining G6P between plant starch and liver glycogen.
355

356 This method will allow the robust analysis of glycogen polymers that accumulate in human glycogen
357 storage diseases (GSD). The GSDs are a unique collection of monogenic diseases that share the
358 accumulation of aberrant glycogen aggregates. While each GSD yields a glycogen-like aggregate, the
359 exact architecture of the aggregate is unknown for many of the GSDs. Understanding the glycogen
360 architecture would assist in defining the mechanism of disease pathology and facilitate with assessment of
361 future treatment efficacy. Similarly, starch phosphorylation impacts multiple aspects of starch industrial
362 processing. Starch is both a first-generation biofuel and industrial feedstock for paper, textiles, adhesives,
363 and plastics. Phosphorylation is the only known natural modification of starch, and it directly influences
364 starch hydration, crystallinity, freeze-thaw stability, viscosity, and transparency, which are all central to
365 industrial applications (Santelia & Zeeman, 2011). This method would also allow rapid analysis of starch
366 from multiple species and genotypes.
367

368 **Acknowledgements:**

369 We would like to thank Dr. Craig Vander Kooi and Gentry lab members for helpful discussion regarding
370 the work.
371

372 **Funding:**

373 This study was supported by National Institute of Neurological Disorders and Stroke (R01 N070899-06,
374 P01 NS097197-01), National Science Foundation (MCB-1817414), the University of Kentucky Center
375 for Cancer and Metabolism, National Institute of General Medical Sciences COBRE program (P20
376 GM121327), American Cancer Society institutional research grant #16-182-28, and St Baldrick's
377 Career Development Award, funding from the University of Kentucky Markey Cancer Center, and the
378 University of Kentucky Epilepsy & Brain Metabolism Alliance. This research was also supported by
379 funding from the University of Kentucky Markey Cancer Center, NIH National Center for Advancing
380 Translational Sciences UL1TR001998, the Biostatistics and Bioinformatics Shared Resource Facility of
381 the University of Kentucky Markey Cancer Center P30CA177558.

382

383 **References:**

384 Agius, L. (2015). Role of glycogen phosphorylase in liver glycogen metabolism. *Molecular Aspects of*
385 *Medicine*, 46, 34-45.

386 Baunsgaard, L., Lütken, H., Mikkelsen, R., Glaring, M. A., Pham, T. T., & Blennow, A. (2005). A novel
387 isoform of glucan, water dikinase phosphorylates pre-phosphorylated α -glucans and is involved
388 in starch degradation in *Arabidopsis*. *The Plant Journal*, 41(4), 595-605.

389 Blennow, A. (2015). *Phosphorylation of the starch granule*. In *Starch* (pp. 399-424): Springer

390 Blennow, A., & Engelsen, S. B. (2010). Helix-breaking news: fighting crystalline starch energy deposits
391 in the cell. *Trends Plant Sci*, 15(4), 236-240.

392 Brown, A. M., & Ransom, B. R. (2007). Astrocyte glycogen and brain energy metabolism. *Glia*, 55(12),
393 1263-1271.

394 Carroll, N. V., Longley, R. W., & Roe, J. H. (1956). The determination of glycogen in liver and muscle
395 by use of anthrone reagent. *J Biol Chem*, 220(2), 583-593.

396 Cartee, G. D. (1994). Influence of age on skeletal muscle glucose transport and glycogen metabolism.
397 *Medicine and science in sports and exercise*, 26(5), 577-585.

398 Costill, D. L., Gollnick, P. D., Jansson, E. D., Saltin, B., & Stein, E. M. (1973). Glycogen Depletion
399 Pattern in Human Muscle Fibres During Distance Running. *Acta Physiologica Scandinavica*,
400 89(3), 374-383.

401 De Clercq, E., & Shugar, D. (1972). Antiviral activity of polynucleotides: role of the 2'-hydroxyl and a
402 pyrimidine 5-methyl. *FEBS Letters*, 24(1), 137-140.

403 Deng, B., Sullivan, M. A., Wu, A. C., Li, J., Chen, C., & Gilbert, R. G. (2015). The Mechanism for
404 Stopping Chain and Total-Molecule Growth in Complex Branched Polymers, Exemplified by
405 Glycogen. *Biomacromolecules*, 16(6), 1870-1872.

406 DePaoli-Roach, A. A., Contreras, C. J., Segvich, D. M., Heiss, C., Ishihara, M., Azadi, P., & Roach, P. J.
407 (2015). Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive
408 Myoclonic Epilepsy, Lafora Disease. *The Journal of Biological Chemistry*, 290(2), 841-850.

409 Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., . . . The Human
410 Serum Metabolome, C. (2011). Procedures for large-scale metabolic profiling of serum and
411 plasma using gas chromatography and liquid chromatography coupled to mass spectrometry.
412 *Nature Protocols*, 6, 1060.

413 Fiehn, O. (2016). Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and
414 Untargeted Profiling. *Current protocols in molecular biology*, 114, 30.34.31-30.34.32.

415 Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite
416 profiling for plant functional genomics. *Nature Biotechnology*, 18(11), 1157.

417 Frost, L. D. (2004). Glucose Assays Revisited: Experimental determination of the glucose concentration
418 in honey. *The Chemical Educator*, 9(4), 239-241.

419 Garcia, A., & Barbas, C. (2011). *Gas chromatography-mass spectrometry (GC-MS)-based metabolomics.*
420 *In Metabolic Profiling* (pp. 191-204): Springer

421 Gentry, M., & Vander Kooi, C. (2015). Thermophilic phosphatases and methods for processing starch
422 using the same. Google Patents.

423 Gentry, M. S., Dixon, J. E., & Worby, C. A. (2009). Lafora disease: insights into neurodegeneration from
424 plant metabolism. *Trends in biochemical sciences*, 34(12), 628-639.

425 Gentry, M. S., Guinovart, J. J., Minassian, B. A., Roach, P. J., & Serratosa, J. M. (2018). Lafora disease
426 offers a unique window into neuronal glycogen metabolism. *Journal of Biological Chemistry*,
427 293(19), 7117-7125.

428 Gibb, R. P., & Stowell, R. E. (1949). Glycogen in human blood cells. *Blood*, 4(5), 569-579.

429 Hultman, E., & Nilsson, L. H. (1971). *Liver Glycogen in Man. Effect of Different Diets and Muscular*
430 *Exercise*. In B. Pernow & B. Saltin (Eds.), *Muscle Metabolism During Exercise: Proceedings of a*
431 *Karolinska Institutet Symposium held in Stockholm, Sweden, September 6-9, 1970 Honorary*
432 *guest: E Hohwü Christensen* (pp. 143-151). Boston, MA: Springer US

433 Johnson, L. N. (1992). Glycogen phosphorylase: control by phosphorylation and allosteric effectors. *The*
434 *FASEB Journal*, 6(6), 2274-2282.

435 Kind, T., Wohlgemuth, G., Lee, D. Y., Lu, Y., Palazoglu, M., Shahbaz, S., & Fiehn, O. (2009). FiehnLib:
436 mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-
437 flight gas chromatography/mass spectrometry. *Analytical chemistry*, 81(24), 10038-10048.

438 Kötting, O., Pusch, K., Tiessen, A., Geigenberger, P., Steup, M., & Ritte, G. (2005). Identification of a
439 novel enzyme required for starch metabolism in *Arabidopsis* leaves. The phosphoglucan, water
440 dikinase. *Plant physiology*, 137(1), 242-252.

441 Krebs, H. A., Bennett, D. A. H., De Gasquet, P., Gascoyne, T., & Yoshida, T. (1963). Renal
442 gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidney-cortex slices.
443 *Biochemical Journal*, 86(1), 22-27.

444 Li, C., Powell Prudence, O., & Gilbert Robert, G. (2017). Recent progress toward understanding the role
445 of starch biosynthetic enzymes in the cereal endosperm. *Amylase* (Vol. 1, p. 59).

446 Liseć, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass
447 spectrometry-based metabolite profiling in plants. *Nature Protocols*, 1(1), 387.

448 Mahlow, S., Orzechowski, S., & Fettke, J. (2016). Starch phosphorylation: insights and perspectives.
449 *Cellular and molecular life sciences*, 73(14), 2753-2764.

450 Nitschke, F., Ahonen, S. J., Nitschke, S., Mitra, S., & Minassian, B. A. (2018). Lafora disease—from
451 pathogenesis to treatment strategies. *Nature Reviews Neurology*, 1.

452 Nitschke, F., Wang, P., Schmieder, P., Girard, J.-M., Awrey, Donald E., Wang, T., . . . Minassian,
453 Berge A. (2013). Hyperphosphorylation of Glucosyl C6 Carbons and Altered Structure of
454 Glycogen in the Neurodegenerative Epilepsy Lafora Disease. *Cell Metabolism*, 17(5), 756-767.

455 Pederson, B. A., Schroeder, J. M., Parker, G. E., Smith, M. W., DePaoli-Roach, A. A., & Roach, P. J.
456 (2005). Glucose metabolism in mice lacking muscle glycogen synthase. *Diabetes*, 54(12), 3466-
457 3473.

458 Pfister, B., & Zeeman, S. C. (2016). Formation of starch in plant cells. *Cellular and molecular life*
459 *sciences*, 73(14), 2781-2807.

460 Piras, R. (1963). SYNTHESIS OF SOME ALDOSE 2-PHOSPHATES. *Archives of Biochemistry and*
461 *Biophysics*, 103, 291-292.

462 Powell, P. O., Sullivan, M. A., Sheehy, J. J., Schulz, B. L., Warren, F. J., & Gilbert, R. G. (2015). Acid
463 hydrolysis and molecular density of phytoglycogen and liver glycogen helps understand the
464 bonding in glycogen alpha (composite) particles. *PLoS One*, 10(3), e0121337.

465 Quéro, A., Jousse, C., Lequart-Pillon, M., Gontier, E., Guillot, X., Courtois, B., . . . Pau-Roblot, C.
466 (2014). Improved stability of TMS derivatives for the robust quantification of plant polar
467 metabolites by gas chromatography–mass spectrometry. *Journal of Chromatography B*, 970, 36-
468 43.

469 Raja, G., Bräu, L., Palmer, T. N., & Fournier, P. A. (2003). Repeated bouts of high-intensity exercise and
470 muscle glycogen sparing in the rat. *Journal of experimental biology*, 206(13), 2159-2166.

471 Ramamani, A., Aruldhas, M., & Govindarajulu, P. (1999). Differential response of rat skeletal muscle
472 glycogen metabolism to testosterone and estradiol. *Canadian journal of physiology and*
473 *pharmacology*, 77(4), 300-304.

474 Ritte, G., Heydenreich, M., Mahlow, S., Haebel, S., Kötting, O., & Steup, M. (2006). Phosphorylation of
475 C6-and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. *FEBS
476 Letters*, 580(20), 4872-4876.

477 Ritte, G., Lloyd, J. R., Eckermann, N., Rottmann, A., Kossmann, J., & Steup, M. (2002). The starch-
478 related R1 protein is an α -glucan, water dikinase. *Proceedings of the National Academy of
479 Sciences*, 99(10), 7166-7171.

480 Roach, P. J. (2002). Glycogen and its metabolism. *Current molecular medicine*, 2(2), 101-120.

481 Roach, P. J. (2015). Glycogen phosphorylation and Lafora disease. *Molecular Aspects of Medicine*, 46,
482 78-84.

483 Roach, P. J., Depaoli-Roach, A. A., Hurley, T. D., & Tagliabracci, V. S. (2012). Glycogen and its
484 metabolism: some new developments and old themes. *The Biochemical journal*, 441(3), 763-787.

485 Roach, P. J., Skurat, A. V., & Harris, R. A. (2001). Regulation of glycogen metabolism. *The endocrine
486 pancreas and regulation of metabolism*, 2, 609-647.

487 Roden, M., M., & Shulman, M., PhD, GI. (1999). Applications of NMR spectroscopy to study muscle
488 glycogen metabolism in man. *Annual review of medicine*, 50(1), 277-290.

489 Santelia, D., Kötting, O., Seung, D., Schubert, M., Thalmann, M., Bischof, S., . . . Gentry, M. S. (2011).
490 The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in
491 *Arabidopsis*. *The Plant Cell*, 23(11), 4096-4111.

492 Santelia, D., & Zeeman, S. C. (2011). Progress in *Arabidopsis* starch research and potential
493 biotechnological applications. *Current Opinion in Biotechnology*, 22(2), 271-280.

494 Silver, D. M., Kotting, O., & Moorhead, G. B. (2014). Phosphoglucan phosphatase function sheds light
495 on starch degradation. *Trends Plant Sci*.

496 Stapleton, D. I., Lau, X., Flores, M., Trieu, J., Gehrig, S. M., Chee, A., . . . Koopman, R. (2014).
497 Dysfunctional muscle and liver glycogen metabolism in *mdx* dystrophic mice. *PLoS One*, 9(3),
498 e91514.

499 Sullivan, M. A., Nitschke, S., Skwara, E. P., Wang, P., Zhao, X., Pan, X. S., . . . Lee, J. P. (2019).
500 Skeletal Muscle Glycogen Chain Length Correlates with Insolubility in Mouse Models of
501 Polyglucosan-Associated Neurodegenerative Diseases. *Cell Reports*, 27(5), 1334-1344. e1336.

502 Tagliabracci, Vincent S., Heiss, C., Karthik, C., Contreras, Christopher J., Glushka, J., Ishihara, M., . . .
503 Roach, Peter J. (2011). Phosphate Incorporation during Glycogen Synthesis and Lafora Disease.
504 *Cell Metabolism*, 13(3), 274-282.

505 Takahashi, H., Kamei, A., Osawa, T., Kawahara, T., Takizawa, O., & Maruyama, K. (2015). ^{13}C MRS
506 reveals a small diurnal variation in the glycogen content of human thigh muscle. *NMR in
507 Biomedicine*, 28(6), 650-655.

508 Verbeke, J., Penverne, C., D'Hulst, C., Rolando, C., & Szydłowski, N. (2016). Rapid and sensitive
509 quantification of C3-and C6-phosphoesters in starch by fluorescence-assisted capillary
510 electrophoresis. *Carbohydrate polymers*, 152, 784-791.

511 Vernia, S., Heredia, M., Criado, O., Rodriguez de Cordoba, S., Garcia-Roves, P. M., Cansell, C., . . .
512 Ferre, P. (2011). Laforin, a dual specificity phosphatase involved in Lafora disease, regulates
513 insulin response and whole-body energy balance in mice. *Human Molecular Genetics*, 20(13),
514 2571-2584.

515 Worby, C. A., Gentry, M. S., & Dixon, J. E. (2006). Laforin, a dual specificity phosphatase that
516 dephosphorylates complex carbohydrates. *Journal of Biological Chemistry*, 281(41), 30412-
517 30418.

518 Zarate, E., Boyle, V., Rupprecht, U., Green, S., Villas-Boas, S., Baker, P., & Pinu, F. (2017). Fully
519 automated trimethylsilyl (TMS) derivatisation protocol for metabolite profiling by GC-MS.
520 *Metabolites*, 7(1), 1.

521 Zhu, A., Romero, R., & Petty, H. R. (2011). An enzymatic colorimetric assay for glucose-6-phosphate.
522 *Analytical Biochemistry*, 419(2), 266-270.

523 Zmudzka, B., & Shugar, D. (1964). PREPARATION+ CHEMICAL+ ENZYMIC PROPERTIES OF
524 CYCLIC PHOSPHATES OF D-GLUCOPYRANOSE+ SYNTHESIS OF DERIVATIVES OF N-
525 (D-GLUCOPYRANOSYL) PYRIDINE. *Acta Biochimica Polonica*, 11(4), 509-&.
526