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ABSTRACT

The widespread adoption and popularity of Internet-scale Dis-
tributed Networks (IDNs) has led to an explosive growth in the
infrastructure of these networks. Unfortunately, this growth has
also led to a rapid increase in energy consumption with its accom-
panying environmental impact. Therefore, energy efficiency is a
key consideration in operating and designing these power-hungry
networks. In this paper, we study the greening potential of com-
bining two contrasting sources of renewable energy, namely solar
energy and Open Air Cooling (OAC). OAC involves the use of out-
side air to cool data centers if the weather outside is cold and dry
enough. Therefore OAC is likely to be abundant in colder weather
and at night-time. In contrast, solar energy is correlated with sunny
weather and day-time. Given their contrasting natures, we study
whether synthesizing these two renewable sources of energy can
yield complementary benefits. Given the intermittent nature of
renewable energy, we use batteries and load shifting to facilitate
the use of green energy and study trade-offs in brown energy re-
duction based on key parameters like battery size, number of solar
panels, and radius of load movement. We do a detailed cost analysis,
including amortized cost savings as well as a break-even analysis
for different energy prices. Our results look encouraging and we
find that we can significantly reduce brown energy consumption
by about 55% to 59% just by combining the two technologies. We
can increase our savings further to between 60% to 65% by adding
load movement within a radius of 5000kms, and to between 73% to
89% by adding batteries.
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1 INTRODUCTION

Internet-scale Distributed Networks (IDNs) are massive geograph-
ically distributed networks of inter-connected data centers hous-
ing hundreds of thousands of servers. Content Delivery Networks
(CDNs) are examples of such networks, and they deliver most of
the Internet traffic content today, e.g. streaming media, web appli-
cations, social networking content, web objects and other down-
loadable content. Given the immense size of these networks, they
consume massive amounts of energy incurring energy bills that run
into tens of millions of dollars annually [41]. Growth in data cen-
ter electricity usage slowed down from 2005 to 2010 as compared
to the previous five years from 2000 to 2005 due to the economic
slowdown, virtualization, and other efficient data center practices
[28]. However, regardless of that, electricity usage of data centers
in the US still grew by 36% from 2005 to 2010 totaling about 2% of
total US electricity use in 2010 [28].

Given the energy costs and its environmental impact, major
IT companies like Google, Facebook, Apple have all committed to
greener practices and renewable sources of energy. Google matched
100% of the 2017 electricity consumption of their global operations
with renewable energy purchases [23]. Facebook has committed
to reducing its greenhouse gas emissions by 75% and powering its
global operations with 100% renewable energy by the end of 2020
[18]. In a 2018 press release Apple has stated that they are globally
powered by 100% renewable energy [3].

Significant research has been done on making data centers energy-
efficient. Part of this work is focused on reducing energy consump-
tion itself [30] [33] [11] [43]. Other work has focused on utilizing
renewable energy via local load scheduling, geographical load bal-
ancing and data center provisioning and site selection [21] [20] [32]
[31] [19] [6]. However, although cooling energy is a major portion
of the energy consumed by a data center, efficiency in data center
cooling has received much less attention in comparison. In this
paper, we take a more comprehensive view of energy consumption
in a data center and consider not only energy to power servers, but
also energy used for cooling. We study the greening potential of
synthesizing two contrasting sources of renewable energy: solar
energy and a renewable form of cooling known as open air cooling
(OAC). We note that solar energy is more abundant in sunny loca-
tions and during day-time. In contrast, OAC is available when the



weather outside is cold and dry enough. Therefore, OAC is avail-
able in colder locations and during night-time. We evaluate if the
contrasting nature of these two technologies yields complementary
benefits. Given renewables are intermittent in general, and the re-
newables we have chosen to study are complementary in time and
space, we use batteries and load shifting for smoothing the supply
of green energy. We study the greening potential of combining
these two technologies against two yardsticks: reduction in brown
energy and cost effectiveness. To realistically evaluate the greening
potential, we use an extensive real-world load trace from Akamai,
one of the leading CDN providers in the world [38].

Our work is most applicable to IDNs like CDNs that have a global
deployment of servers and replication of services and content. CDNs
have an extensive network of servers scattered all over the globe so
they can be proximal to their end-users. In addition, their content
is replicated widely so that it can be served reliably and with low
latency to end-users. We take advantage of both these defining
CDN features in designing our solution as they allow us to move
load between data centers. This load movement can affect latency,
and so in our solution we consider different radii of load movement
and incorporate it as a variable parameter into our analysis.

Contributions: To the best of our knowledge, our solution is
novel as it synthesizes two renewable technologies, solar energy
and OAC, and evaluates their greening potential in the context of
an IDN, with large-scale real-world load traces. Specifically, our
contributions include:

o Synthesizing solar energy and OAC as contrasting and comple-
mentary technologies: Motivated by the contrasting and comple-
mentary nature of solar energy and OAC, we use a simple greedy
algorithm that enables us to use solar energy and OAC efficiently.
A net-zero year (nzy) data center produces as much energy from
renewables in a year as it needs to entirely offset its brown energy
consumption in that year. Just by introducing OAC alone to the
mix of half the number of panels it takes to be net-zero year, we
show that we can go from 34% reduction to about 54.9% brown
energy reduction. With panels needed to be net-zero year, we can
go from 41.5% to about 59.4% savings. We see even higher savings
by employing both batteries and load movement. We incorporate
several key parameters that can be used to model trade-offs while
evaluating energy efficiency. Some of these parameters include ra-
dius of load movement, battery capacity, number of solar panels
installed, battery cost and lifetime, solar panel cost and lifetime,
and energy prices.

o Evaluation using an extensive real-world trace: We evaluate the
greening potential of solar energy and OAC extensive load traces
from Akamai [38]. The traces consist of information on from 724
global data center locations including 100,592 servers deployed all
over the world. We also use year-long weather data for OAC from
over 650 locations. In addition, we use a year’s worth of PVWatts
solar data. Using this data, we simulate our solution for a whole
year, parallelizing our runs by week to reduce the time of running.
We then evaluate our solution against several metrics measuring
total brown energy reduction, peak reduction, cost savings and a
break-even analysis. We vary battery capacity as a function of the
average day’s load in a data center.

® Brown energy reduction evaluation: We evaluated how well the
mix of solar energy and OAC reduces brown energy consumption.
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Energy companies often charge their customers for both the energy
consumed and the peak energy drawn. As part of this analysis, we
studied two metrics: 1) total brown energy reduction and 2) peak
energy reduction. For brown energy reduction, we studied how our
results vary with addition of OAC to solar energy, with the addition
of load movement, and also with the addition of batteries.

Allowing a radius of 5000kms with the combination of solar
energy and OAC, we can increase our savings to 60.3% or panels0.5
and to about 65% with net-zero year panels. Our results show that
with a battery capacity of half the average day’s load at each data
center, we can significantly increase the reduction in brown en-
ergy to over 73% for panels0.5 and over 89% with net-zero year
panels, without moving any load. For percentage peak reduction,
we see a reduction between 10% and up to 40% depending upon
the number of panels installed, the battery capacity and radius of
load movement. Fixing the radius of load movement to 1000kms,
and varying battery capacity and panels as shown above, we can
achieve a reduction of about 11% in the worst case to about 26%
with greater battery capacity and larger number of panels.

o Amortized cost analysis: We evaluated the cost saving poten-
tial of our solution given investment in different combinations of
battery capacities and number of panels. We calculated yearly cost
savings based on yearly savings in brown energy consumption
costs and yearly amortized expenditure for batteries and panels. We
find significant cost savings for moderate and high energy prices,
ranging from 9.9% all the way to 60.3% based on different parameter
values. Even for low price for energy, if we do not use batteries and
have 0.5nzy panels, we see cost savings from 22% to 41%. However,
with 0.5avgdayload batteries and 0.5nzy panels, savings drop to
between 3% to about 8.4%, and for other combinations of panels and
batteries we incur a loss in the case of low price of energy. With the
prices of batteries and solar panels on the decline, we believe the
results for lower energy prices should also improve in the future.

o Break-even analysis: With a higher price of energy, for half
the panels it takes to be nzy, we see break-even periods as low
as 6 years. For a moderate and low energy prices, we can achieve
break-even periods of 8.9 years and between 14.9 years respectively.
Again, with the cost of solar panels and batteries declining, these
numbers should improve in the future.

o Cost Analysis based on future projections: Given the price of
solar panels and batteries is falling, and the price of energy over the
long run is increasing, we evaluated our solution using projected
prices of batteries, panels, and energy. We found dramatic increases
in brown energy reduction and break-even periods even for the
projected lower end price of energy. Even for the low price of
energy, for which we incurred a loss in certain cases with current
prices, we see cost savings of 23.9% to 55.9%.

Roadmap: We present the background in Section 2 and our
algorithm in Section 3. We present our experimental methodology
and empirical results in Sections 4 and 5 respectively. We end with
related work and conclusions in Sections 6 and 7 respectively.

2 BACKGROUND

Internet-Scale Distributed Networks: An IDN provides modern
Internet services via its network of servers housed in a large number
of data centers spread all over the globe. An example of an IDN is



a Content Delivery Network (CDN) that serves content to clients
on the web reliably and with low latency. The three main entities
in a CDN system include the content providers, the CDN provider,
and the end users [9]. Content providers interested in distributing
their content to end-users contract with CDN providers so they
can use the CDN’s infrastructure to help distribute their content
transparently, reliably, and in a timely fashion. Content is replicated
by the CDN’s distribution systems to edge servers located in a
diverse set of geographically distributed locations. On receiving
a user request, the request routing system assigns the user to the
appropriate nearby server to ensure low response times. Therefore,
the two defining characteristics of a CDN are global deployment
of servers and replication of services. Both these features work in
conjunction with each other to provide services that are proximal
to end-users. We use these two features to enable us to move load
between data centers, although with a possible increase in latency.
We move load in a constrained manner by restricting the radius of
load movement, and study the greening potential of solar energy
and OAC with radius of load movement as a variable parameter.

Data centers require massive amounts of energy to run and
maintain servers and other supporting equipment. The bulk of the
energy consumed by a data center comes from powering its servers
and for cooling them. About 56% energy is used to power servers
and about 30% is used for cooling and the rest 14% is used for power
conditioning and networking equipment [40]. In this paper, we
refer to the energy used to power servers as ‘server energy’ and the
energy used for cooling as ‘cooling energy’.

Open Air Cooling (OAC): Data centers need cooling to keep
server and other equipment at recommended operating temper-
atures. Depending upon weather conditions existing in the data
center location, air from outside can be brought into the data center
to cool servers. Stated simply, OAC involves the use of outside air
to cool data centers. Broadly, there are two flavors of OAC: air-side
and water-side. Air-side uses outside air for cooling, and water-side
use water as a cooling medium circulating through cooling tow-
ers. Another version of air-side free cooling is evaporative cooling
where outside air in conjunction with evaporating water is used
for cooling. Given cooling energy accounts for a significant por-
tion of the energy consumption, renewable cooling using outside
air can be considered to be virtually ‘free’ in comparison to using
HVAC chillers - and is therefore sometimes also referred to as ‘free
cooling’. Given OAC uses outside air for cooling, the availability of
OAC depends on the temperature and humidity conditions existing
outside. The American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) has defined different classes of
data centers based on the temperature and humidity ranges that
they can tolerate [26]. Classes are labeled A1 through A4, with most
restrictive to least restrictive. We assume our data centers belong to
the A1 class, which requires the smallest range for temperature and
humidity, and represents more commonly deployed basic equip-
ment today. We use the existing weather conditions outside and the
ASHRAE requirements for A1 class of data centers to determine
whether OAC is available or not. Using the most restrictive class
also gives us the ability to do the worst case analysis with respect
to OAC availability. A1 ranges for temperature and humidity are
listed in Table 1.

305

Class | Dry-Bulb | Humidity | Max Dew
Temp (°C) Range Point (°C)
Al 15 to 32 20% to 80% 17

Table 1: ASHRAE’s allowable ranges for temperature and hu-
midity for A1 class of data centers.

Modeling Server and Cooling Energy: The main source of
energy consumption in a data center is the energy used to power
and cool servers. To model server energy, we use the linear model
of energy consumption [5]. Energy to power servers is determined
using normalized load A (where 0 < A < 1), where A is the load
on the server as a fraction of server capacity. Idle servers also
consume approximately 60% of energy. Hence, we use A equals
Pidie +(Ppeak —Pidie)A, as the power consumed by a server serving
normalized load A, where P; ;. is the power consumed by an idle
server, and Ppq is the power consumed by the server under peak
load. To determine the total energy consumed by the cluster of
servers in a data center, we assume that we can consolidate load
between servers, and shutdown the remaining servers that are idle
to conserve energy [30]. Power Usage Effectiveness (PUE) is the
measure of how efficiently a data center uses energy. It is the ratio
of the total energy used by the data center (including energy used
by the IT equipment, cooling energy, and other overhead) and the
amount of energy used by the IT equipment. We use the average
PUE of 1.8 [34] when determining cooling energy consumed by the
data center.

Geographical Variations in Solar Energy and OAC Avail-
ability: We see variations in solar output and OAC based on factors
like temperature, season, time of day, northern or southern hemi-
sphere location, climate, weather conditions [24] [25]. Therefore,
using renewables efficiently involves handling the variations in and
availability of renewable output. In this paper, we use a combina-
tion of load movement and battery storage to mitigate the problem
of intermittent availability of solar energy and OAC. Given the ge-
ographical diversity of data center locations and replicated content
and services, we use load shifting to take advantage of renewables.
We vary radii of load movement to control latency. To enable us to
store excess solar energy, we assume that batteries are available at
all data center locations. We vary battery capacity installed at a data
center location as a function of the average day’s load for that data
center. Our analysis can also be modified to include net-metering.
However, given net-metering is not consistently available globally,
we make a simplifying assumption that all data center locations
employ batteries to store excess solar energy.

Net-zero Data center: A ‘net-zero energy’ data center is de-
signed and managed in a manner that uses on-site renewables to
entirely offset the use of any non-renewable energy from the grid
[4]. Therefore, given a period of time, a net-zero data center pro-
duces at least as much on-site renewable energy as it consumes.
With this definition, a ‘net-zero year’ data center is net-zero over
the period of a year. For a data center, we define the net-zero year
solar panels as the number of solar panels needed by the data center
to be net-zero year. For our experiments, we vary the number of
solar panels installed at a data center as a function of its net-zero
year solar panels.



Variable and Value Notation Parameter Value
battery capacity = x*(avg day’s load) bcapx Loss % 14
num solar panels = x*(net-zero year number of panels) | panelsx or xnzy System Capacity 0.275 kW
radius of load movement = xkms r=x Module Type Standard
Timeframe Hourly
Table 2: Parameters values and related notation used to refer Azimuth 180 deg for northern hemisphere and 0 for southern
to them in the paper Tilt Absolute value of latitude
Dataset ‘TMY2’ for US Locations and ‘Intl’ for others

Metrics for evaluating proposed solution: To evaluate the
combined greening potential of solar energy and OAC, we measure
reductions in both energy consumption and cost. We use reduction
in total brown energy consumption and reduction in peak energy
drawn from the grid to determine how effective the combination
of solar energy and OAC is in greening IDNs. We use amortized
cost savings and a break-even analysis to evaluate how effective
the algorithm is with respect to cost.

Parameter Values and Related Notation: In this paper, we
study our algorithm by varying parameters like battery capacity
and number of solar panels. We vary battery capacity installed at
a data center as a function of the average day’s load for that data
center. We consider three different fractions: 0, 0.5*(average day’s
load), and 1*(average day load). We vary the number of solar panels
as a function of the net-zero number of panels for a data center. We
consider two fractions: 0.5*(net-zero year number of panels), and
1*(net-zero year number of panels). In addition to these, we also
vary the radius of load movement and use a notation r=x to mean
that a maximum radius of load movement of x kms was used in
our simulation. It is cumbersome to refer these cases using their
full descriptive text for battery capacity and panels as listed above.
Therefore, we use a shorter notation and list the mapping of the
full text to its notation in Table 2. For example, to refer to a case
in which we employ a battery capacity of 0.5*(average day’s load)
and install 0.5*(net-zero year number of panels), in our plots and
empirical results we use a notation bcap0.5 and panels0.5 (or 0.5nzy).

Problem Statement: IDNs consume massive amounts of energy.
The bulk of the energy consumed by data centers consists of energy
used to power servers and to cool them [40]. One way IDNs can be
made greener is by replacing brown energy consumption by energy
generated from renewable sources. Solar energy is correlated with
sunny weather and day-time. In contrast, OAC is more abundant in
colder weather and night-time. In this paper, we study the potential
of using two contrasting and complementary sources of renewable
energy (namely solar energy and OAC) in their ability to reduce
brown energy consumption in IDNs in a cost effective fashion.
Given the intermittent nature of renewable energy, in general, and
the complementary nature of these two specific sources, we use
batteries and load movement as facilitators for smoothing supply of
green energy. Specifically, in this paper we try to study two aspects:

o The potential for replacing brown energy with a combination
of solar energy and OAC in IDNs.

o The cost effectiveness of combining these two contrasting sources
of renewable energy in our IDN setting.

3 ENERGY-AWARE LOAD SCHEDULING
ALGORITHM

We describe our greedy heuristic algorithm in the following para-
graphs. We assume that we have the ability to cool load using OAC
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Table 3: Parameters for PVWatts Data

as long as the weather conditions outside permit us to do so. We
also assume we have the on-site solar panels at each data center
location. Further, we assume that we have batteries available locally
to store excess solar energy. Finally, we assume we can leverage re-
dundancy and data replication in IDNs by moving load to locations
where there is more renewable energy available.

Our algorithm works as follows. If OAC is available, we use that
for cooling data centers. If solar energy is being generated by locally
installed solar panels, we use that to meet local energy demand,
including cooling energy if OAC is not available. For remaining
server and cooling load, we use locally installed batteries. If any
load is left over, we try to shift it to other locations with surplus
green energy, constrained by a maximum radius of load movement.
We do load shifting in two iterations. In the first iteration, we move
load to locations that have both surplus solar energy and OAC. In
the second iteration, we move load to locations that have surplus
solar energy and no OAC. This allows us to use solar energy from
data centers that did not get selected in the first iteration. For
both iterations, load shifting is constrained to remain within a
maximum radius of load movement to control latency. Finally, for
any remaining load, we draw energy from the grid. We store any
unused solar energy in batteries for future use. The pseudo-code
for the algorithm is listed in Appendix A.

4 EXPERIMENTAL METHODOLOGY

We performed our experiments on a month-long Akamai trace.
This extensive trace has a granularity of 5 minutes and consists of
information on 100,592 servers in 724 global data center locations
from around the world. The data set consists of information for
fields like load, requests, bytes, number of servers, server capacity,
latitude, longitude, city, state, and country.

Our solar data set was acquired from the PVWatts [37] website.
It consists of a year-long dataset for solar energy generation at
a granularity of one hour. We assume that the power rating of a
solar panel ranges from 200 watts to 350 watts [14] and take an
average value of 275 watts as the power rating per panel. We list
values of parameters used for PVWatts solar data in Table 5. For
any other required parameters, we used the default values listed in
the PVWatts version 5 manual [12].

For determining OAC availability we used a year-long weather
dataset for the year 2012 from the National Oceanic and Atmo-
spheric Administration (NOAA). This global dataset contains sev-
eral metrics, including hourly dry-bulb temperature and dew point.
Given that the location of our data centers, we mapped which
weather station was closest and used its weather data as being
representative of the weather at the data center location. Given the



NOAA has a vast network of weather stations, we could map most
of our data centers to weather stations within 10kms. For most of
the remaining data centers, we could map a weather station within
40kms.

Weather data used for OAC and solar data had a granularity of
one hour. However, the load trace has a granularity of 5 minutes.
We therefore assumed that the weather and solar output do not
change much during the hour, and use the hours value for each
of the 5-minute timeslots that fall within the hour. Additionally,
our weather data and solar energy data was year-long, however,
the Akamai load trace was month-long. To simplify, we assumed
that the load trace pattern repeats throughout the year. However,
our algorithm does not fundamentally depend upon or exploit the
fact that the load pattern repeats throughout the year. Therefore, it
would also be applicable to a yearly load trace in which the load
pattern is different for each month.

We analyzed our metrics by varying several parameters. For a
given data center, we varied battery capacity as a function of the
average day’s load, and considered battery capacities of zero, half of
the average day’s load, and a full average day’s load. For each data
center, we determined the number of solar panels we need to be
net-zero year i.e the number of panels needed to produce enough
solar energy to cover the total energy needs of the data center
for a year. For our experiments, we varied the number of panels
from half of the net-zero year number of panels to a full net-zero
year number of panels. Given the size of our datasets, running our
algorithm sequentially would have been computationally expensive.
Therefore, we parallelized our algorithm by week and in order to
do a worst case analysis, we assumed a starting battery charge of
zero at the beginning of each week.

5 EMPIRICAL RESULTS

We evaluated the greening potential of solar energy and OAC in
the context of both brown energy reduction and cost effectiveness.
We analyzed several metrics, namely brown energy reduction, peak
reduction, cost savings, and break-even points. We describe our
findings related to these metrics in the paragraphs below.

5.1 Brown Energy Reduction

Brown energy reduction is calculated by taking the average of
percentage reduction in brown energy across all the data centers
of the IDN for the year. Our results show the following:

e Combining solar energy and OAC yields significant benefits:
Figure 1 shows the brown energy reduction we can achieve with
the combination of solar energy and OAC by different months of
the year. Solar energy output is higher in the summer months when
there is plenty of sunshine. Therefore, we see the reduction in brown
energy peak in the summer months when we use solar energy alone.
In contrast, OAC is more abundant when the outside weather is
cold and dry enough. Therefore savings from OAC are higher in the
winter months and dip in the summer months. Combining these
two technologies, we can achieve a much higher savings of between
49.7% to about 60% throughout all the months of the year as shown
by the green line. Figure 2 shows how our yearly average percent
savings increase when we combine solar energy with OAC. As
seen by comparing the left two bars of Figure 2 (a) and (b), just by
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Figure 1: Plot shows how solar energy and OAC combine to
yield higher savings across various months of the year for
panels0.5 and r=0.

introducing OAC alone to the mix of 0.5nzy panels, we can go from
34% reduction to about 55% average brown energy reduction. With
nzy panels, we can go from 41.5% to about 59.4% savings.

e Load movement leads to more savings: As seen in Figure 2 (a
and b), savings increase with increasing r. For r=5000kms, we can
increase our average reduction from 54.9% to 60% for panels=0.5nzy
and from 59.4% to 65% for nzy panels.

o Batteries help significantly: As seen by the leftmost bars in
Figure 2 (c and d), in the absence of batteries, doubling the number
of solar panels increases savings from 34% to 41.5% for the solar
energy only scenario and from 54.9% to only about 59.4% for the
combination for solar energy and OAC. Without batteries, instanta-
neous solar energy produced is wasted. However, as shown by the
bars to the right in Figure 2 (c), by employing batteries with bcap0.5,
we can significantly increase the reduction in brown energy to over
48% for panels0.5 and over 74.9% for nzy panels with solar energy
alone. For the combination of solar and OAC in Figure 2 (d), we can
increase savings to 73% for 0.5 net-zero year panels and over 89%
with net-zero year number of panels.

e Diminishing returns with increase in battery capacity: Reduction
in brown energy increases with larger battery capacity, however,
we see diminishing returns. Figure 2 (d) shows the jump in savings
from 0 battery capacity to 0.5 is dramatic — from 54% to 73% for
0.5nzy panels. However the jump from 0.5 to 1 is not that large
- 73.2% to 73.7%. For a larger number of solar panels (shown by
the red bars in Figure 2 (d)), the same diminishing returns with
batteries are observed and we see a jump in reduction from 59% to
89% to 91% as we increase the battery capacity from 0 to 0.5 to 1.
This trend is also preserved for the solar energy only scenario as
we can see from Figure 2 (c).

o Application-specific parameter values: We can achieve similar
gains in brown energy reduction with different sets of parameter
values. These parameter values could be chosen based on the spe-
cific needs of applications, e.g. we may choose to not move load for
latency sensitive applications, whereas for latency tolerant applica-
tions, we may choose to move load and save on battery costs. As
an example, suppose we would like to achieve approximately 70%
reduction in brown energy consumption. We can achieve this in
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Figure 2: We see a significant increase in brown energy reduction as we move from solar energy only (a & c) to solar energy +
OAC (b & d). Increasing r (a & b) yields larger savings. Increasing battery capacity (c & d) helps but shows diminishing returns.

two different ways using different combinations of load movement,
battery capacity, and solar panels. The two ways from the above
plots are: From from Figure 2 (b), bcap0 panels0.5 and r=10,000 and
from Figure 2 (d), panels0.5 bcap0.5 with r=0. The former scenario
is better suited for applications that can tolerate latency, where as
the latter can be employed in case of latency-sensitive applications
though with an added expenditure for batteries.
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Figure 3: Figure showing reduction in brown energy across
different months for Anchorage and Las Vegas

o Location Based Results: Trade-offs for specific locations vary
significantly depending on the local availability of solar energy and
OAC and their interplay. For a place like Anchorage (see lowest
blue line corresponding to panels0.5 bcap0 in Figure 3(a)), where
OAC is available for most of the year, the shape of the curve de-
pends on the availability of solar energy, which peak in the summer
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months. However, for a place like Las Vegas (see lowest blue line
corresponding to panels0.5 bcap0 in Figure 3(b)), where solar en-
ergy is available for most of the year, we get a curve that dips in
the summer months, when OAC is not as abundant. These shapes
change with the addition of load movement and batteries to the
mix, as both of those alter the basic assumptions about locational
variations of OAC and solar. Also, locations that are mostly high
in solar energy output (e.g. Las Vegas which is ranked as the third
highest city in the United States based on percentage annual sun-
shine [35]), have an advantage over locations that are excellent for
OAC year round (e.g. Anchorage where the highest average year
round temperature is 19 °C and the average dew point is -2 °C [47]).
Solar output can be used for meeting both server energy demand,
as well as for cooling purposes. However, OAC can only be used
for cooling. From the plots, with sufficiently high number of solar
panels and battery size, we can nearly see a high reduction in brown
energy consumption year round. For Anchorage, however, in the
summer months we see a dip in brown energy reduction due to
lesser solar energy availability. The curves also show diminishing
returns when battery capacity is increased successively from zero,
to half of the average day’s load, to a full average day’s load.

5.2 Peak Reduction
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Figure 4: Plot showing significant gains in peak reduction.
Increasing solar panels, battery capacity and r result in
higher reductions.

This metric measures the average percentage peak reduction for
peak energy drawn from the grid for the year. We first determine



Value
$190/kWh | 10 yrs
$2.1/Wac | 25 yrs

Parameter
Price/kWh | lifetime

Price/Wac | lifetime

Resource

Battery

Solar Panels

Table 4: Price and lifetime for batteries and solar panels.
Cost for commercial solar panels and lithium-ion batteries
was used.

the maximum energy drawn for a data center for the year for
the original load trace. We then determine the maximum energy
drawn for the new load incorporating solar panels, OAC and load
movement (for r > 0) under the greedy heuristic algorithm. We then
calculate the percentage reduction for each data center based on
the above values and finally average them. Our results are shown
in Figure 4.

e Significant reduction in peak energy: As shown in Figure 4, we
can see an overall reduction between 10% and up to 40% depending
upon the number of panels installed, the battery capacity and radius
of load movement. Fixing the radius of load movement to 1000kms,
and varying battery capacity and panels as shown above, we can
achieve a reduction of about 11% in the worst case to about 26%
with greater battery capacity and larger number of panels. With
a larger radius of load movement, we can see significantly higher
percentages of reduction. As an example, with a r=10,000kms we
can see a decrease of over 35% with bcap1 and nzy panels.

5.3 Cost Analysis

In this section, we evaluate how well the combination of solar
energy and OAC performs with respect to cost savings. To this
end, we consider the following aspects: 1) Yearly amortized cost
savings and 2) Break-even analysis. We describe these in detail in
the following paragraphs.

With the battery and solar cost and lifetime parameters [7] [44]
[36] [13] listed in Table 4, we studied cost savings and break-even
periods under three different prices of energy from low, to moderate,
to high. The following three scenarios were analyzed:

e Low Price - 7¢/kWh: This is closer to the industrial price
of electricity in the US [1] and is the lower end price for our
analysis.

e Moderate Price - 12¢/kWh: This is based on a blended
value of 12¢/kWh midway between our low and high cost
values of 7¢/kWh and 17¢/kWh.

e High Price -17¢/kWh: This in on the higher end of the
non-household energy prices found in countries in Europe
[17].

5.3.1 Yearly Amortized Cost Savings. We calculate original
yearly cost of brown energy drawn from the grid for the origi-
nal trace. We then calculate the new yearly cost of brown energy
for the new reduced load after incorporating solar panels, OAC
and load movement (for r > 0) under the greedy heuristic algo-
rithm. To account for the yearly cost of panels and batteries, we
calculate expense for panels and batteries and amortize the price
over their lifetime to determine the yearly amortized cost for these
investments. We then add the yearly amortized cost to to the new
yearly cost. Finally, we find the percentage reduction in cost using
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the original yearly cost and new yearly cost calculated above. The
results for the metric are discussed below.

e Cost savings are directly proportional to the price of energy:
From Figure 5 we see higher savings in cost as we move from a
low to a moderate to a high energy price. With a higher per unit
energy price, every unit of brown energy drawn from the grid that
is replaced with green energy reduces a larger amount from the
operational cost.

e Significant cost savings for moderate and high energy prices:
As seen in Figure 5, significant cost savings can be achieved for
moderate and high energy prices (plots b and c). Savings range from
9.9% to 60.3% based on different parameter values. With moderate
energy prices, for bcap0.5 and panels0.5, we can see a savings of
about 32% without any load movement. For the higher price and
same battery size and panels, savings are much higher at 44.4%.

e Savings in some cases with low energy prices: From Figure 5 (a),
we see that with lower energy prices, we can yield cost savings if
we employ fewer number of panels (0.5nzy) coupled with either
no batteries or batteries with a smaller capacity of bcap0.5. With
panels0.5 and bcap0, we see savings ranging from 22% to 41% de-
pending on r. With panels0.5 and bcap0.5, we see a savings of 3% to
about 8.4% depending on r. For other combinations of panels and
battery capacities, we incur a loss. However, with prices of solar
panel installation and batteries on the decline, we expect these cost
savings in this case to improve going forward.

e Middle ground provisioning: As seen from the green line in
subplots of Figure 5, bcap0.5 and panels0.5 yields no losses for
the low energy price and yields significant savings for the higher
energy price. This coupled with the fact that bcap0.5 and panels0.5
yields significant average percent brown energy reduction, (73% for
0.5 net-zero year panels and over 89% with net-zero year number of
panels), makes it a good middle ground for achieving both objectives
of reducing brown energy consumption and saving on cost.

o Sensitivity of metric in inversely proportional to energy price:
Generally speaking, this metric is more sensitive to change in pa-
rameters (i.e. battery capacity and number of panels) with lower
energy prices, as compared to higher energy prices. Observing
Figure 5, we see that the the lines successively span out less as
we go from low to moderate to high prices. For the lower energy
price for r=0, the savings range from 22% to -48%. For the moderate
energy price, savings range from about 35.8% to about 10%. Finally,
for the higher energy price, savings range from 46% to about 29%.
Therefore, decisions to switch between different battery capacities
and number of panels have a greater effect on cost savings when
prices are low, as compared to when they are higher.

5.3.2 Break-even Analysis. In this section, we look at the num-
ber of years it takes to break even on the expenditure made towards
batteries and solar panels. We determine brown energy cost for the
year for the original trace and for the new trace after our algorithm
has been run. We calculate the difference of these two to get cost
savings for the year. We then find the capital expenditure incurred
on batteries and solar panels across the IDN, and divide it by the
savings for the year to get the number of years it would take to
recover the cost.

Figure 7 gives an idea of the break-even period across different
combinations of battery capacity and panels. Figure 6 focuses on
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Figure 6: Plot shows a decrease in the number of years to
break even as the price of energy goes up (for r=0).

r=0 and the combination of panels and battery capacity for which
the number of break-even years are the lowest:

® Break-even period is inversely proportional to energy price: Figure
6 shows that for half the nzy panels and a low energy price, we see a
break-even period of about 14.9 years. This falls to 8.7 years for the
moderate price, and 6 years for the higher price of energy. The same
trend is observed for all combinations of panels and capacities as
seen in Figure 7. Therefore, the higher the price of energy, the lower
the number of years to break even. This is because for every unit
of brown energy reduced, we get larger savings when we multiply
it with the higher unit cost of energy versus a lower unit cost of
energy.

o Finding a middle ground: The break-even period is very similar
for 1) bcap0 and panels0.5; and 2) bcap0.5 and panels0.5. For the
higher energy price and with bcap0 and panels0.5, it takes between
about 4.6 to 6.1 years to break even depending upon the values of
r. With bcap0.5 and panels0.5, it takes about the same number of
years (between 6.7 to 6.3) to break-even. This trend is also observed
for lower and moderate energy prices as well. Therefore, from a
overall solution standpoint considering bcap0.5 is useful in brown
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Parameter Cost
(constant 2017 dollars)
Lower Electricity Cost Projection (¢/kWh) 7.98
Moderate Electricity Cost Projection (¢/kWh) 13.67
Higher Electricity Cost Projection (¢/kWh) 19.36
Solar Panel Cost ($/Wac) 1.30
Battery Cost ($/kWh) 70

Table 5: Projected Electricity, Solar Panel and Battery Costs

energy reduction and cost savings, bcap0.5 and panels0.5 emerges
as the preferred option between 1 and 2.

5.4 Cost Analysis with Future Projections

Given the price of solar panels and batteries is on the decline, and
the price of energy is on the rise, we evaluated our algorithm for
2030 price projections of electricity, solar panels, and batteries. For
electricity prices, we used the projected average US electricity price
in 2030 [15], we then calculated the current ratio of the average price
across all sectors to the current industrial price of electricity [1] to
determine the industrial electricity price for 2030. We then used the
percentage increase in price to scale up our low, moderate and high
prices used in the paper. We used the SunShot study targets for
installed solar panel cost in $/Watt in the beyond 2020 [16] as well as
their 2030 targets [45], in conjunction with the current commercial
solar panel per watt rates [36] to determine the installed cost of
commercial panels in 2030. We used the Bloomberg New Energy
Finance (BNEF) projection for the lithium-ion battery cost in 2030
[7]. Table 5 shows the projected values we used (in constant 2017
dollars). As a simplifying assumption we assumed that the lifetime
of batteries and solar panels remains the same as the current values
uses. If the lifetime were to increase in the future, that would yield
even higher cost savings.

With the projected values of parameters discussed above, we
re-looked at how well the algorithm performs with respect to: 1)
yearly amortized cost savings for our algorithm and 2) break-even
analysis. Our findings are discussed below:
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Figure 7: The break even period is inversely proportional to the price of energy. With a moderate amount of battery capacity
and panels, we can achieve close to the lowest break even periods compared to others.

5.4.1 Yearly Amortized Cost Savings with Future Cost Pro-
jections: The results for this metric are discussed below.

e Dramatic increase in cost savings: As seen in Figure 8, cost
savings showed a dramatic increase across the board for all combi-
nations of parameters. Figure 8 (a) shows that for the lower price
of energy, range from 23.9% to 55.9%. None of the combinations of
parameters result in a loss, like we saw with current prices. From
Figure 8 (b) shows that with moderate energy prices, we can see
savings of 38.6% to 68.9%. With the future higher energy price, we
see even higher savings ranging from 44.7% to 77.06%.

5.4.2 Break-even Analysis with Future Cost Projections: The
results for this metric are discussed below:

o Dramatic decrease in number of years to break even: We see a
huge decrease in the number of years it takes to break even with
the projected prices. From Figures 6 and 9, we can see that for
bcap0, panels0.5 and r=0, for the new low price, the number of
years it takes to break even falls from 14.9 years to 8.08 years. For
the moderate price it falls from 8.7 to 4.71, and from 6.1 to 3.33 for
the high price. We see the similar trend for beap0.5, panels0.5 and
r=0 where the number of years are reduced by approximately half
between the current and projected costs. In addition, we see from
Figure 9, that the break even years with bcap0.5 are marginally less
than without batteries. Given the decrease in the prices of batteries
and solar panels, and the higher energy cost, for 0.5nzy panels in
the future it would in fact take marginally less time break even if
we employ a battery capacity of bcap0.5, than if we do not have
any batteries at all.

5.5 Discussion

Our analysis shows that combining solar energy and OAC can signif-
icantly reduce brown energy consumption in IDNs. Load movement
and batteries can yield further savings. We find that savings due to
load movement are most pronounced over larger distances where
the the night-day difference is apparent. Therefore applications
that are not latency sensitive have the most to gain from load move-
ment. Batteries with a capacity of half of the average day’s load
can significantly increase savings. We also see that batteries not
only increase savings, but are also cost effective with moderate and
high energy prices. Therefore in locations where energy prices are
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moderate to high, deploying batteries with solar panels is beneficial.
With lower energy prices we can achieve cost savings in certain
cases. With future projected prices of solar panels, batteries and
energy, we find dramatic increases in cost savings and break even
periods for all prices.

6 RELATEDWORK

Given energy efficiency is important for sustainability, significant
work has been done in the area of data centers energy management.
Part of this work has focused on reducing energy at the server
level. Work includes shutting off servers during off-peak times and
switching between high and low power states to prevent wear
and tear [43] [30] [33] [11]. Allocation of energy between user
applications taking into account user priorities and the lifetime of
the battery has also been studied [48]. Prior work has also looked
at OS level power management by real-time monitoring of the CPU
to keep it utilized to a certain percentage [39].

Separately, another part of prior work has focused on energy-
efficiency at the data center level. Job scheduling to maximize solar
energy usage without violating user deadlines has been studied [21]
[22]. Prior work has looked at using solar energy and wind energy
prediction to increase green energy usage and cut down canceled
jobs [2]. There has been work on job migration between two sets of
servers (one powered by energy from the grid and another by wind
energy) with the goal of maximizing wind energy usage [29]. Prior
work has also looked at energy capacity planning finding the best
ratio of renewables given a location and workload or given carbon
footprint goals [8] [42]. Given cooling accounts for a large portion
of data center energy consumption, work has also been done on
use of cooling technologies in modular data centers [27] and on
unified management of data centers depending upon renewable
availability, cooling efficiency, workload fluctuations, and price of
energy [10]. Although the above work provides excellent solutions
for data center energy management, it is not targeted towards a
network-level setting, which is the focus of this paper.

There has been significant prior on network-level energy man-
agement as well. Studies have investigated the use of load balancing
using the ‘follow the renewables’ approach to almost entirely power
their data centers using a renewable mix of wind and solar energy
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[31] [32]. Prior work has also studied user request routing for green-
ing data centers [46]. Solutions have been proposed for dispatching
requests to data centers in a way that maximizes renewable energy
and stays within a budget [49] . Work has been done to assign users
to data centers based on the three-way mix of latency, price of elec-
tricity, and carbon footprint [19]. Prior work has also looked into
site selection for green data centers using a follow-the-renewables
approach [6]. However, none of these studies explicitly consider a
combination of solar energy and open air cooling as part of their
renewable mix. Most of them do not evaluate their solution on as
extensive real-world, global trace as we have done in our paper.
These studies also do not explicitly consider the impact of varying
storage capacities on their outcomes. Efficient provisioning of so-
lar panels for net-zero IDNs based on geographical solar energy
availability has been previously studied [25]. However, this work
is for offline panel provisioning, In contrast, we do not focus on
solar panel provisioning, and instead we assume that solar panels
are installed at every data center location. Existing work has also
looked at geographical load movement to study the potential of
open air cooling for serving the cooling energy needs of IDNs [24].
However, in this paper, we study the combined potential of solar
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energy and OAC for net-zero IDNs, considering both server energy
and cooling energy while determining data center energy demand.

7 CONCLUSIONS

In this paper, we studied the greening potential of solar energy
in conjunction with OAC given their contrasting natures. To that
end, we implemented a simple greedy heuristic and evaluated it
on an extensive Akamai load trace. We considered several metrics
broadly analyzing brown energy reduction and cost effectiveness
of employing a combination of solar energy and OAC in IDNs. We
found that just by introducing OAC alone to the mix of 0.5nzy
panels, brown energy reduction increases from 34% to about 54.9%.
With nzy panels, we can go from 41.5% to about 59.4% savings. We
can increase our savings further to between 60% to 65% by adding
load movement within a radius of 5000kms. With batteries and r=0,
we are able to significantly reduce brown energy consumption by
73% (for 0.5nzy panels) and over 89% (for nzy panels). We could also
achieve peak energy reduction of about 10% to 40%. Therefore the
combination of solar energy and OAC enables significant brown en-
ergy savings. Our cost analysis showed that for moderate to higher
prices of energy we can achieve significant cost savings from 9.9%
to 60.3%. For low energy prices, we found that we can still achieve
between 22% to 41% savings with panels0.5 and bcap0. For beap0.5
panels0.5, we see small savings of between 3% to 8.4%. In other cases
with a low energy price, we incurred a loss. With a higher price
of energy, we could observe break-even periods as low as 6 to 8.7
years. With energy prices on the rise and solar and battery prices
declining, we re-looked at the potential under projected prices. We
saw dramatic increases in cost savings, with with savings between
23.9% to 55.9% even for the lower projected energy price. With
r=0 and panels0.5, the number of break-even years reduced signifi-
cantly by roughly 45% for bcap0 and by roughly 50% for bcap0.5.
Overall, we showed that the combination of solar energy and OAC
has significant greening potential for IDNs.
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Appendix A GREEDY ALGORITHM

PSEUDOCODE

Algorithm 1 Greedy Algorithm Pseudocode

1

2:
3:

R A

10:
11:
12:

13:
14:
15:
16:

17:

18:
19:

20:
21:

22:
23:

24:
25:
26:
27:
28:
29:
30:
31:

function GREENHEURISTIC( )
des « [1,2,...,m] > datacenters
sortedpeers < [p1,p2, .....pm] » sorted list of dc peer dcs
in increasing order of dist

time < [1,2,...,n] > time periods
r = max radius of load movement
b «— [b1,b2,...,bm] > battery charge
for i in time do
sload < [l11, 112, ..., Imn] > server load for time period
cload « [c11,¢125 . Cmn ] > cooling load for time
period
oac < (011,012, -+-» Omn ] > oac available y/n?
solarenergy < [s11,$12,.--,Smn] > local solar energy
surpluslist « [] > to store dcs with surplus solar
energy
deficitlist <[]  » to store dcs using brown energy
for jin dcs do
if 0ij =Yy then
cij < 0 v if there is OAC, cooling load is zero
excessSolar;j « sij + bj — (ljj + ¢ij) > determine

excess solar
if lij + cij > s;jj then
bj < bj — (lij + cij — sij) > use battery if solar
energy falls short
if excessSolar;j > 0 then
surpluslist «— surpluslist U [j] > add dc to
surplus list
else if excessSolar;j < 0 then
deficitlist « deficitlist U [J] > add dc to
deficit list
for j € deficitlist do > first iteration
for p € sortedpeers do
if p € surpluslist Aojp = yAdist(j,p) < r then
move load to p and adjust variable values
for j in deficitlist do > second iteration
for p € sortedpeers do
if p € surpluslist Nojp = nAdist(j,p) < r then
move load to p and adjust variable values
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