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The Distributed Electronic Cosmic-ray Observatory (DECO) is a global network of smartphones
that searches images for evidence of cosmic rays and other ionizing charged particles. DECO was
released to the public in 2014 and has citizen scientists from 80 countries on all seven continents
participating in the project. We previously demonstrated that tracks seen in the DECO data set
are caused by cosmic-ray muons by comparing the track length distribution of candidate events in
the data set to the expected distribution from a cosmic-ray flux. However, robust particle identi-
fication necessary to separate cosmic rays from the radioactive background on an event-by-event
basis had not previously been identified. We present a deep learning, computer vision algorithm
for identifying and classifying charged particles in camera image sensors. The convolutional
neural network was trained using images from the DECO data set and achieves classification per-
formance comparable to human quality across four distinct DECO event classifications. We apply
our model to the entire DECO data set and determine a selection that achieves a purity of 95%
when applied to cosmic-ray muons and > 90% for all event types. The automated classification
is run on the public DECO data set in real time in order to provide classified particle interaction
images to users of the app and other interested members of the public. The model and techniques
used to develop it are applicable to other smartphone-based cosmic-ray detectors and data sets

consisting of images of charged particles from solid-state camera sensors.
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1. Introduction

The Distributed Electronic Cosmic-ray Observatory (DECO) is a citizen science project that
turns cell phones into cosmic-ray detectors. The project is made possible by remarkable parallels
between modern smart-phone cameras and the technology found in astronomical telescopes and
particle detectors. This has meant that cosmic rays and other forms of ionizing radiation can be
readily observed from billions of devices around the world. Since September 2014, DECO has

been publicly available as an Android application!

. During this time, data has been collected
from 74 countries on all seven continents, as well as forty-seven US states, and all data taking
locations are displayed in Figure 1. DECO’s uniquely low barrier to entry has made it a useful
medium through which to introduce students, and the public at large, to fundamental concepts in
astrophysics, particle physics, computer science, and data analysis. The automated classification
of DECO events is facilitated by a convolutional neural network. A public online database?, allows
users to examine the data they collect in near real-time. These data have been previously used to
accurately measure the depletion thickness of cell phone image sensors, enabling the construction

of simulations that confirm and refine our understanding of these particle interactions.
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Distributed Electronic Cosmic-ray Observatory

Figure 1: World map showing the global distribution of DECO users. Darker shades of green and blue
indicate a higher number of images collected from the corresponding country, while countries colored beige
have not yet contributed to DECO. The United States leads in data collection, with over 300,000 images.
Map plotted using an equirectangular projection and is up to date as of July 2019.

2. DECO App

The DECO app seeks to detect ionizing radiation from secondary particles created by cosmic-
ray primaries while cell-phone cameras are not being used to record optical photons. Therefore,
the DECO mobile application is designed to be run with the camera lens face down or covered with
opaque tape. While running, the app records camera images (~50 ms exposures) continuously and
applies a filter algorithm to select particle interaction candidates. These data are synchronized to a
browsable central server for analysis by scientists and members of the public. Associated metadata

! App available at https://wipac.wisc.edu/deco/app
Zhttps://wipac.wisc.edu/deco/data
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for each event is also collected, including a unique event ID, phone model, Android version, time,
geolocation, altitude, local magnetic field values, pressure, and temperature. Included in our pro-
cessing of DECO data is the automatic event classification, and the creation of a JPEG image for
each event. Users may query the database based on data, location, device ID, phone model, event
category (standard or minimum bias) or event classification.

The events which pass all of the filters are then classified into morphological event classi-
fications, in accordance with the convention in [1]. Tracks are long, straight clusters of pixels
created by high-energy (GeV) ionizing particles, primarily muons at sea level, and cosmic rays
above 20,000 ft. Worms are named for the curvy path of pixels, often composed of fragmented
clusters, caused by the meandering path of electrons (produced by radioactive decays) undergoing
multiple Coulomb scattering inside the sensor. Spots are small, approximately circular clusters
of pixels that can be produced by lower energy electrons (e.g. produced by Compton scatters of
gamma rays from radioactive decay) being quickly absorbed, or may also be indicative of alpha
particles or cosmic rays normally incident to the sensor. Additionally, there are also events that
result from artifacts in the image sensor: light exposure, hot spots, thermal noise fluctuations, and
larger scale sensor artifacts such as rows of bright pixels.

Reliable classification of these events is non-trivial, as any DECO-specific classification algo-
rithm must take into account the high levels of rotational and translational symmetry possessed by
particle events, as well as an understanding of systematic inhomogeneities present in mobile hard-
ware and software. In the section that follows, we describe the construction and optimization of a
convolutional neural network that has increased the accuracy and efficiency of event classification.

3. Convolutional Neural Network

Convolutional neural networks (CNNs) [2] are a subclass of deep learning neural networks that
have shown extraordinarily good performance learning features from datasets that are characterized
by a grid-like topology, and so naturally lend themselves to the pixel images produced by DECO.
The architecture begins with alternating layers to extract meaningful features that take into account
the topological and morphological structure of the input data [3]. First, convolutional layers take a
stack of inputs (e.g. color channels in an image) and convolve each with a set of learnable filters
to produce a stack of output feature maps, where each feature map is a particular abstraction of the
input image. These layers are followed by pooling layers, which reduce the dimensionality of a
feature map by using an aggregation function to compute a summary statistic across a small, local
region of the input. The features extracted from the pooling and convolutional layers are then used
as input for a standard, fully connected, feedforward neural network, producing the desired output,
here, a classification of our input image.

3.1 DECO CNN

In order to train our model, we require a set of images with human-determined categorical
labels. While preliminary DECO CNN training worked off of a small data set of approximately
1000 images [4], further training would require a large number of training examples. This presented
a challenge, as training data must be accommodated by a set of corresponding human-determined
categorical labels that allow the error between the model’s predictions and the ground truth to be
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assessed. Assigning human labels to the entire DECO image database of ~45,000 events would be
a very time consuming task. With this in mind, we opted for an iterative approach in which the
number of labeled training examples was successively increased in parallel with the optimization of
the model. That is, during the optimization process, images classified by the CNN were inspected
by eye for incorrect classifications. These events were assigned a correct human label and added
to the training data available to the next iteration of the model. The full details of the architecture,
data augmentation, and training are presented in [5], but we summarize some notable results below.

3.2 Results

The trained model has exhibited excellent performance across all four categories (tracks,
worms, spots, and noise) in the model. Overall, the model has obtained greater than 90 percent
accuracy at correctly identifying the classification of events compared to human labeling. Figure 2
shows a category-by-category summary, known as a confusion matrix, quantifying the error be-
tween human and CNN classifications for each category. Each row has been normalized to the
total count of human-labeled events, thus the matrix describes the conditional CNN probability
distribution for each of the categories. The model was trained by until improvements to the loss,
a measurement of the model error, were negligible, and this is displayed in Figure 3. We find that
this plateau occurred after 800 epochs (iterations through the data).

For the purpose of providing real-time classifications for the events listed in the public DECO
database, we seek to maintain a high-purity set of events identified as tracks. After evaluating
constant cut-off values of 0.7, 0.8 and 0.9 on the test set, we opted for a probability threshold of
0.8, which yields an event selection with a track efficiency® of 80%, and, most importantly, a track
purity of 90% [5].

4. Detector Characterization

The path shapes visible in DECO images are directly determined by the type of interactions
the ionizing radiation undergoes within the detector. Although DECO has proven its capability to
detect ionizing radiation and classify it into distinct morphological event classes, mapping between
detected morphology and incident particle identity requires measurements made with known inci-
dent fluxes and comparison to simulation. DECO has recently detected events in the presence of
understood radiative sources as well as through the use of GEANT4 based simulations.

4.1 Simulation

To simulate cell phone camera image sensors, we use Allpix-squared, a C++ open-source
modular framework for the simulation of silicon pixel detectors [6] (code available at [7]). Allpix-
squared interfaces GEANT4 [8], a simulation toolkit which handles the particle interactions in
matter, and requires a version of ROOT [9]. Modules can be selected to choose the type of silicon
pixel, the dimensions of the pixel array, depletion voltage and thickness, diffusion parameters,
magnitude of electronics noise, and digitization. We simulate a pixel array similar to the one

3The proportion of events identified by humans as one of the four categories that were correctly classified by the
CNN
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Figure 2: The probability of the CNN correctly identifying each event type, along with the probability of
mis-identifying each category, can be read directly off of this row-normalized confusion matrix, i.e. the
model correctly identifies human-labeled tracks as tracks 92% of the time, while incorrectly identifying
them as worms 9% of the time.
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Figure 3: (Left) Receiver operating characteristic (ROC) curve displaying the true positive rate vs. false
positive rate for a variety of threshold values. A threshold of 0.9 is indicated with a dot for each category.
(Right) The training and testing loss as a function of training iteration (epoch).

measured in [10], and an image of the detector interacting with a beam of muons is displayed in
Figure 4.

As we are mainly concerned with ionizing particles from cosmic-ray interactions, we restrict
our analysis here to injected muons, though photon induced signatures could also be studied. We
inject 1,000 muons at dicrete energies every half decade from 10 keV to 10 GeV. Incident angles
are every 15 degrees with respect to the pixel normal, and from every incident particle, we extract
the number of pixels that registered a hit, the charge on each of these pixels, and the locations
of the pixels hit. With this information and knowledge of the geometry of the detector, we can

Accuracy
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Figure 5: Observables from simulations of muons through the detector. (Left) Energy losses of incident
muons compared to the expectation from Bethe-Bloch. Charge per length is in units of deposited electron
charge per pixel width. The line is obtained by taking the Bethe-Bloch equation and transforming from
dE /dx to dQ/dx by scaling by the energy required to liberate an electron charge in the sensitive region of
the detector. (Right) violin plot of observed track length as a function of incident angle with respect to the
normal of the pixel array for two different benchmark energies. Red shows the analytical approximation
from the geometry of the detector. Observed track length calculation takes into account inter-pixel charge
diffusion, assuming uniform diffusion around the muon’s path.

extract information about the energy deposited per unit length, and this is displayed in Figure 5.
At energies between 0.1 - 10 GeV, muons are
minimum ionizing particles (MIPs), losing ap-
proximately the same amount of energy per
unit length.

To compare the charge deposited to en-
ergy lost per unit length, we assume the energy
losses are dominated by ionization, where the
loss is described by the Bethe-Bloch equation
[11] We assume each ionization loss transfers

Figure 4: Simulation of a beam of 4GeV 1+ (blue) exactly the amount of energy required to create

interacting with the camera image sensor. The lens
and screen are modeled as GEANT4 plexiglass and
the remaining parts of the phone are modeled with
aluminum. Negatively charged particles that are
created from interactions are displayed in red.

an electron-pair hole in silicon, 3.62 eV.

In addition to energy losses, the track
length of events in the detector is a crucial
observable. With minimum ionizing muons,
the track length holds the promise of providing
a basis for per-event direction reconstruction.
Figure 5 displays the track length and deposited charge distributions for two benchmark energies
covering the range of energies of cosmic-ray muons at sea level. For minimum ionizing muons,
although the energy of the incident muon might vary by orders of magnitude, the total deposited
charge does not vary much, as is expected.
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4.2 Irradiation Measurements

To directly measure known sources of ionizing radiation, we exposed a Samsung Galaxy S2
to two different sources. For a gamma-ray source, ggCO was used, which undergoes the decay

89Co — NI+ e~ + ¥, + y(1.17MeV) + y(1.33MeV) . (4.1)

The two gamma rays are emitted from the transitioning of the doubly-excited Nickel to the
ground state (this occurs with a branching ratio of 99.88%; the remaining decay is directly to a
singly-excited state of Nickel). This process has a half life of 5.27 years, and the source we used
had an activity of 1.0 uCi.

For a beta source, we used Strontium-90, which undergoes the decay

29Sr — Y + ¢ (0.546MeV) + v, , (4.2)

with a half life of 28.8 years. Here, the 0.546 MeV B~ is the desired radiation, and our source had
an initial activity of 0.1 pCi and was approximately 5 years old.

The activity of the sources was measured using a Geiger counter at various distances, and was
compared to the expectations from the quoted activities. Following source measurements, data
collection took place over the course of 3 weeks, during which the DECO app was running on the
phone placed at distances within 5 cm of the radioactive source.

By comparing the rate of detected events during exposures to radioactive sources to historic
rates from the same device, we find a significant increase in the event rate, which is indicative of
the device detecting events from the source. During sessions in which the device was not exposed
to a local radioactive source, we find the rate to be approximately 5 x 107> Hz, whereas during
sessions with a source nearby, we find a rate of 2 x 10~ over a livetime of roughly 1.1 x 10° s.

Figure 6 displays detected events from both normal DECO events and irradiation measure-
ments as well as simulated events. In the case of the irradiation measurements, the &(MeV) ™
emitter can be seen leaving curved signatures in the detector, consistent with the belief that low
energy electrons can undergo multiple scatters in the sensitive region of the detector, and this is
also evident in the 10 MeV simulated 3. For simulated muons, nearly all signatures are elongated
tracks, as is expected for MIPs.

5. Discussion and Conclusion

With the implementation of the online CNN, DECO has proven its capability to detect and
classify ionizing radiation in realtime. Preliminary studies of simulated events in DECO show
promise for using the morphological classifications of events to determine incident particle iden-
tification, as well as incident particle direction. These data are made available to the public, and
provide a valuable dataset for cosmic-ray physicists and citizen scientists alike.
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Figure 6: Comparison of DECO events from our database (top) to those which were recorded during ir-
radiation measurements (middle) as well as to simulated events (bottom). All images have dimensions of
100 x 100 pixels. Colors indicates the pixel luminance for data events, defined as the RGB sum of the lu-
minance of each subpixel. For simulation events, color indicates the deposited charge, and typically ranges

from 0-200 electron depositions per pixel.
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