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The Distributed Electronic Cosmic-ray Observatory (DECO) is a global network of smartphones

that searches images for evidence of cosmic rays and other ionizing charged particles. DECO was

released to the public in 2014 and has citizen scientists from 80 countries on all seven continents

participating in the project. We previously demonstrated that tracks seen in the DECO data set

are caused by cosmic-ray muons by comparing the track length distribution of candidate events in

the data set to the expected distribution from a cosmic-ray flux. However, robust particle identi-

fication necessary to separate cosmic rays from the radioactive background on an event-by-event

basis had not previously been identified. We present a deep learning, computer vision algorithm

for identifying and classifying charged particles in camera image sensors. The convolutional

neural network was trained using images from the DECO data set and achieves classification per-

formance comparable to human quality across four distinct DECO event classifications. We apply

our model to the entire DECO data set and determine a selection that achieves a purity of 95%

when applied to cosmic-ray muons and ≥ 90% for all event types. The automated classification

is run on the public DECO data set in real time in order to provide classified particle interaction

images to users of the app and other interested members of the public. The model and techniques

used to develop it are applicable to other smartphone-based cosmic-ray detectors and data sets

consisting of images of charged particles from solid-state camera sensors.
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for each event is also collected, including a unique event ID, phone model, Android version, time,

geolocation, altitude, local magnetic field values, pressure, and temperature. Included in our pro-

cessing of DECO data is the automatic event classification, and the creation of a JPEG image for

each event. Users may query the database based on data, location, device ID, phone model, event

category (standard or minimum bias) or event classification.

The events which pass all of the filters are then classified into morphological event classi-

fications, in accordance with the convention in [1]. Tracks are long, straight clusters of pixels

created by high-energy (GeV) ionizing particles, primarily muons at sea level, and cosmic rays

above 20,000 ft. Worms are named for the curvy path of pixels, often composed of fragmented

clusters, caused by the meandering path of electrons (produced by radioactive decays) undergoing

multiple Coulomb scattering inside the sensor. Spots are small, approximately circular clusters

of pixels that can be produced by lower energy electrons (e.g. produced by Compton scatters of

gamma rays from radioactive decay) being quickly absorbed, or may also be indicative of alpha

particles or cosmic rays normally incident to the sensor. Additionally, there are also events that

result from artifacts in the image sensor: light exposure, hot spots, thermal noise fluctuations, and

larger scale sensor artifacts such as rows of bright pixels.

Reliable classification of these events is non-trivial, as any DECO-specific classification algo-

rithm must take into account the high levels of rotational and translational symmetry possessed by

particle events, as well as an understanding of systematic inhomogeneities present in mobile hard-

ware and software. In the section that follows, we describe the construction and optimization of a

convolutional neural network that has increased the accuracy and efficiency of event classification.

3. Convolutional Neural Network

Convolutional neural networks (CNNs) [2] are a subclass of deep learning neural networks that

have shown extraordinarily good performance learning features from datasets that are characterized

by a grid-like topology, and so naturally lend themselves to the pixel images produced by DECO.

The architecture begins with alternating layers to extract meaningful features that take into account

the topological and morphological structure of the input data [3]. First, convolutional layers take a

stack of inputs (e.g. color channels in an image) and convolve each with a set of learnable filters

to produce a stack of output feature maps, where each feature map is a particular abstraction of the

input image. These layers are followed by pooling layers, which reduce the dimensionality of a

feature map by using an aggregation function to compute a summary statistic across a small, local

region of the input. The features extracted from the pooling and convolutional layers are then used

as input for a standard, fully connected, feedforward neural network, producing the desired output,

here, a classification of our input image.

3.1 DECO CNN

In order to train our model, we require a set of images with human-determined categorical

labels. While preliminary DECO CNN training worked off of a small data set of approximately

1000 images [4], further training would require a large number of training examples. This presented

a challenge, as training data must be accommodated by a set of corresponding human-determined

categorical labels that allow the error between the model’s predictions and the ground truth to be
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assessed. Assigning human labels to the entire DECO image database of ~45,000 events would be

a very time consuming task. With this in mind, we opted for an iterative approach in which the

number of labeled training examples was successively increased in parallel with the optimization of

the model. That is, during the optimization process, images classified by the CNN were inspected

by eye for incorrect classifications. These events were assigned a correct human label and added

to the training data available to the next iteration of the model. The full details of the architecture,

data augmentation, and training are presented in [5], but we summarize some notable results below.

3.2 Results

The trained model has exhibited excellent performance across all four categories (tracks,

worms, spots, and noise) in the model. Overall, the model has obtained greater than 90 percent

accuracy at correctly identifying the classification of events compared to human labeling. Figure 2

shows a category-by-category summary, known as a confusion matrix, quantifying the error be-

tween human and CNN classifications for each category. Each row has been normalized to the

total count of human-labeled events, thus the matrix describes the conditional CNN probability

distribution for each of the categories. The model was trained by until improvements to the loss,

a measurement of the model error, were negligible, and this is displayed in Figure 3. We find that

this plateau occurred after 800 epochs (iterations through the data).

For the purpose of providing real-time classifications for the events listed in the public DECO

database, we seek to maintain a high-purity set of events identified as tracks. After evaluating

constant cut-off values of 0.7, 0.8 and 0.9 on the test set, we opted for a probability threshold of

0.8, which yields an event selection with a track efficiency3 of 80%, and, most importantly, a track

purity of 90% [5].

4. Detector Characterization

The path shapes visible in DECO images are directly determined by the type of interactions

the ionizing radiation undergoes within the detector. Although DECO has proven its capability to

detect ionizing radiation and classify it into distinct morphological event classes, mapping between

detected morphology and incident particle identity requires measurements made with known inci-

dent fluxes and comparison to simulation. DECO has recently detected events in the presence of

understood radiative sources as well as through the use of GEANT4 based simulations.

4.1 Simulation

To simulate cell phone camera image sensors, we use Allpix-squared, a C++ open-source

modular framework for the simulation of silicon pixel detectors [6] (code available at [7]). Allpix-

squared interfaces GEANT4 [8], a simulation toolkit which handles the particle interactions in

matter, and requires a version of ROOT [9]. Modules can be selected to choose the type of silicon

pixel, the dimensions of the pixel array, depletion voltage and thickness, diffusion parameters,

magnitude of electronics noise, and digitization. We simulate a pixel array similar to the one

3The proportion of events identified by humans as one of the four categories that were correctly classified by the

CNN
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4.2 Irradiation Measurements

To directly measure known sources of ionizing radiation, we exposed a Samsung Galaxy S2

to two different sources. For a gamma-ray source, 60
27Co was used, which undergoes the decay

60
27Co →

60
28Ni+ e− + ν̄e + γ(1.17MeV)+ γ(1.33MeV) . (4.1)

The two gamma rays are emitted from the transitioning of the doubly-excited Nickel to the

ground state (this occurs with a branching ratio of 99.88%; the remaining decay is directly to a

singly-excited state of Nickel). This process has a half life of 5.27 years, and the source we used

had an activity of 1.0 µCi.

For a beta source, we used Strontium-90, which undergoes the decay

90
38Sr → 90

39Y+ e−(0.546MeV) + ν̄e , (4.2)

with a half life of 28.8 years. Here, the 0.546 MeV β− is the desired radiation, and our source had

an initial activity of 0.1 µCi and was approximately 5 years old.

The activity of the sources was measured using a Geiger counter at various distances, and was

compared to the expectations from the quoted activities. Following source measurements, data

collection took place over the course of 3 weeks, during which the DECO app was running on the

phone placed at distances within 5 cm of the radioactive source.

By comparing the rate of detected events during exposures to radioactive sources to historic

rates from the same device, we find a significant increase in the event rate, which is indicative of

the device detecting events from the source. During sessions in which the device was not exposed

to a local radioactive source, we find the rate to be approximately 5× 10−5 Hz, whereas during

sessions with a source nearby, we find a rate of 2×10−4 over a livetime of roughly 1.1×106 s.

Figure 6 displays detected events from both normal DECO events and irradiation measure-

ments as well as simulated events. In the case of the irradiation measurements, the O(MeV) β−

emitter can be seen leaving curved signatures in the detector, consistent with the belief that low

energy electrons can undergo multiple scatters in the sensitive region of the detector, and this is

also evident in the 10 MeV simulated β−. For simulated muons, nearly all signatures are elongated

tracks, as is expected for MIPs.

5. Discussion and Conclusion

With the implementation of the online CNN, DECO has proven its capability to detect and

classify ionizing radiation in realtime. Preliminary studies of simulated events in DECO show

promise for using the morphological classifications of events to determine incident particle iden-

tification, as well as incident particle direction. These data are made available to the public, and

provide a valuable dataset for cosmic-ray physicists and citizen scientists alike.
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