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ABSTRACT

Identifying the sources of the highest energy cosmic rays requires understanding how they are de-

flected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measure-

ments of energetic charged-particle propagation through a laser-produced magnetized plasma with

these properties. We characterize the diffusive transport of the particles experimentally. The results

show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic

rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field.

Keywords: High energy astrophysics — Laboratory astrophysics — Particle astrophysics — Magnetic

fields — Intergalactic medium — Plasma astrophysics — Ultra-high-energy cosmic radia-

tion

1. INTRODUCTION

The interplay between charged particles and stochas-

tic magnetic fields generated by plasma turbulence is

crucial to understanding how cosmic rays propagate

through space (Strong et al. 2007; Zweibel 2013; Schlick-

eiser 2015). A key parameter for determining the under-

lying nature of charged-particle diffusion is the ratio of

the particle gyroradius rg to the correlation length `B
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of the magnetic turbulence. For the vast majority of

cosmic rays detected at the Earth, this ratio is small.

These are particles that are well confined by the Galac-

tic magnetic field. But for cosmic rays more energetic

than about 10 EeV, the ratio is larger than unity. These

ultra-high-energy cosmic rays (UHECRs) are not con-

fined to the Milky Way and are presumed to be extra-

galactic in origin. Identifying their sources requires un-

derstanding how they are deflected by the intergalactic

magnetic field, which appears to be stochastic and spa-

tially intermittent. Recent data from the Parker Solar

Probe mission have also indicated the presence of non-
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Gaussian magnetic fields near the Sun (Bandyopadhyay

et al. 2019).

To study the propagation of cosmic rays, a theoretical

framework has been developed based on direct numerical

simulations of particle trajectories (e.g., Sigl et al. (2003,

2004)) and statistical techniques (see Shalchi (2009) for

a review). In particular, it has been shown (Jokipii

1966) that random, small-amplitude fluctuations of the

magnetic field superimposed on a mean background field

lead to diffusive particle propagation. As a result, stan-

dard (Markovian) diffusion is widely used in modeling

cosmic-ray transport (e.g., Kotera & Lemoine (2008);

Globus et al. (2008); Globus & Piran (2017); Globus

et al. (2019)), although anomalous diffusion has been

shown to occur in special cases (Jokipii & Parker 1969;

Reville et al. 2008; Lazarian & Yan 2014), including res-

onant scattering of charged particles in spatially inter-

mittent magnetic fields (Shukurov et al. 2017).

Past laboratory experiments have studied particle

transport in diffuse plasmas with strong mean magnetic

fields (Gustafson et al. 2012; Anderson et al. 2013; Furno

et al. 2015; Bovet et al. 2015), but the regime that is rel-

evant to UHECR transport in the intergalactic medium

(IGM), i.e., a stochastic, spatially intermittent magnetic

field with zero mean (〈〉 = 0), and under conditions of

weak magnetization (rg � `B), has not been studied

theoretically, numerically, or experimentally.

2. LASER-DRIVEN EXPERIMENTS

Here we report the results of laboratory experiments

that focus on this regime. We carried out these ex-

periments at the Omega Laser Facility at the Labora-

tory for Laser Energetics at the University of Rochester

(Boehly et al. 1997). A high-velocity, magnetized, tur-

bulent plasma was generated (Figure 1), employing the

same platform as previously used to demonstrate dy-

namo amplification of magnetic fields (Tzeferacos et al.

2017, 2018). Three-dimensional simulations with the

radiation-magnetohydrodynamics code FLASH (Fryxell

et al. 2000; Dubey et al. 2009; Tzeferacos et al. 2015)

guided and informed the experimental design, includ-

ing target specifications and the timing of diagnostics

(Tzeferacos et al. 2017).

The platform consists of two 50 µm-thick polystyrene

(CH) foils attached to a pair of 230 µm-thick CH wash-

ers, with 400 µm-diameter machined “wells” that act as

collimators, placed 8 mm apart. Between the two tar-

gets we position a pair of grids, comprised of periodic

300 µm holes and 100 µm wires, placed 4 mm apart.

The grid patterns are shifted to break the mirror sym-

metry of the system. Each foil is irradiated with 5 kJ of

energy during a 10 ns pulse (10 frequency-tripled laser

Figure 1. Experimental setup. a) Schematic of the ex-
perimental platform, showing the target components and the
configuration of the proton radiography experimental diag-
nostic. b) X-ray self-emission from the interaction region at
t = 38 ns after the start of the laser drive. c) Power spectrum
of the density fluctuations recovered from the fluctuations of
X-ray self-emission. The resolution of the diagnostic (the
size of the pinhole employed on the X-ray framing camera)
is 50 µm, which is below the driving scale, but above the
plasma’s dissipative scales.

beams on each foil staggered in time). The drive pro-

duces two counter-propagating plasma flows, which pass

through the pair of grids, meet, shear each other, and

become turbulent in the central region between the two

grids (the interaction region). For a detailed descrip-

tion of the experimental platform and the nature of the

turbulence it generates, see Tzeferacos et al. (2018).

The electron density and temperature of the turbulent

plasma are measured using collective Thomson scatter-

ing (Katz et al. 2012) and found to be ne ' 9 × 1019

cm−3 and Te ' 400 eV immediately after the forma-

tion of the turbulent region (t ' 27 ns after the start

of the drive). The mean velocity (uflow) and the turbu-

lent velocity (uturb) of the flow are also obtained by this

diagnostic. Prior to collision, the counter-propagating

flows reach velocities of uflow ' 2× 107 cm s−1, whereas

in the turbulent region at late times we measure uflow '
5 × 106 cm s−1 and uturb ' 107 cm s−1 at the driving

scale of the turbulence (L ' 400 µm, set by the grid

spacing).

The plasma interaction region’s evolution is deter-

mined using self-emitted soft X-rays (Figure 1b shows

the plasma emission at 38 ns after the start of the laser

drive). As discussed in Tzeferacos et al. (2018), fluctu-

ations in the emissivity of such a plasma can be related

to fluctuations of density (Churazov et al. 2012); the

latter exhibit a Kolmogorov power-law spectrum, with

driving scale L consistent with the grid spacing detailed
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Figure 2. Magnetic field reconstruction. a) 15 MeV
proton radiography image of the entire interaction region at
38 ns, without pinhole shield present in the path. For clarity,
the image length scales are shown without the ×28 magnifi-
cation factor; with this factor, the image has dimensions of
10 cm × 10 cm. b) Magnitude of the two components of
path-integrated magnetic field that are perpendicular to the
proton beam path, reconstructed (Bott et al. 2017) from the
15 MeV proton image in a). c) PDF of the magnitude of
the path-integrated magnetic field Bpath at 38 ns. The PDF
(red) is calculated using the mean of the PDFs for the two
rectangular regions depicted in b); the uncertainty is derived
from the standard error. The PDF of the path-integrated
field arising in the FLASH simulations is also plotted (green),
as is a Gaussian reference (blue) with the same RMS field
strength. d) The fraction of area of the path-integrated
magnetic field in which the field’s magnitude Bpath satis-
fies Bpath ≥ νBpath,rms, where Bpath,rms is the RMS path-
integrated field. This quantity is again calculated from the
rectangular regions demarcated in b).

above (Figure 1c). The spatial extent of the interaction

region over time can also be measured using the X-ray

diagnostic. Further details concerning the plasma state

are given in Appendix B.

The stochastic magnetic fields amplified in the tur-

bulent plasma (Tzeferacos et al. 2017, 2018) are mea-

sured using proton radiography (Figure 2). A 420 µm-

diameter SiO2 capsule, with a 2-µm-thick shell, is filled

with 18 atm D3He gas (6 atm 2D and 12 atm 3He) and

is placed 10 mm away from the interaction region. The

capsule is imploded using 17 beams (frequency-tripled

to 351 nm, providing 270 J/beam for a 1 ns pulse) to

produce 3.3 and 15 MeV fusion protons (Li et al. 2006;

Kugland et al. 2012; Manuel et al. 2012). The protons

are recorded on the opposite side of the capsule with a

nuclear track detector (CR-39) film pack, 27 cm from

the plasma interaction region, achieving a magnifica-

tion of ×28. Figure 2a shows a proton radiograph of

the plasma corresponding to the same time as the X-

ray image in Figure 1b. The presence of strong inho-

mogeneities in the proton flux and the stochastic, non-

regular morphology of the structures is due to protons

being deflected by strong, tangled magnetic fields. From

the flux inhomogeneities observed in the proton image,

the experimental radiographs can be inverted (Graziani

et al. 2017; Bott et al. 2017) to recover two components

of the path-integrated magnetic field (Figure 2b). Using

the measured spatial extent of the interaction region, it

can be shown that the measured path-integrated mag-

netic field corresponds to a root mean square (RMS)

value Brms ' 65-80 kG, with a typical correlation length

`B ≈ 90µm. These experimental values are consistent

with the results of the FLASH simulations that give

Brms ' 80 − 100 kG and `B ' 50µm, when the effects

of diffusion of the imaging beam caused by small-scale

magnetic fields and the underestimation of the magnetic

energy by the reconstruction algorithm in the presence

of small-scale caustics are taken into account (Tzefera-

cos et al. 2018).

The statistics of the path-integrated magnetic field are

expected to deviate from Gaussian as a result of the spa-

tial intermittency. To quantify this, we show the prob-

ability density function (PDF) of the magnitude of the

path-integrated field in Figure 2c and the field’s filling

factor in Figure 2d. Both exhibit extended tails. Since

the path-integrated magnetic field is spatially intermit-

tent, it follows that the field itself must also be spatially

intermittent. Indeed, the PDF of the magnetic field

strength in the FLASH simulations exhibits an exponen-

tial tail. The simulations also demonstrate that the devi-

ation from Gaussian statistics is more pronounced in the

three-dimensional true fields than the two-dimensional

path-integrated field (see also Appendix B). Such non-

Gaussian, spatially-intermittent magnetic fields are ex-

pected to arise when the fluctuation dynamo is operat-

ing (Schekochihin et al. 2004).

3. TRANSPORT CHARACTERIZATION

To characterize the transport of particles through the

turbulent plasma, we modified our experimental plat-

form to introduce a collimated proton beam. The col-

limation was achieved by placing a 200-µm-thick alu-

minum shield between the D3He capsule and the inter-

action region, with a 300-µm-diameter pinhole (shown

in Figure 1a). The pinhole imprint is then recorded on

the detector plane, as shown in Figure 3. The proton-

beam imprints appear deformed and broadened due to

the interaction of the protons with the turbulent mag-

netized plasma. The proton-beam imprint contours are



4 Chen et al.

Figure 3. Proton pinhole images. Radiographs obtained
on the CR-39 film pack with proton energies of a) 15 MeV,
with no plasma in the interaction region, and b) 15 MeV,
with a turbulent plasma in the interaction region. c) Same
as a) but for the 3.3 MeV protons. d) Same as b) but for the
3.3 MeV protons. The pinhole shield is clearly seen to block
most of the incoming proton flux from the capsule and, in the
case where no plasma was present (a) and c)), it produces a
fixed 300 µm diameter beam of 3.3 and 15 MeV protons that
passes through to the detector. For the case when a plasma
is present in the interaction region (b) and d)), the beam is
deformed and broadened before reaching the detector.

shown in Figs. 4a and 4b. The corresponding deflection

velocities, ∆v⊥, as interpreted from the scattering angle

|∆v⊥|/V , where V is the proton-beam speed, are shown

in Figure 4c. Using the synthetic proton radiography

diagnostic of the FLASH code (Tzeferacos et al. 2017)

we also post-processed the FLASH simulation results to

recover proton trajectories and the resultant transverse

deflections. These are in good agreement with the ex-

perimental measurements (Figure 4c).

The velocity deflection ∆v⊥ due to magnetic fields

scales independently of velocity, whereas the velocity de-

flection due to electric fields scales as ∝ 1/V (shown in

Appendix C). The near-equality of the deflection veloci-

ties of the two proton species, evident in Figure 4c, sug-

gests that scattering is predominantly due to magnetic

fields. While there are many other possible processes

that could lead to scattering of a charged-particle beam

passing through a turbulent plasma, for our experiment

we argue that these other processes are negligible, on

account of the low density of the plasma and the large

speed of the protons compared to driving-scale plasma

motions. Detailed calculations and descriptions of pos-

sible electric field effects are given in Appendix D.

From our experimental measurement of ∆v⊥, we can

calculate the associated scattering frequency in velocity-

space, ν ∼ (∆v⊥/V )2/τ , where τ = `i/V is the transit

Figure 4. Diffusive scattering of the proton beam.
Contours of the beam imprint on the CR-39 plate for a) 15
MeV protons and b) 3.3 MeV protons, taken with different
delay times after the start of the drive beams. c) The RMS
transverse deflection velocity acquired by the proton beam,
calculated using the contour analysis of the pinhole image
(for both proton species), and evaluated for the FLASH sim-
ulations. d) Measured spatial diffusion coefficient as a func-
tion of the plasma interaction length, as determined from the
X-ray self-emission images and the 15 MeV pinhole synthetic
radiographs from the FLASH simulations.

time of the particles through the plasma and `i is the

scale of the interaction region as inferred from the X-

ray images. For a plasma with dimensions much bigger

than the proton mean free path λ ≡ V/ν, our results im-

ply an isotropic spatial diffusion coefficient κ ∼ V 2/ν =

`iV
3/(∆v⊥)2. Since κ/V 3 is constant in our experiment

(Figure 4d), this implies (∆v⊥)2 ∝ `i ∝ τ . This is con-

sistent with a normal (Markov) spatial diffusion (Tsy-

tovich 1977; Shalchi 2009; Subedi et al. 2017).

4. DISCUSSION

Since the charged particle transport is consistent with

normal spatial diffusion through a stochastic field, we

can compare the experimental results to theoretical pre-

dictions from a random walk process. Using charac-

teristic values for the plasma properties corresponding

to t = 38 ns after the start of the drive, we take the

size of the interaction region to be `i ' 0.08 cm, the

typical magnetic field strength Brms ' 100 kG, and the

correlation length `B ' 50µm. For the case of nor-

mal diffusion, a random-walk argument gives ∆v⊥ ≈
qeBrms

√
`i`B/mp ' 1.9 × 107 cm s−1 (see Appendix

C) where mp is the mass of a proton. This value

is consistent with the measured RMS deflection veloc-

ity (Figure 4c). Further, since the values of V , Brms,
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and the power spectrum of the magnetic energy (and

therefore the value of `B) do not change in the exper-

iment after the magnetic-field amplification saturates

(see Tzeferacos et al. (2017, 2018) and Appendix A),

the random walk model also predicts a constant κ/V 3 ∼
m2
p/(qeBrms)

2`B ' 1.9 × 10−16 s2 cm−1, in quantitative

agreement with the experimental results (Figure 4d).

For isotropic statistics and rg/`B � 1, the proton

mean free path is λ ' 104 cm. In this regime, the-

ory (Dolginov & Toptygin 1967) and simulations (Subedi

et al. 2017) predict that λ/`B ∝ (rg/`B)2. The simula-

tions of Subedi et al. (2017) predict a scaling coefficient

of 1.5 and extend to rg/`B ' 40. Extrapolating the re-

sults of Subedi et al. (2017) by a factor of 13 and 28

to the values rg/`B ' 520 for the 3.3 MeV protons and

' 1, 100 for the 15 MeV protons gives λ/`B ' 0.6× 106

and ' 2× 106. These values agree within a factor of or-

der unity with the experimental value of λ/`B ' 2×106

that we obtain for the two proton energies. More impor-

tantly, our results demonstrate that, for the conditions

present in the experiment (i.e., a beam with a diameter

D > `B of charged particles in the rg � `B regime that

traverses a stochastic and spatially-intermittent mag-

netic field with a path length `i > `B) the diffusion is

not affected by the spatial intermittency of the stochas-

tic magnetic fields. This is also demonstrated by the

FLASH simulations of the experiment and numerical

simulations presented in Appendix E.

The results of our experiments validate the use of

standard diffusion theory in modeling the transport of

UHECRs in the IGM, e.g., Kotera & Lemoine (2008);

Globus et al. (2008); Globus & Piran (2017); Globus

et al. (2019), since all three of the above conditions are

satisfied. This is useful in view of the increased interest

in such modeling motivated by the recent detection by

the Pierre Auger Observatory of a significant anisotropy

in the arrival directions of cosmic rays of energy above

8 EeV (The Pierre Auger Collaboration 2017).
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APPENDIX

A. FLASH SIMULATIONS

We designed the experimental platform using three dimensional radiation-MHD simulations carried out with the

FLASH code. FLASH is a parallel, multi-physics, adaptive-mesh-refinement (AMR), finite-volume, high performance

computing (HPC) Eulerian code (Fryxell et al. 2000; Dubey et al. 2009) that scales well to over a 100,000 processors.

This is accomplished by exploiting a variety of in time parallelization techniques, and a combination of message passing

and threading to optimally utilize hardware resources. The code is publicly available (http://flash.uchicago.edu)

and has been successfully applied in a wide range of disciplines including astrophysics, cosmology, combustion, fluid

dynamics, turbulence, and high-energy-density laboratory plasmas (HEDLP).

We performed a series of high-fidelity 3D FLASH radiation-MHD simulations on the Mira supercomputer at the

Argonne National Laboratory. This simulation campaign to design the original experimental platform of Tzeferacos

et al. (2018) is described in detail in Tzeferacos et al. (2017); considerations on the pinhole design are discussed in a

companion paper. The simulations take advantage of the entire suite of HEDLP capabilities of FLASH (Tzeferacos
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et al. 2015), including its MHD solver (Lee 2013) extended to three-temperatures (Tzeferacos et al. 2015), non-ideal

MHD effects such as magnetic resistivity (Tzeferacos et al. 2015) and Biermann battery (Fatenejad et al. 2013; Graziani

et al. 2015), heat exchange between ions and electrons, implicit electron thermal conduction and radiation transport

in the multi-group diffusion approximation, multi-temperature tabulated equations of state and material opacities,

and laser beams that are modeled using geometric-optics ray-tracing (Kaiser 2000) and deposit energy via inverse

Bremsstrahlung.

Figure 5. Simulated temporal evolution. We show the logarithm of electron density (half-rendering), with gray contours
denoting the grids and the supporting rods, at a) 11 ns prior to collision (16 ns in the experiment), b) 1 ns prior to collision
(26 ns in the experiment), and c) 16 ns after the collision (42 ns in the experiment) of the counter-propagating plasma flows.

Figure 6. Temporal evolution of Bmax and Brms. Analysis of the FLASH simulations shows that the proton radiography
images were taken (dashed vertical lines) after the saturation of the magnetic field amplification. Thus, the RMS (blue solid
line) and peak (red solid line) values of the magnetic field strength do not vary considerably in time.

We have used the FLASH code to design and simulate the experiment and, using the code’s synthetic diagnostics

routines, construct the proton radiographs shown in Figure 13. The latter is used to predict the values of ∆v⊥ in

Figure 4c. The simulation domain spans 0.625 cm in the X and Y directions, and 1.25 cm along Z – the line of centers

between the two targets. The spatial resolution is ∼ 25 µm. The dynamics of the evolution are shown in Figure 5 and

largely mirror the results discussed in Tzeferacos et al. (2017, 2018). The laser drive ablates the rear surfaces of the

targets to launch two counter-propagating plasma flows (Figure 5a) that subsequently traverse the grids (Figure 5b)

forming finger-like formations. The spatial offset of the grids by one grid aperture results in the two fronts interleaving

to create a hot turbulent region in the center of the domain (Figure 5c). Guided by the simulations, we modified the

grids with respect to the design of Tzeferacos et al. (2018) and reduced the thickness of the wires, from 300 to 100

µm. This resulted in an increase in the number of apertures that in turn led to (i) increased throughput of kinetic
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energy and to (ii) the formation of a denser interaction region that is considerably thicker and more centered at the

target chamber center, when compared to our previous design in Tzeferacos et al. (2017, 2018).

To quantify the temporal evolution of the magnetic field amplification in the simulations, we utilize a control volume

(a cubic box of edge length 500 µm, (Tzeferacos et al. 2017)) to initially track in time the propagating plasma front

from grid A and, post-collision, the turbulent interaction region. In the control volume, we compute the peak and

RMS magnetic field strengths reported in Figure 6 with red and blue solid lines, respectively. The temporal trend

agrees with the results of Tzeferacos et al. (2017, 2018). The time-series reveals that, after the amplification saturates,

the magnetic field strength does not vary significantly in time and maintains values of Brms ' 80 − 100 kG and

Bmax ' 350− 400 kG, with `B ' 50µm. This corroborates the arguments made Section 3 regarding the scaling of the

spatial diffusion coefficient κ, since the proton images were taken after saturation (dashed vertical lines in Figure 6).
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Figure 7. Thomson scattering data The measured ion acoustic wave spectrum at 41 ns after collision is shown in red, and
the corresponding best fit is shown in solid blue. Table 1 gives values for the plasma parameters extracted from the fitting
procedure. The dashed blue line is the best fit determined without inclusion of turbulent broadening.

B. PLASMA CHARACTERIZATION

In this Section, we describe the collective Thomson scattering diagnostic which was used to measure plasma prop-

erties, and report on measurements taken just after the collision of the two flows, and much later in time when the

turbulent interaction region has developed. We then provide a comprehensive list of relevant plasma parameters, both

measured and calculated, with particular care in accounting for the multi-ion nature of the plasma. We end this section

by reporting on the evolution of the proton path length and the maximum path-integrated magnetic field strength as

a function of time after the start of the drive laser pulse, which was key in the analysis described in Section 3.

B.1. Thomson scattering diagnostic

A collective Thomson scattering (TS) diagnostic was employed to characterize the plasma properties. It was operated

both as time-resolved or space-resolved (on different laser shots). For temporally-resolved TS, the probe beam was a 1

ns pulse, delivering 25 J of 526.5 nm wavelength light to a 50 µm cubed volume. For spatially-resolved TS, the probe

beam was a 0.6 ns pulse, delivering the same energy at the same wavelength to a cylindrical volume with a 50 µm

diameter cross-sectional area, and a 1.5 mm FOV. For both cases, the scattering angle was set to 63◦, oriented with

the scattering wavenumber parallel to the line of centers connecting the two targets and therefore the propagation

axis of the two plasma flows. Figure 7 shows an example of the time-resolved measured data, and the best fit to the

spectrum. The central peak at 526.5 ns corresponds to stray light from the probe beam. Fitting the scattering spectra
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Table 1. Thomson scattering data Plasma properties computed from two shots at 27 ns and 40 ns after the laser drive.
The spatial/temporal variation respective to each value is reported here for the temperature and velocity measurements, and
the electron density measurement has 20-30% error.

Time after drive TS mode Te ne uflow u`=50µm

27 ns Spatially-resolved 400 ± 80 eV 9 × 1019 cm−3 1.6× 107 ± 2× 106 cm s−1 –

41 ns Temporally-resolved 330 ± 50 eV 1 × 1020 cm−3 5× 106 ± 2× 106 cm s−1 3.5− 7× 106 cm s−1

and the total scattering power with the TS form factor (see Tzeferacos et al. (2018) for details) allows us to determine

the values of the electron density (ne), the electron temperature (Te), the bulk flow velocity along the propagation

axis of the two flows (uflow), and the turbulent velocity (i.e., fluctuations which broaden the scattering spectra) at the

scale of the scattering volume (u`=50µm). While the turbulent velocity is measured from TS on scales ` = 50µm, we

can find the turbulent velocity for the outer scales by assuming Kolmogorov scaling (as shown in Figure 2d) and see

that uturb ' 0.7− 1.4× 107 cm s−1. Before the collision (and until ∼ 26 ns) the speed of the flow of the bulk plasma is

similar to the speed of the single jet, i.e., ujet ' uflow, and, naturally, uflow decreases thereafter. These are given in

Table 1 for 27 ns and 41 ns after the start of the laser pulse. The 27 ns data was taken using the spatially-resolving

configuration, and the errors in the Table reflect the variation in the plasma parameters across the 1.5 mm extent

of the collection cylinder. The electron density measurement has an error of about 20-30%, primarily determined by

the uncertainty in the photometric calibration (Tzeferacos et al. 2018). It is evident that the average density and

temperature in the interaction volume do not vary greatly over the duration of the experiment.

Plasma conditions derived using collective TS are complemented by proton radiography measurements, which provide

maps of the magnetic field strength (Graziani et al. 2017; Bott et al. 2017). A comprehensive summary of measured

and derived quantities needed to characterize the plasma state fully is given in Table 2. Viscosity and resistivity were

calculated following the conventions in Dorf (2014); Helender & Sigmar (2002), respectively. The viscosity depends

on the effective electron-ion collision frequency, which accounts for the presence of multiple ion species present in the

plasma. Viscous and resistive scales were determined according to the conventions given in Schekochihin & Cowley

(2007). The sound speed was calculated for the carbon ion acoustic wave speed, since this is lower than the hydrogen

ion acoustic wave speed. From this, we see that the turbulence is subsonic.

We see the plasma is collisional and all species are predominantly unmagnetized. We observe that for conditions

occurring at the beginning of the collision between the two flows, the fluid Reynolds number (Re) and the magnetic

Reynolds number (Rm) are of similar magnitude (i.e., the magnetic Prandtl number, Pm, is of order unity). As the

flow evolves, the temperature decreases and Pm gets smaller. Therefore, in general, we expect to be in a low magnetic

Prandtl-number regime, Pm . 1.

B.2. Time evolution of plasma

In Section 3, we measure the proton spatial diffusion coefficient through a stochastic magnetic field of a particular

RMS field strength. This measurement is taken at different times, corresponding to different extents of plasma

expansion and therefore different path lengths. Thus we require a time-resolved measurement of the path length of

the proton beam through the plasma, `i. This measurement is shown in Figure 8a.

We also need to know the RMS field strength and correlation length of the stochastic magnetic field in the plasma;

time-resolved measurements of these quantities are presented in Figure 8b.

The measurement of the path length is obtained from the full-width-half-max of the plasma interaction observed in

X-ray images. These are obtained by recording the plasma self-emission onto a framing camera with ∼1 ns gate width

and filtered with 0.5 µm C2H4 and 0.15 µm Al. Spatial imaging is achieved using a 50 µm-diameter pinhole. Thus,

the width of the plasma interaction region is defined as being the full-width-half-max of the X-ray emission profile in

the direction parallel to the initial plasma flows. We then calculate the path length by projecting the distance onto the

path of the proton beam through the interaction region (which has a known angle of 55◦ with respect to the direction

of the initial plasma flows. The error in the measurement is determined from the standard deviation of the measured

interaction-region width across the image. These measurements are confirmed by FLASH simulations (see above for

a description of the FLASH code and the numerical setup), which show the width of the interaction region increasing
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Table 2. Summary of measured and calculated plasma parameters.

Plasma parameter Formula (S.I. units) Value Time after drive

Average atomic weight (m̄) C(50%), H(50%) 6.5 AMU

Temperature (T=Te=Ti) 400 eV

Electron density (ne) 9 × 1019 cm−3

Unit charge (q) 1 Electron Charge

Carbon mass (mC) 12 AMU

Carbon charge (ZC) 6

Hydrogen charge (ZH) 1

Average charge (Z̄) 1
2

(
ZC + ZH

)
3.5

Effective charge (Zeff ) 1
ne

(
Z2
CnC + Z2

HnH

)
5.3

Ion density (ni) ne/Z̄ 2 × 1019 cm−3

Respective ion species’ densities (nH , nC) nH = nC = 1
2
ni 1 × 1019 cm−3

Electron plasma frequency (ωpe)
√

q2ne
ε0me

5× 1014 s−1

Outer scale (L) 400µm

Jet velocity (ujet) ∼ 2× 107 cm s−1

Turbulent velocity (uturb) ∼ 0.7− 1.4× 107 cm s−1

Carbon thermal velocity (vth,C)
√

2T
mC

RMS magnetic field (Brms) ∼ 80− 100 kG

Debye Length (λD)

√
Tε0
neq2

(
1

1+Zeff

)
5 ×10−6 cm

Electron specific heat ratio (γe) 1

Carbon-ion specific heat ratio (γC) 5/3

Carbon-ion sound speed (cs)
√

(ZCkBγe+γC)T
mC

1.55× 107 cm s−1

Turbulence Mach number (Ma) uturb/cs ∼ 0.45− 0.95

Plasma β (ne+ni)T

B2
rms/2µ0

∼ 160

Carbon-carbon impact parameter (bmin,C)
Z2
Cq

2

8πε0T
5× 10−9 cm

Electron-ion impact parameter (bmin,e)
Z̄q2

8πε0T
1× 10−9 cm

Coulomb logarithm carbon-carbon (ΛCC) log

(
λD

bmin,C

)
6

Coulomb logarithm electron-ion (Λei) log

(
λD

bmin,e

)
7

Carbon-carbon collision frequency (νCC) 4π
Z4
Cq

4

(4πε0)2
ΛCC

nC
m2
C
v3
th,C

3× 1011 s−1

Electron-electron collision time (τee)
12π3/2

21/2
neq

4Λei

m
1/2
e T

3/2
e ε20

4× 10−12 s

Effective electron-ion collision frequency (νei,eff ) Zeff/τee 2× 1012 s−1

Carbon gyrofrequency (Ωi)
ZCqB
mC

5× 108 s−1

Electron gyrofrequency (Ωe)
qB
me

2× 1012 s−1

Dynamic viscosity (µ) 32
√

2

15π3/2

√
mH

Z2
C

(q/
√

4πε0)4
T5/2

Λei
0.6 g cm−1 s−1

Kinematic viscosity (νc) µ/
(
nim̄

)
2100 cm2 s−1

Reynolds number (Re) uturbL
ν

190

Viscous dissipation scale (`νc)
(
ν3

ε

)1/4

∼ L

Re3/4
8 µm

Spitzer conductivity (σ) 4.1 neq
2

meνei,eff
87000 S cm−1

Resistivity (η) 1
σ

900 cm2 s−1

Magnetic Reynolds number (Rm) uturbL
η

440

Magnetic Prandtl number (Pm) Rm
Re

∼ 1

Resistive dissipation scale (`η)
(
η3

ε

)1/4

∼ `ν
Pm1/2 5 µm
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Figure 8. Evolution of the interaction region. a) Plot of the proton-beam path-length over time (shown in blue), as
determined by measuring the full-half-width-max of the interaction region as seen in X-ray images. For comparison, the proton-
beam path-length as directly measured in the FLASH simulation is depicted by the green asterisks. b) Plot of the correlation
length (blue squares) and RMS magnetic-field strength (red circles) of stochastic magnetic fields present in the plasma over
time, derived from the reconstructed path-integrated fields. The experimental values are consistent with the FLASH simulation
values that give Brms ' 80− 100 kG and `B ' 50µm, when the effects of diffusion of the imaging beam caused by small-scale
magnetic fields and the underestimation of the magnetic energy by the reconstruction algorithm in the presence of small-scale
caustics are taken into account (Tzeferacos et al. 2018).

Figure 9. FLASH simulations of the magnetic field. Snapshots of the magnetic-field evolution at times that correspond
to a) 32 ns, b) 38 ns, and c) 42 ns in the experiment. The intersections of the collimated proton beam with the magnetic field
of the interaction region is shown for the same times in d)-f). We clearly see the expansion of the interaction region with time.

over time: the numerical values obtained directly from the simulation are shown in Figure 8a while Figure 9 illustrates

the extent of the interaction region at times of 32 ns, 38 ns, and 42 ns.

We derive estimates of the RMS field strength Brms and the correlation length `B of the stochastic magnetic field from

the two spatially resolved components of the path-integrated magnetic field, which are themselves determined from full

proton images of the turbulent plasma (see Figure 2); the analysis techniques used to perform these calculations are
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described in Bott et al. (2017). To assess the robustness of the result, we apply the technique to proton images at two

additional times (t = 32, 42 ns) after the initiation of the laser drive; these images (and the associated path-integrated

fields) are shown in Figure 10. To derive an estimate of the uncertainty on the measurements, we perform these

Figure 10. Full proton images of the turbulent plasma. a) Proton image data for t = 32 ns after the drive. b) Magnitude
of perpendicular path-integrated magnetic field at t = 32 ns; the regions subsequently analyzed to determine the RMS field
strength and correlation length are demarcated in a blue dashed line. c) Proton image data for t = 42 ns after the drive. d)
Magnitude of perpendicular path-integrated magnetic field at t = 42 ns.

calculations for two rectangular regions, and use the means and errors to determine the results plotted in Figure 8b.

We find that within the experimental uncertainty of the measurement, the RMS field strength and correlation length

does not change in time. Further, the experimental values are consistent with the FLASH simulation values that give

Brms ' 80−100 kG and `B ' 50µm, when the effects of diffusion of the imaging beam caused by small-scale magnetic

fields and the underestimation of the magnetic energy by the reconstruction algorithm in the presence of small-scale

caustics are taken into account (Tzeferacos et al. 2018).

B.3. Magnetic-field spatial intermittency

In Section 2 , we state that the observed spatial intermittency of the measured components of path-integrated

magnetic field provided evidence that the stochastic fields themselves were spatially-intermittent; here, we demonstrate

this claim explicitly for the FLASH simulations. Figure 11a and Figure 11b show the PDFs and filling factors

respectively of the true three-dimensional field, along with the equivalent quantities for a Gaussian stochastic field.

We observe that at all times in the simulation the departure from Gaussian behavior is much more significant than

the equivalent departure observed for the path-integrated field. In the simulations, for B/Brms > 1, an exponential fit

is obtained for the PDF; this matches the results of previous simulations of the turbulent dynamo (Schekochihin et al.

2004).
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Figure 11. Spatial Intermittency of FLASH-simulated magnetic fields.a) Probability-density function (PDF) of the
magnetic fields contained inside the sections of the cylindrical volumes depicted in Figures 9d, 9e, and 9f which are also contained
within the full-half-width-maximum of the field with respect to the proton path length. A Gaussian with unit RMS is plotted
for reference. b) The filling factor (see caption of Figure 2) for the same regions of the stochastic magnetic field.

Figure 12. Time evolution of path-integrated field spatial intermittency. a) The PDF of the magnitude of the
(perpendicular) path-integrated magnetic field measured using the full proton-imaging diagnostic at 32 ns and 38 ns. These
quantities are calculated for the rectangular regions denoted in Figure 10b for t = 32ns, and Figure 2 for t = 38ns. As in Section
2, a reference PDF for a Gaussian path-integrated field is plotted. b) The filling factor for the magnitude of the path-integrated
field at 32 ns and 38 ns, along with the filling factor for a Gaussian random field.

To assess the robustness of our results, we also consider the PDF and filling factor of the experimentally recovered

components of the path-integrated at 32 ns, and compare them to the equivalent quantities (at 38 ns) depicted in

Section 2; the results are shown in Figure 12.

We find in both cases that there is a departure from Gaussian behaviour at sufficiently large values of the path-

integrated field magnitude Bpath as compared to the RMS value Bpath,rms, and also for sufficiently large values of the

filling factor ν. However, we also observe some fluctuation in the precise shape of both the PDF and the filling factor,

which in turn suggests that such fluctuations should not be regarded as being physically significant.
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C. DETAILED CALCULATIONS OF PROTON DEFLECTIONS

In this Section, we discuss how the deflection velocity due to scattering angle, ∆v⊥, of the proton beam is related to

the stochastic magnetic and electric fields present in the plasma. We also demonstrate through numerical tests that the

excess blurring in the experimental proton image compared to the synthetic images from the reconstruction algorithm is

due to diffusive scattering by small-scale magnetic field structures (see Figure 2). We then describe the procedures used

to provide quantitative estimates of ∆v⊥ shown in Figure 4c from both the magnetic- field reconstruction technique

paired with the smearing analysis of the driving-scale structures (illustrated in Figure 2), and from the pinhole-edge

contour analysis from the pinhole proton radiography (Figures 4a and 4b).

C.1. Calculation of diffusive deflection velocities for stochastic electromagnetic fields

The change in transverse velocity ∆vB due to angular scattering of a proton of initial speed V due to the presence

of a magnetic field can be approximated in the small-deflections limit, |∆vB | � V , by the following procedure: We

begin by noting that the length of time the particle experiences the magnetic-field is given by τ ≈ z/V , where z is the

path length. Making this substitution and integrating the proton’s equation of motion (with mp the proton mass and

q its charge), we find

∆vB ≈
q

mp
ẑ ×

∫ `i

0

B⊥ dz , (C1)

where ẑ is the unit vector of z and B⊥ is the perpendicular component of the magnetic field relative to z. We see ∆vB
has no dependence on the initial velocity. The deflection angle is

δθB =
|∆vB |
V

, (C2)

and the deflection length, δB , which is the displacement of the proton from its original position due to deflection by

the magnetic field, is

δB = rdetδθB ∝
1

V
, (C3)

where rdet is the distance from where this deflection occured to the detector. Similarly, for electric fields, we have

∆vE =
q

mpV

∫ `i

0

E⊥ dz ∝ 1

V
, (C4)

and the deflection angle is

δθE =
|∆vE |
V 2

. (C5)

The deflection length due to electric fields is, therefore,

δE = rdetδθE ∝
1

V 2
. (C6)

Having derived ∆v⊥ due to arbitrary magnetic and/or electric fields, we specialize to stochastic fields. An expression

for ∆v⊥ as a function of the RMS magnetic field strength Brms and the field’s correlation scale `B – which, on account

of being the characteristic scale over which the magnetic field falls to zero from its peak value, is approximately half

the size of the typical magnetic structure– can be derived by the following heuristic argument. From Equation C1, the

change in velocity acquired by a proton traversing a single magnetic structure of size 2`B and strength Brms is given

by

δv`B ∼
2qBrms`B

mp
. (C7)

Assuming the velocity deflections add as a random walk, the overall velocity deflection can be approximated by

∆vB ' δv`B
√
N0, where N0 � 1 is the number of structures encountered by the proton. Since N0 ≈ `i/2`B , where `i

is the path length of the proton traversing the interaction region, it follows that ∆vB ∼ δv`B
√
`i/2`B , leading to

∆vB ≈
qBrms

√
`i`B

mp
, (C8)
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where we have adjusted the numerical pre-factor to agree with a rigorous correlation analysis (Bott et al. 2017) We

note that ∆vB is independent of the initial proton velocity V , indicating that both proton species will experience the

same diffusive deflection velocity due to scattering by the magnetic field. The deflection angle due to the magnetic

field is then

δθB ≈
∆vB
V
≈ qBrms

√
`i`B

mpV
, (C9)

and the deflection length is

δB ≈ rdet
qBrms

√
`i`B

mpV
. (C10)

For a stochastic electric field with RMS field strength of Erms and scale of `E , an expression similar to Equation C8

can be found:

∆vE ≈
qErms

√
`i`E

mpV
. (C11)

We note that since ∆vE ∝ 1/V , faster protons will experience a smaller diffusive deflection velocity due to electric

field scattering.

The total deflection velocity due to scattering angle will have contributions from both magnetic and electric fields,

∆v⊥ = ∆vB + ∆vE . (C12)

For a single proton, it is impossible to distinguish between deflections due to magnetic and electric fields. However, in

our experiment we generate protons of distinct energies (15.0 MeV protons from D3He nuclear reactions, and 3.3 MeV

protons from DD reactions). These protons experience the same fields - we now show that the relevant timescales

allow this. The eddy-turnover time at the driving scale is L/uturb ' 4 ns, while the shortest turnover time of plasma

motions occurs at the dissipation scale `η. Following the Kolmogorov scaling, uturb,`η ∼ uturb(`η/L)1/3, which yields

`η/uturb,`η ' 0.2 ns, which is larger than the transit time of the proton beams across the plasma (τ), the pulse length

of the beams (τp), and the time difference between the transit of the proton beams (τd). Specifically, for the 3.3 MeV

DD protons, τ ≈ `i/VDD ≈ 40 ps, τp ≈ 150 ps, τd ≈ ri/VDD − ri/VD3He ≈ 100 ps (ri is the distance from the proton

source to the plasma). Thus, both proton beams sample the same fields, and so we can use the different velocity

scalings illustrated by Equations C1 and C4 to distinguish between ∆vB and ∆vE .

C.2. Experimental measurement of diffusive deflection velocity from proton pinhole-edge contours

For the calculation of the pinhole-edge contours for both 15.0 MeV and 3.3 MeV proton shown in Figures 4a and 4b,

we adopt a three-step procedure. First, the center of proton flux of the pinhole is calculated, using the flux distribution

as a weight function. In principle, the presence of driving-scale inhomogeneities could mean that this is different to the

projected center of the pinhole beam, given the position of the pinhole; however, for our data the difference between

these points is negligibly small compared to the radius of the pinhole R = 150µm. We then calculate the mean proton

flux inside the specified pinhole radius, Ψ0 (taking account of the magnification). Finally, we define the contour of

interest as the contour corresponding to 20% relative to the mean proton flux.

The motivation of this definition for pinhole-edge contour arises from two considerations: one theoretical, and one

practical. Theoretically, deflections of the proton beam can be due to both driving-scale and small-scale structures.

The former result in coherent distortions of the pinhole-edge contour from its undeflected position; the latter leads to

a general expansion of the pinhole contour, due to a shallowing of the gradient of the pinhole flux distribution at its

edge. The 20% contour is sensitive to both effects (unlike the 50% contour, which is not sensitive to the small-scale

structures). Practically, due to its large extent, the 20% contour is large enough to provide a reasonable average over

the driving-scale structures. We do not choose an even smaller percentage value for the contour because of distortions

to such contours arising from noise in the CR-39 plate in regions where the pinhole shield is present.

To extract quantitative estimates of ∆v⊥, the typical deflection velocity for a given proton beam energy from the

pinhole-edge contours, we compare the average deviation of the pinhole-edge contours obtained in the presence of the

turbulent plasma with the calibration pinhole-edge contour for the same energy (i.e., with no plasma present). The

comparison is performed numerically by measuring the squared displacement ∆r2(θ) ≡ [rplas(θ) − rcal(θ)]2 between

the plasma pinhole-edge contour radius rplas(θ) and the calibration plasma pinhole-edge contour radius rcal(θ) along
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a ray with polar angle θ originating from the centre of proton flux. The averaged displacement is then

∆rrms ≡
[

1

2π

∫ 2π

0

dθ∆r2(θ)

]1/2

. (C13)

The error in the displacement is in turn calculated from the variance of this measure. We find that small changes in

the percentage value of the pinhole-edge contour do not significantly change our result.

We move from ∆rrms to a measurement of the typical deflection velocity using the fact that, for any small-angle

scattering process with typical deflection magnitude ∆v⊥, and associated deflection length δ ≡ rdet∆v⊥/V , the effect

of the diffusive scattering on the proton flux distribution can by modeled quantitatively by Bott et al. (2017)

Ψ(x⊥) =

∫
d2x̃⊥ Ψ̃(x̃⊥)

1

πδ2
exp
[
−
(x⊥ − x̃⊥

δ

)2]
, (C14)

where x⊥ denotes perpendicular position on the detector, x̃⊥ is a (two-dimensional) integration variable representing

positions near x⊥, Ψ(x⊥) is the proton flux distribution at x⊥, and Ψ̃(x⊥) is the proton flux distribution in the

absence of the diffusive scattering process (evaluated at integration variable x̃⊥). The model can be simplified under

the assumption that the initial pinhole flux distribution is a uniform distribution, with with radius R and mean flux Ψ0.

By symmetry, the smeared pinhole proton flux distribution Ψ(x⊥) is only a function of radial distance r from pinhole

center-of-mass under this assumption; that is, Ψ(x⊥) = Ψ(r). Introducing polar coordinates (r̃, θ̃) for integration

variable x̃⊥, where θ̃ denotes the angle between vectors x⊥ and x̃⊥, Equation C14 becomes

Ψ(r) =
Ψ0

πδ2
exp
[
−
(r
δ

)2] ∫ R

0

dr̃ r̃exp
[
−
( r̃
δ

)2] ∫ π

−π
dθ̃ exp

[2rr̃ cos θ

δ2

]
. (C15)

Under the further assumption that the radius of the pinhole R is much greater than the smearing parameter δ/M (nor-

malized by the magnification factor), we have that for values of the radial distance r ∼ R, the dominant contribution

to the integral in Equation C15 arises for r̃ ∼ r, and θ � 1. These constraints give∫ π

−π
dθ̃ exp

[2rr̃ cos θ

δ2

]
≈
√
πδ√
rr̃

, (C16)

leaving

Ψ(r) ≈ Ψ0√
πδ

∫ R

0

dr̃

√
r̃

r
exp
[
−
(r − r̃

δ

)2]
. (C17)

Since the dominant contribution to the integral with respect to r̃ comes from r̃ satisfying r̃−r ∼ δ, we can approximate

r̃ ≈ r; Equation C17 then simplifies to

Ψ(r)≈ Ψ0√
πδ

∫ R

0

dr̃ exp
[
−
(r − r̃

δ

)2]
≈ Ψ0

2
erfc

(r −R
δ

)
, (C18)

for erfc(x) the complementary error function. We conclude that under this model, the 20% contour on average will

satisfy

Ψ0

5
≈ Ψ0

2
erfc

(∆rrms
δrms

)
, (C19)

where δrms is the RMS deflection length. It then follows that

δrms ≈ ∆rrms/erfc−1

(
2

5

)
≈ 1.65∆rrms. (C20)
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Figure 13. Pinhole projections generated by FLASH simulations. Synthetic images of a collimated proton beam
transiting through a turbulent plasma produced using FLASH. These correspond to a) a calibration image with no plasma
present and delay times of b) 32 ns and c) 42 ns. d) The contours of these pinhole shapes were taken, analogous to the contours
in Figure 4a and b. e) Probability density function (PDF) of simulated proton beam passing through the FLASH simulation
at 32 ns and 42 ns. f) Estimate of RMS deflection velocity as calculated from the FLASH pinhole-proton edge contours for 32
ns and 42 ns, as compared to the true values.
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C.3. FLASH simulations of proton diffusion

FLASH simulations are used to create synthetic images of the proton flux, through a 300 µm diameter pinhole,

recorded on the CR-39 plate. This is shown in Figure 13a, b, and c for different probing times. The collimated

beam consists of 500,000 simulated protons. The resolution of the FLASH synthetic radiographs, determined by the

imposed capsule smearing and the proton binning, is 50 µm to match the experimental resolution. Next, we evaluate

the 20% pinhole-edge contour in the same manner we have applied to the experimental data, and show the results in

Supplementary Figure 13d. Notably, the profile at 42 ns after the laser drive exhibits significant anisotropy. This is

naturally expected – in probing a relatively small area in a stochastic environment, it is reasonable that we would at

some point probe an anisotropic portion in the magnetic field distribution. In fact, in the experimental data, shown

on Figure 4b, we can also see anisotropies in the flux distribution at 42 ns.

In the simulation, we can evaluate ∆v⊥ directly for each proton by measuring its spatial displacement on the recording

screen with respect to the point the proton would have landed with no plasma present, correcting for the spatial shift

of the center of the pinhole proton flux. This allows us to determine the RMS ∆v⊥ as experienced collectively by all

protons passing through the pinhole. We see in Figure 4c that FLASH predicts values of ∆v⊥ in very close agreement

with the experimental ones. This result further corroborates our previous explanation that the observed enhanced

scattering is the result of a longer path-length through the stochastic magnetic fields in the turbulent plasma, since the

simulated proton beam is only subject to Lorentz forces and not other processes (such as target charging or collisional

broadening). In addition to the measurement of the RMS ∆v⊥, for the simulation we are able to plot the probability

distribution function (PDF) of deflection velocities; the result is shown in Figure 13e. As expected, we see a peak

around the RMS value, in addition to a tail of higher values.

Finally, for the simulated data, we can apply the same analysis technique described and applied to the experimental

data in the previous Section to the synthetic pinhole-proton edge contours derived from FLASH. The results are

shown in Figure 13f. The estimates obtained are comparable to the directly measured values. Due to the anisotropies

present in the simulated pinhole-proton contours, the uncertainty on the technique (calculated in the same way) is

more significant than for the experimental data.

D. PHYSICAL PROCESSES RESULTING IN SMEARING OF THE PROTON BEAM

We find that most likely, the diffusive scattering is a result of stochastic magnetic fields. Assuming classical velocity-

space diffusion, the estimate for the scattering velocity is obtained via a random-walk approximation, i.e., the sum

of velocity deflections δv`B ≈ ωg`B , where ωg ≡ qeBrms/mp is the gyrofrequency of the protons, Brms ≡
√
〈B2〉 the

measured RMS magnetic field, qe the electron charge, and mp the proton mass; this results in ∆v⊥ ≈ ωg
√
`i`B ≈

qeBrms
√
`i`B/mp, where `i is the size of the interaction region. As mentioned in the text, when we take `i ∼ 0.8 mm,

Brms ∼ 100 kG and `B ∼ 50µm, we find ∆v⊥ ∼ 1.9× 107 cm s−1, which is indeed consistent with the observed RMS

deflection velocity in Figure 4c.

As mentioned in Section 2, there are processes in addition to stochastic magnetic or electric fields which could result

in the smearing of features on the proton image. In this rest of this Section, we discuss estimates of these effects in

more detail, and show that they are negligible.

D.1. Capsule size and proton velocity uncertainty

The proton source, originating from an imploded capsule containing D3He and D2 gas, has a finite source size, as

well as a spread in emitted proton energies. The effective source size dc of the capsule for 15.0 MeV protons is 45

µm (Li et al. 2006). This is smaller than the initial capsule size, because fusion reaction only happens in the hot

region formed well inside the imploding capsule. Including the magnification, M, of the proton imaging diagnostic,

we conclude that all structures with size belowMdc will be smeared out. This is consistent with the slope at the edge

of the pinhole image for the calibration shots seen in Figure 4a. The effect source size for 3.3 MeV protons is believed

to be somewhat larger, an observation born out in Figure 4b: the 3.3 MeV calibration profile is broader than the 15.0

MeV one.

The blur resulting from uncertainties in the initial proton energy can be estimated as

δv = rdetδθB
δV

V
≈ 40 µm. (D21)

and as δB � 40µm, this is negligible. The term δV/V is calculated from the experimentally determined energy

uncertainties δW/W : these are ∼ 3% and ∼ 4.5% for D3He and DD protons, respectively. Using δW/W ≈ 2δV/V ,
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this gives estimates for δV/V as ∼ 1.5% for 15.0 MeV protons and ∼ 2.25% for 3.3 MeV. Thus, this second effect is

likely to be negligibly small.

In short, given the relatively small size of diffusive scattering due to stochastic magnetic fields compared to the finite

source size, accounting for the source size is essential. As described in the previous Section, we carry out our analysis

using experimental pinhole images created in the absence of a plasma, and so automatically account for these effects.

Figure 14. Charging of the target setup. Radially-averaged lineouts from the flux-weighted center of the pinhole in the
case of no plasma present in the interaction region are shown for a) 15.0 MeV and c) 3.3 MeV protons. This is compared to
lineouts taken across an edge section of the target package from a proton radiograph in which there was a plasma present in
the interaction region, demarcated by 1 and 2 for b) 15.0 MeV and d) 3.3 MeV protons.)

D.2. Electric fields due to charging of the target package

In principle, it is possible that charging of the target package (due, for example to high energy electrons produced

by laser-plasma processes) could allow for the emergence of an electric field. To rule out this effect we compare a flux

lineout across an edge section of the target package from a proton radiograph in which there was a plasma present in

the interaction region (shown in Figure 14b and 14d, labeled as 1 and 2 for each proton species) to a radially-averaged

lineout from the flux-weighted center of the pinhole in the case of no plasma present in the interaction region (shown

in Figure 14a and 14c). These lineouts, shown in Figure 15, have comparable slopes, indicating any electric field due

to charging is negligible in our analysis.

D.3. Electric fields generated by plasma fluid motions

In Section 3, we assert that scattering due to stochastic electric fields generated by turbulent motions of the electric

field are small. This estimate is made by combining C11 with an appropriate estimate for Erms ∼ ujetBrms, and
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Figure 15. Charging effects on pinhole. Lineouts across an edge section of the target package from a proton radiograph
in which there was a plasma present in the interaction region (red, dashed) vs a radially-averaged lineout of the pinhole in the
case of no plasma present in the interaction region (blue, solid) for a) 15.0 MeV and b) 3.3 MeV protons. It is clear that the
slopes of the two cases are so similar that an electric field due to charging of the target is negligible.

`E ∼ `B . Then, it follows that

∆vE ∼ 1.6× 105

(
ujet

2× 107 cm s−1

)(
Brms

100 kG

)(
V

2.5× 109 cm s−1

)−1 [
`i`B

4× 10−4 cm2

]1/2

cm s−1 , (D22)

as stated in Section 2.

D.4. Transverse diffusion via collisions

As the plasma is neither cold nor in thermal equilibrium, it is not straightforward to do an analytical calculation

of transverse diffusion due to collisional scattering. Using the classical approach of setting a background particle’s

Coulomb potential equal to the kinetic energy of an incoming test particle produces estimates which can be off by

a factor of the order of unity (Trubnikov 1965). A quantum mechanical treatment is required which also takes into

account long-range interactions, and we therefore used SRIM (Ziegler 1999) to simulate the perpendicular deflection

of 3.3 and 15 MeV protons through 3.7 mm (the largest reported `i at very late times) of a CH plasma of density 9 ×
1019. We found this deflection corresponds to ∆v⊥ = 2 × 106 cm s−1 for DD protons and ∆v⊥ = 8 × 105 cm s−1 and

D3He protons. Again, this is an order of magnitude lower than the measured ∆v⊥, and is therefore negligible in our

analysis.

D.5. Electrostatic beam instabilities

It is well known that, in general, a beam of protons can drive kinetic instabilities. To determine whether this could

occur for our experiment, we outline here an analysis investigating the kinetic stability of the combined plasma species

and beam distribution functions. Linear kinetic stability for electrostatic modes can be established by considering the

zeros of the dielectric function given by Boyd & Sanderson (2003) and Krall & Trivelpiece (1973)

ε(p, k) = 1−
ω2
pe

k2

∫
CL

dvz
dF̄ (vz)/dvz
vz − ip/k

, (D23)

where p is complex frequency, ωpe is the electron plasma frequency, vz is the velocity of a particle in the distribution

in the dimension the 1D distribution function, CL contour of interest in momentum space, the weighted distribution

function, F̄ , is defined as

F̄ ≡ 1

ne

∑
α

Z2
α

me

mα
Fα (D24)

for mass, m, atomic charge, Z, and distribution function, F for all respective species, denoted by α. It can then

be shown that any isotropic, monotonically decreasing distribution function is inherently stable against infinitesimal

(linear), electrostatic perturbations.



20 Chen et al.

The plasma in our experiment is collisional and contains two ion species (carbon and hydrogen) in equal ratio. We

therefore assume electron, hydrogen, and carbon have the following respective Maxwellian distributions:

Fe(vz) =
ne

π1/2vth,e
exp

[
− (vz/vth,e)

2
]
, (D25)

FH(vz) =
nH

π1/2vth,H
exp

[
− (vz/vth,H)

2
]

+
nb

π1/2δV
exp

[
−((vz − V )/δV )2

]
, (D26)

FC(vz) =
nC

π1/2vth,C
exp

[
− (vz/vth,C)

2
]
, (D27)

where vth,e =
√

2T/me is the thermal electron velocity, vth,H =
√

2T/mp the thermal plasma proton velocity,

vth,C =
√

2T/mC the plasma carbon ion velocity, V the beam velocity, δV the (thermal) width of the beam, ne the

electron density, nH the plasma proton density, nb the beam proton density, and nC the plasma carbon ion density.

We have taken the ion and electron temperatures to be the same: Te = Ti = T (Tzeferacos et al. 2018). Assuming

quasineutrality, we have

ne = nH + 6nC . (D28)

We have measured (see Appendix B on TS diagnostics) ne = 9× 1019 cm−3, so nH = nC = ne/7 = 1.28× 1019 cm−3.

The total proton count recorded on the CR-39 detector is ∼ 25, 000 for 15.0 MeV protons, and ∼ 50, 000 for 3.3 MeV

protons. Since the proton pulse duration is 150 ps, this gives a particle density in the proton beam of nb ≈ 108 cm−3.

We now take the weighted distribution using Equation D24 and examine dF̄
dvz

to see if a bump in F̄ exists, i.e., if dF̄
dvz

goes positive anywhere. If it does not, then the distribution function is monotonically decreasing. We have

dF̄

dvz
=

1

ne

ne
π1/2vth,e

−2vz
v2
th,e

exp
[
− (vz/vth,e)

2
]

+
1

ne

me

mp

nH
π1/2vth,H

−2vz
v2
th,H

exp
[
− (vz/vth,H)

2
]

+
1

ne

me

mp

nb
π1/2δV

−2(vz − V )

δV 2
exp

[
−((vz − V )/δV )2

]
+

1

ne

me

mC

nC
π1/2vth,C

−2vz
v2
th,C

exp
[
− (vz/vth,C)

2
]
.

The distribution is clearly dominated by the electron distribution function. Any bump in the weighted distribution

function must occur near the maximum of the beam distribution function – that is, when vz ∼ V . For such vz, the

contributions to dF̄
dvz

from the plasma proton and carbon species is exponentially small (V � vth,H , vth,C) and therefore

negligible. Therefore, we can approximate dF̄
dvz

for vz ∼ V as

dF̄

dvz
≈ −2vz

v3
th,e

exp
[
− (vz/vth,e)

2
]

+
nb
ne

me

mp

2(V − vz)
δV 3

exp
[
−((vz − V )/δV )2

]
. (D29)

The global maximum of the second term on the right occurs when vz = V − vth,b/
√

2, where vth,b is the beam thermal

velocity (given by a spread in energies of about ∼ 280 eV), and can be recast as

nb
ne

me

mp

2(V − vz)
δV 3

exp
[
−((vz − V )/vth,b)

2
]

=
nb
ne

me

mp

√
2

δV 2
exp (−1/2) . (D30)

Meanwhile, for vz ∼ V , the first term is −2V/v3
th,e exp

[
− (V/vth,e)

2
]
. Taking the ratio of these terms, we find

dF̄b/dvz
|dF̄e/dvz|

∼ nb
ne

me

mp

v2
th,e

δV 2
exp

[
(V/vth,e)

2
]
, (D31)

where we emphasize that dF̄e/dvz < 0. Substituting numerical values V = VDD ≈ 2.5 × 109 cm s−1, δV ≈ 6.3 ×
107 cm s−1, vth,e ≈ 8.4× 108 cm s−1, nb ≈ 108 cm−3, and ne ≈ 1020 cm−3, it is clear that

dF̄b/dvz
|dF̄e/dvz|

� 1 , (D32)
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a consequence of the twelve orders of magnitude difference between the plasma and beam densities. Clearly, the

slope of the proton beam distribution function is too small to overcome the negative slope of the electron distribution

function. Thus, we conclude that the beam density is too small to drive electrostatic kinetic beam instabilities.

In conjunction with this conclusion, we do not expect scattering by unmagnetized plasma waves (i.e., via Landau

damping) or any other electrostatic effects to be the culprit for the rise in diffusion with time. Firstly, the density

and/or temperature variation from 32 ns to 42 ns is quite small (i.e., the Debye length is roughly constant), whereas

such an effect would require a significant increase in temperature and decrease in density to promote additional

scattering. Secondly, the electric fields to support such wave amplification would be a significant fraction of the total

energy of the system, implying an electrostatic instability at play which, in fact, Landau damping would suppress in

a plasma with near Maxwellian particle species distributions such as those relevant for our experiment.

E. DETERMINATION OF THE RANGE OF PHYSICAL CONDITIONS FOR WHICH DIFFUSION IS NOT

AFFECTED BY SPATIAL INTERMITTENCY

Figure 16. Dependence of RMS deflection velocity on path length and beam cross-sectional area. a) RMS
deflection velocity ∆v⊥ acquired by beams of 15.0 MeV protons (total number 5×105) with cross-sectional area A = 1×10−5 cm2

passing through a prescribed stochastic magnetic field, as a function of path length. The full stochastic magnetic field – which
has non-Gaussian, exponential statistics, as well as Brms = 80 kG, and `B = 50µm – is generated using the approach described
in Bott et al. (2017) on a 2013 three-dimensional array, with (physical) side length `i = 0.16 cm. To calculate ∆v⊥ at a given
path length, the proton beam is propagated using the small-deflection approximation from one side through the whole array,
with the RMS deflection velocity recorded as the particle propagates. The initial velocity is set to be exactly perpendicular
to the side on which the beam is incident. Three different beams are employed (‘Beam 1, 2 and 3’), with randomly chosen
centroids. The random-walk (‘RW’) estimate is calculated using the known properties of the field and Equation C8. b) Same as
a), except the beams are given cross-sectional areas A = 9×10−4 cm2. For `i > `B we see the expected convergence to Equation
C8.

As stated in Section 4, the FLASH simulations and our experimental results demonstrate that the diffusion of charged

particles in the large-rg/`B regime is not affected by the spatial intermittency of the stochastic magnetic fields for

the physical conditions we studied. Here we describe numerical simulations we did to determine the range of physical

conditions for which diffusion is not affected by spatial intermittency. In the simulations, test particle beams propagate

through a given stochastic magnetic field, measuring the RMS deflection velocity as a function of path length.

For simplicity’s sake, we do not use the FLASH-simulated fields, but instead consider homogeneous, single-scale

stochastic fields with a prescribed magnetic-energy spectrum, chosen so that the correlation length `B and RMS

magnetic-field strength Brms are the same as those found in our experiment. The results show that for a beam

with a cross-sectional area A much smaller than the characteristic cross-sectional areas of magnetic structures (i.e.,

A/4`2B � 1) – which is effectively analogous in our parameter regime to that of a single particle – the three beams

roughly obey Equation C8 for path lengths `i greater than the magnetic field coherence length `B , but there are

significant deviations from the exact result as a function of path length and beams with distinct initial locations have
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different behaviors. See, e.g., Figure 16a. In contrast, beams with cross-sectional areas satisfying A/4`2B > 1 converge

to Equation C8 for `i > `B , as expected. See, e.g., Figure 16b. These results show that the use of standard diffusion

theory to model the transport of charged particles applies when the magnetic field is weak, turbulent, and spatially

intermittent; rg � `B ; and the cross-sectional area of the beam A and the path length `i are greater than the magnetic

field coherence length `B . The transport of ultra-high-energy cosmic rays in the intergalactic medium satisfies these

conditions, so our experiment validates the use of standard diffusion theory to model it, e.g., Kotera & Lemoine (2008);

Globus et al. (2008); Globus & Piran (2017); Globus et al. (2019).
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