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1. Introduction

Throughout let k be an algebraically closed field of characteristic zero, and S be a
noetherian k-algebra. When S = k[x1, 23] is the ring of invariants under the action of a
finite subgroup G of SLa(k), acting linearly on k[z1, z2], then S = k|21, 22, 23] /(f) is the
coordinate ring of a hypersurface in affine 3-space, namely that of a Kleinian singularity.
(In this case, we refer to the ring S as a (commutative) Kleinian singularity as well.)
The ring S has finite Cohen-Macaulay type, and the indecomposable maximal (graded)
Cohen-Macaulay (MCM) S-modules can be given explicitly; they are presented in terms
of matrix factorizations in [7] (see also [12, Chapter 9, §4]). One of our achievements in
this work is that we use the theory of twisted matriz factorizations from [2] to further the
study of MCM modules over (the coordinate rings of) ‘noncommutative hypersurfaces’.
In doing so, we obtain a noncommutative version of Knorrer’s Periodicity Theorem [10]
(see also [12, Theorem 8.33]).

To obtain an explicit description of MCMs in an analogous noncommutative invariant
theory context, commutative polynomial rings are replaced by noetherian (connected
graded) Artin-Schelter (AS-) regular algebras (Definition 2.7), which share homological
properties with commutative polynomial rings. The analog of a finite subgroup of SLy(k)
acting linearly on k[z1, 2] is a finite-dimensional Hopf algebra H that acts on an AS-
regular algebra C' of Gelfand-Kirillov dimension 2 inner faithfully, preserving the grading
of C, and with trivial homological determinant. These Hopf algebras, called “quantum
binary polyhedral groups”, were classified in [3]. In [5] and [4], when H is semisimple, an
analog of the classical McKay correspondence was obtained; the fixed ring C* under each
of these actions was computed, and was shown to be a “hypersurface” in an AS-regular
algebra of dimension 3. That is, C¥ is an algebra of the form B = A/(f), where A is an
AS-regular algebra of dimension 3 and f is a normal element of A. Hence B may be re-
garded as a noncommutative Kleinian singularity. The element f associated to each CH
was given explicitly in [4, Table 3] (see Table 1 of Section 6). With a suitable definition of
maximal Cohen-Macaulay (MCM) module (Definition 2.6), the following result from [5]
summarizes the McKay correspondence in this setting. Note that a C-module M is called
initial if it is a graded module, generated in degree 0, so when C is N-graded, Mo = 0.

Theorem 1.1. [5, Theorems A and C] Let C be a noetherian AS-regular algebra of dimen-
ston 2 that admits an inner faithful action of a semisimple Hopf algebra H, preserving the
grading, and with trivial homological determinant. There are bijective correspondences
between the isomorphism classes of:

indecomposable direct summands of C as left C* -modules;

o &

indecomposable finitely generated, projective, initial left Endoun C-modules;
indecomposable finitely generated, projective, initial left C#H-modules;
simple left H-modules; and

indecomposable MCM left CH -modules, up to a degree shift.
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In [2] a noncommutative version of a matrix factorization was defined for hypersur-
faces of the form S = R/(f), where R is not necessarily commutative, but f is a normal
element of R. The graded automorphism of R (the “twist”) induced by this normal
element f is denoted by o, and ¢ can be used to produce a graded left R-module “ M.
Specifically, define “ M to be the graded left R-module with M = M as graded k-vector
spaces, where R acts via the rule r-m = o(r)m. Further if f has degree d, we can shift the
degrees in ? M and define " M := 7 M[—d] (the twisted module) from a graded R-module
M. A (left) twisted matriz factorization (Definition 3.2) is given by a pair of maps (¢, ¥),
where for finite rank free graded R-modules F' and G there are graded left R-module
homomorphisms ¢ : F — G and ¢ : WG — F with oy = )\ch and YV = )\JP;, where
)\? (resp. )\?) is the map from F (resp. " G) given by left multiplication by f (see No-
tation 2.3). factorizations are reviewed in Section 3. In particular, when A is AS-regular
and B = A/(f), twisted matrix factorizations are related to maximal Cohen-Macaulay
B-modules by the following generalization of a theorem of Eisenbud [6].

Standing notation for the rest of the Introduction. Let A be a left noetherian AS-regular
algebra, let f € Ay be a normal and regular element of positive degree d, and let B =
A/(f). Take o to be the graded automorphism of A induced by the normality of f in A.
We note that the assumption that o has finite order, needed in some parts of [2] is not
needed in the following theorem.

Theorem 1.2. [2, Lemma 5.3, Theorem 4.2(3,4)] Retain the notation above. The cokernel
of ¢ of a twisted matriz factorization (p,v) is a mazimal Cohen-Macaulay B-module.
Conversely, every mazimal Cohen-Macaulay B-module with no free direct summand can
be represented as the coker ¢ for some reduced twisted matriz factorization (p,).

When S = R/(f) is the hypersurface associated to a (commutative) Kleinian singu-
larity, producing an explicit matrix factorization of the singularity f is facilitated by
use of the double branched cover S* := R|[z]/(f + 2?) of S. Knorrer [10] showed how to
relate MCM modules over S# to those over S by proving a relation between the ma-
trix factorizations of f over R and those of f + z? over R[z] (see also [12, Chapter 8]).
We achieve a similar result in the noncommutative setting by employing the category
of twisted matriz factorizations TMFg(f) of f in R (Definition 3.2), where R is not
necessarily commutative. Now our first main result is given as follows.

Theorem 1.3 (Theorem 3.8). A Krull-Schmidt Theorem holds for elements of the category
TMPF4(f) that are not irrelevant (as in Definition 3.3(2)).

We proceed next to define a double branched cover in a noncommutative setting (cf.
[12, Section 8.2]). Noncommutativity introduces a number of obstructions to this process,
and our results require several technical assumptions on the automorphism o induced by
the normal element f. Our hypotheses include that f has even degree and has a square
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root automorphism /o with /o(f) = f (see Hypotheses 3.10). The double branched
cover

B* = Alz;v/0l/(f + 2°)

of B is then defined. We also define a graded automorphism ¢ of A[z;+/o] that extends
to B¥ by mapping z to —z, and form the skew group-ring B#[(].

Theorem 1.4 (Theorem 4.9). Retain the notation and hypotheses above. Then, we o0b-
tain that MCM(B#), the category of graded B¥[(]-modules that are graded MCM
B#-modules, is equivalent to the category of twisted matriz factorizations TMFa(f) of
fin A.

We also relate analogs of reduced twisted matrix factorizations (Definition 3.3(5)) to
those that are symmetric (Definition 3.11).

Theorem 1.5 (Theorem 4.15). There exists a functor € from TMFs(f) to
TMFA[Z;\/g](f + 22) so that the reduced twisted matriz factorizations in the image of
% are precisely those that are symmetric.

Our next task is to describe the indecomposable MCM B-modules, which via Theo-
rem 1.2, can be done using twisted matrix factorizations. We first exploit the correspon-
dence between twisted matrix factorizations of f and of f-+22 to decompose factorizations
in Lemma 5.3, and then use this result to prove the following theorem.

Theorem 1.6 (Theorem 5.4). The algebra B has finite Cohen-Macaulay type if and only
if B has finite Cohen-Macaulay type.

Then we use two applications of the double branched cover construction to form the
second double branched cover (B#)# (Definition-Notation 5.6), along with a change of
variable (see Remark 5.7) to relate twisted matrix factorizations of f and twisted matrix
factorizations of f 4+ uv. With this, we achieve our noncommutative version of Knorrer’s
Periodicity Theorem below.

Theorem 1.7 (Theorem 5.11, Corollary 5.12). There exists a bijection between the sets
of isomorphism classes of nontrivial indecomposable graded matriz factorizations of f
and those of f + uv. Thus, there is also a bijection between the sets of isomorphism

classes of indecomposable non-free MCM B-modules and indecomposable non-free MCM
(B#)#-modules.

Finally in Section 6 we present explicit matrix factorizations for the noncommutative
Kleinian singularities of [4] in Theorem 6.3.
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The paper is organized as follows. Section 2 contains general background material and
Section 3 contains the results on twisted matrix factorizations that are needed in the
paper. Section 4 describes the double branched cover in the noncommutative setting.
Our version of the Knoérrer Periodicity Theorem is established in Section 5. We illustrate
some of the results above in Section 6 for noncommutative Kleinian singularities; explicit
matrix factorizations of the singularities found in [4] are presented.

2. Background material

We recall for the reader background material on graded algebras, graded modules,
and twisting. We also discuss noncommutative graded analogs of results on modules
over commutative local rings.

We begin with a brief discussion of categories of modules over graded algebras. Let
R be a graded k-algebra and let M be a finitely generated graded (left) R-module. We
also assume that R is locally finite, i.e. that each of its graded components is finite
dimensional.

Notation 2.1 (RMod, RGrMod, Rgrmod, ~). Consider the following notation and termi-
nology.

(1) We denote the category of ungraded left R-modules by RMod.

(2) Since R is a graded algebra, we also consider the subcategory of RMod con-
sisting of Z-graded, bounded below, locally finite left R-modules, namely graded
left R-modules, with degree 0 morphisms; this is denoted RGrMod. Morphisms in
RGrMod will be called graded homomorphisms.

(3) The functor that forgets grading will be denoted

~: RGrMod — RMod.

(4) The subcategory of RGrMod consisting of finitely generated graded left R-modules
will be denoted Rgrmod.

We note that RGrMod is a k-linear abelian category, and if R is graded noetherian,
Rgrmod is as well.

We also note that since R is locally finite, finitely generated graded R-modules
are also locally finite. It follows that Rgrmod is Hom-finite, which is to say that
Hompggrmoa (M, N) is a finite-dimensional k-vector space for all M, N € Rgrmod. If,
in addition, R is assumed to be graded noetherian, then the abelian category Rgrmod
is a Krull-Schmidt category. That is, every object of Rgrmod decomposes into a finite
direct sum of indecomposable objects, and the endomorphism ring of any indecompos-
able object is a local ring [11, Lemma 5.2, Theorem 5.5]. Moreover, the decomposition is
unique up to isomorphism and permutation of factors [11, Theorem 4.2]. In particular,
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we have the following result on the endomorphism ring of an indecomposable module in
Rgrmod.

Proposition 2.2. If M is a finitely generated graded indecomposable R-module, then the
degree 0 endomorphism ring Endr(M) is a local ring. O

Now we discuss shifts within the category RGrMod. For M € RGrMod and n € Z
we define M[n] to be the graded left R-module with M[n]; = M, y; for all j € Z. If
a: M — N is a graded homomorphism of graded left R-modules, we let a[n] denote the
unique element of Hom garmod(M[n], N[n]) such that a[n] = a.

Next, we turn our attention to twists within RGrMod. Let o : R — R be a degree 0
graded algebra automorphism of R. For M € RGrMod we define “ M to be the graded
left R-module with °M = M as graded k-vector spaces where R acts via the rule
r-m=o(r)m.If ¢ : M — N is a graded homomorphism of graded left R-modules, then
@ also defines a morphism M — ?N. To avoid confusion, we denote this morphism by
%, but as linear maps ¢ = “¢. The functor ?(—) is an autoequivalence of RGrMod with
inverse © ' (—). Note that M is a graded free left R-module if and only if “ M is, and the
functors ?(—) and (—)[n] commute.

Consider the non-standard notation introduced below.

Notation 2.3 (f, o, tW(—),13""71(—), /\?/I) Let f € R be a normal, regular homogeneous
element of positive degree d and let o : R — R be the graded automorphism of R deter-
mined by the equation rf = fo(r). We denote the composite autoequivalence 7 (—)[—d]
by *(—) and its inverse by tw? (—). For any graded left R-module M, left multiplication
by f defines a graded homomorphism

A YM = M.

Moreover, if ¢ : M — N is a graded homomorphism of graded left R-modules, we
have that AY o ™o = o X}

We end this section by recalling the definitions of some graded algebras and graded
module categories that are important to our work: skew group rings, maximal Cohen-
Macaulay modules, and Artin-Schelter regular algebras.

Definition 2.4. Given a graded k-algebra R and a finite subgroup G C Aut(R) of graded

automorphisms of R, we can form the skew group ring R#G as follows. As a graded
vector space, R#G = R ®y kG, and multiplication is given by

(r1 ®g1)(r2 ® g2) = r191(r2) ® 9192,

for r1,79 € R and g1, 92 € G.
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In particular, R#G is a graded free R-module. Observe that R#G is a lo-
cally finite graded k-algebra. Since |G| is invertible in k, the zeroth component
(R#G)o = kG is semisimple. In this case, viewing each graded component of R#G
as a kG-module, we obtain a direct sum decomposition

R#G = P Nx
X

where the sum is taken over the irreducible characters of G and NX is the sum of the
irreducible kG-submodules of R#G of character x. It follows from character theory that
the decomposition holds in the category of modules over the fixed subalgebra (R#G)¢.
We call NX the weight submodule for x.

Next, we consider the class of (graded) maximal Cohen-Macaulay modules that are
homologically well-behaved, but first we need to recall the notion of depth.

Definition 2.5. The depth of a left (or right) R-module M is defined to be
depth(M) := inf{i | Extly(k, M) # 0}.
If Ext’y(k, M) = 0 for all i, then depthM = oo.

Here, Extp(—, —) is the derived functor of the graded Hom functor Hom(M, N) =

@ HomRGrMod(M, N[n])
neZ

Definition 2.6. Let R be a graded left noetherian k-algebra. A finitely generated

graded R-module M is called (graded) mazimal Cohen-Macaulay (MCM) provided that
Exth(M, R) = 0 for all i # 0.

Graded maximal Cohen-Macaulay R-modules form a full subcategory of Rgrmod,
which we denote by M CM (R). The category M C M (R) inherits the Krull-Schmidt prop-
erty from Rgrmod.

Moreover, we also consider the category of stable maximal Cohen-Macaulay modules,
which we denote MCM(R), to have the same objects as MCM(R), but for M, N €
MCM(R), we have

Hompscnr(ry(M, N) = Homg(M,N)/V

where V' is the subspace of morphisms which factor through a graded free R-module.
Finally, we recall the Artin-Schelter regularity condition on graded k-algebras.

Definition 2.7. A connected graded k-algebra A is called Artin-Schelter (AS)-regular of
dimension n if A has global dimension n, finite Gelfand-Kirillov dimension, and if it
satisfies the Artin-Schelter Gorenstein condition, namely that Extf4(k, A) = 0; k.
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One consequence of having this property is that the MCM condition can be verified
via the result below.

Proposition 2.8. [2, Lemma 5.3/ Let A be a left noetherian, AS-regular, let f be a
homogeneous normal element of A of positive degree, and let B := A/(f). Then for

any finitely generated graded left B-module, we obtain that pd,(M) = 1 if and only if
Exty(M,B) =0 for alli #0. O

Remark 2.9. The definition of graded MCM module given in Definition 2.6 is different
from the definition used in [5]. As shown in [8, Proposition 4.3] the two definitions are
equivalent when the algebra R is noetherian AS-regular, or is the quotient of a noetherian
AS-regular algebra by a normal regular element (as then R satisfies the y-condition). If
R is noetherian AS-regular, every MCM R-module is graded free (see [5, Lemma 3.13]).

3. On twisted matrix factorizations

The goal of this section is to provide preliminary results on twisted matriz factor-
izations as defined in [2], and as a consequence, to generalize several results on matrix

factorizations in the commutative setting.

To begin, let us recall the notation from Section 2; see also Notation 2.3.

Notation 3.1 (R, f, d, 0, S, A, B). For the rest of the paper, let R be a noetherian, con-
nected, N-graded, locally finite-dimensional algebra over k. As in Section 2, let f € Ry be
a normal, regular homogeneous element of positive degree d, and let ¢ be the normalizing
automorphism of f. Let S denote the quotient algebra R/(f).

Moreover, we reserve the notation A for a noetherian Artin-Schelter (AS-)regular
algebra and we let B := A/(f) for f as above.

Definition 3.2 (F', G, TMFr(f), TMF(f)). Consider the following terminology.
(1) A twisted (left) matriz factorization of f over R is a pair
(p: F =G, ¢:""G—F)

of graded left R-module homomorphisms, where F' and G free graded R-modules of
finite rank, and oy = )\ch and Y™V = /\ff. (Note that "G is free whenever G is.)
(2) A morphism (p,v) — (¢',1") of twisted matrix factorizations is a pair of graded
R-module homomorphisms (a : FF — F', 3 : G — G’) such that ¢'a = By; it is an
isomorphism if o and 8 are isomorphisms.
(3) Using the objects in (1) and morphisms in (2), the resulting category of twisted
matrix factorizations of f over R is denoted TMFgr(f), or just TMF(f).
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It is easy to see that the maps above @, are injective when f is regular.

Since R is noetherian, we may assume that if (o : F — G, : "G — F) is a twisted
matrix factorization, then rank(F') = rank(G). This equality need not hold otherwise,
as noted in [13, Remark 4.6].

It is straightforward to show that the category T'M F'(f) is preserved under both the
twist and shift functors. Namely, if (p, %) is a twisted matrix factorization of f, then so
is (1, "W). Likewise, (¢,9)[n] := (p[n],¥[n]) is a twisted matrix factorization for any
n e 7.

The following twisted matrix factorizations are of interest in this work; recall Nota-
tion 2.3.

Definition 3.3. Take (p: F — G, ¢ : "G — F) € TMFg(f).

(1) (p,v) is called trivial if (¢, 1)) = ()\ff, lwp) or (¢, 1) = (1F, )\]5), where Fis a graded
free R-module.

(2) (p,1) is called irrelevant if it is trivial with F' = 0.

(3) If (¢',4") is another twisted matrix factorization of f, then the direct sum of (p, )
and (¢', ') is defined as

(o, ) @ (¢, ¢) = (p@ ¢, YY),

which is also a twisted matrix factorization of f.

(4) If (p,1) is not irrelevant and is not isomorphic to a direct sum of non-irrelevant
elements of TM Fr(f), then (p,) is called indecomposable.

(5) If (¢,) is not isomorphic to a twisted matrix factorization having a non-irrelevant,
trivial direct summand, then we say (v, ) is reduced.

Note that irrelevant twisted matrix factorizations are reduced; they are the zero object
of the additive category TM Fr(f).

Notation 3.4 (TMFY%(f), TMFL(f)). Let TMFY(f) denote the full subcategory of
TMFg(f) consisting of factorizations (¢, ) such that coker ¢ = 0. Let TM F§(f) denote
the full subcategory of TM Fg(f) consisting of finite direct sums of trivial factorizations.

Note that TM F3(f) contains the irrelevant factorization. It is also closed under direct
sums and grading shifts (it is an additive subcategory of TM Fg(f)), but it is not closed
under ™(—).

The first two parts of the following result show that TM Fj(f) is the smallest additive
subcategory of TM Fr(f) that contains TM F3(f) and is closed under grading shifts and

ve(-).

Proposition 3.5. Assume R is graded noetherian.
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(1) TMF(f) is a subcategory of TMF(f).

(2) If (p,¢) € TMFL(S), then (p,¢) = (¢, ¢) & ™ (", ¢") where (¢',¢') and
(o) € TMFY(f).

(3) The category TMFY(f) is equivalent to the category proj(R) of finitely generated,
graded projective R-modules.

(4) The categories TMFR(f) and TMFL(f) are Krull-Schmidt categories.

Proof. (1) Suppose (p : F — G,¢ : WG — F) € TMF}(f). Since R is graded
noetherian, we have rank(F) = rank(G), as noted above. Thus the map ¢ is a graded
isomorphism and (¢, ) = (1p, )\?) via the isomorphism (1, ¢71).

(2) This follows immediately from the definition of TM F§(f), the additivity of " (—),
and the fact that (A, lewp) = (1, A7),

(3) First we define a functor 7 : proj(R) — TMFJ(f). Let F,G € Rgrmod be graded
projective. Then F' and G are finitely generated, graded free modules. Put T (F) =
(IF,AJIf). Clearly, T(F) € TMFR(f). If 6 : F — G is a degree 0 homomorphism of
graded R-modules, then 7(4) = (4,9) : T(F) — T(G) is a morphism of twisted matrix
factorizations.

Next we define P : TMF3(f) — proj(R). If (¢ : F — G, : ™G — F) € TMFY(f),
put P(p,) = F, and if (o, ) : (,¥) — (¢',1') is a morphism in TMF3(f), put
P(a, B) = a.

It is clear from the definitions that P7T = idpjr). On the other hand, if (¢ : F' —
G,¢: ™G — F) € TMFY(f), then as in the proof of (1) we have (p, 1) = (lp,)\]}f) =
TP(p,1) via the isomorphism (1g,¢~1). Naturality is a consequence of the definition
of morphism of twisted matrix factorizations, so 7P = idppsro -

(4) The category proj(R) is a Krull-Schmidt category and the equivalence T is ad-
ditive, so TMFY(f) is a Krull-Schmidt category. The same goes for TMF§(f) by
part (2). O

Now let us consider two more preliminary results on the category TM Fg(f).

Proposition 3.6. Assume R is graded noetherian. If (p,v) € TMFg(f), then (o,¢) =
(@' 4") & (¢",9") for some (", ¢") € TMFg(f) and (¢',¢') € TMFR(f) is reduced.

Proof. The statement is true if (p,4) is reduced, since the irrelevant factorization is
in TMFL(f). If (p,1) is not reduced, then there exist twisted matrix factorizations
(¢ F' = G ™G — F') and (¢’ : F" = G"¢" : WG" — F") such that
(p, ) = (¢, ¢") @ (¢",9") and (¢”,4") is trivial and not irrelevant. In particular,
rank(F") > 1. Furthermore, since R is graded noetherian, rank(F"’) < rank(F'), and the
result follows by induction on rank(F). O

Proposition 3.7. A twisted matriz factorization (p,v) € TMFgr(f) is reduced if and only
if coker ¢ has no free S-module direct summand. Reduced graded matriz factorizations
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(p,0) and (¢',v') € TMFg(f) are isomorphic if and only if cokerp = coker ¢’ as
S-modules.

Proof. The first statement follows from Proposition 2.9 and Lemma 2.11 of [2]. The
second statement follows from [2, Proposition 2.4] and the fact that minimal graded
free resolutions are chain isomorphic if and only if they resolve isomorphic graded mod-
ules. O

Now we prove that TMF4(f) is a Krull-Schmidt category (when A is noetherian
AS-regular).

Theorem 3.8 (Krull-Schmidt Theorem for TMF4(f)). Recall Notation 3.1. If
(p, ) € TMF4(f) is not irrelevant, then (,v) is isomorphic to a finite direct sum of
indecomposable twisted matriz factorizations with local endomorphism rings. The sum-
mands are uniquely determined up to permutation and isomorphism.

Proof. By Propositions 3.6 and 3.5, it suffices to consider the case where (¢,1)) is re-
duced.

If (p, 1)) is reduced, then M = cokeryp is a maximal Cohen-Macaulay B-module with
no free direct summands by Theorem 1.2. In particular, M is finitely generated, so by
the Krull-Schmidt Theorem for Bgrmod, we may write M = M; @ --- & M, where
each M; is a nonzero, non-free indecomposable B-module. Since M is MCM, the same
is true of each M;. By Theorem 1.2, there exist reduced twisted matrix factorizations
(01,9%1)y ..+, (pn,¥y) such that M; = cokerp;. Then (p,¥) = (p1,91) ® -+ D (Yn, ¥n)
by Proposition 3.7. Uniqueness follows from the uniqueness of the M; and again by
Proposition 3.7.

It remains to prove that the endomorphism ring of each indecomposable is local; this
will be established in the next lemma. O

In addition to completing the proof of Theorem 3.8, the next result explicitly describes
the form of graded automorphisms of a twisted matrix factorization.

Lemma 3.9. Let (p: F = G, ¥ : ™G — F) € TMFg(f) and let M = coker .
(1) If (@, ) is reduced, then there is a ring isomorphism
E :=End(¢,v¢) =2 Endg(M).
(2) If (p, ) is reduced and indecomposable, then E is local and every unit of E has the

form c(idp,idg)+(p1, p2) where ¢ € k is a nonzero scalar and py and ps are nilpotent
automorphisms of F' and G, respectively.
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Proof. (1) Assume that (@, %) is reduced. Let 7 : G — M denote the canonical quotient
map. Given (o, 8) € E, we have m8p = mpa = 0 since img = ker 7. Thus 73 induces a
well-defined graded endomorphism of M denoted coker 3, and we have a map

End(¢,v) = Endr(M), given by (a,f) — cokerf.

It is straightforward to check that this map is a ring homomorphism. We claim it is
surjective. If ® : M — M is a graded endomorphism, then since G is graded projective,
there exists a graded module map 5 : G — G such that 73 = ®7. Moreover, 75p =
P = 0 so imfBp C imep. Thus by the graded projectivity of F', there exists a graded
module map « : F — F such that pa = By. Hence (a,8) € E. Since 7 = P,
coker f = ® and the map of endomorphism rings is a surjective ring homomorphism. A
graded endomorphism (c, 8) is in the kernel of this homomorphism if and only if 78 = 0,
or equivalently, im/3 C imy = ker 7. Since (p,1)) is reduced, imp C Ry G, where R, is
the augmentation ideal of R. Since § is a degree 0 homomorphism, («, ) is in the kernel
if and only if 8 = 0. This implies ima C ker ¢ = 0; so, & = 0 as well. This proves (1).

As a brief aside, we remark that any graded homomorphism from a finite rank graded
free module to itself has a Jordan-Chevalley decomposition. Let F' be graded free of rank
rand let o : F' — F be a graded homomorphism. Choose a homogeneous basis for ' and
write F' = R[d1]"* @ -+ @ R[d,,]"™ where di < -++ < d,. Let m; : F — R[d;]™ denote
the projection map. For each 1 < i < m, change the basis of R[d;]™ so the matrix of
mio| gla,mi ¢+ R[di]™ — R[d;]™* with respect to the new basis is in Jordan normal form.
Since « is a degree 0 homomorphism, the matrix A of « is upper triangular. We may
therefore write

o= Qg+ ap

where a; is the map given by the diagonal part of A and «, is the map given by the
strictly upper-triangular (nilpotent) part of A.

(2) Resuming the proof, assume further that (¢,%) is indecomposable. Then M is
indecomposable, and hence FE is local by Proposition 2.2.

Let (o, 8) € E. Since E is local and (a,, By) is not a unit, (ay, 5,) € rad(E). Thus if
(o, B) € rad(E), we must have (as, ;) € rad(E). This implies

(ldF — YQs, ldG - 763)

is a unit for all v € k. Hence a has no nonzero eigenvalues and (as, 85) = (0,0). This
proves

rad(E) = {(a, ) € E [ (as, fs) = (0,0)}.

Now suppose («,3) € E is a unit. Since k is algebraically closed and FE is finite
dimensional, E/rad(E) = k. (The base field itself is the only finite-dimensional division
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algebra over an algebraically closed field.) Since the diagonal part of o cannot be modified
by elements of rad(E), we have (as, 85) = c¢(idF, idg) for some nonzero scalar ¢ € k*. O

We end this section with a discussion of the symmetric property of twisted matrix
factorizations. But first we need to introduce the following standing hypothesis and
notation.

Hypothesis 3.10 (\/o, 7, £). We assume that there exists a graded algebra automorphism
/@ of R such that (y/o)? = 0. We also assume that

¢ the degree d of f is even, and

« Volf)=1.

(Without these assumptions the element f + 22, that we analyze later in the paper, will
not be normal.) Moreover, denote the functor V7 (—)[—¢] by 7(—), for £ := d/2. Thus,

Definition 3.11 (T'). Define the endofunctor of TM F(f) as follows:

T:TMF(f) = TMF(f), (p,¢)—7 (") =( "v,"9).

(Then, T?(¢,v) = (p,¢) and hence T?(—) is the identity functor on TMF(f).) If
(p,0) Z T(p,v), we call the twisted matrix factorization (p, ) of f symmetric. Other-
wise, we call (p, ) asymmetric.

Indecomposable symmetric factorizations have the following important characteriza-
tion.

Proposition 3.12. Let (p,9) € TMF(f) be symmetric and indecomposable. Then, (p, 1))
is isomorphic to a twisted matriz factorization of the form (po, Two) where @o : F —

T'F satisfies (0)(T0) = (Ap)( ).

Proof. Let a, 8 be graded isomorphisms such that the diagram

F g G
ai \Lﬁ
G v TR

commutes. Recall ¢/ : G — F, so indeed T ¢ : TG — T F.Put

1

X:="fa and Y:=" af.
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Then (X,Y) is an automorphism of (p, ). By Lemma 3.9 we may assume (rescaling if
necessary, as k is algebraically closed) that

(X,Y) = (idp,ida) + (p1, p2)

where p; and ps are nilpotent automorphisms of F' and G, respectively.
Since p; = X —idp and ps =Y —idg, we have

-1
apr =" paa, Bp2=" p1P, and  pp1 = pagp.

Since p; and py are nilpotent, we use the Taylor series for (1 + z)~ /2 to define
(idg + p1)~Y? and (idg + p2)~ /2. Then define

o :F—"G by a':ao(idF+p1)_1/2 and
B :G—=" F by B =pfol(dg+p) /2
The equations above imply

/

o =ao(idp+p1) Y2 ="(idg + p2) V?0a and
B =Bo(idg+p) 2 =""(idp+p1) /20 B.
Now since (78)("(Y 1)) = (X~1)("8), we obtain that
("8’ =TB("(idg + p2) e = (idp + p1) T X = idp.

Similarly, (7 /)’ = idg.
Now, put ¢g = 3'¢. By the above, we have

o = Blidg + p2) e = Be(idr +p1) "/
= (" Palidp +p1)"V? = (7 p)d.
We calculate
po(Tpo) = Bev(Ta’) = FAS(Ta) = (AT PE(Ta) = () .
Applying "(—) to this gives

("e0)(™Mpo) = Af.

This shows (o, T¢o) is a graded matrix factorization of f.
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Finally,
(o)) = YY) = o
and it follows that (idg, 8") is an isomorphism (¢, 1) — (w0, "wo). O
4. The double branched cover in a noncommutative setting

The goal of this section is to define and study the double branched cover B# of a
noncommutative hypersurface B = A/(f); recall Notation 3.1 and see Definition-No-
tation 4.1. We will compare MCM B-modules with those of B# by investigating the
corresponding categories of twisted matrix factorizations; see Theorem 4.9 and Fig. 1
below. We will also provide a characterization of symmetric twisted matrix factoriza-
tions for the double branched cover in Theorem 4.15.

Definition-Notation 4.1. (S, ¢, S#[¢], N°) Consider the following notation and termi-
nology. Recall from Notation 3.1 that f € R, is a normal, regular, homogeneous element
of R with degree d = 2¢ and S = R/(f).

(1) Let S# = R|[z;1/7]/(f + 2?) and we refer to this as the double branched cover of S.
The algebra S7 is graded by taking degz = /.
(2) The graded algebra R[z;+/c]| admits a graded automorphism given by

(lr=1idr and ((z) = -2

which induces a graded automorphism of S# (also denoted ¢). The automorphism
¢ generates an order 2 subgroup (¢) C Aut(S#). For notation’s sake we denote the
skew group ring by S#[(].

(3) If N is an S#[¢]-module, let N° denote the S#-module obtained by forgetting the
action of (.

Definition 4.2. (0 = 0, End¢(M)) If M is a graded S#-module, we say a graded k-linear
endomorphism 0 := 0 : M — M is (-compatible if (bm) = ¢((b)f(m) for all b € S#,
m € M and 62 = idy,. (This is equivalent to saying 6 is a graded left S#-module
homomorphism M — ¢M such that 00 = 1,;.)

We denote the set of (-compatible graded k-endomorphisms of M by End(M).

Note that the free S#-module M = S# admits (at least) two (-compatible graded
k-endomorphisms: § = ¢ and 6§ = —(.

Lemma 4.3. There is a bijective correspondence between graded S*[(]-modules and pairs
(M, 0) where M is a graded S*-module and 0 = 0, € End¢(M).
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Proof. If N is a graded S#[¢]-module, define § : N — N by 0(n) = ¢n. Then (N°,0) is
the desired pair. Conversely, given a pair (M, 6.), one can construct a graded S #_-module
M via (b®¢)-m=10b0:(m). O

Definition 4.4. (MCM,(S#)) We say a graded S#[¢]-module N is (graded) mazimal
Cohen-Macaulay if N° is a graded MCM S#-module. We denote the category of graded
MCM S#[¢]-modules by MC M (S#).

In light of the preceding Lemma, it is often useful to describe an object of MCMC(S#)
in terms of a pair (M, 0) where M is a graded S# module and 0 € End,(M).

Notation 4.5. (N*, N~) Since ¢ generates an order 2 cyclic subgroup of Aut(S#), a
graded S#[(]-module N has two weight k[(¢)]-submodules, corresponding to the triv-
ial and sign representations of (¢). We denote these graded submodules N* and N,
respectively.

Then, as modules over the fixed ring (S#){¢) = S we have N° = N* @ N~. (Namely,

use the graded Reynolds operator; every n € N can be written 3[(n + ¢(n) + (n — ¢(n)].
The first summand is invariant and the second is anti-invariant.)
In the context of AS-regular algebras, these weight modules are graded free. We record

this fact as a corollary of the following general observation.

Lemma 4.6. A graded B¥-module is graded MCM if and only if it is a graded free
A-module.

Proof. Let N be a graded B#-module. We apply the (graded) change-of-rings spectral
sequence for the inclusion A — B#

Ext?, (k, Ext’, (B# N)) = Ext}(k, N).

Since B¥ = A® Az &2 A® A[—/] is a free A-module, the spectral sequence collapses,
yielding

Ext?, (k, N @ N[{]) = Ext’, (k, N).

It follows that depth 4(N) = depthgx(N).

Note that A is isomorphic to a splitting subring of B# in the sense of [5, Defini-
tion 4.1]. Since A and B# are AS-Gorenstein, [5, Theorem 3.8(7) and Lemma 4.3] imply
depth 4(A) = depth g4 (B*). Now it follows from the graded Auslander-Buchsbaum for-
mula [9, Theorem 3.2] that N is graded MCM over B# if and only if it is graded MCM
over A. Since every graded MCM A-module is free (see Remark 2.9), the result fol-
lows. O
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Corollary 4.7. If N is a graded MCM B#[(]-module, then NT and N~ are graded free
A-modules of finite rank. O

This hints at a connection between the categories MCM(B#) and TMF(f). In
fact we will prove below these categories are equivalent; see Theorem 4.9. To begin,
we construct functors establishing the equivalence. We remind the reader that objects
of MCM¢(B#) can be viewed as pairs (M,0) where M is a graded B# module and
6 € End;(M).

Lemma 4.8 (o, B). The following are well-defined functors between the categories
MCMq(B*) and TMF(f):

o MOM¢(B*) — TMF(f)
N = (9,9),
(&M= N) = (e, Ela-)

where o : Nt —7 "N~ and ) : "N~ — N+ are graded A-linear homomorphisms given
by multiplication by z and —z, respectively; and

B :TMF(f) — MCM(B%)
(0:F—=G¢:"G —=F)— (F&"G,0)
[(a, B) : (0. ¥) = (¢, )] > a@ 7B,

where 0 : F©7G — Fo TG, 0(z,y) = (z,—y) and z(x,y) = (—¢(y), p(2)).

Proof. Regarding <7, observe that since N is a B#-module, we get that —z%n = fn for
all n € N. Hence &7 (N) is a twisted matrix factorization of f over A.

Moreover, if € : M — N is a graded B#[¢]-module homomorphism, then £&(M+) ¢ Nt
and £(M~) C N~ and £ commutes with multiplication by £z. Thus (§|as+, T_1£|M,) is
a morphism &/ (M) — &/ (N).

Since @ is left A-linear, p(y/o(a)z) = /o(a)p(x) for a € A, x € F. Likewise, since 1
is left A-linear for the twisted action of G, ¥(c(a)y) = ¥(a-y) = ayp(y) fora € A, y € G.
For z € F and y € G define

It follows from the calculations above that M = F @ "G is an A[z; +/o]-module. Indeed,
one has:

wo(a) - (z,y) = z- (Vo(a)z,0(a)y)
= (—¢(o(a)y), p(Vo(a)x)) = (-ap(y), a- p(x)) = az - (x,y).
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It is straightforward to check that f+ 22 acts as zero so M is a B#-module. To see that
this defines a graded B#-module structure on M, observe that if z € F}, then p(z) €
G; = G[—{]+e. Moreover, if y € G[—{]; = G[—d];+¢ then ¥(y) € Fj4,. Since M is a
graded free A-module, M is a graded MCM B#-module by Lemma 4.6. Finally, 6(z,y) =
(z,—y) is a (-compatible graded endomorphism of M, so %(p, 1) € MCM:(B#).

Next, given a morphism (o, 3) : (¢,¥) = (¢’,9'), we have that ZB(o,8) = a @& "
defines a map of graded A-modules B(p, ) — B(¢’,¥’'). The map respects the action
of z:

(o, B)(2(2,)) = (—arp(y), Be(x)) = (—9'B(y), ¢’ a(z)) = z(a(z), B(y))-
Thus %(a, B) is a morphism of graded B#-modules. 0O

Theorem 4.9. The functor o7 : MCM¢(B#) — TMF(f) is an equivalence of categories
with inverse A.

Proof. For N € MC M, (B#),
BA(N)=Bp:N* -7 N~ ¢: "N~ > N*)=NT N~

so B/ (N)° = N° as graded A-modules via (z,y) — x 4+ y. For n € N°, write n =
ny 4+n_ with ny € N*, n_ € N=. Then zn = zn_ + zny = —i(n_) + @(ny), so
B/ (N)° = N° as graded B#-modules. Finally, since ((n) = ((ny)+{(n_) =ny —n_
and ((ny,n_) = (ny,—n_), we have B/ (N) = N as B#[(]-modules.

For (, ) € TMF(),

A B(p, ) = (FOTG,0) = (¢,¢).

By definition of the (-action on F & TG, we obtain that (F & "G)T™ = F & 0 and
(F&™G)" =087G. Thus ¢’ : F&0 = 0 G and ¢’ : 06 ™G — F @ 0. The maps are
multiplication by z and —z respectively. Since

z(x,0) = (0, o(x)) and —2(0,9) = (¥(),0)

we clearly have (¢',4¢") = (¢, ).
For a morphism ¢ : M — N of MCM B#[¢] modules,

BA (€) = B(Elarv,” Eprm) = Elnrr @ &y

Composing with the isomorphism (z,y) — x + y clearly recovers &.
For a morphism («, 3) of twisted matrix factorizations of f, recall the work above
that (F®&™G)T = F®0and (F®&"G)” =0& "G. Thus

A B, f) = (a7 h) = (a® B)reo,” (@® B)loara) = (a®0,0 ),

which is plainly isomorphic to (o, 8). O
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Now consider the following functor.
Definition 4.10 (COKER). We define a functor
COKER : TM Fg(f) — Sgrmod by (¢, %) — coker .

A morphism («, 8) : (p,¥) = (¢',9’') induces a morphism coker ¢ — coker ¢’, and we
take this as our definition of COKER(«, 3).

There is a forgetful functor MCM(B#) — MCM(B#), and every graded MCM
B#-module arises from a graded matrix factorization of f 4 22. It will be useful to have
a functor ¢ directly from TMF(f) to TM F(f + 2?) completing the following diagram,
which is commutative up to equivalence, where Forget maps N — N°, or (M,6) — M.

TMFa(f) . TMFup.. 5(f 4+ 2%)
ﬂTl@ l(?OKER

Fig. 1. Commutative diagram for the functor Forget.

Notation 4.11 (¥). We denote the extension of scalars functor
Alz; /o] @4 — : AGrMod — Alz; /a]GrMod

on objects by X = A[z;1/0] ®4 X and on morphisms by ¢ = A[z; /0] ®4 ¢. We extend
v/o by the identity to A[z; /0], defining /o (z) = =.

Since we extend /o by the identity to A[z;+/0], then for X € AGrMod,
TX = Alz;V0o| @4 TX =T(Alz; /o] @4 X) =TX
and similarly 7¢ = 7.
Definition 4.12 (4, ®¢, ¥4 ). Take a twisted matrix factorization
(p: F =G, : "G — F)
of f over A. We define a functor
€ : TMFs(f) = TMFy, /5(f + 2%

by <6(907 ¢) = (¢<ga qj(ﬁ) where
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W T o e v =G
Py V"GOTF - F®TG is given by \F S I
z ¥

tw el twy T : tw¢ )‘TF
Ve : "FHT™ G—""G@TF is given by \G TZE .

z

If (o, B) is a morphism in TM F(f), then we define the image morphism by

o= ((7 2).G )

We leave it to the reader to check that (P, V) is indeed a graded matrix factoriza-
tion of f + 22.

Proposition 4.13. As B -modules, %(p,1)° = COKER € (p,1)).

Proof. Let ~ denote the extension of scalars functor B# ®4 —. Recall that
B(p,) = F ® TG as an A-module and the B#-module structure is given by
2+ (z,9) = (—¥(y), 3(x)) [Notation 2.1].

On the other hand, the B#-module COKER %(yp,v) = B# @ A[2;y/5] coker @y is iso-
morphic to the quotient of F' & 7G by elements of the form

1@yp(),—2@0), vV € ™G and (2@v,1®"p(v)), veF.

Observe that the B#-submodule of FF & "G generated by such elements is generated as
an A-module by

(I@y@),—zav),  (zed@),fev)=(zey()1a f)
(Z X v, 1® TSD(U))7 (_f ®v,z® TSD(U)) = (_]- ® fvv z2® T@(v))
Now, as graded A-modules we have F = B# QUF = (A A2) . F 2 F®™F
and likewise "G = "G & "™G. We can describe COKER €(¢,1)) as an A-module under

these identifications as follows. Let I C F & "F & ™G @ ™G be the graded A-submodule
generated by elements of the form

W(U/),Ovoa _U/)7 (va(vl)valvo)’ (Oavva(v)70)’ (—fU,0,0,(Z(U))

where v € F and v’ € G. (Note that these tuples are homogeneous if v and v’ are.) Then
it is clear that

COKER € (p, ) 2 (FOF®™Ga™G)/I

as A-modules. This extends to an isomorphism of B#-modules by defining a
B#-module structure on (F®"F & "G @®™G)/I by

z - (Ul,UQ,U3,U4) = (fUQ, _Ulvalla _U3)'
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(It is straightforward to check that 2%+ f acts as 0 and 2 C I.) Now a direct calculation
shows that

(v1,v2,v3,04) = (v1 4+ Y (v4),v3 — "(v2))

defines a graded B#-module isomomorphism between (F & 7F & "G @ " @G)/I and
B(p,¥)°. O

Lemma 4.14 (A, X). Let N be a graded MCM B¥-module and F = Alz;\/o] ®4 N.
Then, the pair

A=XEVAdg1 19NN "TF S F
S="\EVAg 110NN YE 5 TR

is a twisted matrix factorization of f + 22 with cokernel isomorphic to N. If N has no
graded B¥ -free direct summand, then the factorization is reduced.

Proof. By Lemma 4.6, F is a graded free A[z;+/c]-module. By direct calculation, for
any n € N, we have

AAEVA @1 —1 @A) OAEVI 91419 M) (1 @n)
=\MEVad g1 10 ) (z0n+1® 2n)
=229n+2Q0z2n—2Q0z2n—1® 2°n

:z2®n—|—1®fn:(z2+f)®n
where —z%n = fn holds because N is a B#-module. Thus AY = )\?+22 ® 1. A similar
calculation shows LWA = )\}522 ®1. Now, im A is generated as a graded A[z; \/o]-module
by {z®n—1® zn | n € N}. It follows that

coker A = (Alz;/0]@a N)/({z@n—1®zn | ne N}) = Alz;V/0] @, e N = N

as graded A[z; \/o]-modules, and hence as graded B*-modules.

Finally, if the matrix of A with respect to some basis contains a term u ® 1 where
u € A[z] is a unit, then v is a unit of A and the matrix of 1 ® A\YY contains the term
u ® 1. This implies ¥ contains the same term in the same position, and thus (A,X)
contains a direct summand isomorphic to (Afy.2 ® 1,1 ® 1) and N contains B# as a
direct summand. O

Now we turn our attention to the symmetric condition of twisted matrix factorizations;
recall Definition 3.11.
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Theorem 4.15. Let (®,¥) € TMF(f + 2%) be reduced. Then (®,V) is isomorphic to a
factorization in the image of € if and only if (P, V) is symmetric.

Proof. If (p,v) € TMF(f), we have

and

T— )\F T 7)\“’"@
raen = (0% §)- (0 )

which are easily seen to be isomorphic via the map

((0)(35))
1 0)°\1 0) )"

For the converse, let (&, V) € TMF(f + 2%) be symmetric and reduced. Then N =
coker ® has no B#-free direct summand, and hence (®, ¥) is isomorphic to the matrix
factorization of Lemma 4.14 by Proposition 3.7. Thus no generality is lost by assuming
(@, W) is the factorization of Lemma 4.14.

By assumption, there exist graded A[z;+/c]-module isomorphisms «, 3, § such that
the following diagram commutes and the rows are exact. The notation ¢ N indicates that
the action of z is twisted by (, as required by exactness of the bottom row.

A-®1-1®A. 1
"(Alz; /o] ®a N) Alz;/o]@a N ——= N

| S

A RI+1RN, T2
7(Alz; /5] ®4 N) il Alz;/a] ®4 N —2> CN.

Note that ¢ is also a B#-module isomorphism, and for b € B and n € N, we have
§(bn) = ¢(b)§(n). The same underlying map also gives a B#-module map &' : ‘N — N
since &' (b-n) = 6(¢(b)n) = ¢?(b)d(n) = bd'(n). We may assume that N is indecomposable.
In this case, arguing as in Lemma 3.9, we may assume 6’6 = idy + p and 68’ = idc 5y + p’
where p and p’ are nilpotent. Then as maps of vector spaces, p = p’. Replacing § with
§(idy 4 p) /2 and &’ with §'(1+p')~'/2 yields 6’6 = idy. So as a k-linear map, 62 = idy
and § is (-compatible, hence (N, §) € MCM.(B#).

Now COKER%.%/((N,68)) = N by Proposition 4.13. Since N has no B#-free direct
summand, €</ ((N,0)) is reduced and hence isomorphic to (®, ¥) by Proposition 3.7. O
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5. Noncommutative Knorrer periodicity

The goal of this section is to establish the main result of this article: a noncommutative
analog of Knérrer’s Periodicity Theorem [Theorem 5.11]. Recall Notations 2.3 and 3.1
and the notation set in the previous section.

We begin by considering the following restriction functors.

Definition 5.1 (Res, res). Let Res: TMFa,. /5(f + 22) — TMFa(f) and let res:
MCM(B#) — MCM(B) denote the natural restriction functors between categories of
twisted matrix factorizations and MCM modules, respectively. Here, res(M) = M/zM
and Res(® : F — G,V : "G — F) is the factorization defined by the induced maps
F/zF — G/zG and " (G/2G) — F/zF.

Note that these functors make the diagram in Fig. 2 commute up to equivalence.

Res
TMFy,, y5(f +2°) —— TMFa(f)

\L COKER \L COKER

McMB#*) — = o~ MCM(B)

Fig. 2. Commutative diagram for the functors res and Res.

Later in Lemma 5.3, we compare these restriction functors with the functor & [Defi-
nition 4.12] that relates twisted matrix factorizations of a regular, normal element f of
an Artin-Schelter regular algebra A with that of the element f + 22 of the Ore extension
Alz; +/o]. In particular, the functor Res is not an inverse of ¢ (cf. Fig. 1).

Now we prove a variation of Theorem 4.15 for Res. Recall that every graded MCM
B#-module is a graded free A-module.

Lemma 5.2. Let N be a graded MCM B#-module. Let \Y : TN — N be the graded
A-module homomorphism representing left multiplication by z.

(1) AY,="A\Y) e TMF(f) and coker \Y = N/zN.
(2) If N contains no B¥-free direct summand, then (\Y, —="AY) is reduced and symmet-

ric.

We conclude that if (®,V) € TMF(f + 22) is reduced, then Res(®,¥) = (AN, —7AN)
where N = coker ®. In particular, Res(®, V) is reduced and symmetric.

Proof. By Lemma 4.6, N is a graded free A-module. Since N is a B#-module,
“AV(TAY(n)) = —2%n = fn. So (A\Y,—"AY) is a twisted matrix factorization of f
with cokernel N/zN. This proves (1).
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We also have COKER T(AY, —"AY) = coker(—=AY,"AY) = N/zN. Provided N has
no B¥-free direct summand, N/zN has no B-free direct summand, so statement (2)
follows from Proposition 3.7.

Now take (®,¥) € TMF(f + 2?) reduced. Then N’ = coker ® is a graded MCM
B#-module. By (1), (A\Y', ="AN") € TMF(f) with coker A" = N’/zN’. By the commu-
tativity of the diagram in Fig. 2, COKER Res(®, ¥) = N'/zN’. Hence by Proposition 3.7,
Res(®, ¥) = (AN —7AN"),

Since (®, V) is reduced, N’ contains no B#-free direct summand. The conclusion now
follows from (2). O

Fig. 3 summarizes the functors we have defined. Recall that &/ and % are inverse
equivalences. The functor Res is not an inverse to %. The next lemma explains the
relationship between the two functors.

Res

TMFap,. 5(f +2%) TMFa(f)
€ /
/
COKER MCMC (B#) COKER
y
MCM(B#) MCM(B)

Fig. 3. Combination of Figs. 1 and 2 (commutative up to equivalence).

Lemma 5.3.

—_

(1) If (p,9) € TMF(f), then Res € (p,1) =TT (e, ) &7 (9, ).
(2) If (®,V) € TMF(f + 22) is reduced, then

% Res(®@,0)="(0, V) "T(D,¥).

Proof. For (1), we have

Hence

as desired.
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For (2), let (®,¥) € TMF(f+2%) be reduced. Let N = coker ® and let A : "N — N
be left multiplication by z. By Lemma 5.2, Res(®,¥) = (AY,~"AY) and these are
reduced, symmetric graded matrix factorizations of f.

We have

ERes(®, T) = F (A, -7\
_TE _)\;N tw)\N ﬁ

(G 50 ) B )

o ((TOY =) 0 YA +AY) 0

a 0 TN +AY) 0 VALY = AL)
via the isomorphism («, 8) where

1 -1 1 1
a(l 1) and [3(1 1).

Note that these matrices define A-module isomorphisms since char k # 2. Next, we

observe that (T(AY — AN), ™ (AN £ AN)) = 7(A, ¥) where (A, X) is the factorization of
Lemma 4.14. Thus we have shown

ERes(D,0) = ENY, A= T(A D)@ T(A,Y).

The factorization (A, X) is reduced and coker A = N. Since (®, ¥) is reduced, N has no
B#-free direct summand, hence the factorization (A, X)) is also reduced and is isomorphic
to (@, ¥) by Proposition 3.7. This establishes the desired decomposition. O

Recall from [5, Definition 5.2] that a noetherian, bounded below, locally finite graded
algebra is said to have finite Cohen-Macaulay (CM) type if it has (up to degree shift)
only finitely many isomorphism classes of indecomposable MCM modules. The following
important result shows that finite CM type is preserved when constructing the double
branched cover. Note that we do not claim that B and B# have the same number of
isomorphism classes of indecomposable MCM modules, but see Corollary 5.12.

Theorem 5.4. In the context of Notations 3.1 and 4.1, the algebra B has finite Cohen-
Macaulay type if and only if B¥ has finite Cohen-Macaulay type.

Proof. It is enough to prove that TMF(f) has finite representation type if and only
if TMF(f + 2%) does as well. Suppose that (¢1,%1),...,(¢s,s) is a complete list of
indecomposable twisted matrix factorizations. For each i, decompose & (¢;, ;) as a direct
sum of twisted matrix factorizations of f + 22, say (®i1, ¥i1), .., (Pin,, Yin,). Now let
(®, ¥) be an arbitrary indecomposable matrix factorization of f+2%. By Lemma 5.3.(2),
(®, W) is a direct summand of GRes("  (®, ¥)), hence by Theorem 3.8 it must belong
to the set {(®;;, ¥;;)}. The proof of the other direction is similar. 0O
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We are ready to describe what happens to indecomposable twisted matrix factor-

izations under the functors Res and %. These are referred to as the “going-up” and
“going-down” properties of the double branched cover.

Proposition 5.5.

(1) Let (p,v) € TMF(f) be indecomposable and nontrivial. Then € (o, 1)) is decompos-
able if and only if (p,) is symmetric. In this case,

C(p,9) = (2, V) & T (2, 0),

for a factorization (®',9') € TMF(f + 2?) that is indecomposable and asymmetric.
(2) Let (®,%) € TMF(f + 2%) be indecomposable and nmontrivial. One then has that

Res(®, W) is decomposable if and only if (P, V) is symmetric. In this case,

Res(®, ¥) = (¢, 0) & T(¢', '),

for a factorization (¢',v') € TMF(f) that is indecomposable and asymmetric.
Proof. We first prove the decomposability statements in each part, then go back and
characterize the summands.

Let (p,9) € TMF(f) be indecomposable and nontrivial. If (¢, ) is symmetric, then
7_71
by Proposition 3.12 we may assume ¢ = "¢ and ¢7¢p = A, F_ Then

o= (TP AT (e A
%«w’w)(<Xf e )’(—A”F g
~ (@ —i\.) 0 (P +1A,) 0
- 0 T(@+iX) )’

0 tWaﬁ&J)

via the isomorphism (a, 3) where both o and 3 are given by the matrix (Z i) Putting
' =7(g—iAF) and ¥ = (5 +iA.F) we have

Clp, ) = (D, 0) @ T(®, V).
Conversely, suppose € (p, ) = (P, 0') @ (9", ¥”). Then
Res(®', ') ® Res(2", ") = 7 (¢, ¥) & "T(p, ¥)

by Lemma 5.3(1). Since (¢, ) is indecomposable, by Corollary 3.8 and Proposition 3.7
we may assume Res(®’, ¥') 2 7(yp,1)). Since "(p, 1) is nontrivial, (&', ¥’) is reduced. By
Lemma 5.2, 7(¢, ) is symmetric.
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For (2), let (®,¥) € TMF(f + 2%) be indecomposable and nontrivial. Then in partic-
ular (®, ) is reduced. By Theorem 4.15, if (®, ¥) is symmetric, then (®, V) = €(p, )
for some (¢, 1) € TMF(f), hence Res(®, U) = "(p,1) @ "T(p,v) by Lemma 5.3(2).

Conversely, suppose Res(®,U) = (p,¢) @ (¢',¢'). Then we have ¥Res(®, V) =
(@, V) @ "T(P,¥) by Lemma 5.3(2). Arguing as above, we may assume € (p, 1)) =
T(®,¥), so T(P, V) is symmetric by Theorem 4.15.

To complete the proof of (1), we assume (p,1) is symmetric. By the calculation
above, we have € (p,¢) = (9®,¥) @ T(P',¥'). By Lemma 5.3(1) Res@(p,¢) =
(o, ) & "T(p,1). Since this is a sum of exactly two indecomposables, Res(®’, ¥') is
indecomposable, hence (&', ¥') is asymmetric by the first part of (2).

To complete the proof of (2), we assume (P, V) is symmetric. As argued above, we
have Res(®, ¥) = (¢,v) ® T(p, ). By Lemma 5.3(2) we have €Res(®,¥) = 7(®, V) &
TT'(®, U). Since this is a sum of exactly two indecomposables, € (¢, ¥) is indecomposable,
hence (¢, ) is asymmetric by the first part of (1). O

The stable categories of MCM modules over B and B# are not equivalent in general,
even when B is a quotient of a commutative polynomial ring. In the setting of complete
hypersurface singularities, Knorrer’s Periodicity Theorem [10, Theorem 3.1] gives an
equivalence between the stable category of MCM modules over C[[z1,...,z,]]/(f) and
the stable category of MCM modules over the second double branched cover. Towards a
noncommutative version of that theorem, we make the following definition.

Definition-Notation 5.6 ((B#)# ). Recall that we extend /o to all of A[z; /o] by requir-
ing \/o(z) = z. The second double branched cover of B is the quotient

(BF)* = Az Vollw; Vol /(f +2° +w?).

of the iterated Ore extension A[z;+/o][w;+/0]. We extend /o to Alz;/o|[w;+/a] by
defining /o (w) = w.

Remark 5.7. As in the classical case, it is convenient to consider a linear change of
variables. Setting © = z + iw and v = z — 4w induces an isomorphism

(B#)* = Alu; Vol[v; Vol /(f + uv).
Here, 7 is the square root of —1 in k and /o acts as the identity on u and v.

By iterating the functors ¥ and Res, we can move between categories of twisted
matrix factorizations of f and those of f + 22 + w?. To distinguish the two steps in this
process we introduce the following notation.

Notation 5.8 (47, 62, Res1, Resy). Let €1 : TMF(f) — TMF(f + 2?) be the functor ¢
given in Definition 4.12 and let 65 : TM F(f + 2?) — TMF(f + 2% + w?) be the analog
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replacing f by f + 22. Let Res; : TMF(f + 2?) = TMF(f) and Resy : TMF(f + 2> +
w?) — TMF(f + 2?) be the corresponding restriction functors.

Finally, we define a functor that takes a twisted matrix factorization of f and pro-
duces a twisted matrix factorization of f + uwv directly, rather than by iterating the ¥

construction.

Definition 5.9 (7, ¥). Define 5# : TMF(f) — TMF(f + uv) by

tw—> _)\Tf th )\TE
% B = tw é 9 tw %—
eo-((F %) (05 %))

where the double bar denotes the extension of scalars Afu;\/o][v; /o] ®a —.

Qs

Via the change of variables in Remark 5.7, the functor ¥ is isomorphic to the iterated
extension of scalars

Alz; Vol [wi Vo] @ aLz e (Alzs Vol ®a —),

each iteration of which was previously denoted by a single bar. Henceforth we use these
two types of “double bars” interchangeably. In particular, we identify )\F and )\F For a

wen=((F 2).(7 0).

Lemma 5.10. With the notations above, we obtain that

morphism (a, 8), put

CooCL =2 H OTH Res; o Resy 0 7 = ™Y (id @ T) ToH# =HoT.

Proof. We exhibit the isomorphisms on objects only. Given these, it is not hard to verify
the required isomorphisms on Hom spaces.

First,
o _)\*é tw¢ )\Tf
Gaon =64 ). ([ 2, A
caen=a(( 75 ) (0% 5
tw )\;T _)\;F twi _)\;35 )\;36 0
tw = twy tw 3— tw
[ 7AZ=G qu[} O: 7/\wi , /\z F= T ¥ h /\wi
S T S B I W (R B
0 )\T? /\T? twi 0 _)\"35 _)\"35 th
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™G A F 0 0 W AL G0 0
twy = 35 —

] =ae Ty 0 0 A F T 0 0
0 R I 0 TF AT
0 0 =N v 0 0 A ¢ ™y

-1 —3
-1 —1

L OO
= O O .

For the second isomorphism,

twi _)\T?
Res; Ress #2(p, 1)) = Res; Resy \G v
tw— _\ F twT, ™G
= Res; < tw% T)‘ﬁ ) , ffv’? )‘%
)\Z ,l/} 7>‘z T @
0
3

tww 0 tww
0 T,l/} b) 0 T (p
and the result is clear.

Finally, the third isomorphism is given by a morphism (a/, 3') where both o’ and '

1

are determined by the matrix ((1) 701). 0

This brings us to the main result of this article: a noncommutative version of Knorrer’s
Periodicity Theorem.

Theorem 5.11. The functor € induces a bijection between the sets of isomorphism classes
of montrivial indecomposable graded matrix factorizations of f and f + uv.

Proof. Let (¢,v) € TMF(f) be a nontrivial indecomposable factorization. If (¢, )
is symmetric, then €1 (p,v¢) = (', 9') @ T(P', V') by Proposition 5.5, where (&', )
is indecomposable and asymmetric. Proposition 5.5 then implies that %2(®’, U') and
G2 (T(®',0")) are indecomposable. Hence %2%1 (¢, ) is a direct sum of precisely two
nontrivial indecomposable factorizations. If (¢,%) is asymmetric, then % (p, ) is in-
decomposable by Proposition 5.5 and symmetric by Theorem 4.15. Again by Theorem
5.4, it follows that €% (p,¥) is a direct sum of precisely two nontrivial indecomposable
factorizations. Thus in either case, (¢, ) is indecomposable by the previous lemma.

We prove S is injective on isomorphism classes. If (¢’, ') is another graded factor-
ization such that J2(p, ) = (¢, 9"), then by the second isomorphism in the previous
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lemma we have (¢',9') = (p,%) or T(p,v). Suppose (¢',¢') = T(p,7). By Propo-
sition 5.5, ¥1(p, ) is indecomposable and %2%) (¢, %) splits into two non-isomorphic
direct summands. So by the third isomorphism in the previous lemma,

(b)) #E TH (p,0) = HT(p,0p) = H(L,V) = H(p,9),

>~

a contradiction. Therefore, (@', %) = (p, ).
Finally, let (®, ¥) € TMF(f+wuv) be nontrivial and indecomposable. By the previous
lemma,

%> 61 Res; Resa (P, V) =2 7 Res; Resa (P, 0) & T 5 Res; Resy (P, 0)
>~ # (Res; Resy(®, ¥) ® T Resy Resy(®, V).

Note that since we extend /o by the identity map to Alz; /o] and Alz; \/o][w; +/a], the
functor 7 commutes with %7, %5, and 7. Thus we have

%2 61 Res; Resa (D, V) = %5("Resa (P, U) @ "TResz (P, U))
T%2Resy (@, V) @ "T6Resy (P, V)
"% Resy (B, U) & "TCRess (P, 1)
(@, 1) & (@, 1)

1

12

1

by applying Lemma 5.3(2), the fact that €T = T%, Theorem 4.15, and again
Lemma 5.3(2), respectively. These two calculations, and the fact that 7 commutes with
A, show that ™(®, ¥), and hence (®, ¥), is isomorphic to a direct summand of a fac-
torization in the image of J#. Now the result follows by Corollary 3.8. O

The following is now immediate from Theorem 5.11 and Theorem 1.2.

Corollary 5.12. There is a bijection between the sets of isomorphism classes of indecom-
posable non-free MCM B-modules and indecomposable non-free MCM (B#)#-modules.

Remark 5.13. Since commutative polynomial rings are AS-regular domains, we obtain a
graded version of Knorrer Periodicity for even-degree hypersurfaces in the commutative
setting as a special case of Theorem 5.11.

6. Noncommutative Kleinian singularities

In this section, we provide an interesting illustration of the main results from Sec-
tions 3-5 for the noncommutative Kleinian singularities appearing in work of Chan-
Kirkman-Walton-Zhang; see [4, Section 5] and Table 1 below. Our goal is twofold:
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(I) If (C, f) is a pair listed in the classification of [4] appearing in Table 1, then we aim
to show that there exists a square root of the normalizing automorphism that fixes
f,and so C[z : 7]/(f + 2?) has finite CM type by Theorem 5.4.

(IT) Produce matrix factorization representations of all indecomposable non-free MCMs
(up to degree shift) for the (C, f) pairs listed in [4].

Table 1 references the notion of a commutative Kleinian singularity. By this we mean a
fixed ring of the form k[u, v]% where G < SLo(k) is a finite subgroup acting as k-algebra
automorphisms. It is well known from classical invariant theory that the invariant rings
k[u,v]% are affine hypersurface singularities of the form k[xz,y, 2]/(f). Moreover, the
generators x,y, and z can be chosen to be homogeneous (in the standard grading of
k[u,v]), and f is homogeneous relative to the grading induced by the degrees of z, y,
and z (see, for example, [7, p. 420]).

Since commutative Kleinian singularities reside naturally in the graded setting, Goals
(I) and (II) can be viewed as extensions of the classical theory. The first goal above
specializes to one direction of a graded version of the classification of commutative hyper-
surface singularities of finite CM type due to Buchweitz-Greuel-Schreyer [1] and Knorrer
[10]. Similarly, the second goal extends a graded version of the well-known classifica-
tion of matrix factorizations over Kleinian singularities given in [7]. Goals I and II are
achieved in Theorems 6.1 and 6.3. For more discussion of the commutative graded case,
see subsection 6.6 below.

Theorem 6.1. Suppose (C, f) is a (possibly noncommutative) Kleinian singularity as
in [4], and suppose o is the normalizing automorphism of f. Then there exists T an
automorphism of C such that 7> = o and 7(f) = f. In particular, the ring Clz; 7|/ (f+22)
has finite CM type.

Proof. Referring to Table 1, cases (a), (d) (n even), (e) and (f) involve commutative
fixed rings. Moreover, in cases (c), and (d) (n odd), f is central. In each of these cases
o = idg, so the first part of the statement is immediate. For any 7 satisfying 72 = id¢
and 7(f) = f, it follows from Theorem 5.4 that C[z;7]/(f + 2?) has finite CM type if
and only if C'/(f) does. By Theorem 1.1 and [3, Prop. 7.1], all of the noncommutative
Kleinian singularities in Table 1 have finite CM type, so the second part of the statement
follows in cases (a), (c), (d), (e) and (f).
In case (g),

2
C =k{ay,as,a3)/(aza; — q"aras, asa; — q" aias, asas — q"asas)

with f = a} — ¢°ajas where s = n(n — 1)/2. Then f is normal by to the identities:

_n2 2
arf=q " fay azf = faz azf =q" fas.
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Table 1
Noncommutative Kleinian singularities C'/(f), as (noncommutative) hypersurface singularities. This is [4,
Table 3], with minor corrections to ¢;; in cases (b) and (g).

c f
(a) Commutative Kleinian singularity
p n(n—1)
(b) kqlai1, az, az] where g12 = g23 = (—1)™ and qi13 = (71)"2 ay —(—1) 2 aias
(C) k<a1aa2>/([a%7a2]v[agval]) a‘fl3 —a%
(d) n even kla1, az, as) a2 —a?as — (—1)%24aén+2)/2
k{a1,az,as) 2 2
n odd az + aza
( asar + arag — 4(—1) "D/ 2g{ D/ ) ° '
[a1.a2], [az, as]
(e) kla1, asz, as] a2 — (-1)"a1as
(£) Commutative Kleinian singularity
n(n—1)
(g) kqla1, az, as] where qi2 = ga3 = ¢", q13 = ¢" ay —q 2 aias

k{ai, a2, as)

asa; — ajas — 2a§
asas — azasz — 2a§

asa; — ayjaz — 4arjas — 6a§

&)

2
a; —aiaz —ayag

There are several choices for a square root 7 of o, not all of which preserve f. A choice
7 which does preserve f is given by choosing p € k such that p? = q_”2
7(a1) = pai, 7(az) = as and 7(a3z) = p~las.

Case (b) is a special case of case (g) with ¢ = —1.

In case (h),

, and setting

C =k{ay,as,a3)/(aza; — ajas — 242, azas — asas — 2a3, aza; — ajas — 4ajas — 6a?)
with f = a2 — ajas — ajaz. This element f is normal, since
arf = fay azf = f(az + 2a1) asf = f(as + 4az + 6a1).
The automorphism o does have a square root 7, namely by setting
T(a1) = a1 T(az) = a1 + az 7(a3) = 2a; + 2as + as.
One may verify directly that 7 indeed fixes f:

7(f) = (a1 + a2)?® — ai(a1 + az) — a1 (2as + 2as + az)

CL% —aijag —aias.

It remains to show in cases (g) and (h) that 7 is an automorphism of C'. It suffices
to show that 7, interpreted as a graded automorphism of the free algebra k{a1, ag, as),
preserves the defining ideal of C. This is straightforward in case (g), and is left to the
reader. In case (h), we have the following.
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7(aza; — aray — 2a3) = azay — ajay — 203

T(azas — azas — 2a§)

(2@1 + 2as + a3)(a1 + 0,2) — (al + ag)(2a1 + 2a9 + a3) — 2(&1 + CL2)2
= azaj + azas — ai1asz — A2a3 — Qa% — 2a1a9 — 2a2a1 — 2a§

= (aza; — aras — 4ajas — Gaf) + (agas — agsas — 2a§) —2(agay — ajag — Qaf)

T(asar — araz — 4ajas — 6(1%)
= (2a1 + 2a + a3)a; — a1(2a1 + 2as + a3) — 4ay (a1 + az) — 602
= 2asa1 + aza; — 6aijas — ajas — 10a?

= 2(aga; — ajay — 2a3) + (azay — ayasz — 4ajay — 6a?)
Thus 7 is a graded automorphism of C'. The final statement holds by Theorem 5.4. O

Remark 6.2. Inductively one can show

Clzi; on]lza;00] -+ [zn; onl /(f + 25 + - + 22)

has finite CM type, provided for each ¢ = 1,...,n, o; is a graded automorphism of
Clz1;01][22; 02] - - - [zi—1;04—1] and is a square root of the normalizing automorphism of
fi—1 = f+23+--- 22 | that fixes f;_1. We have shown that such square roots o1 always ex-
ist for each pair (C, f), and inductively they can be extended to C[z1; 01][z2; 02 - - - [24; 03]
(e.g. by 04(zi—1) = £2zi—1).

As noted in the proof of Theorem 6.1 above, the noncommutative Kleinian singularities
in Table 1 have finite CM type. In the subsections that follow, in the cases when the fixed
ring is noncommutative, we give matrix factorizations that represent the finitely many
MCM modules over each of the noncommutative Kleinian singularities that appear in
the classification of [4]. These are summarized in Theorem 6.3 below. Together with the
discussion in subsection 6.6, this achieves Goal (II).

6.1. Case (c)

In this case, C' = k(a1, as)/([a?, az), [a3,a1]) is a down-up algebra where the squared
generators are central, and f = a3 — a$. Here, we set dega; = 1 and degas = 3. In [4,
Proposition 2.4], the authors proved there is a single non-free indecomposable MCM over
C/(f). It may be represented by the matrix factorization ¢ : C[—4|&C[-3] — C[-1]@C
and @ : C[—7] @ C[—6] — C[—4] ® C[—3] given by the matrices:

o as 7(1% [ a2 (lil
Y= a2 Y= 2 .
1 CL2 al CLQ
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A brief check shows that the above matrices give a matrix factorization of a3 — a$. Since
the generators of the free modules in the source and target of ¢ are in different degrees,
one may check that the only degree zero maps from (¢,v) to itself are scaling by a
constant. Therefore (¢,1)) is indecomposable.

6.2. Case (d), n odd

Fix n an odd positive integer. Let A = k[a1, az] be the commutative polynomial ring.
We view A as a graded algebra by defining deg(a;) =n and degas = 4. Let 7: A — A
be the graded algebra automorphism determined by 7(a;) = —a; and 7(az) = ag. Let
0 : A — A be the graded 7-derivation determined by §(a1) = 4(—1)("“)/2aén+1)/2 and
d(az) = 0. Let C = Alag; 7, d], where aga = 7(a)ag+0(a) for all a € A. Then C' is graded
by taking deg(as) = n + 2. Since A is a domain, so is C. One can check that a? + a?as
is central and homogeneous in C. By [1], C/(a3 + afa,) has finite CM type with "
indecomposable MCM modules.

The reader will note that while C/(a3 + a%az) has finite CM type, the (graded) alge-
bra A/(a?az) is a commutative “D.” singularity of countable CM type. This example
shows that a version of the theory above that considers double branched covers of the
form A[z;T,d] with nontrivial derivation ¢ may lead to unpredictable behavior where
preservation of finite CM type is concerned.

There is one indecomposable matrix factorization (¢, ) of rank 2 where

o ( as “?) . Cl=2m] & Cl=n—2] = C2—n] & C

—az ag

2
Y= <Zz azl) :C[-3n—2] @ C[-2n — 4] = C[-2n] ® C[-n — 2.
It is straightforward to check that @i = 24424, and Y[—n — 2] = A;24424,. Since
n is odd, the generators of C[—2n] & C[—n — 2] are always in different degrees, hence
the degree 0 endomorphism ring of (¢, ) is isomorphic to k. This implies (p, ) is
indecomposable.

On the other hand, let m = "7'*'1 and s = ”T“ For 1 < j <m — 1, define

as  (—=1)*2a7"7  ajay 0
o 0 —as 2a§+1 —a1as
vi= [25] 0 as (—1)52a;n_j
2&% —aq 0 —as

When n > 45, set F; = Cl4j —2n—4] @ Cl-n—4] @ C[4j — 2n — 2] & C[—n — 2]
and G; = Fj[n+ 2]. Then ¢, determines a degree 0 C-linear homomorphism which we
also denote ¢; : F; — G;. It is straightforward to check that ;p;[—n —2] = Aa2taZass
hence (¢;, ¢;[—n — 2]) is a twisted matrix factorization of a3 + afas. Since n is odd, the
degrees of the generators of F' are all distinct. It follows that the graded endomorphism



268 A. Conner et al. / Journal of Algebra 540 (2019) 234—273

ring of this factorization is isomorphic to k, and hence the twisted matrix factorization
is indecomposable. The proof that (¢;,p,;[—n — 2]) is indecomposable for n < 4j is
completely analogous and left to the reader.

It remains to show that (p;, pi[—n — 2]) 2 (v;,¢;[—n — 2])[s] for ¢ # j and grading
shift s. The generators of F; are in degrees 2n+4 —4j, n+4, 2n+2—4j, and n+2. The
degree difference between the first two is n — 44, which depends on j. Since no other F;
has generators that differ in degree by this amount, there can be no invertible degree 0
homomorphism from (¢;, p;[—n — 2]) to a shift of (¢;, ;[—n —2]).

6.3. Case (g)
Let
2
C =k(a1,a2,a3)/(aza1 — q"ara2, agar — ¢" aias, azas — q"azas)

and let f = ajaz —q°al where § = —(72’) The algebra C' is graded by dega; = degas =n
and degay = 2. The element f is normal and regular. The normalizing automorphism
of f is the graded k-linear automorphism o : C — C defined by af = fo(a) for a € A.
One can check that

2 2
o(a1) =q " a1, o(az) =as, o(a3z)=q" as.

To produce all nontrivial indecomposable matrix factorizations of f up to isomor-
phism, we will apply the machinery of the second double branched cover from Section 5
to a Zhang twist of C.

Let ¢ : C — C be the graded k-linear automorphism given by ¢(a1) = a1, ¢(az) =
q tas and ¢(az) = ¢ "az. Let £ = {&, = ¢" | n € Z} be the left twisting system
associated to ¢. The (left) Zhang twist of C' by &, which we denote C¢, is the graded
k-algebra defined on the graded k-vector space C by c¢; * ca = &p(c1)cz for all ¢q € Cy,
¢y € Cp,. The Zhang twist of a graded C-module M by &, denoted M€, is the graded
C¢-module defined on the graded k-vector space M by c-m = &,(c)m for all ¢ € Oy,
m € Mp. If p: M — N is a degree 0 homomorphism of graded left C-modules, the
underlying k-linear map is also a degree 0 homomorphism of left C¢-modules, which we
denote p& : M — NE.

To help distinguish products in C¢ from those in C, when working in C¢ we denote
the generators ai,as, and ag respectively by z,y, and z. It is straightforward to check
that C¢ = k[z,v, 2]. In particular, f is central in C¢. Furthermore, for any j € N we
have y7 = q_j(j_l)a%, so f=uaxz—q %y

Observe that o, = &,0 for all m € Z. Also note that for any m € Z we have
Em(f) = (¢7™)™f. Thus by Theorem 3.6 of [2], the categories TM Fe(f) and TM Fge (f)
are equivalent. The (inverse) equivalence is given on objects as follows (see Theorem 3.6
of [2] for details). Let ¢ = ¢™. Let £~ = {&,;! | n € Z} be the inverse twisting system.
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Given (p: F — G ¢ : G[—2n] — F) € TMFge(f), let Ao : ™(GE ') — G[—2n)¢ " given
by m — ¢3°8™m_ The image of (p,1) in TMFa(f) is (¢, ¢ 208 A,).

Let A = k[y] where degy = 2 and let t = —¢~%y™. For 1 < j < n, let v; : A[-2j] — A
be given by a +— ay’. Then the pair (—g~°v;[n + j], Yn—;[n — j]) is an indecomposable
graded matrix factorization of ¢, hence

M; = COKER(—q_é’Yj [n + j], Yn—jln — 4])

is an indecomposable graded MCM B = A/(t)-module. Since dimy M; = j, the M;
are pairwise nonisomorphic. Forgetting the gradings, the M; represent all isomorphism
classes of indecomposable finitely generated B-modules (see, for example, Theorem 3.3 of
[12]). Thus (=g~ °v;[n+3j],¥n—j[n—j]) for 1 < j < n—1is a complete set of isomorphism
classes of nontrivial indecomposable (twisted) matrix factorizations of ¢, up to grading
shifts.

By Theorem 5.11 above, it follows that

(pj,15) = A (—q~ "yl + 5], Yn—jln — 41)

() 07 e )

where 1 < 7 < m — 1, gives a complete set of isomorphism classes of nontrivial inde-
composable twisted matrix factorizations of f over C¢, up to grading shifts. By the
equivalence of categories described above, (<p§_1 , 0’2”1/)5_1)\6) where 1 < 7 < n—1is the
desired set of twisted matrix factorizations of f over C. Explicitly,

5—1 7q.7767n‘7a‘; al
sDJ = _q_n(n_j)ag q(.j_n)(n_l)ag’ij

_on 5—1)\ B q(jfn)(nfl)agij 7qn(n7j)a1
¢ wj c —n? j—8—nj J
q " as —q as

for 1 < j < n — 1. These twisted matrix factorizations are different from those given in
Example 6.4 of [2], but one can show that the two sets of twisted matrix factorizations
are the same, up to isomorphism and degree shift.

6.4. Case (h)
In this case, we have that
C =k{ay,as,a3)/(aza; — ajas — 203, azas — asasz — 2a3, aza; — ajaz — 4ajas — 6a3)

which is evidently an iterated Ore extension (with derivation) of the Jordan plane
generated by a; and as, hence is AS-regular. The hypersurface is defined by f =
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a3 — ayaz — ajagz, which is normal in C' with normalizing automorphism given by the
equations as in the proof of Theorem 6.1 for case (h). The authors of [4] show that
C/(f) admits a single indecomposable non-free MCM by [4, Proposition 2.4]. If we let
F = C[-1)? and let G = C?, this MCM may be represented by the twisted matrix
factorization given by the maps ¢ : F' — G and 9 : "G — F where

_(—a3 —a1 —a2 b= ai a1 + a2
L an al - —2&1 — a9 —2(11 — 2&2 — as ’

One may verify that oy = )\ch and ™o = AL and that the only degree zero morphisms
from (¢, 1)) to itself are constant (even though there are generators of F' and G that are
in the same degree).

6.5. Summary for Goal II

We summarize the computations above in the following theorem. To see that our
list of (non-isomorphic) indecomposable matrix factorizations is complete, note that
the number of factorizations we have produced in each case matches the rank of the
corresponding McKay quiver (see [3, Table 6]). By Theorem 1.1, this equals the number
of indecomposable MCM modules.

Theorem 6.3. The nontrivial indecomposable twisted matrix factorizations of the non-
commutative Kleinian singularities given in Table 1 (in the cases where the fized ring is
noncommautative) are:

(c) F=Cl-4aC[-3],G=C[-1l®C, and ¢ : F — G, ¢ : "G — F are given by

4 4
_ a2 _a1 _ a/2 al
Y= (—a% as > ond 9 = <a% a2>'
(@) (for n odd) F = C[-2n|® C[-n —2], G = C[-n+ 2] C, and ¢ : F — G,
V™G — F are given by

2 2
_ (a3 aj _ (a3 —af
Y= (—az a1> and ¢ = (ag as > '

Moreover, for each 1 < j < an and s = "TH, a twisted matriz factorization

(pj,i[—2]) where F; = C[4j —2n —4] @ Cl-n —4]® C[4j —2n — 2] @ C|—n — 2],
Gj = Fjin+2], and ¢; : F; — G; is given by

as (—1)S2a;"_j a1z 0
0 —as 244 —ajay
al 0 as (—1)82a;nij

2al —ay 0 —as
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Table 2

Presentations and gradings for the commutative Kleinian singularities k[u, v]G =klz,y, 2]/(f).
Type deg(z) deg(y) deg(z) f
Ap,mn>1 n4+1 n-+1 2 z2+y2+z"+l
D,,n>4 2n — 2 2n — 4 4 2?2 + 2z 4271
Es 12 8 6 22 4 3 + 2%
E; 18 12 8 22 4 3 +y2?
Es 30 20 12 22 95+ 20

Distinct values of j yield non-isomorphic twisted matrix factorizations.
(g,b) For each 0 < j<n, F; =C[-n—jl®C[-2n+j], G; = C[-n+j]® C[—j|, and
v Fj = Gj, ¢; : ™G — Fj are given by

—g(5)+i—nigd
- q ) _ ai , d
i <_q—n<n—g>a3 qo—n)(n—l)ag—J)’ an
qU=me=Dgn=i  _n(n=j)q,

Vi = ( ¢ " a3 —q(3)+j‘"ja§) '

Distinct values of j yield non-isomorphic twisted matrix factorizations.
(h) F=C[-1?, G=C? and ¢ : F — G, ¢ : "G — F are given by

_ ([ —a3 —a1 — a2 - a a1 + as
Y= < ag a1 ) and w - <—2a1 — az —2a1 — 2&2 — a3> :
6.6. The commutative graded case

As noted above, Theorem 1.1 and [3, Prop. 7.1] imply that all hypersurface singu-
larities in Table 1 have finite CM type, and the number of indecomposable MCMs in
each case equals the rank of the corresponding McKay quiver. In particular, this holds
in case of commutative Kleinian singularities as defined at the beginning of this section.
We note that all ADE hypersurface singularities appear in case (a). In case (f), only
the D and E types appear, see [3, Table 6]. The equations and grading defining each
hypersurface singularity are as follows (see [12, pp 87-89]).

The fixed rings appearing cases (d) (n even) and (e) are isomorphic to rings in the
table above. In each case we have n > 3. In case (d) (n even), setting = = a1, y = aq,
z = ag yields a commutative Kleinian singularity of type D, 14)/2. In case (e), setting
z = (=1)"a1, y = ag, and z = ag yields a commutative Kleinian singularity of type
Agp_1.

To complete Goal II in the commutative cases, it suffices to present families of graded
matrix factorizations that represent non-isomorphic indecomposable MCMs for each
hypersurface listed in Table 2. These families were described in [7] (see also [12, pp.
153-158]), and we will not reproduce them here. The interested reader will find it straight-
forward to assign degrees to free module generators so that the maps defined by the
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matrices given in [7] or [12] are homogeneous of degree 0. We conclude by observing that
these factorizations are indecomposable and nonisomorphic in the graded category.

Following [7], let p be a finite dimensional, irreducible representation of G, and let
E, denote the corresponding simple left k[G]-module. Let C' = k[u,v] and let M, =
Homyg)(E,, C). Note that M, is a left C%-module and, since E, is simple, M, inherits
an N-grading from C compatible with the action of C¢. In fact, {M, | p irreducible}
is a complete set of non-isomorphic, indecomposable MCMs in the category of graded
C%-modules. To see this, we first note that as graded left C“-modules, M, = (C® E,- )¢
where p* is the dual representation; here G acts diagonally on the tensor product. Now,
by [5, Lemma 2.7], the set {C'® E,~ | p irreducible} is a complete set of nonisomorphic,
indecomposable projectives over the smash product C#G. By [12, Corollary 5.16], (C ®
E,- )¢ is an indecomposable C%-module, so M, » is an indecomposable graded C%-module.
Finally, Corollary 4.6 and Remark 4.7 of [7] show that M, has a minimal resolution by
finite rank graded free C“-modules that is periodic of period 2. It follows from [2,
Theorem 4.7] that M, is a MCM C%-module. The matrices in the minimal resolution
described in [7] are the desired graded factorizations.
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