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1. Introduction

Throughout let k be an algebraically closed field of characteristic zero, and S be a 
noetherian k-algebra. When S = k[x1, x2]G is the ring of invariants under the action of a 
finite subgroup G of SL2(k), acting linearly on k[x1, x2], then S = k[z1, z2, z3]/(f) is the 
coordinate ring of a hypersurface in affine 3-space, namely that of a Kleinian singularity. 
(In this case, we refer to the ring S as a (commutative) Kleinian singularity as well.) 
The ring S has finite Cohen-Macaulay type, and the indecomposable maximal (graded) 
Cohen-Macaulay (MCM) S-modules can be given explicitly; they are presented in terms 
of matrix factorizations in [7] (see also [12, Chapter 9, §4]). One of our achievements in 
this work is that we use the theory of twisted matrix factorizations from [2] to further the 
study of MCM modules over (the coordinate rings of) ‘noncommutative hypersurfaces’. 
In doing so, we obtain a noncommutative version of Knörrer’s Periodicity Theorem [10]
(see also [12, Theorem 8.33]).

To obtain an explicit description of MCMs in an analogous noncommutative invariant 
theory context, commutative polynomial rings are replaced by noetherian (connected 
graded) Artin-Schelter (AS-) regular algebras (Definition 2.7), which share homological 
properties with commutative polynomial rings. The analog of a finite subgroup of SL2(k)
acting linearly on k[x1, x2] is a finite-dimensional Hopf algebra H that acts on an AS-
regular algebra C of Gelfand-Kirillov dimension 2 inner faithfully, preserving the grading 
of C, and with trivial homological determinant. These Hopf algebras, called “quantum 
binary polyhedral groups”, were classified in [3]. In [5] and [4], when H is semisimple, an 
analog of the classical McKay correspondence was obtained; the fixed ring CH under each 
of these actions was computed, and was shown to be a “hypersurface” in an AS-regular 
algebra of dimension 3. That is, CH is an algebra of the form B = A/(f), where A is an 
AS-regular algebra of dimension 3 and f is a normal element of A. Hence B may be re-
garded as a noncommutative Kleinian singularity. The element f associated to each CH

was given explicitly in [4, Table 3] (see Table 1 of Section 6). With a suitable definition of 
maximal Cohen-Macaulay (MCM) module (Definition 2.6), the following result from [5]
summarizes the McKay correspondence in this setting. Note that a C-module M is called 
initial if it is a graded module, generated in degree 0, so when C is N-graded, M<0 = 0.

Theorem 1.1. [5, Theorems A and C] Let C be a noetherian AS-regular algebra of dimen-
sion 2 that admits an inner faithful action of a semisimple Hopf algebra H, preserving the 
grading, and with trivial homological determinant. There are bijective correspondences 
between the isomorphism classes of:

(a) indecomposable direct summands of C as left CH-modules;
(b) indecomposable finitely generated, projective, initial left EndCH C-modules;
(c) indecomposable finitely generated, projective, initial left C#H-modules;
(d) simple left H-modules; and
(e) indecomposable MCM left CH-modules, up to a degree shift.
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In [2] a noncommutative version of a matrix factorization was defined for hypersur-
faces of the form S = R/(f), where R is not necessarily commutative, but f is a normal 
element of R. The graded automorphism of R (the “twist”) induced by this normal 
element f is denoted by σ, and σ can be used to produce a graded left R-module σM . 
Specifically, define σM to be the graded left R-module with σM = M as graded k-vector 
spaces, where R acts via the rule r ·m = σ(r)m. Further if f has degree d, we can shift the 
degrees in σM and define twM := σM [−d] (the twisted module) from a graded R-module 
M . A (left) twisted matrix factorization (Definition 3.2) is given by a pair of maps (ϕ, ψ), 
where for finite rank free graded R-modules F and G there are graded left R-module 
homomorphisms ϕ : F → G and ψ : twG → F with ϕψ = λG

f and ψtwϕ = λF
f , where 

λF
f (resp. λG

f ) is the map from F (resp. twG) given by left multiplication by f (see No-
tation 2.3). factorizations are reviewed in Section 3. In particular, when A is AS-regular 
and B = A/(f), twisted matrix factorizations are related to maximal Cohen-Macaulay 
B-modules by the following generalization of a theorem of Eisenbud [6].

Standing notation for the rest of the Introduction. Let A be a left noetherian AS-regular 
algebra, let f ∈ Ad be a normal and regular element of positive degree d, and let B =
A/(f). Take σ to be the graded automorphism of A induced by the normality of f in A. 
We note that the assumption that σ has finite order, needed in some parts of [2] is not 
needed in the following theorem.

Theorem 1.2. [2, Lemma 5.3, Theorem 4.2(3,4)] Retain the notation above. The cokernel 
of ϕ of a twisted matrix factorization (ϕ, ψ) is a maximal Cohen-Macaulay B-module. 
Conversely, every maximal Cohen-Macaulay B-module with no free direct summand can 
be represented as the cokerϕ for some reduced twisted matrix factorization (ϕ, ψ).

When S = R/(f) is the hypersurface associated to a (commutative) Kleinian singu-
larity, producing an explicit matrix factorization of the singularity f is facilitated by 
use of the double branched cover S# := R[z]/(f + z2) of S. Knörrer [10] showed how to 
relate MCM modules over S# to those over S by proving a relation between the ma-
trix factorizations of f over R and those of f + z2 over R[z] (see also [12, Chapter 8]). 
We achieve a similar result in the noncommutative setting by employing the category 
of twisted matrix factorizations TMFR(f) of f in R (Definition 3.2), where R is not 
necessarily commutative. Now our first main result is given as follows.

Theorem 1.3 (Theorem 3.8). A Krull-Schmidt Theorem holds for elements of the category 
TMFA(f) that are not irrelevant (as in Definition 3.3(2)).

We proceed next to define a double branched cover in a noncommutative setting (cf. 
[12, Section 8.2]). Noncommutativity introduces a number of obstructions to this process, 
and our results require several technical assumptions on the automorphism σ induced by 
the normal element f . Our hypotheses include that f has even degree and has a square 
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root automorphism 
√
σ with 

√
σ(f) = f (see Hypotheses 3.10). The double branched 

cover

B# := A[z;
√
σ]/(f + z2)

of B is then defined. We also define a graded automorphism ζ of A[z; 
√
σ] that extends 

to B# by mapping z to −z, and form the skew group-ring B#[ζ].

Theorem 1.4 (Theorem 4.9). Retain the notation and hypotheses above. Then, we ob-
tain that MCMζ(B#), the category of graded B#[ζ]-modules that are graded MCM 
B#-modules, is equivalent to the category of twisted matrix factorizations TMFA(f) of 
f in A.

We also relate analogs of reduced twisted matrix factorizations (Definition 3.3(5)) to 
those that are symmetric (Definition 3.11).

Theorem 1.5 (Theorem 4.15). There exists a functor C from TMFA(f) to
TMFA[z;

√
σ](f + z2) so that the reduced twisted matrix factorizations in the image of 

C are precisely those that are symmetric.

Our next task is to describe the indecomposable MCM B-modules, which via Theo-
rem 1.2, can be done using twisted matrix factorizations. We first exploit the correspon-
dence between twisted matrix factorizations of f and of f+z2 to decompose factorizations 
in Lemma 5.3, and then use this result to prove the following theorem.

Theorem 1.6 (Theorem 5.4). The algebra B has finite Cohen-Macaulay type if and only 
if B# has finite Cohen-Macaulay type.

Then we use two applications of the double branched cover construction to form the 
second double branched cover (B#)# (Definition-Notation 5.6), along with a change of 
variable (see Remark 5.7) to relate twisted matrix factorizations of f and twisted matrix 
factorizations of f +uv. With this, we achieve our noncommutative version of Knörrer’s 
Periodicity Theorem below.

Theorem 1.7 (Theorem 5.11, Corollary 5.12). There exists a bijection between the sets 
of isomorphism classes of nontrivial indecomposable graded matrix factorizations of f
and those of f + uv. Thus, there is also a bijection between the sets of isomorphism 
classes of indecomposable non-free MCM B-modules and indecomposable non-free MCM 
(B#)#-modules.

Finally in Section 6 we present explicit matrix factorizations for the noncommutative 
Kleinian singularities of [4] in Theorem 6.3.
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The paper is organized as follows. Section 2 contains general background material and 
Section 3 contains the results on twisted matrix factorizations that are needed in the 
paper. Section 4 describes the double branched cover in the noncommutative setting. 
Our version of the Knörrer Periodicity Theorem is established in Section 5. We illustrate 
some of the results above in Section 6 for noncommutative Kleinian singularities; explicit 
matrix factorizations of the singularities found in [4] are presented.

2. Background material

We recall for the reader background material on graded algebras, graded modules, 
and twisting. We also discuss noncommutative graded analogs of results on modules 
over commutative local rings.

We begin with a brief discussion of categories of modules over graded algebras. Let 
R be a graded k-algebra and let M be a finitely generated graded (left) R-module. We 
also assume that R is locally finite, i.e. that each of its graded components is finite 
dimensional.

Notation 2.1 (RMod, RGrMod, Rgrmod, ̃ ). Consider the following notation and termi-
nology.

(1) We denote the category of ungraded left R-modules by RMod.
(2) Since R is a graded algebra, we also consider the subcategory of RMod con-

sisting of Z-graded, bounded below, locally finite left R-modules, namely graded 
left R-modules, with degree 0 morphisms; this is denoted RGrMod. Morphisms in 
RGrMod will be called graded homomorphisms.

(3) The functor that forgets grading will be denoted

˜ : RGrMod → RMod.

(4) The subcategory of RGrMod consisting of finitely generated graded left R-modules 
will be denoted Rgrmod.

We note that RGrMod is a k-linear abelian category, and if R is graded noetherian, 
Rgrmod is as well.

We also note that since R is locally finite, finitely generated graded R-modules 
are also locally finite. It follows that Rgrmod is Hom-finite, which is to say that 
HomRgrmod(M, N) is a finite-dimensional k-vector space for all M, N ∈ Rgrmod. If, 
in addition, R is assumed to be graded noetherian, then the abelian category Rgrmod
is a Krull-Schmidt category. That is, every object of Rgrmod decomposes into a finite 
direct sum of indecomposable objects, and the endomorphism ring of any indecompos-
able object is a local ring [11, Lemma 5.2, Theorem 5.5]. Moreover, the decomposition is 
unique up to isomorphism and permutation of factors [11, Theorem 4.2]. In particular, 
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we have the following result on the endomorphism ring of an indecomposable module in 
Rgrmod.

Proposition 2.2. If M is a finitely generated graded indecomposable R-module, then the 
degree 0 endomorphism ring EndR(M) is a local ring. �

Now we discuss shifts within the category RGrMod. For M ∈ RGrMod and n ∈ Z

we define M [n] to be the graded left R-module with M [n]j = Mn+j for all j ∈ Z. If 
α : M → N is a graded homomorphism of graded left R-modules, we let α[n] denote the 
unique element of HomRGrMod(M [n], N [n]) such that α̃[n] = α̃.

Next, we turn our attention to twists within RGrMod. Let σ : R → R be a degree 0 
graded algebra automorphism of R. For M ∈ RGrMod we define σM to be the graded 
left R-module with σM = M as graded k-vector spaces where R acts via the rule 
r ·m = σ(r)m. If ϕ : M → N is a graded homomorphism of graded left R-modules, then 
ϕ also defines a morphism σM → σN . To avoid confusion, we denote this morphism by 
σϕ, but as linear maps ϕ = σϕ. The functor σ(−) is an autoequivalence of RGrMod with 
inverse σ

−1(−). Note that M is a graded free left R-module if and only if σM is, and the 
functors σ(−) and (−)[n] commute.

Consider the non-standard notation introduced below.

Notation 2.3 (f , σ, tw(−),tw−1(−), λM
f ). Let f ∈ R be a normal, regular homogeneous 

element of positive degree d and let σ : R → R be the graded automorphism of R deter-
mined by the equation rf = fσ(r). We denote the composite autoequivalence σ(−)[−d]
by tw(−) and its inverse by tw

−1(−). For any graded left R-module M , left multiplication 
by f defines a graded homomorphism

λM
f : twM → M.

Moreover, if ϕ : M → N is a graded homomorphism of graded left R-modules, we 
have that λN

f ◦ twϕ = ϕ ◦ λM
f .

We end this section by recalling the definitions of some graded algebras and graded 
module categories that are important to our work: skew group rings, maximal Cohen-
Macaulay modules, and Artin-Schelter regular algebras.

Definition 2.4. Given a graded k-algebra R and a finite subgroup G ⊂ Aut(R) of graded 
automorphisms of R, we can form the skew group ring R#G as follows. As a graded 
vector space, R#G = R⊗k kG, and multiplication is given by

(r1 ⊗ g1)(r2 ⊗ g2) = r1g1(r2) ⊗ g1g2,

for r1, r2 ∈ R and g1, g2 ∈ G.
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In particular, R#G is a graded free R-module. Observe that R#G is a lo-
cally finite graded k-algebra. Since |G| is invertible in k, the zeroth component
(R#G)0 ∼= kG is semisimple. In this case, viewing each graded component of R#G

as a kG-module, we obtain a direct sum decomposition

R#G =
⊕
χ

Nχ

where the sum is taken over the irreducible characters of G and Nχ is the sum of the 
irreducible kG-submodules of R#G of character χ. It follows from character theory that 
the decomposition holds in the category of modules over the fixed subalgebra (R#G)G. 
We call Nχ the weight submodule for χ.

Next, we consider the class of (graded) maximal Cohen-Macaulay modules that are 
homologically well-behaved, but first we need to recall the notion of depth.

Definition 2.5. The depth of a left (or right) R-module M is defined to be

depth(M) := inf{i | ExtiR(k,M) 	= 0}.

If ExtiR(k, M) = 0 for all i, then depthM = ∞.

Here, ExtR(−, −) is the derived functor of the graded Hom functor Hom(M, N) =⊕
n∈Z

HomRGrMod(M, N [n]).

Definition 2.6. Let R be a graded left noetherian k-algebra. A finitely generated 
graded R-module M is called (graded) maximal Cohen-Macaulay (MCM) provided that 
ExtiR(M, R) = 0 for all i 	= 0.

Graded maximal Cohen-Macaulay R-modules form a full subcategory of Rgrmod, 
which we denote by MCM(R). The category MCM(R) inherits the Krull-Schmidt prop-
erty from Rgrmod.

Moreover, we also consider the category of stable maximal Cohen-Macaulay modules, 
which we denote MCM(R), to have the same objects as MCM(R), but for M, N ∈
MCM(R), we have

HomMCM(R)(M,N) = HomR(M,N)/V

where V is the subspace of morphisms which factor through a graded free R-module.
Finally, we recall the Artin-Schelter regularity condition on graded k-algebras.

Definition 2.7. A connected graded k-algebra A is called Artin-Schelter (AS)-regular of 
dimension n if A has global dimension n, finite Gelfand-Kirillov dimension, and if it 
satisfies the Artin-Schelter Gorenstein condition, namely that ExtiA(k, A) = δi,nk.
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One consequence of having this property is that the MCM condition can be verified 
via the result below.

Proposition 2.8. [2, Lemma 5.3] Let A be a left noetherian, AS-regular, let f be a 
homogeneous normal element of A of positive degree, and let B := A/(f). Then for 
any finitely generated graded left B-module, we obtain that pdA(M) = 1 if and only if 
ExtiB(M, B) = 0 for all i 	= 0. �
Remark 2.9. The definition of graded MCM module given in Definition 2.6 is different 
from the definition used in [5]. As shown in [8, Proposition 4.3] the two definitions are 
equivalent when the algebra R is noetherian AS-regular, or is the quotient of a noetherian 
AS-regular algebra by a normal regular element (as then R satisfies the χ-condition). If 
R is noetherian AS-regular, every MCM R-module is graded free (see [5, Lemma 3.13]).

3. On twisted matrix factorizations

The goal of this section is to provide preliminary results on twisted matrix factor-
izations as defined in [2], and as a consequence, to generalize several results on matrix 
factorizations in the commutative setting.

To begin, let us recall the notation from Section 2; see also Notation 2.3.

Notation 3.1 (R, f , d, σ, S, A, B). For the rest of the paper, let R be a noetherian, con-
nected, N-graded, locally finite-dimensional algebra over k. As in Section 2, let f ∈ Rd be 
a normal, regular homogeneous element of positive degree d, and let σ be the normalizing 
automorphism of f . Let S denote the quotient algebra R/(f).

Moreover, we reserve the notation A for a noetherian Artin-Schelter (AS-)regular 
algebra and we let B := A/(f) for f as above.

Definition 3.2 (F , G, TMFR(f), TMF (f)). Consider the following terminology.

(1) A twisted (left) matrix factorization of f over R is a pair

(ϕ : F → G, ψ : twG → F )

of graded left R-module homomorphisms, where F and G free graded R-modules of 
finite rank, and ϕψ = λG

f and ψtwϕ = λF
f . (Note that twG is free whenever G is.)

(2) A morphism (ϕ, ψ) → (ϕ′, ψ′) of twisted matrix factorizations is a pair of graded 
R-module homomorphisms (α : F → F ′, β : G → G′) such that ϕ′α = βϕ; it is an 
isomorphism if α and β are isomorphisms.

(3) Using the objects in (1) and morphisms in (2), the resulting category of twisted 
matrix factorizations of f over R is denoted TMFR(f), or just TMF (f).
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It is easy to see that the maps above ϕ, ψ are injective when f is regular.
Since R is noetherian, we may assume that if (ϕ : F → G, ψ : twG → F ) is a twisted 

matrix factorization, then rank(F ) = rank(G). This equality need not hold otherwise, 
as noted in [13, Remark 4.6].

It is straightforward to show that the category TMF (f) is preserved under both the 
twist and shift functors. Namely, if (ϕ, ψ) is a twisted matrix factorization of f , then so 
is (ψ, twϕ). Likewise, (ϕ, ψ)[n] := (ϕ[n], ψ[n]) is a twisted matrix factorization for any 
n ∈ Z.

The following twisted matrix factorizations are of interest in this work; recall Nota-
tion 2.3.

Definition 3.3. Take (ϕ : F → G, ψ : twG → F ) ∈ TMFR(f).

(1) (ϕ, ψ) is called trivial if (ϕ, ψ) ∼= (λF
f , 1twF ) or (ϕ, ψ) ∼= (1F , λF

f ), where F is a graded 
free R-module.

(2) (ϕ, ψ) is called irrelevant if it is trivial with F = 0.
(3) If (ϕ′, ψ′) is another twisted matrix factorization of f , then the direct sum of (ϕ, ψ)

and (ϕ′, ψ′) is defined as

(ϕ,ψ) ⊕ (ϕ′, ψ′) := (ϕ⊕ ϕ′, ψ ⊕ ψ′),

which is also a twisted matrix factorization of f .
(4) If (ϕ, ψ) is not irrelevant and is not isomorphic to a direct sum of non-irrelevant 

elements of TMFR(f), then (ϕ, ψ) is called indecomposable.
(5) If (ϕ, ψ) is not isomorphic to a twisted matrix factorization having a non-irrelevant, 

trivial direct summand, then we say (ϕ, ψ) is reduced.

Note that irrelevant twisted matrix factorizations are reduced; they are the zero object 
of the additive category TMFR(f).

Notation 3.4 (TMF 0
R(f), TMF t

R(f)). Let TMF 0
R(f) denote the full subcategory of 

TMFR(f) consisting of factorizations (ϕ, ψ) such that cokerϕ = 0. Let TMF t
R(f) denote 

the full subcategory of TMFR(f) consisting of finite direct sums of trivial factorizations.

Note that TMF 0
R(f) contains the irrelevant factorization. It is also closed under direct 

sums and grading shifts (it is an additive subcategory of TMFR(f)), but it is not closed 
under tw(−).

The first two parts of the following result show that TMF t
R(f) is the smallest additive 

subcategory of TMFR(f) that contains TMF 0
R(f) and is closed under grading shifts and 

tw(−).

Proposition 3.5. Assume R is graded noetherian.



A. Conner et al. / Journal of Algebra 540 (2019) 234–273 243
(1) TMF 0
R(f) is a subcategory of TMF t

R(f).
(2) If (ϕ, ψ) ∈ TMF t

R(f), then (ϕ, ψ) ∼= (ϕ′, ψ′) ⊕ tw(ϕ′′, ψ′′) where (ϕ′, ψ′) and 
(ϕ′′, ψ′′) ∈ TMF 0

R(f).
(3) The category TMF 0

R(f) is equivalent to the category proj(R) of finitely generated, 
graded projective R-modules.

(4) The categories TMF 0
R(f) and TMF t

R(f) are Krull-Schmidt categories.

Proof. (1) Suppose (ϕ : F → G, ψ : twG → F ) ∈ TMF 0
R(f). Since R is graded 

noetherian, we have rank(F ) = rank(G), as noted above. Thus the map ϕ is a graded 
isomorphism and (ϕ, ψ) ∼= (1F , λF

f ) via the isomorphism (1F , ϕ−1).
(2) This follows immediately from the definition of TMF t

R(f), the additivity of tw(−), 
and the fact that (λF

f , 1twF ) = tw(1, λF
f ).

(3) First we define a functor T : proj(R) → TMF 0
R(f). Let F, G ∈ Rgrmod be graded 

projective. Then F and G are finitely generated, graded free modules. Put T (F ) =
(1F , λF

f ). Clearly, T (F ) ∈ TMF 0
R(f). If δ : F → G is a degree 0 homomorphism of 

graded R-modules, then T (δ) = (δ, δ) : T (F ) → T (G) is a morphism of twisted matrix 
factorizations.

Next we define P : TMF 0
R(f) → proj(R). If (ϕ : F → G, ψ : twG → F ) ∈ TMF 0

R(f), 
put P(ϕ, ψ) = F , and if (α, β) : (ϕ, ψ) → (ϕ′, ψ′) is a morphism in TMF 0

R(f), put 
P(α, β) = α.

It is clear from the definitions that PT = idproj(R). On the other hand, if (ϕ : F →
G, ψ : twG → F ) ∈ TMF 0

R(f), then as in the proof of (1) we have (ϕ, ψ) ∼= (1F , λF
f ) =

T P(ϕ,ψ) via the isomorphism (1F , ϕ−1). Naturality is a consequence of the definition 
of morphism of twisted matrix factorizations, so T P ∼= idTMF 0

R(f).
(4) The category proj(R) is a Krull-Schmidt category and the equivalence T is ad-

ditive, so TMF 0
R(f) is a Krull-Schmidt category. The same goes for TMF t

R(f) by 
part (2). �

Now let us consider two more preliminary results on the category TMFR(f).

Proposition 3.6. Assume R is graded noetherian. If (ϕ, ψ) ∈ TMFR(f), then (ϕ, ψ) ∼=
(ϕ′, ψ′) ⊕ (ϕ′′, ψ′′) for some (ϕ′′, ψ′′) ∈ TMF t

R(f) and (ϕ′, ψ′) ∈ TMFR(f) is reduced.

Proof. The statement is true if (ϕ, ψ) is reduced, since the irrelevant factorization is 
in TMF t

R(f). If (ϕ, ψ) is not reduced, then there exist twisted matrix factorizations 
(ϕ′ : F ′ → G′, ψ′ : twG′ → F ′) and (ϕ′′ : F ′′ → G′′, ψ′′ : twG′′ → F ′′) such that 
(ϕ, ψ) ∼= (ϕ′, ψ′) ⊕ (ϕ′′, ψ′′) and (ϕ′′, ψ′′) is trivial and not irrelevant. In particular, 
rank(F ′′) ≥ 1. Furthermore, since R is graded noetherian, rank(F ′) < rank(F ), and the 
result follows by induction on rank(F ). �
Proposition 3.7. A twisted matrix factorization (ϕ, ψ) ∈ TMFR(f) is reduced if and only 
if cokerϕ has no free S-module direct summand. Reduced graded matrix factorizations 
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(ϕ, ψ) and (ϕ′, ψ′) ∈ TMFR(f) are isomorphic if and only if cokerϕ ∼= cokerϕ′ as 
S-modules.

Proof. The first statement follows from Proposition 2.9 and Lemma 2.11 of [2]. The 
second statement follows from [2, Proposition 2.4] and the fact that minimal graded 
free resolutions are chain isomorphic if and only if they resolve isomorphic graded mod-
ules. �

Now we prove that TMFA(f) is a Krull-Schmidt category (when A is noetherian 
AS-regular).

Theorem 3.8 (Krull-Schmidt Theorem for TMFA(f)). Recall Notation 3.1. If
(ϕ, ψ) ∈ TMFA(f) is not irrelevant, then (ϕ, ψ) is isomorphic to a finite direct sum of 
indecomposable twisted matrix factorizations with local endomorphism rings. The sum-
mands are uniquely determined up to permutation and isomorphism.

Proof. By Propositions 3.6 and 3.5, it suffices to consider the case where (ϕ, ψ) is re-
duced.

If (ϕ, ψ) is reduced, then M = cokerϕ is a maximal Cohen-Macaulay B-module with 
no free direct summands by Theorem 1.2. In particular, M is finitely generated, so by 
the Krull-Schmidt Theorem for Bgrmod, we may write M ∼= M1 ⊕ · · · ⊕ Mn where 
each Mi is a nonzero, non-free indecomposable B-module. Since M is MCM, the same 
is true of each Mi. By Theorem 1.2, there exist reduced twisted matrix factorizations 
(ϕ1, ψ1), . . . , (ϕn, ψn) such that Mi = cokerϕi. Then (ϕ, ψ) ∼= (ϕ1, ψ1) ⊕ · · · ⊕ (ϕn, ψn)
by Proposition 3.7. Uniqueness follows from the uniqueness of the Mi and again by 
Proposition 3.7.

It remains to prove that the endomorphism ring of each indecomposable is local; this 
will be established in the next lemma. �

In addition to completing the proof of Theorem 3.8, the next result explicitly describes 
the form of graded automorphisms of a twisted matrix factorization.

Lemma 3.9. Let (ϕ : F → G, ψ : twG → F ) ∈ TMFR(f) and let M = cokerϕ.

(1) If (ϕ, ψ) is reduced, then there is a ring isomorphism

E := End(ϕ,ψ) ∼= EndR(M).

(2) If (ϕ, ψ) is reduced and indecomposable, then E is local and every unit of E has the 
form c(idF , idG) +(ρ1, ρ2) where c ∈ k is a nonzero scalar and ρ1 and ρ2 are nilpotent 
automorphisms of F and G, respectively.
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Proof. (1) Assume that (ϕ, ψ) is reduced. Let π : G → M denote the canonical quotient 
map. Given (α, β) ∈ E, we have πβϕ = πϕα = 0 since imϕ = kerπ. Thus πβ induces a 
well-defined graded endomorphism of M denoted cokerβ, and we have a map

End(ϕ,ψ) → EndR(M), given by (α, β) 
→ cokerβ.

It is straightforward to check that this map is a ring homomorphism. We claim it is 
surjective. If Φ : M → M is a graded endomorphism, then since G is graded projective, 
there exists a graded module map β : G → G such that πβ = Φπ. Moreover, πβϕ =
Φπϕ = 0 so imβϕ ⊂ imϕ. Thus by the graded projectivity of F , there exists a graded 
module map α : F → F such that ϕα = βϕ. Hence (α, β) ∈ E. Since πβ = Φπ, 
cokerβ = Φ and the map of endomorphism rings is a surjective ring homomorphism. A 
graded endomorphism (α, β) is in the kernel of this homomorphism if and only if πβ = 0, 
or equivalently, imβ ⊂ imϕ = kerπ. Since (ϕ, ψ) is reduced, imϕ ⊂ R+G, where R+ is 
the augmentation ideal of R. Since β is a degree 0 homomorphism, (α, β) is in the kernel 
if and only if β = 0. This implies imα ⊂ kerϕ = 0; so, α = 0 as well. This proves (1).

As a brief aside, we remark that any graded homomorphism from a finite rank graded 
free module to itself has a Jordan-Chevalley decomposition. Let F be graded free of rank 
r and let α : F → F be a graded homomorphism. Choose a homogeneous basis for F and 
write F = R[d1]n1 ⊕ · · · ⊕ R[dm]nm where d1 < · · · < dm. Let πi : F → R[di]ni denote 
the projection map. For each 1 ≤ i ≤ m, change the basis of R[di]ni so the matrix of 
πiα|R[di]ni : R[di]ni → R[di]ni with respect to the new basis is in Jordan normal form. 
Since α is a degree 0 homomorphism, the matrix A of α is upper triangular. We may 
therefore write

α = αs + αn

where αs is the map given by the diagonal part of A and αn is the map given by the 
strictly upper-triangular (nilpotent) part of A.

(2) Resuming the proof, assume further that (ϕ, ψ) is indecomposable. Then M is 
indecomposable, and hence E is local by Proposition 2.2.

Let (α, β) ∈ E. Since E is local and (αn, βn) is not a unit, (αn, βn) ∈ rad(E). Thus if 
(α, β) ∈ rad(E), we must have (αs, βs) ∈ rad(E). This implies

(idF − γαs, idG − γβs)

is a unit for all γ ∈ k. Hence α has no nonzero eigenvalues and (αs, βs) = (0, 0). This 
proves

rad(E) = {(α, β) ∈ E | (αs, βs) = (0, 0)}.

Now suppose (α, β) ∈ E is a unit. Since k is algebraically closed and E is finite 
dimensional, E/rad(E) ∼= k. (The base field itself is the only finite-dimensional division 
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algebra over an algebraically closed field.) Since the diagonal part of α cannot be modified 
by elements of rad(E), we have (αs, βs) = c(idF , idG) for some nonzero scalar c ∈ k×. �

We end this section with a discussion of the symmetric property of twisted matrix 
factorizations. But first we need to introduce the following standing hypothesis and 
notation.

Hypothesis 3.10 (
√
σ, τ , �). We assume that there exists a graded algebra automorphism √

σ of R such that (
√
σ)2 = σ. We also assume that

• the degree d of f is even, and
•

√
σ(f) = f .

(Without these assumptions the element f + z2, that we analyze later in the paper, will 
not be normal.) Moreover, denote the functor 

√
σ(−)[−�] by τ (−), for � := d/2. Thus,

τ2
(−) = tw(−).

Definition 3.11 (T ). Define the endofunctor of TMF (f) as follows:

T : TMF (f) → TMF (f), (ϕ,ψ) 
→ τ−1
(ψ, twϕ) = (τ

−1
ψ, τϕ).

(Then, T 2(ϕ, ψ) = (ϕ, ψ) and hence T 2(−) is the identity functor on TMF (f).) If 
(ϕ, ψ) ∼= T (ϕ, ψ), we call the twisted matrix factorization (ϕ, ψ) of f symmetric. Other-
wise, we call (ϕ, ψ) asymmetric.

Indecomposable symmetric factorizations have the following important characteriza-
tion.

Proposition 3.12. Let (ϕ, ψ) ∈ TMF (f) be symmetric and indecomposable. Then, (ϕ, ψ)
is isomorphic to a twisted matrix factorization of the form (ϕ0,

τϕ0) where ϕ0 : F →
τ−1

F satisfies (ϕ0)(τϕ0) = (λf )(τ
−1

F ).

Proof. Let α, β be graded isomorphisms such that the diagram

F
ϕ

α

G

β

τG
τ−1

ψ
τ−1

F

commutes. Recall ψ : τ2
G → F , so indeed τ

−1
ψ : τG → τ−1

F . Put

X := τβα and Y := τ−1
αβ.
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Then (X, Y ) is an automorphism of (ϕ, ψ). By Lemma 3.9 we may assume (rescaling if 
necessary, as k is algebraically closed) that

(X,Y ) = (idF , idG) + (ρ1, ρ2)

where ρ1 and ρ2 are nilpotent automorphisms of F and G, respectively.
Since ρ1 = X − idF and ρ2 = Y − idG, we have

αρ1 = τρ2α, βρ2 = τ−1
ρ1β, and ϕρ1 = ρ2ϕ.

Since ρ1 and ρ2 are nilpotent, we use the Taylor series for (1 + x)−1/2 to define 
(idF + ρ1)−1/2 and (idG + ρ2)−1/2. Then define

α′ : F → τG by α′ = α ◦ (idF + ρ1)−1/2 and

β′ : G → τ−1
F by β′ = β ◦ (idG + ρ2)−1/2.

The equations above imply

α′ = α ◦ (idF + ρ1)−1/2 = τ (idG + ρ2)−1/2 ◦ α and

β′ = β ◦ (idG + ρ2)−1/2 = τ−1
(idF + ρ1)−1/2 ◦ β.

Now since (τβ)(τ (Y −1)) = (X−1)(τβ), we obtain that

(τβ′)α′ = τβ(τ (idG + ρ2)−1)α = (idF + ρ1)−1X = idF .

Similarly, (τ−1
α′)β′ = idG.

Now, put ϕ0 = β′ϕ. By the above, we have

ϕ0 = β(idG + ρ2)−1/2ϕ = βϕ(idF + ρ1)−1/2

= (τ
−1
ψ)α(idF + ρ1)−1/2 = (τ

−1
ψ)α′.

We calculate

ϕ0(τϕ0) = β′ϕψ(τα′) = β′λG
f (τα′) = (λf )(

τ−1
F )β′(τα′) = (λf )(

τ−1
F ).

Applying τ (−) to this gives

(τϕ0)(twϕ0) = λF
f .

This shows (ϕ0, τϕ0) is a graded matrix factorization of f .
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Finally,

(τϕ0)(twβ′) = ψ(τα′)(twβ′) = ψ

and it follows that (idF , β′) is an isomorphism (ϕ, ψ) → (ϕ0, τϕ0). �
4. The double branched cover in a noncommutative setting

The goal of this section is to define and study the double branched cover B# of a 
noncommutative hypersurface B = A/(f); recall Notation 3.1 and see Definition-No-
tation 4.1. We will compare MCM B-modules with those of B# by investigating the 
corresponding categories of twisted matrix factorizations; see Theorem 4.9 and Fig. 1
below. We will also provide a characterization of symmetric twisted matrix factoriza-
tions for the double branched cover in Theorem 4.15.

Definition-Notation 4.1. (S#, ζ, S#[ζ], N◦) Consider the following notation and termi-
nology. Recall from Notation 3.1 that f ∈ Rd is a normal, regular, homogeneous element 
of R with degree d = 2� and S = R/(f).

(1) Let S# = R[z; 
√
σ]/(f + z2) and we refer to this as the double branched cover of S. 

The algebra S# is graded by taking deg z = �.
(2) The graded algebra R[z; 

√
σ] admits a graded automorphism given by

ζ|R = idR and ζ(z) = −z

which induces a graded automorphism of S# (also denoted ζ). The automorphism 
ζ generates an order 2 subgroup 〈ζ〉 ⊂ Aut(S#). For notation’s sake we denote the 
skew group ring by S#[ζ].

(3) If N is an S#[ζ]-module, let N◦ denote the S#-module obtained by forgetting the 
action of ζ.

Definition 4.2. (θ = θζ , Endζ(M)) If M is a graded S#-module, we say a graded k-linear 
endomorphism θ := θζ : M → M is ζ-compatible if θ(bm) = ζ(b)θ(m) for all b ∈ S#, 
m ∈ M and θ2 = idM . (This is equivalent to saying θ is a graded left S#-module 
homomorphism M → ζM such that ζθθ = 1M .)

We denote the set of ζ-compatible graded k-endomorphisms of M by Endζ(M).

Note that the free S#-module M = S# admits (at least) two ζ-compatible graded 
k-endomorphisms: θ = ζ and θ = −ζ.

Lemma 4.3. There is a bijective correspondence between graded S#[ζ]-modules and pairs 
(M, θ) where M is a graded S#-module and θ = θζ ∈ Endζ(M).
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Proof. If N is a graded S#[ζ]-module, define θ : N → N by θ(n) = ζn. Then (N◦, θ) is 
the desired pair. Conversely, given a pair (M, θζ), one can construct a graded S#-module 
M via (b ⊗ ζ) ·m = bθζ(m). �
Definition 4.4. (MCMζ(S#)) We say a graded S#[ζ]-module N is (graded) maximal 
Cohen-Macaulay if N◦ is a graded MCM S#-module. We denote the category of graded 
MCM S#[ζ]-modules by MCMζ(S#).

In light of the preceding Lemma, it is often useful to describe an object of MCMζ(S#)
in terms of a pair (M, θ) where M is a graded S# module and θ ∈ Endζ(M).

Notation 4.5. (N+, N−) Since ζ generates an order 2 cyclic subgroup of Aut(S#), a 
graded S#[ζ]-module N has two weight k[〈ζ〉]-submodules, corresponding to the triv-
ial and sign representations of 〈ζ〉. We denote these graded submodules N+ and N−, 
respectively.

Then, as modules over the fixed ring (S#)〈ζ〉 = S we have N◦ = N+ ⊕N−. (Namely, 
use the graded Reynolds operator; every n ∈ N can be written 1

2 [(n + ζn) + (n − ζn)]. 
The first summand is invariant and the second is anti-invariant.)

In the context of AS-regular algebras, these weight modules are graded free. We record 
this fact as a corollary of the following general observation.

Lemma 4.6. A graded B#-module is graded MCM if and only if it is a graded free 
A-module.

Proof. Let N be a graded B#-module. We apply the (graded) change-of-rings spectral 
sequence for the inclusion A → B#

Extp
B#(k,ExtqA(B#, N)) ⇒ Extp+q

A (k, N).

Since B# = A ⊕ Az ∼= A ⊕ A[−�] is a free A-module, the spectral sequence collapses, 
yielding

Extp
B#(k, N ⊕N [�]) ∼= ExtpA(k, N).

It follows that depthA(N) = depthB#(N).
Note that A is isomorphic to a splitting subring of B# in the sense of [5, Defini-

tion 4.1]. Since A and B# are AS-Gorenstein, [5, Theorem 3.8(7) and Lemma 4.3] imply 
depthA(A) = depthB#(B#). Now it follows from the graded Auslander-Buchsbaum for-
mula [9, Theorem 3.2] that N is graded MCM over B# if and only if it is graded MCM 
over A. Since every graded MCM A-module is free (see Remark 2.9), the result fol-
lows. �
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Corollary 4.7. If N is a graded MCM B#[ζ]-module, then N+ and N− are graded free 
A-modules of finite rank. �

This hints at a connection between the categories MCMζ(B#) and TMF (f). In 
fact we will prove below these categories are equivalent; see Theorem 4.9. To begin, 
we construct functors establishing the equivalence. We remind the reader that objects 
of MCMζ(B#) can be viewed as pairs (M, θ) where M is a graded B# module and 
θ ∈ Endζ(M).

Lemma 4.8 (A , B). The following are well-defined functors between the categories 
MCMζ(B#) and TMF (f):

A : MCMζ(B#) → TMF (f)

N 
→ (ϕ,ψ),

(ξ : M → N) 
→ (ξ|M+ , τ
−1
ξ|M−)

where ϕ : N+ → τ−1
N− and ψ : τN− → N+ are graded A-linear homomorphisms given 

by multiplication by z and −z, respectively; and

B : TMF (f) → MCMζ(B#)

(ϕ : F → G,ψ : twG → F ) 
→ (F ⊕ τG, θ)

[(α, β) : (ϕ,ψ) → (ϕ′, ψ′)] 
→ α⊕ τβ,

where θ : F ⊕ τG → F ⊕ τG, θ(x, y) = (x, −y) and z(x, y) = (−ϕ(y), ϕ(x)).

Proof. Regarding A , observe that since N is a B#-module, we get that −z2n = fn for 
all n ∈ N . Hence A (N) is a twisted matrix factorization of f over A.

Moreover, if ξ : M → N is a graded B#[ζ]-module homomorphism, then ξ(M+) ⊂ N+

and ξ(M−) ⊂ N− and ξ commutes with multiplication by ±z. Thus (ξ|M+ , τ
−1
ξ|M−) is 

a morphism A (M) → A (N).
Since ϕ is left A-linear, ϕ(

√
σ(a)x) =

√
σ(a)ϕ(x) for a ∈ A, x ∈ F . Likewise, since ψ

is left A-linear for the twisted action of G, ψ(σ(a)y) = ψ(a ·y) = aψ(y) for a ∈ A, y ∈ G. 
For x ∈ F and y ∈ G define

z · (x, y) = (−ψ(y), ϕ(x)).

It follows from the calculations above that M = F ⊕ τG is an A[z; 
√
σ]-module. Indeed, 

one has:

z
√
σ(a) · (x, y) = z · (

√
σ(a)x, σ(a)y)

= (−ψ(σ(a)y), ϕ(
√
σ(a)x)) = (−aψ(y), a · ϕ(x)) = az · (x, y).
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It is straightforward to check that f + z2 acts as zero so M is a B#-module. To see that 
this defines a graded B#-module structure on M , observe that if x ∈ Fj , then ϕ(x) ∈
Gj = G[−�]j+
. Moreover, if y ∈ G[−�]j = G[−d]j+
 then ψ(y) ∈ Fj+
. Since M is a 
graded free A-module, M is a graded MCM B#-module by Lemma 4.6. Finally, θ(x, y) =
(x, −y) is a ζ-compatible graded endomorphism of M , so B(ϕ, ψ) ∈ MCMζ(B#).

Next, given a morphism (α, β) : (ϕ, ψ) → (ϕ′, ψ′), we have that B(α, β) = α ⊕ τβ

defines a map of graded A-modules B(ϕ, ψ) → B(ϕ′, ψ′). The map respects the action 
of z:

(α, β)(z(x, y)) = (−αψ(y), βϕ(x)) = (−ψ′β(y), ϕ′α(x)) = z(α(x), β(y)).

Thus B(α, β) is a morphism of graded B#-modules. �
Theorem 4.9. The functor A : MCMζ(B#) → TMF (f) is an equivalence of categories 
with inverse B.

Proof. For N ∈ MCMζ(B#),

BA (N) = B(ϕ : N+ → τ−1
N−, ψ : τN− → N+) = N+ ⊕N−

so BA (N)◦ ∼= N◦ as graded A-modules via (x, y) 
→ x + y. For n ∈ N◦, write n =
n+ + n− with n+ ∈ N+, n− ∈ N−. Then zn = zn− + zn+ = −ψ̃(n−) + ϕ̃(n+), so 
BA (N)◦ ∼= N◦ as graded B#-modules. Finally, since ζ(n) = ζ(n+) + ζ(n−) = n+ − n−
and ζ(n+, n−) = (n+, −n−), we have BA (N) ∼= N as B#[ζ]-modules.

For (ϕ, ψ) ∈ TMF (f),

A B(ϕ,ψ) = A (F ⊕ τG, θ) =: (ϕ′, ψ′).

By definition of the ζ-action on F ⊕ τG, we obtain that (F ⊕ τG)+ = F ⊕ 0 and 
(F ⊕ τG)− = 0 ⊕ τG. Thus ϕ′ : F ⊕ 0 → 0 ⊕G and ψ′ : 0 ⊕ twG → F ⊕ 0. The maps are 
multiplication by z and −z respectively. Since

z(x, 0) = (0, ϕ̃(x)) and − z(0, y) = (ψ̃(y), 0)

we clearly have (ϕ′, ψ′) ∼= (ϕ, ψ).
For a morphism ξ : M → N of MCM B#[ζ] modules,

BA (ξ) = B(ξ|M+ , τ
−1
ξM−) = ξ|M+ ⊕ ξ|M− .

Composing with the isomorphism (x, y) 
→ x + y clearly recovers ξ.
For a morphism (α, β) of twisted matrix factorizations of f , recall the work above 

that (F ⊕ τG)+ = F ⊕ 0 and (F ⊕ τG)− = 0 ⊕ τG. Thus

A B(α, β) = A (α⊕ τβ) = ((α⊕ τβ)|F⊕0,
τ−1

(α⊕ τβ)|0⊕τG) = (α⊕ 0, 0 ⊕ β),

which is plainly isomorphic to (α, β). �
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Now consider the following functor.

Definition 4.10 (coker). We define a functor

coker : TMFR(f) → Sgrmod by (ϕ,ψ) 
→ cokerϕ.

A morphism (α, β) : (ϕ, ψ) → (ϕ′, ψ′) induces a morphism cokerϕ → cokerϕ′, and we 
take this as our definition of coker(α, β).

There is a forgetful functor MCMζ(B#) → MCM(B#), and every graded MCM 
B#-module arises from a graded matrix factorization of f + z2. It will be useful to have 
a functor C directly from TMF (f) to TMF (f + z2) completing the following diagram, 
which is commutative up to equivalence, where Forget maps N → N◦, or (M, θ) → M .

TMFA(f)
C

B

TMFA[z;
√

σ](f + z2)

coker

MCMζ(B#)
Forget

A

MCM(B#)

Fig. 1. Commutative diagram for the functor Forget.

Notation 4.11 (∗). We denote the extension of scalars functor

A[z;
√
σ] ⊗A − : AGrMod → A[z;

√
σ]GrMod

on objects by X = A[z; 
√
σ] ⊗A X and on morphisms by φ = A[z; 

√
σ] ⊗A φ. We extend √

σ by the identity to A[z; 
√
σ], defining 

√
σ(z) = z.

Since we extend 
√
σ by the identity to A[z; 

√
σ], then for X ∈ AGrMod,

τX = A[z;
√
σ] ⊗A

τX = τ (A[z;
√
σ] ⊗A X) = τX

and similarly τφ = τφ.

Definition 4.12 (C , ΦC , ΨC ). Take a twisted matrix factorization

(ϕ : F → G, ψ : twG → F )

of f over A. We define a functor

C : TMFA(f) → TMFA[z;
√
σ](f + z2)

by C (ϕ, ψ) = (ΦC , ΨC ) where
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ΦC : twG⊕ τF → F ⊕ τG is given by
(

ψ −λ
τG
z

λF
z

τϕ

)
,

ΨC : twF ⊕ τ3
G → twG⊕ τF is given by

( twϕ λ
τF
z

−λ
twG
z

τψ

)
.

If (α, β) is a morphism in TMF (f), then we define the image morphism by

C (α, β) :=
((

twβ 0
0 τα

)
,

(
α 0
0 τβ

))
.

We leave it to the reader to check that (ΦC , ΨC ) is indeed a graded matrix factoriza-
tion of f + z2.

Proposition 4.13. As B#-modules, B(ϕ, ψ)◦ ∼= coker C (ϕ, ψ).

Proof. Let ̂ denote the extension of scalars functor B# ⊗A −. Recall that
B(ϕ, ψ) = F ⊕ τG as an A-module and the B#-module structure is given by 
z · (x, y) = (−ψ̃(y), ϕ̃(x)) [Notation 2.1].

On the other hand, the B#-module coker C (ϕ, ψ) = B# ⊗A[z;
√
σ] cokerΦC is iso-

morphic to the quotient of F̂ ⊕ τ Ĝ by elements of the form

(1 ⊗ ψ(v′),−z ⊗ v′), v′ ∈ twG and (z ⊗ v, 1 ⊗ τϕ(v)), v ∈ τF.

Observe that the B#-submodule of F̂ ⊕ τ Ĝ generated by such elements is generated as 
an A-module by

(1 ⊗ ψ(v′),−z ⊗ v′), (z ⊗ ψ(v′), f ⊗ v′) = (z ⊗ ψ(v′), 1 ⊗ fv′)

(z ⊗ v, 1 ⊗ τϕ(v)), (−f ⊗ v, z ⊗ τϕ(v)) = (−1 ⊗ fv, z ⊗ τϕ(v)).

Now, as graded A-modules we have F̂ = B# ⊗A F = (A ⊕ Az) ⊗A F ∼= F ⊕ τF

and likewise τ Ĝ ∼= τG ⊕ twG. We can describe coker C (ϕ, ψ) as an A-module under 
these identifications as follows. Let I ⊂ F ⊕ τF ⊕ τG ⊕ twG be the graded A-submodule 
generated by elements of the form

(ψ̃(v′), 0, 0,−v′), (0, ψ̃(v′), fv′, 0), (0, v, ϕ̃(v), 0), (−fv, 0, 0, ϕ̃(v))

where v ∈ F and v′ ∈ G. (Note that these tuples are homogeneous if v and v′ are.) Then 
it is clear that

coker C (ϕ,ψ) ∼= (F ⊕ τF ⊕ τG⊕ twG)/I

as A-modules. This extends to an isomorphism of B#-modules by defining a
B#-module structure on (F ⊕ τF ⊕ τG ⊕ twG)/I by

z · (v1, v2, v3, v4) = (fv2,−v1, fv4,−v3).
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(It is straightforward to check that z2 +f acts as 0 and zI ⊂ I.) Now a direct calculation 
shows that

(v1, v2, v3, v4) 
→ (v1 + ψ(v4), v3 − τϕ(v2))

defines a graded B#-module isomomorphism between (F ⊕ τF ⊕ τG ⊕ twG)/I and 
B(ϕ, ψ)◦. �
Lemma 4.14 (Δ, Σ). Let N be a graded MCM B#-module and F = A[z; 

√
σ] ⊗A N . 

Then, the pair

Δ = λA[z;
√
σ]

z ⊗ 1 − 1 ⊗ λN
z : τF → F

Σ = τ (λA[z;
√
σ]

z ⊗ 1 + 1 ⊗ λN
z ) : twF → τF

is a twisted matrix factorization of f + z2 with cokernel isomorphic to N . If N has no 
graded B#-free direct summand, then the factorization is reduced.

Proof. By Lemma 4.6, F is a graded free A[z; 
√
σ]-module. By direct calculation, for 

any n ∈ N , we have

(λA[z;
√
σ]

z ⊗ 1 − 1 ⊗ λN
z )τ (λA[z;

√
σ]

z ⊗ 1 + 1 ⊗ λN
z )(1 ⊗ n)

= (λA[z;
√
σ]

z ⊗ 1 − 1 ⊗ λN
z )(z ⊗ n + 1 ⊗ zn)

= z2 ⊗ n + z ⊗ zn− z ⊗ zn− 1 ⊗ z2n

= z2 ⊗ n + 1 ⊗ fn = (z2 + f) ⊗ n

where −z2n = fn holds because N is a B#-module. Thus ΔΣ = λF
f+z2 ⊗ 1. A similar 

calculation shows ΣtwΔ = λ
τF
f+z2⊗1. Now, im Δ is generated as a graded A[z; 

√
σ]-module 

by {z ⊗ n − 1 ⊗ zn | n ∈ N}. It follows that

coker Δ = (A[z;
√
σ] ⊗A N)/({z ⊗ n− 1 ⊗ zn | n ∈ N}) ∼= A[z;

√
σ] ⊗A[z;

√
σ] N ∼= N

as graded A[z; 
√
σ]-modules, and hence as graded B#-modules.

Finally, if the matrix of Δ with respect to some basis contains a term u ⊗ 1 where 
u ∈ A[z] is a unit, then u is a unit of A and the matrix of 1 ⊗ λN

z contains the term 
u ⊗ 1. This implies Σ contains the same term in the same position, and thus (Δ, Σ)
contains a direct summand isomorphic to (λf+z2 ⊗ 1, 1 ⊗ 1) and N contains B# as a 
direct summand. �

Now we turn our attention to the symmetric condition of twisted matrix factorizations; 
recall Definition 3.11.
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Theorem 4.15. Let (Φ, Ψ) ∈ TMF (f + z2) be reduced. Then (Φ, Ψ) is isomorphic to a 
factorization in the image of C if and only if (Φ, Ψ) is symmetric.

Proof. If (ϕ, ψ) ∈ TMF (f), we have

C (ϕ,ψ) =
((

ψ −λ
τG
z

λF
z

τϕ

)
,

( twϕ λ
τF
z

−λ
twG
z

τψ

))

and

TC (ϕ,ψ) =
((

τϕ λF
z

−λ
τG
z ψ

)
,

(
τψ −λ

twG
z

λ
τF
z

twϕ

))

which are easily seen to be isomorphic via the map

((
0 1
1 0

)
,

(
0 1
1 0

))
.

For the converse, let (Φ, Ψ) ∈ TMF (f + z2) be symmetric and reduced. Then N =
coker Φ has no B#-free direct summand, and hence (Φ, Ψ) is isomorphic to the matrix 
factorization of Lemma 4.14 by Proposition 3.7. Thus no generality is lost by assuming 
(Φ, Ψ) is the factorization of Lemma 4.14.

By assumption, there exist graded A[z; 
√
σ]-module isomorphisms α, β, δ such that 

the following diagram commutes and the rows are exact. The notation ζN indicates that 
the action of z is twisted by ζ, as required by exactness of the bottom row.

τ (A[z;
√
σ] ⊗A N)

λz⊗1−1⊗λz

α

A[z;
√
σ] ⊗A N

π1

β

N

δ

τ (A[z;
√
σ] ⊗A N)

λz⊗1+1⊗λz

A[z;
√
σ] ⊗A N

π2 ζN.

Note that δ is also a B#-module isomorphism, and for b ∈ B and n ∈ N , we have 
δ(bn) = ζ(b)δ(n). The same underlying map also gives a B#-module map δ′ : ζN → N

since δ′(b ·n) = δ(ζ(b)n) = ζ2(b)δ(n) = bδ′(n). We may assume that N is indecomposable. 
In this case, arguing as in Lemma 3.9, we may assume δ′δ = idN + ρ and δδ′ = idζN + ρ′

where ρ and ρ′ are nilpotent. Then as maps of vector spaces, ρ = ρ′. Replacing δ with 
δ(idN +ρ)−1/2 and δ′ with δ′(1 +ρ′)−1/2 yields δ′δ = idN . So as a k-linear map, δ2 = idN

and δ is ζ-compatible, hence (N, δ) ∈ MCMζ(B#).
Now cokerC A ((N, δ)) ∼= N by Proposition 4.13. Since N has no B#-free direct 

summand, C A ((N, δ)) is reduced and hence isomorphic to (Φ, Ψ) by Proposition 3.7. �
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5. Noncommutative Knörrer periodicity

The goal of this section is to establish the main result of this article: a noncommutative 
analog of Knörrer’s Periodicity Theorem [Theorem 5.11]. Recall Notations 2.3 and 3.1
and the notation set in the previous section.

We begin by considering the following restriction functors.

Definition 5.1 (Res, res). Let Res: TMFA[z;
√
σ](f + z2) → TMFA(f) and let res: 

MCM(B#) → MCM(B) denote the natural restriction functors between categories of 
twisted matrix factorizations and MCM modules, respectively. Here, res(M) = M/zM

and Res(Φ : F → G, Ψ : twG → F ) is the factorization defined by the induced maps 
F/zF → G/zG and tw(G/zG) → F/zF .

Note that these functors make the diagram in Fig. 2 commute up to equivalence.

TMFA[z;
√

σ](f + z2)
Res

coker

TMFA(f)

coker

MCM(B#)
res

MCM(B)

Fig. 2. Commutative diagram for the functors res and Res.

Later in Lemma 5.3, we compare these restriction functors with the functor C [Defi-
nition 4.12] that relates twisted matrix factorizations of a regular, normal element f of 
an Artin-Schelter regular algebra A with that of the element f + z2 of the Ore extension 
A[z; 

√
σ]. In particular, the functor Res is not an inverse of C (cf. Fig. 1).

Now we prove a variation of Theorem 4.15 for Res. Recall that every graded MCM 
B#-module is a graded free A-module.

Lemma 5.2. Let N be a graded MCM B#-module. Let λN
z : τN → N be the graded 

A-module homomorphism representing left multiplication by z.

(1) (λN
z , −τλN

z ) ∈ TMF (f) and cokerλN
z

∼= N/zN .
(2) If N contains no B#-free direct summand, then (λN

z , −τλN
z ) is reduced and symmet-

ric.

We conclude that if (Φ, Ψ) ∈ TMF (f + z2) is reduced, then Res(Φ, Ψ) ∼= (λN
z , −τλN

z )
where N = cokerΦ. In particular, Res(Φ, Ψ) is reduced and symmetric.

Proof. By Lemma 4.6, N is a graded free A-module. Since N is a B#-module, 
−λN

z (τλN
z (n)) = −z2n = fn. So (λN

z , −τλN
z ) is a twisted matrix factorization of f

with cokernel N/zN . This proves (1).
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We also have coker T (λN
z , −τλN

z ) = coker(−λN
z , τλN

z ) = N/zN . Provided N has 
no B#-free direct summand, N/zN has no B-free direct summand, so statement (2) 
follows from Proposition 3.7.

Now take (Φ, Ψ) ∈ TMF (f + z2) reduced. Then N ′ = coker Φ is a graded MCM 
B#-module. By (1), (λN ′

z , −τλN ′
z ) ∈ TMF (f) with cokerλN ′

z = N ′/zN ′. By the commu-
tativity of the diagram in Fig. 2, coker Res(Φ, Ψ) = N ′/zN ′. Hence by Proposition 3.7, 
Res(Φ, Ψ) ∼= (λN ′

z , −τλN ′
z ).

Since (Φ, Ψ) is reduced, N ′ contains no B#-free direct summand. The conclusion now 
follows from (2). �

Fig. 3 summarizes the functors we have defined. Recall that A and B are inverse 
equivalences. The functor Res is not an inverse to C . The next lemma explains the 
relationship between the two functors.

TMFA[z;
√

σ](f + z2)
Res

coker

TMFA(f)

B

C

cokerMCMζ(B#)

Forget

A

MCM(B#)
res

MCM(B)

Fig. 3. Combination of Figs. 1 and 2 (commutative up to equivalence).

Lemma 5.3.

(1) If (ϕ, ψ) ∈ TMF (f), then Res C (ϕ, ψ) ∼= τT (ϕ, ψ) ⊕ τ (ϕ, ψ).
(2) If (Φ, Ψ) ∈ TMF (f + z2) is reduced, then

C Res(Φ,Ψ) ∼= τ (Φ,Ψ) ⊕ τT (Φ,Ψ).

Proof. For (1), we have

C (ϕ,ψ) =
((

ψ −λ
τG
z

λF
z

τϕ

)
,

( twϕ λ
τF
z

−λ
twG
z

τψ

))
.

Hence

Res C (ϕ,ψ) =
((

ψ 0
0 τϕ

)
,

(
twϕ 0
0 τψ

))
as desired.
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For (2), let (Φ, Ψ) ∈ TMF (f +z2) be reduced. Let N = coker Φ and let λN
z : τN → N

be left multiplication by z. By Lemma 5.2, Res(Φ, Ψ) ∼= (λN
z , −τλN

z ), and these are 
reduced, symmetric graded matrix factorizations of f .

We have

C Res(Φ,Ψ) ∼= C (λN
z ,−τλN

z )

=
((

−τλN
z −λ

τN
z

λ
τN
z

τλN
z

)
,

( twλN
z λ

τN
z

−λ
twN
z −twλN

z

))
∼=

((
τ (λN

z − λN
z ) 0

0 τ (λN
z + λN

z )

)
,

( tw(λN
z + λN

z ) 0
0 tw(λN

z − λN
z )

))
via the isomorphism (α, β) where

α =
(

1 −1
1 1

)
and β =

(
1 1
−1 1

)
.

Note that these matrices define A-module isomorphisms since char k 	= 2. Next, we 
observe that (τ (λN

z − λN
z ), tw(λN

z + λN
z )) = τ (Δ,Σ) where (Δ, Σ) is the factorization of 

Lemma 4.14. Thus we have shown

C Res(Φ,Ψ) ∼= C (λN
z ,−τλN

z ) ∼= τ (Δ,Σ) ⊕ τT (Δ,Σ).

The factorization (Δ, Σ) is reduced and cokerΔ = N . Since (Φ, Ψ) is reduced, N has no 
B#-free direct summand, hence the factorization (Δ, Σ) is also reduced and is isomorphic 
to (Φ, Ψ) by Proposition 3.7. This establishes the desired decomposition. �

Recall from [5, Definition 5.2] that a noetherian, bounded below, locally finite graded 
algebra is said to have finite Cohen-Macaulay (CM) type if it has (up to degree shift) 
only finitely many isomorphism classes of indecomposable MCM modules. The following 
important result shows that finite CM type is preserved when constructing the double 
branched cover. Note that we do not claim that B and B# have the same number of 
isomorphism classes of indecomposable MCM modules, but see Corollary 5.12.

Theorem 5.4. In the context of Notations 3.1 and 4.1, the algebra B has finite Cohen-
Macaulay type if and only if B# has finite Cohen-Macaulay type.

Proof. It is enough to prove that TMF (f) has finite representation type if and only 
if TMF (f + z2) does as well. Suppose that (φ1, ψ1), . . . , (φs, ψs) is a complete list of 
indecomposable twisted matrix factorizations. For each i, decompose C (φi, ψi) as a direct 
sum of twisted matrix factorizations of f + z2, say (Φi1, Ψi1), . . . , (Φini

, Ψini
). Now let 

(Φ, Ψ) be an arbitrary indecomposable matrix factorization of f+z2. By Lemma 5.3.(2), 
(Φ, Ψ) is a direct summand of CRes(τ−1(Φ, Ψ)), hence by Theorem 3.8 it must belong 
to the set {(Φij , Ψij)}. The proof of the other direction is similar. �
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We are ready to describe what happens to indecomposable twisted matrix factor-
izations under the functors Res and C . These are referred to as the “going-up” and 
“going-down” properties of the double branched cover.

Proposition 5.5.

(1) Let (ϕ, ψ) ∈ TMF (f) be indecomposable and nontrivial. Then C (ϕ, ψ) is decompos-
able if and only if (ϕ, ψ) is symmetric. In this case,

C (ϕ,ψ) ∼= (Φ′,Ψ′) ⊕ T (Φ′,Ψ′),

for a factorization (Φ′, Ψ′) ∈ TMF (f + z2) that is indecomposable and asymmetric.
(2) Let (Φ, Ψ) ∈ TMF (f + z2) be indecomposable and nontrivial. One then has that 

Res(Φ, Ψ) is decomposable if and only if (Φ, Ψ) is symmetric. In this case,

Res(Φ,Ψ) ∼= (ϕ′, ψ′) ⊕ T (ϕ′, ψ′),

for a factorization (ϕ′, ψ′) ∈ TMF (f) that is indecomposable and asymmetric.

Proof. We first prove the decomposability statements in each part, then go back and 
characterize the summands.

Let (ϕ, ψ) ∈ TMF (f) be indecomposable and nontrivial. If (ϕ, ψ) is symmetric, then 

by Proposition 3.12 we may assume ψ = τϕ and ϕτϕ = λ
τ−1

F
f . Then

C (ϕ, τϕ) =
((

τϕ −λ
τF
z

λ
τF
z

τϕ

)
,

( twϕ λ
twF
z

−λ
twF
z

twϕ

))
∼=

((
τ (ϕ− iλz) 0

0 τ (ϕ + iλz)

)
,

( tw(ϕ + iλz) 0
0 tw(ϕ− iλz)

))

via the isomorphism (α, β) where both α and β are given by the matrix 
(1 i
i 1

)
. Putting 

Φ′ = τ (ϕ− iλ
τF
z ) and Ψ′ = tw(ϕ + iλ

τF
z ) we have

C (ϕ,ψ) ∼= (Φ′,Ψ′) ⊕ T (Φ′,Ψ′).

Conversely, suppose C (ϕ, ψ) = (Φ′, Ψ′) ⊕ (Φ′′, Ψ′′). Then

Res(Φ′,Ψ′) ⊕ Res(Φ′′,Ψ′′) ∼= τ (ϕ,ψ) ⊕ τT (ϕ,ψ)

by Lemma 5.3(1). Since (ϕ, ψ) is indecomposable, by Corollary 3.8 and Proposition 3.7
we may assume Res(Φ′, Ψ′) ∼= τ (ϕ, ψ). Since τ (ϕ, ψ) is nontrivial, (Φ′, Ψ′) is reduced. By 
Lemma 5.2, τ (ϕ, ψ) is symmetric.
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For (2), let (Φ, Ψ) ∈ TMF (f + z2) be indecomposable and nontrivial. Then in partic-
ular (Φ, Ψ) is reduced. By Theorem 4.15, if (Φ, Ψ) is symmetric, then (Φ, Ψ) ∼= C (ϕ, ψ)
for some (ϕ, ψ) ∈ TMF (f), hence Res(Φ, Ψ) ∼= τ (ϕ, ψ) ⊕ τT (ϕ, ψ) by Lemma 5.3(2).

Conversely, suppose Res(Φ, Ψ) = (ϕ, ψ) ⊕ (ϕ′, ψ′). Then we have C Res(Φ, Ψ) =
τ (Φ, Ψ) ⊕ τT (Φ, Ψ) by Lemma 5.3(2). Arguing as above, we may assume C (ϕ, ψ) =
τ (Φ, Ψ), so τ (Φ, Ψ) is symmetric by Theorem 4.15.

To complete the proof of (1), we assume (ϕ, ψ) is symmetric. By the calculation 
above, we have C (ϕ, ψ) ∼= (Φ′, Ψ′) ⊕ T (Φ′, Ψ′). By Lemma 5.3(1) ResC (ϕ, ψ) ∼=
τ (ϕ, ψ) ⊕ τT (ϕ, ψ). Since this is a sum of exactly two indecomposables, Res(Φ′, Ψ′) is 
indecomposable, hence (Φ′, Ψ′) is asymmetric by the first part of (2).

To complete the proof of (2), we assume (Φ, Ψ) is symmetric. As argued above, we 
have Res(Φ, Ψ) ∼= (ϕ, ψ) ⊕ T (ϕ, ψ). By Lemma 5.3(2) we have CRes(Φ, Ψ) ∼= τ (Φ, Ψ) ⊕
τT (Φ, Ψ). Since this is a sum of exactly two indecomposables, C (ϕ, ψ) is indecomposable, 
hence (ϕ, ψ) is asymmetric by the first part of (1). �

The stable categories of MCM modules over B and B# are not equivalent in general, 
even when B is a quotient of a commutative polynomial ring. In the setting of complete 
hypersurface singularities, Knörrer’s Periodicity Theorem [10, Theorem 3.1] gives an 
equivalence between the stable category of MCM modules over C[[x1, . . . , xn]]/(f) and 
the stable category of MCM modules over the second double branched cover. Towards a 
noncommutative version of that theorem, we make the following definition.

Definition-Notation 5.6 ((B#)#). Recall that we extend 
√
σ to all of A[z; 

√
σ] by requir-

ing 
√
σ(z) = z. The second double branched cover of B is the quotient

(B#)# = A[z;
√
σ][w;

√
σ]/(f + z2 + w2).

of the iterated Ore extension A[z; 
√
σ][w; 

√
σ]. We extend 

√
σ to A[z; 

√
σ][w; 

√
σ] by 

defining 
√
σ(w) = w.

Remark 5.7. As in the classical case, it is convenient to consider a linear change of 
variables. Setting u = z + iw and v = z − iw induces an isomorphism

(B#)# ∼= A[u;
√
σ][v;

√
σ]/(f + uv).

Here, i is the square root of −1 in k and 
√
σ acts as the identity on u and v.

By iterating the functors C and Res, we can move between categories of twisted 
matrix factorizations of f and those of f + z2 +w2. To distinguish the two steps in this 
process we introduce the following notation.

Notation 5.8 (C1, C2, Res1, Res2). Let C1 : TMF (f) → TMF (f + z2) be the functor C
given in Definition 4.12 and let C2 : TMF (f + z2) → TMF (f + z2 + w2) be the analog 
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replacing f by f + z2. Let Res1 : TMF (f + z2) → TMF (f) and Res2 : TMF (f + z2 +
w2) → TMF (f + z2) be the corresponding restriction functors.

Finally, we define a functor that takes a twisted matrix factorization of f and pro-
duces a twisted matrix factorization of f + uv directly, rather than by iterating the C
construction.

Definition 5.9 (H , ∗). Define H : TMF (f) → TMF (f + uv) by

H (ϕ,ψ) =
((

twϕ −λ
τF
v

λ
twG
u

τψ

)
,

(
twψ λ

τ3
G

v

−λ
twF
u

τ3
ϕ

))

where the double bar denotes the extension of scalars A[u; 
√
σ][v; 

√
σ] ⊗A −.

Via the change of variables in Remark 5.7, the functor ∗ is isomorphic to the iterated 
extension of scalars

A[z;
√
σ][w;

√
σ] ⊗A[z;

√
σ] (A[z;

√
σ] ⊗A −),

each iteration of which was previously denoted by a single bar. Henceforth we use these 
two types of “double bars” interchangeably. In particular, we identify λF

z and λF
z . For a 

morphism (α, β), put

H (α, β) =
((τα 0

0 twβ

)
,

(
τβ 0
0 α

))
.

Lemma 5.10. With the notations above, we obtain that

C2 ◦ C1 ∼= H ⊕ TH Res1 ◦ Res2 ◦ H ∼= tw(id ⊕ T ) T ◦ H ∼= H ◦ T.

Proof. We exhibit the isomorphisms on objects only. Given these, it is not hard to verify 
the required isomorphisms on Hom spaces.

First,

C2 C1(ϕ,ψ) = C2

((
ψ −λ

τG
z

λF
z

τϕ

)
,

( twϕ λ
τF
z

−λ
twG
z

τψ

))

∼=

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

twϕ λ
τF
z −λ

τF
w 0

−λ
twG
z

τψ 0 −λ
twG
w

λ
twG
w 0 τψ −λ

twG
z

0 λ
τF λ

τF twϕ

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
twψ −λ

τ3
G

z λ
τ3

G
w 0

λ
twF
z

τ3
ϕ 0 λ

twF
w

−λ
twF
w 0 τ3

ϕ λ
twF
z

τ3
G τ3

G tw

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
w z 0 −λw −λz ψ
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∼=

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎝

twϕ −λ
τF
v 0 0

−λ
twG
u

τψ 0 0
0 0 τψ λ

twG
v

0 0 −λ
τF
u

twϕ

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
twψ λ

τ3
G

v 0 0
−λ

τ3
F

u
τ3
ϕ 0 0

0 0 τ3
ϕ −λ

twF
v

0 0 λ
τ3

G
u

twψ

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠

where the last isomorphism is (α, β) where both α and β are given by the matrix

⎛⎜⎝1 0 0 i
0 −1 −i 0
0 −i −1 0
i 0 0 1

⎞⎟⎠ .

For the second isomorphism,

Res1 Res2 H (ϕ,ψ) = Res1 Res2

((
twϕ −λ

τF
v

λ
twG
u

τψ

)
,

(
twψ λ

τ3
G

v

−λ
twF
u

τ3
ϕ

))

∼= Res1

(( twϕ −λ
τF
z

λ
twG
z

τψ

)
,

(
twψ λ

τ3
G

z

−λ
twF
z

τ3
ϕ

))

∼=
((

twϕ 0
0 τψ

)
,

( twψ 0
0 τ3

ϕ

))
and the result is clear.

Finally, the third isomorphism is given by a morphism (α′, β′) where both α′ and β′

are determined by the matrix 
(1 0
0 −1

)
. �

This brings us to the main result of this article: a noncommutative version of Knörrer’s 
Periodicity Theorem.

Theorem 5.11. The functor H induces a bijection between the sets of isomorphism classes 
of nontrivial indecomposable graded matrix factorizations of f and f + uv.

Proof. Let (ϕ, ψ) ∈ TMF (f) be a nontrivial indecomposable factorization. If (ϕ, ψ)
is symmetric, then C1(ϕ, ψ) ∼= (Φ′, Ψ′) ⊕ T (Φ′, Ψ′) by Proposition 5.5, where (Φ′, Ψ′)
is indecomposable and asymmetric. Proposition 5.5 then implies that C2(Φ′, Ψ′) and 
C2(T (Φ′, Ψ′)) are indecomposable. Hence C2C1(ϕ, ψ) is a direct sum of precisely two 
nontrivial indecomposable factorizations. If (ϕ, ψ) is asymmetric, then C1(ϕ, ψ) is in-
decomposable by Proposition 5.5 and symmetric by Theorem 4.15. Again by Theorem
5.4, it follows that C2C1(ϕ, ψ) is a direct sum of precisely two nontrivial indecomposable 
factorizations. Thus in either case, H (ϕ, ψ) is indecomposable by the previous lemma.

We prove H is injective on isomorphism classes. If (ϕ′, ψ′) is another graded factor-
ization such that H (ϕ, ψ) ∼= H (ϕ′, ψ′), then by the second isomorphism in the previous 
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lemma we have (ϕ′, ψ′) ∼= (ϕ, ψ) or T (ϕ, ψ). Suppose (ϕ′, ψ′) ∼= T (ϕ, ψ). By Propo-
sition 5.5, C1(ϕ, ψ) is indecomposable and C2C1(ϕ, ψ) splits into two non-isomorphic 
direct summands. So by the third isomorphism in the previous lemma,

H (ϕ,ψ) � TH (ϕ,ψ) ∼= H T (ϕ,ψ) ∼= H (ϕ′, ψ′) ∼= H (ϕ,ψ),

a contradiction. Therefore, (ϕ′, ψ′) ∼= (ϕ, ψ).
Finally, let (Φ, Ψ) ∈ TMF (f+uv) be nontrivial and indecomposable. By the previous 

lemma,

C2 C1 Res1 Res2(Φ,Ψ) ∼= H Res1 Res2(Φ,Ψ) ⊕ T H Res1 Res2(Φ,Ψ)
∼= H

(
Res1 Res2(Φ,Ψ) ⊕ T Res1 Res2(Φ,Ψ)

)
.

Note that since we extend 
√
σ by the identity map to A[z; 

√
σ] and A[z; 

√
σ][w; 

√
σ], the 

functor τ commutes with C1, C2, and H . Thus we have

C2 C1 Res1 Res2(Φ,Ψ) ∼= C2(τRes2(Φ,Ψ) ⊕ τTRes2(Φ,Ψ))
∼= τC2Res2(Φ,Ψ) ⊕ τTC2Res2(Φ,Ψ)
∼= τC2Res2(Φ,Ψ) ⊕ τTC2Res2(Φ,Ψ)
∼= tw(Φ,Ψ)⊕2 ⊕ twT (Φ,Ψ)⊕2

by applying Lemma 5.3(2), the fact that CT ∼= TC , Theorem 4.15, and again 
Lemma 5.3(2), respectively. These two calculations, and the fact that τ commutes with 
H , show that tw(Φ, Ψ), and hence (Φ, Ψ), is isomorphic to a direct summand of a fac-
torization in the image of H . Now the result follows by Corollary 3.8. �

The following is now immediate from Theorem 5.11 and Theorem 1.2.

Corollary 5.12. There is a bijection between the sets of isomorphism classes of indecom-
posable non-free MCM B-modules and indecomposable non-free MCM (B#)#-modules.

Remark 5.13. Since commutative polynomial rings are AS-regular domains, we obtain a 
graded version of Knörrer Periodicity for even-degree hypersurfaces in the commutative 
setting as a special case of Theorem 5.11.

6. Noncommutative Kleinian singularities

In this section, we provide an interesting illustration of the main results from Sec-
tions 3-5 for the noncommutative Kleinian singularities appearing in work of Chan-
Kirkman-Walton-Zhang; see [4, Section 5] and Table 1 below. Our goal is twofold:
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(I) If (C, f) is a pair listed in the classification of [4] appearing in Table 1, then we aim 
to show that there exists a square root of the normalizing automorphism that fixes 
f , and so C[z : τ ]/(f + z2) has finite CM type by Theorem 5.4.

(II) Produce matrix factorization representations of all indecomposable non-free MCMs 
(up to degree shift) for the (C, f) pairs listed in [4].

Table 1 references the notion of a commutative Kleinian singularity. By this we mean a 
fixed ring of the form k[u, v]G where G ≤ SL2(k) is a finite subgroup acting as k-algebra 
automorphisms. It is well known from classical invariant theory that the invariant rings 
k[u, v]G are affine hypersurface singularities of the form k[x, y, z]/(f). Moreover, the 
generators x, y, and z can be chosen to be homogeneous (in the standard grading of 
k[u, v]), and f is homogeneous relative to the grading induced by the degrees of x, y, 
and z (see, for example, [7, p. 420]).

Since commutative Kleinian singularities reside naturally in the graded setting, Goals 
(I) and (II) can be viewed as extensions of the classical theory. The first goal above 
specializes to one direction of a graded version of the classification of commutative hyper-
surface singularities of finite CM type due to Buchweitz-Greuel-Schreyer [1] and Knörrer 
[10]. Similarly, the second goal extends a graded version of the well-known classifica-
tion of matrix factorizations over Kleinian singularities given in [7]. Goals I and II are 
achieved in Theorems 6.1 and 6.3. For more discussion of the commutative graded case, 
see subsection 6.6 below.

Theorem 6.1. Suppose (C, f) is a (possibly noncommutative) Kleinian singularity as 
in [4], and suppose σ is the normalizing automorphism of f . Then there exists τ an 
automorphism of C such that τ2 = σ and τ(f) = f . In particular, the ring C[z; τ ]/(f+z2)
has finite CM type.

Proof. Referring to Table 1, cases (a), (d) (n even), (e) and (f) involve commutative 
fixed rings. Moreover, in cases (c), and (d) (n odd), f is central. In each of these cases 
σ = idC , so the first part of the statement is immediate. For any τ satisfying τ2 = idC

and τ(f) = f , it follows from Theorem 5.4 that C[z; τ ]/(f + z2) has finite CM type if 
and only if C/(f) does. By Theorem 1.1 and [3, Prop. 7.1], all of the noncommutative 
Kleinian singularities in Table 1 have finite CM type, so the second part of the statement 
follows in cases (a), (c), (d), (e) and (f).

In case (g),

C = k〈a1, a2, a3〉/(a2a1 − qna1a2, a3a1 − qn
2
a1a3, a3a2 − qna2a3)

with f = an2 − qsa1a3 where s = n(n − 1)/2. Then f is normal by to the identities:

a1f = q−n2
fa1 a2f = fa2 a3f = qn

2
fa3.
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Table 1
Noncommutative Kleinian singularities C/(f), as (noncommutative) hypersurface singularities. This is [4, 
Table 3], with minor corrections to qij in cases (b) and (g).

C f

(a) Commutative Kleinian singularity

(b) kq[a1, a2, a3] where q12 = q23 = (−1)n and q13 = (−1)n
2

an
2 − (−1)

n(n−1)
2 a1a3

(c) k〈a1, a2〉/([a2
1, a2], [a2

2, a1]) a6
1 − a2

2

(d) n even k[a1, a2, a3] a2
3 − a2

1a2 − (−1)
n+2

2 4a(n+2)/2
2

n odd
k〈a1, a2, a3〉(

a3a1 + a1a3 − 4(−1)(n+1)/2a
(n+1)/2
2

[a1.a2], [a2, a3]

) a2
3 + a2a

2
1

(e) k[a1, a2, a3] a2n
2 − (−1)na1a3

(f) Commutative Kleinian singularity

(g) kq[a1, a2, a3] where q12 = q23 = qn, q13 = qn
2

an
2 − q

n(n−1)
2 a1a3

(h)
k〈a1, a2, a3〉⎛⎝ a2a1 − a1a2 − 2a2

1
a3a2 − a2a3 − 2a2

2
a3a1 − a1a3 − 4a1a2 − 6a2

1

⎞⎠ a2
2 − a1a2 − a1a3

There are several choices for a square root τ of σ, not all of which preserve f . A choice 
τ which does preserve f is given by choosing p ∈ k such that p2 = q−n2 , and setting 
τ(a1) = pa1, τ(a2) = a2 and τ(a3) = p−1a3.

Case (b) is a special case of case (g) with q = −1.
In case (h),

C = k〈a1, a2, a3〉/(a2a1 − a1a2 − 2a2
1, a3a2 − a2a3 − 2a2

2, a3a1 − a1a3 − 4a1a2 − 6a2
1)

with f = a2
2 − a1a2 − a1a3. This element f is normal, since

a1f = fa1 a2f = f(a2 + 2a1) a3f = f(a3 + 4a2 + 6a1).

The automorphism σ does have a square root τ , namely by setting

τ(a1) = a1 τ(a2) = a1 + a2 τ(a3) = 2a1 + 2a2 + a3.

One may verify directly that τ indeed fixes f :

τ(f) = (a1 + a2)2 − a1(a1 + a2) − a1(2a2 + 2a2 + a3)

= a2
1 − a1a2 − a1a3.

It remains to show in cases (g) and (h) that τ is an automorphism of C. It suffices 
to show that τ , interpreted as a graded automorphism of the free algebra k〈a1, a2, a3〉, 
preserves the defining ideal of C. This is straightforward in case (g), and is left to the 
reader. In case (h), we have the following.
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τ(a2a1 − a1a2 − 2a2
1) = a2a1 − a1a2 − 2a2

1

τ(a3a2 − a2a3 − 2a2
2)

= (2a1 + 2a2 + a3)(a1 + a2) − (a1 + a2)(2a1 + 2a2 + a3) − 2(a1 + a2)2

= a3a1 + a3a2 − a1a3 − a2a3 − 2a2
1 − 2a1a2 − 2a2a1 − 2a2

2

= (a3a1 − a1a3 − 4a1a2 − 6a2
1) + (a3a2 − a2a3 − 2a2

2) − 2(a2a1 − a1a2 − 2a2
1)

τ(a3a1 − a1a3 − 4a1a2 − 6a2
1)

= (2a1 + 2a2 + a3)a1 − a1(2a1 + 2a2 + a3) − 4a1(a1 + a2) − 6a2
1

= 2a2a1 + a3a1 − 6a1a2 − a1a3 − 10a2
1

= 2(a2a1 − a1a2 − 2a2
1) + (a3a1 − a1a3 − 4a1a2 − 6a2

1)

Thus τ is a graded automorphism of C. The final statement holds by Theorem 5.4. �
Remark 6.2. Inductively one can show

C[z1;σ1][z2;σ2] · · · [zn;σn]/(f + z2
1 + · · · + z2

n)

has finite CM type, provided for each i = 1, . . . , n, σi is a graded automorphism of 
C[z1; σ1][z2; σ2] · · · [zi−1; σi−1] and is a square root of the normalizing automorphism of 
fi−1 = f+z2

1+· · · z2
i−1 that fixes fi−1. We have shown that such square roots σ1 always ex-

ist for each pair (C, f), and inductively they can be extended to C[z1; σ1][z2; σ2] · · · [zi; σi]
(e.g. by σi(zi−1) = ±zi−1).

As noted in the proof of Theorem 6.1 above, the noncommutative Kleinian singularities 
in Table 1 have finite CM type. In the subsections that follow, in the cases when the fixed 
ring is noncommutative, we give matrix factorizations that represent the finitely many 
MCM modules over each of the noncommutative Kleinian singularities that appear in 
the classification of [4]. These are summarized in Theorem 6.3 below. Together with the 
discussion in subsection 6.6, this achieves Goal (II).

6.1. Case (c)

In this case, C = k〈a1, a2〉/([a2
1, a2], [a2

2, a1]) is a down-up algebra where the squared 
generators are central, and f = a2

2 − a6
1. Here, we set deg a1 = 1 and deg a2 = 3. In [4, 

Proposition 2.4], the authors proved there is a single non-free indecomposable MCM over 
C/(f). It may be represented by the matrix factorization ϕ : C[−4] ⊕C[−3] → C[−1] ⊕C

and ψ : C[−7] ⊕ C[−6] → C[−4] ⊕ C[−3] given by the matrices:

ϕ =
(

a2 −a4
1

−a2 a

)
ψ =

(
a2 a4

1
a2 a

)
.

1 2 1 2
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A brief check shows that the above matrices give a matrix factorization of a2
2 −a6

1. Since 
the generators of the free modules in the source and target of ϕ are in different degrees, 
one may check that the only degree zero maps from (ϕ, ψ) to itself are scaling by a 
constant. Therefore (ϕ, ψ) is indecomposable.

6.2. Case (d), n odd

Fix n an odd positive integer. Let A = k[a1, a2] be the commutative polynomial ring. 
We view A as a graded algebra by defining deg(a1) = n and deg a2 = 4. Let τ : A → A

be the graded algebra automorphism determined by τ(a1) = −a1 and τ(a2) = a2. Let 
δ : A → A be the graded τ -derivation determined by δ(a1) = 4(−1)(n+1)/2a

(n+1)/2
2 and 

δ(a2) = 0. Let C = A[a3; τ, δ], where a3a = τ(a)a3 +δ(a) for all a ∈ A. Then C is graded 
by taking deg(a3) = n + 2. Since A is a domain, so is C. One can check that a2

3 + a2
1a2

is central and homogeneous in C. By [4], C/(a2
3 + a2

1a2) has finite CM type with n+1
2

indecomposable MCM modules.
The reader will note that while C/(a2

3 + a2
1a2) has finite CM type, the (graded) alge-

bra A/(a2
1a2) is a commutative “D∞” singularity of countable CM type. This example 

shows that a version of the theory above that considers double branched covers of the 
form A[z; τ, δ] with nontrivial derivation δ may lead to unpredictable behavior where 
preservation of finite CM type is concerned.

There is one indecomposable matrix factorization (ϕ, ψ) of rank 2 where

ϕ =
(

a3 a2
1

−a2 a3

)
: C[−2n] ⊕ C[−n− 2] → C[2 − n] ⊕ C

ψ =
(
a3 −a2

1
a2 a3

)
: C[−3n− 2] ⊕ C[−2n− 4] → C[−2n] ⊕ C[−n− 2].

It is straightforward to check that ϕψ = λa2
3+a2

1a2 and ψϕ[−n − 2] = λa2
3+a2

1a2 . Since 
n is odd, the generators of C[−2n] ⊕ C[−n − 2] are always in different degrees, hence 
the degree 0 endomorphism ring of (ϕ, ψ) is isomorphic to k. This implies (ϕ, ψ) is 
indecomposable.

On the other hand, let m = n+1
2 and s = n+1

2 . For 1 ≤ j ≤ m − 1, define

ϕj =

⎛⎜⎜⎝
a3 (−1)s2am−j

2 a1a2 0
0 −a3 2aj+1

2 −a1a2
a1 0 a3 (−1)s2am−j

2
2aj2 −a1 0 −a3

⎞⎟⎟⎠ .

When n > 4j, set Fj = C[4j − 2n − 4] ⊕ C[−n − 4] ⊕ C[4j − 2n − 2] ⊕ C[−n − 2]
and Gj = Fj [n + 2]. Then ϕj determines a degree 0 C-linear homomorphism which we 
also denote ϕj : Fj → Gj . It is straightforward to check that ϕjϕj [−n − 2] = λa2

3+a2
1a2 , 

hence (ϕj , ϕj [−n − 2]) is a twisted matrix factorization of a2
3 + a2

1a2. Since n is odd, the 
degrees of the generators of F are all distinct. It follows that the graded endomorphism 
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ring of this factorization is isomorphic to k, and hence the twisted matrix factorization 
is indecomposable. The proof that (ϕj , ϕj [−n − 2]) is indecomposable for n < 4j is 
completely analogous and left to the reader.

It remains to show that (ϕi, ϕi[−n − 2]) � (ϕj , ϕj [−n − 2])[s] for i 	= j and grading 
shift s. The generators of Fj are in degrees 2n +4 −4j, n +4, 2n +2 −4j, and n +2. The 
degree difference between the first two is n − 4j, which depends on j. Since no other Fi

has generators that differ in degree by this amount, there can be no invertible degree 0 
homomorphism from (ϕi, ϕi[−n − 2]) to a shift of (ϕj , ϕj [−n − 2]).

6.3. Case (g)

Let

C = k〈a1, a2, a3〉/(a2a1 − qna1a2, a3a1 − qn
2
a1a3, a3a2 − qna2a3)

and let f = a1a3−qδan2 where δ = −
(
n
2
)
. The algebra C is graded by deg a1 = deg a3 = n

and deg a2 = 2. The element f is normal and regular. The normalizing automorphism 
of f is the graded k-linear automorphism σ : C → C defined by af = fσ(a) for a ∈ A. 
One can check that

σ(a1) = q−n2
a1, σ(a2) = a2, σ(a3) = qn

2
a3.

To produce all nontrivial indecomposable matrix factorizations of f up to isomor-
phism, we will apply the machinery of the second double branched cover from Section 5
to a Zhang twist of C.

Let φ : C → C be the graded k-linear automorphism given by φ(a1) = a1, φ(a2) =
q−1a2 and φ(a3) = q−na3. Let ξ = {ξn = φn | n ∈ Z} be the left twisting system 
associated to φ. The (left) Zhang twist of C by ξ, which we denote Cξ, is the graded 
k-algebra defined on the graded k-vector space C by c1 ∗ c2 = ξh(c1)c2 for all c1 ∈ C
, 
c2 ∈ Ch. The Zhang twist of a graded C-module M by ξ, denoted M ξ, is the graded 
Cξ-module defined on the graded k-vector space M by c · m = ξh(c)m for all c ∈ C
, 
m ∈ Mh. If ρ : M → N is a degree 0 homomorphism of graded left C-modules, the 
underlying k-linear map is also a degree 0 homomorphism of left Cξ-modules, which we 
denote ρξ : M ξ → N ξ.

To help distinguish products in Cξ from those in C, when working in Cξ we denote 
the generators a1, a2, and a3 respectively by x, y, and z. It is straightforward to check 
that Cξ = k[x, y, z]. In particular, f is central in Cξ. Furthermore, for any j ∈ N we 
have yj = q−j(j−1)aj2, so f = xz − q−δyn.

Observe that σξm = ξmσ for all m ∈ Z. Also note that for any m ∈ Z we have 
ξm(f) = (q−n)mf . Thus by Theorem 3.6 of [2], the categories TMFC(f) and TMFCξ(f)
are equivalent. The (inverse) equivalence is given on objects as follows (see Theorem 3.6 
of [2] for details). Let c = qn. Let ξ−1 = {ξ−1

n | n ∈ Z} be the inverse twisting system. 
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Given (ϕ : F → G, ψ : G[−2n] → F ) ∈ TMFCξ(f), let λc : tw(Gξ−1) → G[−2n]ξ−1 given 
by m 
→ cdeg mm. The image of (ϕ, ψ) in TMFC(f) is (ϕξ−1

, c−2nψξ−1
λc).

Let A = k[y] where deg y = 2 and let t = −q−δyn. For 1 ≤ j ≤ n, let γj : A[−2j] → A

be given by a 
→ ayj . Then the pair (−q−δγj [n + j], γn−j [n − j]) is an indecomposable 
graded matrix factorization of t, hence

Mj = coker(−q−δγj [n + j], γn−j [n− j])

is an indecomposable graded MCM B = A/(t)-module. Since dimk Mj = j, the Mj

are pairwise nonisomorphic. Forgetting the gradings, the Mj represent all isomorphism 
classes of indecomposable finitely generated B-modules (see, for example, Theorem 3.3 of 
[12]). Thus (−q−δγj [n +j], γn−j [n −j]) for 1 ≤ j ≤ n −1 is a complete set of isomorphism 
classes of nontrivial indecomposable (twisted) matrix factorizations of t, up to grading 
shifts.

By Theorem 5.11 above, it follows that

(ϕj , ψj) = H (−q−δγj [n + j], γn−j [n− j])

=
((

−q−δγj [−n + j] x
−z γn−j [−j]

)
,

(
γn−j [−n− j] −x

z −q−δγj [−2n + j]

))
where 1 ≤ j ≤ n − 1, gives a complete set of isomorphism classes of nontrivial inde-
composable twisted matrix factorizations of f over Cξ, up to grading shifts. By the 
equivalence of categories described above, (ϕξ−1

j , c−2nψξ−1

j λc) where 1 ≤ j ≤ n −1 is the 
desired set of twisted matrix factorizations of f over C. Explicitly,

ϕξ−1

j =
(

−qj−δ−njaj2 a1
−q−n(n−j)a3 q(j−n)(n−1)an−j

2

)
c−2nψξ−1

j λc =
(
q(j−n)(n−1)an−j

2 −qn(n−j)a1
q−n2

a3 −qj−δ−njaj2

)
for 1 ≤ j ≤ n − 1. These twisted matrix factorizations are different from those given in 
Example 6.4 of [2], but one can show that the two sets of twisted matrix factorizations 
are the same, up to isomorphism and degree shift.

6.4. Case (h)

In this case, we have that

C = k〈a1, a2, a3〉/(a2a1 − a1a2 − 2a2
1, a3a2 − a2a3 − 2a2

2, a3a1 − a1a3 − 4a1a2 − 6a2
1)

which is evidently an iterated Ore extension (with derivation) of the Jordan plane 
generated by a1 and a2, hence is AS-regular. The hypersurface is defined by f =
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a2
2 − a1a2 − a1a3, which is normal in C with normalizing automorphism given by the 

equations as in the proof of Theorem 6.1 for case (h). The authors of [4] show that 
C/(f) admits a single indecomposable non-free MCM by [4, Proposition 2.4]. If we let 
F = C[−1]2, and let G = C2, this MCM may be represented by the twisted matrix 
factorization given by the maps ϕ : F → G and ψ : twG → F where

ϕ =
(
−a3 −a1 − a2
a2 a1

)
ψ =

(
a1 a1 + a2

−2a1 − a2 −2a1 − 2a2 − a3

)
.

One may verify that ϕψ = λG
f and twψϕ = λF

f , and that the only degree zero morphisms 
from (ϕ, ψ) to itself are constant (even though there are generators of F and G that are 
in the same degree).

6.5. Summary for Goal II

We summarize the computations above in the following theorem. To see that our 
list of (non-isomorphic) indecomposable matrix factorizations is complete, note that 
the number of factorizations we have produced in each case matches the rank of the 
corresponding McKay quiver (see [3, Table 6]). By Theorem 1.1, this equals the number 
of indecomposable MCM modules.

Theorem 6.3. The nontrivial indecomposable twisted matrix factorizations of the non-
commutative Kleinian singularities given in Table 1 (in the cases where the fixed ring is 
noncommutative) are:

(c) F = C[−4] ⊕ C[−3], G = C[−1] ⊕ C, and ϕ : F → G, ψ : twG → F are given by

ϕ =
(

a2 −a4
1

−a2
1 a2

)
and ψ =

(
a2 a4

1
a2
1 a2

)
.

(d) (for n odd) F = C[−2n] ⊕ C[−n − 2], G = C[−n + 2] ⊕ C, and ϕ : F → G, 
ψ : twG → F are given by

ϕ =
(

a3 a2
1

−a2 a1

)
and ψ =

(
a3 −a2

1
a2 a3

)
.

Moreover, for each 1 ≤ j ≤ n−1
2 and s = n+1

2 , a twisted matrix factorization 
(ϕj , ϕj [−2]) where Fj = C[4j − 2n − 4] ⊕ C[−n − 4] ⊕ C[4j − 2n − 2] ⊕ C[−n − 2], 
Gj = Fj [n + 2], and ϕj : Fj → Gj is given by⎛⎜⎜⎝

a3 (−1)s2am−j
2 a1a2 0

0 −a3 2aj+1
2 −a1a2

a1 0 a3 (−1)s2am−j
2

j

⎞⎟⎟⎠ .
2a2 −a1 0 −a3
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Table 2
Presentations and gradings for the commutative Kleinian singularities k[u, v]G = k[x, y, z]/(f).

Type deg(x) deg(y) deg(z) f

An, n ≥ 1 n + 1 n + 1 2 x2 + y2 + zn+1

Dn, n ≥ 4 2n − 2 2n − 4 4 x2 + y2z + zn−1

E6 12 8 6 x2 + y3 + z4

E7 18 12 8 x2 + y3 + yz3

E8 30 20 12 x2 + y3 + z5

Distinct values of j yield non-isomorphic twisted matrix factorizations.
(g, b) For each 0 < j < n, Fj = C[−n − j] ⊕C[−2n + j], Gj = C[−n + j] ⊕C[−j], and 

ϕj : Fj → Gj, ψj : twGj → Fj are given by

ϕj =
(
−q

(n
2
)
+j−njaj2 a1

−q−n(n−j)a3 q(j−n)(n−1)an−j
2

)
, and

ψj =
(
q(j−n)(n−1)an−j

2 −qn(n−j)a1
q−n2

a3 −q
(n
2
)
+j−njaj2

)
.

Distinct values of j yield non-isomorphic twisted matrix factorizations.
(h) F = C[−1]2, G = C2, and ϕ : F → G, ψ : twG → F are given by

ϕ =
(
−a3 −a1 − a2
a2 a1

)
and ψ =

(
a1 a1 + a2

−2a1 − a2 −2a1 − 2a2 − a3

)
.

6.6. The commutative graded case

As noted above, Theorem 1.1 and [3, Prop. 7.1] imply that all hypersurface singu-
larities in Table 1 have finite CM type, and the number of indecomposable MCMs in 
each case equals the rank of the corresponding McKay quiver. In particular, this holds 
in case of commutative Kleinian singularities as defined at the beginning of this section. 
We note that all ADE hypersurface singularities appear in case (a). In case (f), only 
the D and E types appear, see [3, Table 6]. The equations and grading defining each 
hypersurface singularity are as follows (see [12, pp 87-89]).

The fixed rings appearing cases (d) (n even) and (e) are isomorphic to rings in the 
table above. In each case we have n ≥ 3. In case (d) (n even), setting x = a1, y = a2, 
z = a3 yields a commutative Kleinian singularity of type D(n+4)/2. In case (e), setting 
x = (−1)na1, y = a2, and z = a3 yields a commutative Kleinian singularity of type 
A2n−1.

To complete Goal II in the commutative cases, it suffices to present families of graded 
matrix factorizations that represent non-isomorphic indecomposable MCMs for each 
hypersurface listed in Table 2. These families were described in [7] (see also [12, pp. 
153-158]), and we will not reproduce them here. The interested reader will find it straight-
forward to assign degrees to free module generators so that the maps defined by the 
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matrices given in [7] or [12] are homogeneous of degree 0. We conclude by observing that 
these factorizations are indecomposable and nonisomorphic in the graded category.

Following [7], let ρ be a finite dimensional, irreducible representation of G, and let 
Eρ denote the corresponding simple left k[G]-module. Let C = k[u, v] and let Mρ =
Homk[G](Eρ, C). Note that Mρ is a left CG-module and, since Eρ is simple, Mρ inherits 
an N-grading from C compatible with the action of CG. In fact, {Mρ | ρ irreducible}
is a complete set of non-isomorphic, indecomposable MCMs in the category of graded 
CG-modules. To see this, we first note that as graded left CG-modules, Mρ

∼= (C⊗Eρ∗)G
where ρ∗ is the dual representation; here G acts diagonally on the tensor product. Now, 
by [5, Lemma 2.7], the set {C ⊗Eρ∗ | ρ irreducible} is a complete set of nonisomorphic, 
indecomposable projectives over the smash product C#G. By [12, Corollary 5.16], (C⊗
Eρ∗)G is an indecomposable CG-module, so Mρ is an indecomposable graded CG-module. 
Finally, Corollary 4.6 and Remark 4.7 of [7] show that Mρ has a minimal resolution by 
finite rank graded free CG-modules that is periodic of period 2. It follows from [2, 
Theorem 4.7] that Mρ is a MCM CG-module. The matrices in the minimal resolution 
described in [7] are the desired graded factorizations.
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