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ON THE QUADRATIC DUAL
OF THE FOMIN-KIRILLOV ALGEBRAS

CHELSEA WALTON AND JAMES J. ZHANG

ABSTRACT. We study ring-theoretic and homological properties of the qua-
dratic dual (or Koszul dual) 8;1 of the Fomin—Kirillov algebras &,; these al-
gebras are connected N-graded and are defined for n > 2. We establish that
the algebra ET!L is module finite over its center (and thus satisfies a polynomial
identity), is Noetherian, and has Gelfand—Kirillov dimension |n/2] for each
n > 2. We also observe that ET!L is not prime for n > 3. By a result of Roos,
En is not Koszul for n > 3, so neither is Eﬁl for n > 3. Nevertheless, we prove
that &}, is Artin-Schelter (AS-)regular if and only if n = 2, and that &}, is both
AS-Gorenstein and AS-Cohen—-Macaulay if and only if n = 2,3. We also show
that the depth of 6,!1 is < 1 for each n > 2, conjecture that we have equality,
and show that this claim holds for n = 2, 3. Several other directions for further
examination of 8;1 are suggested at the end of this article.

1. INTRODUCTION

Throughout this work, we let k denote an algebraically closed field of character-
istic zero, and we consider all algebraic structures to be k-linear.

In 1999, Fomin and Kirillov introduced a family of quadratic algebras for the
study of the quantum and the ordinary cohomology of flag manifolds in [14]. Since
then these algebras, now referred to as Fomin—Kirillov algebras &, (Definition 1.1),
have been studied extensively by many authors with connections to algebraic com-
binatorics [7, 16, 35, 38|, algebraic geometry, and cohomology theory [23,27], Hopf
algebras and Nichols algebras [1,15, 18, 36], noncommutative geometry [31,32], and
number theory [33], and generalizations of these algebras have been examined in
several works [5,26,36]. The cohomology algebras Extg (k,k) of the Fomin-Kirillov
algebras have also been of interest: They are related to the cohomology ring of
quantum shuffle algebras in [13], for example, and is studied in detail by Stefan
and Vay [43] when n = 3. Moreover, several questions asked by Fomin and Kirillov
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in their 1999 work are still open—most notably, it is unknown whether &, is finite
dimensional for n > 6 [14, Problem 2.2]. (The algebra &, is finite dimensional
when n = 2,3,4,5 [14, (2.8)].) Many of these questions can be recast in terms of
Extg (k,k)—for instance, the regularity of Extg (k,k) as an A-algebra is in a
certain sense equivalent to the finite-dimensionality of &, [30].

With the aim of providing insight into the structure of both &,, and its cohomol-
ogy algebra, we examine in this article the subalgebra of Extg (k, k) generated by
Ext};n (k,k). Namely, we study the structure of the quadratic dual (or Koszul dual)
& of &,, also known as the diagonal subalgebra @ Extg: (k, k) of Exty (k, k).

Note 1. Due to the scope of fields in which the Fomin—Kirillov algebras appear, the
exposition of this article is intended for an audience broader than experts in non-
commutative graded algebras. As discussed below, much of the theory of commuta-
tive local algebras has been generalized to the noncommutative setting by working
with algebras that are connected graded. An N-graded k-algebra A = @, A; is,
by definition, connected if Ay = k.

To begin, the presentations of £, and of its quadratic dual &, are provided below.

Definition 1.1 (&,, z; ; [14, Definition 2.1]). For n > 2, the Fomin-Kirillov alge-
bra, &, is an associative k-algebra generated by indeterminates {x; ; | 1<i<j<n}
of degree 1, subject to the following quadratic relations:

x?’j =0, 1 <,

TijTik — TjkTik — TikTij = 0, 7 < j < k,

TjkTij — TikTjk — TijTik = 0, 1< j < k?,

Ti jTk1 — Tk1Tij = 0, {Z,j} N {k,l} = (Z), 1 < g, k<.

The presentation of &, is obtained in a straightforward manner from the defini-
tion above and is recorded below. For a graded quadratic k-algebra A = T'(V)/(R)
with T'(V') as the tensor algebra on a k-vector space V and (R) the two-sided ideal
generated by a space R C V ®V, the quadratic dual A' of A is T(V*)/(R™*), where
V* is the linear dual of V and R* is the orthogonal complement of R in V ® V.

Definition-Lemma 1.2 (£}, y; ;). The quadratic dual ), of &, is an associative
k-algebra generated by the indeterminates {y; ; := x; ; | 1 <i < j < n} of degree 1,
subject to the following quadratic relations:
Yij¥Yik +YikYie =0, i, j,k distinct, where y;; = =y, ; fori <j;
YijYkl +Ukyi; =0, {5y 0 {k 1} =0, i<j, k<l U
Our first result pertains to ring-theoretic results on £': one on the polynomial
identity (PI) property [Definition 2.6, Remark 2.7], i.e., a condition for a ring being
“measurably” close to being commutative (e.g., via its PI degree); and another on

the Gelfand-Kirillov (GK-)dimension (Definition 2.1, Remark 2.2), i.e., a growth
measure on a ring that serves as a noncommutative version of the Krull dimension.

Theorem 1.3. The algebra £, satisfies the following properties.

(1) & is Noetherian and is module finite over its center (so it satisfies a poly-
nomial identity) when n > 2.
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(2) & has GK-dimension |n/2] when n > 2.
(3) &), is not prime when n > 3.

n

For Theorem 1.3(3), recall that a ring A is prime if for all nonzero elements a, b
we get aAb # 0 (a weaker version of the domain property), and a ring is semiprime if
it contains no nilpotent ideals (a weaker version of the prime property). Semiprime
rings are still quite useful in their own right (see, e.g., [17, Chapter 6]). So, we ask
the following.

Question 1.4.

(1) Are the algebras &), semiprime?
(2) What is the PI degree of £}?

In any case, we obtain the following immediate results on the cohomology algebra
Ext; (k,k) since &, is a subalgebra of Ext} (k, k).

Corollary 1.5. We find that GKdim(Extg (k,k)) > [n/2] when n > 2, and that
Extg (k,k) is not a domain when n > 3. O

The GKdim bound in Corollary 1.5 is not sharp: Indeed, GKdim Extg, (k, k) = 2
by a result of Stefan and Vay [43, Theorem 4.17]. Nonetheless, it was shown recently
by Ellenberg, Tran, and Westerlan that the growth of £, and of Ext; (k,k) are
related to the growth of the homology of Hurwitz spaces [13].

Now we consider various homological conditions on &.,. To start, note that &, is
not Koszul for n > 3, due to a result of Roos [39]; thus, £}, is not Koszul for n > 3.
Thus, &, is a proper subalgebra of Exti (k,k) (see [37, Section 1.3]). In any case,
we examine & in view of the hierarchy of Artin-Schelter (AS) versions of desir-
able homological properties for connected graded algebras that are not necessarily
commutative; see, e.g., [24, Introduction] for more details. In short, one has

AS-regular [Definition 4.1(2)] = AS-Gorenstein (Definition 4.1(1))
= AS-Cohen—-Macaulay (Definition 4.1(4)).

A version of the classical complete intersection condition (Definition 4.2(3)) is
also related; see Figure 1 in Section 4 for more details. Our second result determines
whether &), satisfies the conditions above.

Theorem 1.6. We have the following statements for £, (and for &, &3).
(1) & is AS-regular if and only if n = 2.
) is AS-Gorenstein if and only if n = 2, 3.
(3) & is AS-Cohen—Macaulay if and only if n = 2,3.
) &, E%, &, and E3 are classical completion intersections.

Since &), is a Noetherian algebra that satisfies a polynomial identity (Theo-
rem 1.3), one can measure the failure of the AS-Cohen-Macaulay property of £}, by
considering its depth (Definition 4.1(11)). Namely, the depth of a connected graded,
Noetherian algebra A that satisfies a PI is bounded above by its GK dimension,
and we have equality of these values if and only if A is AS-Cohen—Macaulay due to
the results of Jorgensen [20, Theorem 2.2]. In fact, we verify that &£, has depth < 1
for n > 2 (Theorem 4.12; cf., Theorem 1.3(2)), and computational evidence yields

the following conjecture.
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Conjecture 1.7. The algebras £, have depth 1 for all n > 2.

Note that if Question 1.4(1) has an affirmative answer, then Conjecture 1.7 holds
by Theorem 4.12; see Remark 5.1.

There is a similar hierarchy of Auslander versions of the regularity (Defini-
tion 4.1(8)) and the Gorenstein (Definition 4.1(7)) conditions, in comparison with a
version of the Cohen—Macaulay condition (Definition 4.1(9)) considered frequently
in noncommutative algebra; see Figure 1. From Theorem 1.6, we obtain the follow-
ing consequences.

Corollary 1.8. The algebra &), is Auslander-regular if and only if n = 2, and is
both Auslander—Gorenstein and Cohen—Macaulay if and only if n = 2, 3.

The proof of Theorem 1.3 is provided in Section 2, and Theorem 1.6 and Corol-
lary 1.8 are established in Section 4. Two important commutative subalgebras C,
and D,, of &, (Notation 2.5) that play a key role in Section 2 are examined further
in Section 3. In addition to Question 1.4 and Conjecture 1.7, more questions and
directions for further investigation are presented in Section 5.

2. RING-THEORETIC PRELIMINARIES AND PROOF OF THEOREM 1.3

Here, we recall the Gelfand—Kirillov (GK-)dimension and PI property of rings,
along with providing examples of and remarks on these notions. Toward studying
the GK-dimension and PI property of 5,!“ commutative subalgebras C, and D,, of
&' are constructed below. After preliminary results on £, and on its relationship
to C,, and D,,, are verified, we prove Theorem 1.3 at the end of the section.

To begin, recall that an N-graded k-algebra A = @, A is connected graded
(c.g.) if Ag =k, and is locally finite if dimy A; < oo for all i. Moreover, the Hilbert
series of an N-graded, locally finite algebra A = €D,y A; is, by definition,

HA(t) = EieN(dimk Az)tl
Definition 2.1 ([25], [34, Chapter 8]). The Gelfand-Kirillov dimension (or GK-
dimension) of a connected N-graded, locally finite k-algebra A is defined to be

1 "o dimy A;
GKdim(A) = limsup 08(2 5o ditmi )

Remark 2.2.
(1) Suppose A is finitely generated. Then GKdim(A) = 0 if and only if
dimy, A < oo.

(2) Even though the definition of GK-dimension is technical, the dimension is
computable in many cases. For instance, the GK-dimension of a polynomial
ring k[z1,..., 2] is m, and so is any noncommutative k-algebra with a k-
vector space basis of monomials

ei, €; e
@k L Ry MDAy R AN

i1 “ig it m

where the sum runs over finitely many values of e;; and r; > 0. For q € k*,
the ¢-polynomial ring

kelz1, .., 2m] :i=k(21, ..., 2m) [ (2i25 — q2j2i)i<;
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has such a monomial basis (with e;; = 0), so its GK-dimension is m. In
fact, polynomial growth is the same condition as finite GK-dimension.

(3) The GK-dimension of a commutative finitely generated k-algebra is its Krull
dimension [34, Theorem 8.2.14].

(4) If B is either a subalgebra or a homomorphic image of a k-algebra A, then
we get GKdim(B)< GKdim(A) [34, Proposition 8.2.2]. Moreover, if A
is module finite over a k-subalgebra C, then GKdim(A)= GKdim(C') [34,
Proposition 8.2.9(ii)].

Toward computing the GK-dimension of £, we present a set of monomials whose
k-span is &£,.

Lemma 2.3. Order the generators {y; j }1<i<j<n of E, such that y; ; <y ifj <1,
orifj=1andi < k. That is,

Y12 < Y13 <Y23 < Y14 <Y2.4 <Y3a<Y15<-<Yn-2n<Yn—-1n-
Then every element in £, is a linear combination of the monomials of the form
T1,2 T1,3_ T23 T1,4 Tn—2,n_ Tn—1,n
YVigY13Y23Y%4 " Yn—2nYn—1n for ri; = 0.
Proof. First, we show that if y,; > v; j, then y, ;y; ; can be written as a lower order

term by using relations of Definition-Lemma 1.2. If {k,{} N {4, j} = 0, then we use
the last relation of £),. Otherwise, for k > j > i we have

YikYij = —YijYiks Y5.kYi5 = ~YikYjk, YjkYik = —YijYjk-

Now by Bergman’s diamond lemma [6], every element in &, is a linear combination

Tn—2,n_ Tn—1,n
ofthemonom1alsy12y13y23y14 CYn o Yn - O

The following is a preliminary result needed for constructing a central subalgebra
of £ to aid in determining its GK-dimension (and PI property, introduced later).

Lemma 2.4. Let a; ; := yf] We find that a; ; is central in E foralli < j, and
that the following relations hold in &), :

@i iYik = YjkGik and a; ;0 = G;;0; VY distincti,j, k.
Proof. Tt {i,j} N{s,t} = 0, then by Definition-Lemma 1.2 we get

Ys,tQij = ys,tyiQ,j = “YijYstYij = y?,jys,t = QijYs,t-
On the other hand, we will show that a;; and y;, commute for any ¢ < j with
k=i or j. Recall that y;; = —y; ; for all 7 < j. Indeed,
Qi Y5k = _yiz,jyk,j = YijYk,iY%,5 = —Y5iYkiYi5 = Yk5Y5iYi5 = YjkGig-
Hence, a; ; is central.
By Definition-Lemma 1.2, we also obtain that

Qi jYik = —Yi,jY5,kYik = Yj,kYi kYik = Yj ki k)
A5 505k = —YijY5kYikYik = YijY5,kY5,iY%ik = —YijYk,jY5,iYik
= Yk,iYi,5Y5,iYi.k = Q;,;a; L,
as claimed. O
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3926 CHELSEA WALTON AND JAMES J. ZHANG

Notation 2.5 (a;,j, Cn, Dy). From now on, we let a; ; denote the central elements
yfj (see Lemma 2.4), and we use the notation a; ; for a;,; when i > j.

Let C,, be the commutative subalgebra of &}, generated by {a;; | 1 <i < j < n}.
Let D,, be the commutative algebra generated by {a; ; | 1 <i < j <n}, subject to
the relations

;5051 = Q5 05k V distinct 4, j, k.
By Lemma 2.4, there is a natural algebra surjection from D,, to C,. Later, in
Proposition 3.10, we will show that D,, is indeed isomorphic to C,. Note that
the relations in the algebra D,, are similar to those of the algebra A, that appear
in [3, Section 4.1].

We use the commutative subalgebras C,, and D,, to study the GK-dimension and
the PI property (defined below) of £, as follows.

Definition 2.6 ([34, Chapter 13]). A polynomial identity (PI) for a ring A is a

monic multilinear polynomial f € Z(z1,...,zq) such that f(a1,...,aqs) = 0 for all
a; € A. A ring A is called a PI ring, or PI for short, if such a polynomial f exists
for A.

If a PI ring A is prime, then the PI degree of A is half of the minimal degree of
a PI for A.
Remark 2.7.

(1) The PI property is preserved by taking it under subalgebra and homo-
morphic image, and algebras that are module finite over a commutative
subalgebra are PI [34, Lemma 13.1.7, Corollary 13.1.13].

(2) If A is a commutative domain (and thus prime), then its PI degree is 1
since the commutator is a PI of minimal degree 2. On the other hand, the
g-polynomial ring ky[z1, ..., zy] from Remark 2.2(2) is prime, and it is PI
if and only if ¢ is a root of unity. When ¢ is a primitive dth root of unity,
the PI degree of ky[21, . . ., 2m,] is dl™/2 [8, 1.14].

(3) See [41, p. 98] for the (technical) definition of PI degree for nonprime PI rings.

Lemma 2.8. Recall Notation 2.5. The following statements hold.

(1) There is a natural surjective map Dy, — Cy,, and there is a natural injective
map Cp, — ET!L. As a consequence, ET!L is a module over both C,, and D,,.

(2) & is a finitely generated module over both C,, and D,,.

(3) D, satisfies the relations

(E1.8.1) a?ljain = a; a2},
for all distinct i, 7, k.
(4) GKdimD,, = |n/2].
Proof.

(1) This follows from Lemma 2.4.
(2) By Lemmas 2.3 and 2.4, we find that as a k-vector space,

Z ]ky12 ?J13 : nnll'r:c

e;,;=0,1
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Therefore, £, is a finitely generated C,-module. The last claim holds as
D,, - C,.
(3) In D, we have a; ;(a; r — a;) = 0 for all distinct 4, j, k. Then we get
aijaik(aij — air) = aijajr(ai; —a;x) =0,
as desired.

(4) Let m := |n/2], and let I :={(1,2),(3,4),...,(2m—1,2m)}. Let B be the
quotient algebra D,,/(a; ;)i<;j ij)gr- Observe that B is the commutative
polynomial ring generated by the set {a; ;} j)er- So,

GKdim D,, > GKdim B =m
by Remark 2.2(2,4).

Next, we will show that GKdim D,, < m. Order the generators {a; ;} of D,, by
a;; < ag, if either j < [, or j =l and 4 < k (we assume that ¢ < j and k < [
here). Using the diamond lemma [6] and the relations in Lemmas 2.4 and 2.8(3),
we obtain that if we have a nonzero monomial of the form

Tivgr o Tidt
11,71 it,Jt

{isy5Js1 } N {isy, s, } = 0. Therefore, t < m. Let V be the graded subspace of D,

defined by
T T
V= Zk 'Llljil ’Ltt]jt7
where the sum runs over all possible (is, j5) such that {is,, s, } N {is,,Js,} = @ for
any pairs with 7, ;. ,ri,, j., # 0. By the description of the monomials above, we

get
612 613 €n—1,n
E ]ka - nan.

e;,j=0,1

that is not a linear combination of lower degree terms with 7;_ ;. > 2 for all s, then

Since GKdim V' < m, and since D,, is a quotient space of a finite direct sum of V,
we obtain that GKdim D,, < m, as desired. ]
Proof of Theorem 1.3.
(1) By Lemma 2.8(2), £, is a finitely generated module over the finitely gen-
erated commutative (and thus Noetherian) k-subalgebra C, from Nota-
tion 2.5. Thus, &£, is a finitely generated Noetherian PI algebra and is
module finite over its center. See [17, Proposition 1.6] and Remark 2.7(1).
(2) First, we construct a factor algebra of £, to bound its GK-dimension from
below. Let m := [n/2], and let T := {(1,2),(3,4),...,(2m —1,2m)}. Now
take
B = &,/(Yi)i<i el
a factor algebra of £,. By Definition-Lemma 1.2, we get B to be isomor-
phic to the (—1)-skew polynomial ring k_1[y1,2,Y3,4,- - -, Y2m—1,2m])- S0, by
Remark 2.2(2,4),

CKdim &, > GKdim B = m.

On the other hand, since 57!1 is a finite module over C, and C, is a
homomorphic image of D,, (Lemma 2.8(1,2)), we obtain that

CKdim £}, = GKdimC,, < GKdimD,, =
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3928 CHELSEA WALTON AND JAMES J. ZHANG

by Remark 2.2(4) and Lemma 2.8(4). Thus, GKdim &, = m = |n/2].
(3) This follows from Lemma 2.4: Namely, y; x(a;; — a;x) = 0 for all distinct
i, j, k, yet yj and a; j — a; 1, are nonzero in &, (by the diamond lemma [6]).
O

3. RESULTS OF ETINGOF ON THE ALGEBRAS C,, AND D,

Recall that n is an integer > 2. This section contains some results due to Pavel
Etingof on the commutative algebras C,, and D,, from Notation 2.5. We thank him
for suggesting these results and providing us with the key ideas for the proofs.

To begin, we need to set some notation on set partitions and corresponding
graphs and monomials.

Notation 3.1 ([n], m, IL,,, By, tk(7), #1(7), #>2(7)). We fix some notation on set
partitions.

e Let [n] denote the set {1,...,n}.

e Let IT,, denote the collection of set partitions of [n]. Namely, = € II,, if 7 is
a set of nonempty subsets B, ..., By of [n] such that each positive integer
between 1 and n lies in exactly one of the B;. We refer to the subsets B;
as the blocks of m, and we denote the number of blocks of m by #.

e The rank of w € I1,,, denoted by rk(w), is the value n — #.

o We denote by #i(m) (resp., #>2(m)) the number of blocks of 7 that are
singletons (resp., have cardinality > 2).

o We call m € I1,, trivial if #m = #1(7) = n, thatis, if 7 = {{1},{2},...,{n}}.

Notation 3.2 (G, G, m,, V(G,), S(G), T(G)). Let G be a graph with the vertex
set [n] subject to the following conditions. It is loopless and we allow for multiple
edges between two vertices. Moreover, corresponding to w € II,, as in Notation 3.1:

e The graph G has #m connected components of G denoted by {Gr}f:l.

e Let m,, = m,.(G,) be the total number of edges in each connected component
G, for each r.

e We refer to 7 as the support of G, sometimes denoted by S(G), in the sense
that the block B, is the vertex set V(G,.) of G,.

e The type of G, denoted by T(G), is the collection {(B, := V(G,), m,)}77,.

Notation 3.3 (G(f), Gr(f), m(f), V(G,([f)), S(f), T(f)). Let F be a not neces-

sarily commutative algebra generated by {f; ; | 1<i<j< n}.

e For each monomial f := f;, j, fi, j, "+ fi, j., we define a graph, denoted by
G(f), with vertex set [n], and with edges is—js for each f;, ;, in f.

Then G(f) is a disjoint union of connected components {G,(f)}¢_, for some d € N.

e Let m,(f) be the total number of edges in G,(f) for each r.

e The type of f is defined to be the collection of pairs
T(f) :=T(G(f)) = {(V(G:(f).me(£)) }

d
r=1"

and the support of f is the set partition of the vertex set of G(f),
S(f) = 8(G(f) = {V(G-(f)}

d
r=1"
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We define a partial ordering on the types of graphs defined above.

Definition 3.4. Choose two graphs G and H on n vertices as in Notation 3.2;
the same will apply for the graphs defined on monomials of the same degree as in
Notation 3.3. We write T(G) < T'(H) if either of the following apply:

(a) The set partition 7 € I, corresponding to T(G) is a proper refinement of
my € I, of T(H) (i.e., each block of ¢ is a subset of a block of g, with
one such being a proper subset).

(b) We have ng = w (i.e., G and H have the same support) and the sequence
{m,(G,)}e_, is less than {m,.(H,)}¢_; in the lexicographic order.

We also write S(G) < S(H) if condition (a) holds.

Next, we turn our attention to the commutative algebra D,, from Notation 2.5
(which is studied in Lemma 2.8). Recall that D,, is generated by commuting ele-
ments {a;; | 1 <i < j <n}and is subject to the relations

(E241) A jA5 k= Q5,504 k V distinct i,j, k.

We will use Bergman’s diamond lemma [6] in the next proof. Let S be a reduc-
tion system for the set of relations R of a given finitely presented algebra. If all
ambiguities of R can be resolved using S, then we call S a Grobner basis of R.

Lemma 3.5. Recall the commutative algebra D,, from Notation 2.5. Every mono-
mial of Dy, (in the variables a; ;) is nonzero.

Proof. This basically follows from Bergman’s diamond lemma [6]. Rewrite the set
of relations of D,, as

iy 51 Qig,jo = Aky,ly Cko,ly
for some indices (i1, 41), (i2,42), (k1,11), and (kz2,l2). By induction, every relation
in the Grobner basis derived from overlap ambiguity is of the form
(E251) Ay ,51 " Qi Gy = Ok by * " " Qhyy, Ly,

for some pairs of indices (is,Js), (ks,ls) for s = 1,...,w. It is not necessary to
specify what these indices are. In other words, the reduction in the diamond lemma
uses the relations only of the form (E2.5.1). This implies that every monomial is
equal to a reduced monomial. Therefore, every monomial of D,, is nonzero. O

We now discuss the growth of the algebra D,,.
Proposition 3.6. The Hilbert series of D,, is

= ( ) Z trk(ﬂ') ) Z trk(ﬂ')
D, (1) = T pEam 1Tt 1 _ A\#oa(m)”
mell, (1 o t)#22( ) nontriv w€ll,, (1 o t)#22( )
Proof. Take a := [[._; ai, j., a monomial of D,; it is fine to use [] since D,, is
commutative. For B = {i1,...,i;} C [n| and m > ¢ — 1, let

. ,m—q+2 o
Q(Ba m) =gy Qiggig Qg iy

be a certain monomial of D,, of degree m. By convention, a(B,m) = 1if B is a
singleton and, consequently, m = 0. By using the relations (E2.4.1), one sees that
a is equal to a(B,m) in D, if and only if G(a) is connected except for singletons.
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Further, let @ be a monomial with T'(a) = {(B, = V(G,),m,)}¢_;; then we
claim that

(E2.6.1) a= H (Br,m;) Ha (Br,m;)
m.>1
in the algebra D,,. In other words, a monomial is determined by its type uniquely.
In equation (E2.6.1), B,’s are disjoint subsets of [n].
To show the above claim, we first show that every element of the form

(E2.6.2) a(Bi,m1) - - - a(Ba, ma)

is reduced. Every step in the reduction of the diamond lemma [6] uses one of the
commuting relations of D,, or one of the relations in (E2.4.1) such that (¢, 7, k)
includes one of the connected components of G(a). This means that in every step
f = /" in the reduction process, we have T'(f) = T(f"). Therefore, T'(a) = T(a’)
if a = @’ for two monomials in D,,. Clearly, a(B1,m1)---a(Bg,mq) is the small-
est with respect to the lexicographic order. Therefore, a(By,m1)---a(Bg,mq) is
reduced. Second, if @ is a monomial that is not in the form of (E2.6.2), it can be
reduced to another monomial of the form of (E2.6.2) by induction on the degree of
the monomial. Thus, we proved the claim.

Now the assertion follows by counting monomials of the form in (E2.6.1). Namely,
fix 7 € II,. Then the monomials of positive degree of the form in (E2.6.1) corre-
sponding to m = {Bi,..., By} are [], i 5, |>2 @(Br,my); this contributes to
the Hilbert series of D,, the term

H (tlBTl_l_’_tlBr‘ _i_t‘BrH‘l +) = H

r with |B,.|>2 r with | B,|>2

t‘Brl_l

since the degree of a(B,, m,) is m,, which has the lowest value |B,| — 1. Since

it 1,122 (Bel =1 = (S0 i 15,132 |Brl) = #22(7)
= (n — #1(m)) — #>2(7)

— 1k(m),
we find that the monomials of positive degree corresponding to a partition 7 € IT,,
contribute

H tlBr‘*l trk(ﬂ')
i T (1 pF=m
r with |B,|>2 1=t (1 t) =’
to the Hilbert series of D,,. O

Naturally, we then inquire as follows.
Question 3.7. What is the Hilbert series of &7

Proposition 3.8 (Etingof). The algebra D, is reduced; that is, D, has no nonzero
nilpotent elements. As a consequence, D,, is semiprime.

Proof. Let 0 # f € D,, be a linear combination of monomials ), ¢;a; for ¢; € k.
Here, a; € D,, are linearly independent monomials in a; ;5. We want to show that
f™ # 0 for all m > 1. We pick a summand c;,a;, # 0 of f such that T'(q, ) is
one of minimal type according to the partial ordering of Definition 3.4. We want
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to show that f™ is a linear combination of ¢;, ---¢;, a; @, , with its summand
cpal # 0 being of minimal type. This is enough to conclude that f™ # 0 by
Lemma 3.5.

Consider the term g, ---a,; that is not ¢, and suppose by way of contra-

diction that T'(a;, ---a; ) < T(aj’). Then S(_Zl gy ) < S(af) = S(a;,) by

—tm —tm

condition (a) of Definition 3.4. This implies that S(a; ) < S(g,,) for all s. Since
T(a;,) is minimal, we obtain that S(a; ) = S(a;,)- When all g, have the same
support, we use condition (b) of Definition 3.4 to obtain T'(a;_) < T( ,) for some
a; # a; , which is a contradiction. Thus, f™ is a linear combmatlon of monomials

with one summand civag of a summand with minimal type. The assertion follows.

The semiprimeness of D,, now holds since D,, is commutative. O
We need the following construction for the next result.

Definition-Lemma 3.9. Let {R;}L | be some Zy-graded algebras. The super ten-
sor product between R; and R; is a Zy-graded algebra,

Ri ®super Rja

which is equal to R; ® R; as Za-graded algebras, where for homogeneous elements
[, € R; and g,¢' € R we have

(feg(f ®g)=D)I(ff' @ gq).

The ZQ'grading Of R; Qsuper Rj is (R Qsuper R; )0 = (Rz)O @ (Rj)O + (Rz)l Y (Rj)l
and (R; ®super Bj)1 = (Ri)1 ® (R;)o + (Ri)o ® (R;)1. Moreover, R; Qsuper Rj 5 a
graded twist of R; @ R; in the sense of [45]. O

Recall that C, is the central subalgebra of £}, generated by a;, ji= yf ; foralld, .
Proposition 3.10 (Etingof). There is a natural algebra isomorphism Dy, =2 C,,.
Proof. We achieve the result by studying the points of

X,, = SpecD,, C k().

Let us set some notation used in this proof. Given a point z = (2; j)1<i<j<n € Xn,
let G(z) be the graph on the vertex set [n] where i and j are connected if and
only if z; ; # 0. Let {G,(2)}?_; be the set of connected components of G(z). The
relations

2, (zik — 256) =0

(derived from (E2.4.1)) imply that, for some z, € k*,

(E2.10.1) - {x,« if 4, j belong to the same component G,(z),

0  otherwise

by definition. Thus, each connected component G,(z) is a complete graph.
On the other hand, for each set partition 7 = {By,...,Bgq} € II,, we can
construct a stratum

Xn(m) :={z € X,, | G-(2) is the complete graph K(B,) Vr}.

It is clear that X, () is a torus of dimension equal to #o(7).
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For the rest of the proof, recall that by Lemma 2.8(1), there is a natural algebra
surjection from ¢ : D,, — C,,. So, the assertion is equivalent to the statement that
the map ¢ is injective. Let I be the kernel of ¢, and let Z(I) C X,, be the zero set
of I. Since D, is reduced (Proposition 3.8(1)), it suffices to show that Z(I) = X,,.

Note that I is also equal to the kernel of the composition (C,, < &) o ¢, where
the inclusion holds by Lemma 2.8(1). Take a point z € X, and consider the
corresponding maximal ideal m, of D,, and form the algebra

Sé(z) = 87!1 ®p, Dn/(m;).

Then it suffices to show that &} (z) # 0 for all z € X,,. Namely, this condition
is equivalent to the condition that m, contains I for all z € X,,, which in turn is
equivalent to I C (,cx, m.; here, [, x m. = 0 since D, is reduced.

Let z be any point in X,,. Then it belongs to a stratum X, (7) for some set
partition m = {By, ..., Byx} of [n], where B, = G,(z). Then &\(z) is defined as
the quotient algebra

Enz) =&, (v — v }ijecns), {Wii}iorj ¢cu(z)) for z, in (E2.10.1).

Let us replace the last relations by an even stronger relation: Take the ideal

J = (y’i,j)i7j in different blocks of 7 *

Then the resulting quotient algebra &£ (z)/J is a super tensor product of algebras,
denoted by R, associated with components B, with |B,| > 2. Now by Definition-
Lemma 3.9, it suffices to show that each R, is nonzero, or equivalently, to show
that & (2) is nonzero when #7 = 1.

Without loss of generality, we can first assume that #7 = 1 and, by replacing
Yi,; with a:l_l/zyi,j, we may further assume that 1 = 1. Now z; ; =1 for all i # j
by (E2.10.1). So it suffices to show that the algebra & (1) is nonzero.

For n = 3, one can check directly or by using a computer algebra program that
the algebra

&) = k(y1,2, Y13, ¥2,3)
(1) = o . -
Yie— L viz—1 viz—1,

Y1,2Y2,3 + Y2,3Y1,3,  Y1,2Y2,3 + Y1,3Y1,2,
Y2,3Y1,2 T Y1,3Y2,3,  Y2,3Y1,2 T Y1,291,3

is nonzero. For n > 4, we can check that the algebra &/, (1) is isomorphic to a factor
of the group algebra of a Schur cover 2 - S;' of the symmetric group S,. Namely,

the group 2 - S has a presentation with generators w, s1, ..., s,_1 and relations
w? =1,
ws; =s;w and sP=1 VI<i<n-—1,
8i115i8i+1 = 5iS8i+15i, Vli<i<n-—2,
578 = 8;S;W, Vi<i<ji<n-—1, |i—j>2

see [22, Chapter 12]. Now by identifying w = —1 and s; = ¥; ;+1, we get
) =k(2-S)/(w+1).

Since |2 - S;F| = 2n! and the order of w is 2, we find that k(2 - S;})/(w + 1) has
dimension n!, so &,(1) is not 0, as desired. O
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One quick consequence of the proposition above is the following.
Corollary 3.11. Every monomial in £, is nonzero.

Proof. Since the natural map D,, — &, is injective (Lemma 2.8(1) and Proposi-
tion 3.10), every element of the form yiz1 7j1y1227j2 e yfmjw is nonzero by Lemma 3.5.
Starting from any monomial y;, j,¥i, j» - - - Yin 4., i0 Eh, ONE can see that

.2 2 2
(Yir 1 Yisrjo " Yiwsdw) Winduo ** YizsiaYinin) = Yiy 1 Yinjo * " Yiw g 7 0

in 5,!1. Therefore, ¥i, 1 Yis,jo *** Yiw,ju 7 0- O

Finally, we recover a bound on the GK-dimension of &£, via the proof of Propo-
sition 3.10.

Remark 3.12 (Etingof). We refer to the notation of the proof of Proposition 3.10.
By taking limits, one sees that one stratum, X, ('), is in the closure of another
stratum, X, (), if and only if 7’ is obtained from 7 by cutting some blocks of 7
into single points. Thus, the irreducible components of X,, are closures X, (7) of

strata with maximal set partitions 7, i.e., those with at most one 1-point block. So,
the dimension of the stratum X, () is #>2(m), which is at most |n/2]. We then
recover GKdim&!, = GKdimD,, < [n/2]; see Lemma 2.8(4) and Theorem 1.3(2).

4. HOMOLOGICAL PRELIMINARIES AND PROOF OF THEOREM 1.6
AND COROLLARY 1.8

The goal of this section is to establish Theorem 1.6 and Corollary 1.8 on various
homological properties of £,. We begin by recalling these homological notions for
general connected N-graded algebras, and we show how these conditions are related
in Figure 1. Then we present preliminary results for 5,!” and we end the section by
establishing the proofs of Theorem 1.6 and Corollary 1.8.

We begin by presenting homological conditions on connected N-graded (c.g.), lo-
cally finite k-algebras that generalize the regularity, Gorenstein, Cohen—Macaulay,
and other favorable conditions on commutative local algebras. Some of these homo-
logical conditions can be defined for k-algebras that are not necessarily connected
N-graded nor locally finite, and we refer the reader to the references provided below
for more information.

Definition 4.1 ([2, Intro.], [44, p. 674, Section 4], [28, Intro., Defs. 2.1 and 5.8]).
Let A be a connected N-graded (c.g.), locally finite k-algebra. All A-modules and
Ext-groups below will be graded.

(1) A is called Artin-Schelter—-Gorenstein (or AS-Gorenstein) (of dimension d)
if the following conditions hold:
(a) A has finite injective dimension d as both a left and a right A-module,
(b) Ext(k, A) = Ext’yop(k, A) = 0 for all i # d, and
(c) Ext%(k, A) = k() and Ext%e,(k, A) = k(1) for some integer I.

(2) A is called Artin-Schelter-regular (or AS-regular) of dimension d if A is
AS-Gorenstein of finite global dimension d. (We do not assume finite GK-
dimension, as was introduced originally in [2]. See [21], for instance.)
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(3) For m := A, a graded maximal ideal of A, the ith local cohomology module
for a left (or right) A-module M is defined to be

Hy (M) :=1lim Ext’y (A/As,, M).

(4) A is Artin-Schelter-Cohen-Macaulay (or AS-Cohen—Macaulay, AS-CM) if
there exists an integer d such that Hi (A) = Hi.,(A) =0 for all i # d.
(5) The grade number of a left (or right) A-module M is defined to be

ja(M) :=inf{i | Exty (M, A) # 0} € NU {+oc}.

Write j(M) for ja(M) if A is understood. Note that j4(0) = +o0.

(6) In the case in which A is Noetherian, a left (right) A-module M satisfies
the Auslander condition if for any ¢ > 0, we get ja(N) > ¢ for all right
(left) A-submodules N of Ext% (M, A).

(7) A Noetherian algebra A is Auslander—Gorenstein of dimension d if A has
finite injective dimension d as both a left and a right A-module, and if every
finitely generated left and right A-module satisfies the Auslander condition.

(8) A Noetherian algebra A is Auslander-regular of dimension d if A is
Auslander—Gorenstein of finite global dimension d.

(9) A Noetherian algebra A is Cohen—Macaulay (CM) if GKdim(A) = d € N,
and if

J(M) + GKdim(M) =d
for every finitely generated nonzero left (or right) A-module M.
(10) Continuing (9), we have inequality of the grade (IG) if the weaker condition
that j(M) 4+ GKdim(M) > d is satisfied.
(11) The depth of a left (or right) A-module M is defined to be

depth M := inf{i | Ext’ (k, M) # 0}.
If Ext’y(k, M) = 0 for all 4, then depth M = oo.

The hierarchy of homological conditions on connected N-graded, locally finite
k-algebras also involve certain factors of regular algebras, namely, the complete
intersections discussed below. This is motivated by the fact that, in the context of
commutative local rings, for a Noetherian ring R, we have the following:

e If R is regular, then R is a complete intersection.
e If R is a complete intersection, then R is Gorenstein, and hence, in turn,
is CM.

See, for instance, the work of Bass [4] for the details of the commutative terminol-
ogy; Definitions 4.1 and 4.2 are a noncommutative generalization of these concepts.

Definition 4.2 ([17], [24, Definition 1.3]).

(1) An element 2 of a ring A is called normal if QA = AQ, and is called regular
if © is a nonzero divisor in A.

(2) We say a collection of elements {€,...,Q;} of aring A is a normal sequence
in A if deg; > 0 for all 4, and if €; is a normal element in the factor ring
A/(Qq,...,Q—1) for all i. If, further, each Q; is a regular element in the
factor ring A/(1,...,9;—1), then we say that {Q1,...,Q} is a regular
normal sequence in A.
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(3) A c.g. finitely generated k-algebra A is called a classical complete intersec-
tion (cci) if there is a c.g. Noetherian AS-regular algebra C and a regular
sequence of normalizing elements {Q1,...,Q;} of positive degree such that

A=C/(, ..., ).
(4) In the case in which A is a cci, the cci number of A is defined to be
cci(A) =min{t | A= C/(Qq,...,Q)}.

Now we illustrate the connections amongst the terminology above in the case in
which A is a connected N-graded, locally finite k-algebra. One fact that is used in
the hypotheses of some of the references below is that a Noetherian PI algebra is
fully bounded Noetherian [34, Definition 6.4.7, Corollary 13.6.6].

by def: gldim<oco = injdim <co

[28, Thm 3.6]
C Ausl.-Gor
[19, Sec 5] depth A
[28, Thm 6.3 [20, T2.2] =
(28, Thm 6.3] A Noeth, PI GKdim A
by def [24, Thm 3.4]

A RS inv. ring

v

[21 Lem 2.1]
by def: gldim<co = injdim<oco

FIGurE 1. Homological conditions for c.g. locally finite algebras A (Definition 4.1)

The following result will be of use.

Proposition 4.3 ([28, Lemma 5.7], [10, Theorem 2.5]). Take C' as a connected
N-graded Noetherian algebra with finite GK-dimension.

(1) Let Q be a regular element of C' of positive degree. Then GKdim(C/(Q2)) =

GKdim(C) — 1.

(2) Letm = GKdim(C'). Suppose that C is Auslander—Gorenstein and CM, and
that there is a normalizing sequence {Q4, ..., QL of C with each element Q;
homogeneous of positive degree. Then {Q,...,Qm} is a regular sequence in

C if and only if C/(Qu,...,Qn) is finite dimensional (has GK-dimension
0). In this case, for each t = 1,...,m, we get {Q,...,Q} as a regular
sequence of C' if and only if

GKdim(C/(Q,...,%)) =m —t. O

Now we study the Fomin—Kirillov algebra €3 from Definition 1.1 and show that it
is a cci. Recall that & is the k-algebra generated by 12, 213, T23 (where we suppress
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the comma in the subscript of the indices) subject to the following relations:
1%2 = x%3 = xgg =0,
T12T23 — 23213 — 13%12 = 0,
TozT12 — T13T23 — T12213 = 0.
Notation 4.4 (C', S, Qf, 9%, Q%). Let C’ be the k-algebra generated by x12, 213, Z23
subject to the relations
aty + il =0,
T12T23 — 23213 — LT13%12 = 0,
TozT12 — T13T23 — T12213 = 0.
Let S be the k-algebra generated by x12 and x13 subject to the relation
Moreover, put ) := 23,5, put Q) := T12723713 — 213723712, and put Qf := z2,.
For the result below, we refer the reader to [17, Chapter 2] for details about
o-derivations and Ore extensions.
Lemma 4.5. Retain Notation 4.4. Then the following statements hold.
(1) S is connected N-graded, Noetherian, Auslander-regular, CM of global di-
mension 2.
(2) The map o : x12 — 213 and x13 — x12 defines an algebra automorphism
of S, and § : x19 — T1213 and x13 — —x13%12 defines a o-derivation of S.
(3) C" is an Ore extension S|xas;o,8]. Hence, C' is a connected N-graded,
Noetherian, Auslander-regular, CM k-algebra of global dimension 3.
(4) {Q7,Q%,Q4} is a normal sequence in C'.
(5) C'/(,Q,Q3) = &.
Proof.
(1) This holds as S is isomorphic to the (—1)-skew polynomial ring k_1[z1, z2],
which is well known to possess the desired properties.
(2) Tt is clear that o is an algebra automorphism. To check that ¢ is a o-
derivation, we calculate
5(56%2 + I%B) = 5(I12)I12 + U(I12)5(1‘12) + 5(I13)I13 + U(I13)5(1‘13)
= (12213) 712 + T13(T12213) — (T13712)T13 — T12(T13712) = 0.
(3) By part (2) and the definition of C’, we see that C’ is an Ore extension
S[zas;0,d]. Now the second statement holds by (1) and several standard
results including [12, Theorem 4.2], [29, p. 184].
(4) First, we claim that Q} := 23, is central (and thus normal) in C’. We check

2
TH3T12 = T23(X13%23 + T12213)
= (1223 — T13T12) T2 + (T13T23 + T12213)T13
2
= T12%93 — 3313(1’123323 - 1”231313) + T12T13T13
2
= T12%93 — 3313(1’133312) + T12713%13

2
= T12T53-
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Similarly, 22,213 = 713735 (and 235 commutes with z23). So, the first claim
holds.
Second, we claim that ) is normal in C’/(€)}). We calculate

/
Qox19 = T12723(T13712) — T13(T23T12) 212
= $12$23($12$23 - 30235313) - $13($13$23 + $12$13)$12
_ 2
= $12($23$12)$23 — T13223T12 — $13$12($13$12)
2
1”12(33131”23 + $12I13)I23 — T13723T12 — I13I12(I12I23 - 1”231”13)
2 2
= T19X13%23 — L130L23T12 — I13I12(I12l’23 - 33233313)
2
= T13[—273%23 — T13T23T12 — T12(T12T23 — T23713)]
= 213(—213223%12 + T12023713)
/
= 331392.
Similarly, Q5213 = 21204 and Qhzes = —x930Q5. Thus, Q) is normal in
! /
/().
Finally, we claim that Qf := 2%, is central in C"/(Q},€%). We calculate
2
T13T12 = 213(T12%23 — T23T13)

(l”12l“23 - I23$13)l’23 - (33231”12 - I125L’13)l’13

2

= —X23X13%23 — T23%12%13 + T12%73

_ 2
= —x23(T23%12 — T12%13) — T23% 12713 + T12073

2
T12%73

and )
T23T13 = (x12223 — T13T12)T13

T12T23%13 — T13(T23T12 — T13%23)

2
= 33133723.

Since 7, commutes with z13, we have x?; being central in C'/(Q}, Q}).
(5) By comparing the generators and relations, one sees that C'/(92], Q%) = &s.
It remains to show that Q5 = 0 in C"/(9],Q%). We check, in C'/(9],Q%),

that
/ 2 2
Q) = T12@23T13 — T13T12213 — T13T23T12 + T13T12T13 = T23lig — L1323 = 0.
Thus, Q) =0 in C'/(Q,Q}), as desired. O

Theorem 4.6. We obtain that &3 is a cci, and that cci(E3) = 3. As a consequence,
&3 is Auslander—Gorenstein, CM, and Frobenius.

Proof. Recall Notation 4.4. By Lemma 4.5(3)—(5), we get {Q}, 5, Q5} as a normal
sequence of an Auslander-regular and CM algebra C’ such that & = C”/(], Q5, Q).
By the definition of C” in Lemma 4.5(3), one sees that GKdimC’ = 3 (Re-
mark 2.2(2)). Now by [14, (2.8)], GKdim & = 0. Hence, GKdim C"/(}, Q, Q%) =
0, and with Proposition 4.3(2) we obtain that {Q}, 5, Q5} is a regular normal
sequence of C’. By definition, &3 is a cci.

Since & is finite dimensional and a cci, it is Auslander—Gorenstein and CM, and,
consequently, Frobenius.
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For the cci number of &, note that by the argument above we have cci(&3) < 3. If
cci(€3) < 2, then there is a Noetherian AS-regular algebra B and a regular normal
sequence {f1, fa} of B such that & = B/(f1, f2). Recall that & is Auslander—
Gorenstein and CM, so by [28, Theorem 3.6 and Remark 5.10], B is Auslander-
regular and CM of GK-dimension and global dimension 2. Such a B must be
generated by two elements [2, Introduction]. This contradicts the fact that &3 is
generated by three elements. Thus, cci(€3) > 3. ]

Now we consider the quadratic dual £ of €. Recall that & is generated by
Y12, Y13, Y23 (Where we suppress the comma in the subscript of the indices) subject
to the relations

Y12Y23 + Y23y13 = Y12¥23 + Y13y12 = 0,
Y23Y12 + Y13Y23 = Y23Y12 + Y12y13 = 0.
Definition-Lemma 4.7 (a, b, ¢, C"). Let a := y13 + Y23, b := Y13 — Y23, € := Y12.

After a linear transformation, £y is generated by a,b,c, subject to the following
relations:

ca + ac = cb — be = —2bc + a* — b* = —2ac + (ab — ba) = 0.
Moreover, let C" be the algebra generated by a,b, ¢, subject to the relations
ca+ac = cb—be = a*b—ba® = ab® — b*a = 0. ]

Lemma 4.8. The algebra C" is Noetherian, AS-reqular, Auslander-regular, CM, of
global dimension 4, of GK-dimension 4, and it has Hilbert series (1—t)=3(1—¢2)~1.

Proof. Let B be the k-algebra k(a,b)/(a’b — ba? ab®> — b%a). This algebra is a
Noetherian AS-regular algebra of global dimension 3 [2, (8.5)], with Hilbert series
(1—t)"2(1—t*)"1 [2, (1.15)], and is also Auslander-regular and CM (e.g., via [28,
Corollary 5.10]) and has GK-dimension 3 (e.g., via Proposition 4.3(2)). Note that
C" is an Ore extension B|c, o], where o : a — —a, b+ b. So, C" has Hilbert series
Hp(t)/(1 —td8c) = (1 —)73(1 — t2)~1. The rest of the result follows from several
standard results including [12, Theorem 4.2], [29, p. 184]. O

Lemma 4.9 (Qf, Q, QY). Retain the notation of Definition-Lemma 4.7.
(1) Let QY := (ab+ ba)c, QY := —2bc + a® — b2, and QY := —2ac + (ab — ba).
Then {Qf,Q4,Q5} is a normal sequence in C".
(2) C"/(Qf,Q3,95) = &.
Proof.

(1) Note that (ab+ba)c = —c(ab+ba) in C”. Tt is also easy to check that (ab+ba)
is central in the AS-regular algebra B from the proof of Lemma 4.8. Since
C" is an Ore extension Blc; o] (from the proof of Lemma 4.8), (ab + ba) is
normal in C”, and so is ¢. Hence, Q7 = (ab + ba)c is normal in C”.

To show that Q) is normal in C”/(Q/), note that [QF,c] = [Q25,0] =0
and
Q. a] = QYa — aQy = 2(ab + ba)c =0

in C” /().
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Now, to see that QF is normal in C”/(2},Q5), note that QYc + QY =
Qa+ aQy = 0. Lastly, we have
Q4o+ b9 = (—2ac+ (ab—ba))b+ b(—2ac + (ab — ba)) = —2acbh — 2bac =0
in C"/(9,Q4). Therefore, {Qf,Q4,Q5} is a normal sequence in C”.
(2) In the algebra £ 2 k{a, b, c)/(ca+ ac, cb—be, Q. QF), we get
[a®,b] = Q4b — by
and
[a,b%] = Q4b + bQY,
and in the algebra k(a,b,c)/(ca + ac, cb —be, [a?,b], [a,b%], QfF, QF) we
get
! =abc—bca = ta(a® —b?) — 3(a® — b?)a = 1[b?,a] =0,
as required. O

This brings us to our main result for &5.

Theorem 4.10.

(1) & is a cci and Hg (1) = %
(2) & is AS-Gorenstein and Auslander—Gorenstein.

(3) &% is not AS-regular or Auslander-reqular.

Proof.

(1) By Lemmas 4.8 and 4.9, there exists a normalizing sequence {2}, Q) Q4} of
an Auslander-regular, CM algebra C” with & = C"/(Q/,QY4,Q4). More-
over, GKdimC” = 4 by Lemma 4.8. Now consider the normal element
QY := 1(a®+b?) + ¢? of £}. Then with variable ordering a < b < ¢, one can
compute (via the GBNP package of GAP [11]) that the ideal of relations
for £/(€]) has Grébner basis

ba + 2ac — ab, bc+ %(b2 —a?), ca+ac, chb—be, 2+ %(b2 +a?),
a?, b® + §(2a%c + a®b) '

Thus, C”/(QY, 04, Q4. Q) = /() has Hilbert series 1+ 3t +4t2+3t% +¢4
and has GK-dimension 0. Since £ = C” /(0,94 , Q%) has GK-dimension 1
(Theorem 1.3(2)), we obtain {Qf,QF,Q4} as a regular normal sequence of
C" by Proposition 4.3(2). By definition, &} is a cci.

Since {Qf, Q4, Q4} is a regular normal sequence of C” with degrees 3, 2,
and 2, respectively, we get by Lemma 4.8

1-t2)2(1—) (1+t)(1+t+1?)

He (1) = Hoo (0)(1 - £2)2(1 — %) = & = :

53() C()( )( ) (1—t)3(1—t2) 1—¢

(2) This follows from (1), along with Lemma 4.8 and [28, Theorems 3.6 and 6.3].

(3) We have by Theorem 1.3(1) and [42, Corollary 1.2] the result that if £ had
finite global dimension, then £ would be a domain. But this contradicts

Theorem 1.3(3). So, £} is neither AS-regular nor Auslander-regular. g

Now we turn our attention to the AS-CM property of £, and for this we need
results on the depth of £,. We start with the following preliminary result.
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Lemma 4.11. For connected N-graded algebras A and C, we have the statements
below.

(1) Suppose that A has a regular homogeneous element f of positive degree.
Then depth A > 0.

(2) Let C be a Noetherian commutative algebra, and let M be a finitely generated
module over C. If depth M > 0, then there is a homogeneous element of
positive degree f € C that is reqular on M.

(3) Let A be Noetherian and finitely generated over its affine center. Suppose
that A has a homogeneous element g of positive degree such that GKdim Ag
<r. Then depth A < r.

Proof.

(1) This is a connected N-graded analogue of a standard homological result
from the theory of commutative local rings; see, e.g., [9, Proposition 1.2.3].
Suppose, by way of contradiction, that depth A = 0. Then, by definition,
Homy (k, A) # 0, so there exists a one-dimensional nonzero ideal I of A.
Let = be a generator of I. Since f has positive degree, we get fx = 0. This
contradicts the regularity of f.

(2) Let m := C>1 be the maximal graded ideal of C. If m consists of nonregular
elements of M, then m is contained in the union of the associated primes
of the C-module M. By the Noetherian property and prime avoidance, m
is actually contained in one associated prime p of M. Thus, p = m. Now
there exists a monomorphism C/p — M. Composing this with the natural
isomorphism C/m — C/p, we get a nonzero C-module map C/m — M.
Thus, Home (k, M) # 0 and depth M = 0.

(3) If depth A = 0, then we are done. Now suppose that depth A > 0. Let
C Dbe the center of A. Since A is finitely generated over C, depth, A =
depth, A > 0. By part (2), there exists a homogeneous element f € C of
positive degree that is regular on A. Replacing f by f™ for some n > 0, we
may assume that deg f > degg. Consider the sequence

0 — Ag -5 Ag — Ag/Agf — 0.

Since GKdim(Ag) < r by assumption, we have GKdim(Ag/Agf) < r —
1 [34, Proposition 8.3.5]. Define A := A/(f), and let g be the image of g in
A. Using the surjection Ag/Agf — Ag/(AgN Af), we have

GKdim(Ag) = GKdim(Ag/(Agn Af)) <r —1.

By induction, depth(A) < r —1. Now the result holds by Rees’s lemma [40,
Theorem 8.34]. O

Theorem 4.12. For every n > 2, depth(é’,!L) < 1. As a consequence, for n > 4,
we get depth &, < GKdim &),.

Proof. Let
g= H 5,
i<j
which is nonzero by Corollary 3.11. It is easy to check that a; jg = a1 29 by (E1.8.1).
Hence, D,,g = k[a1 2]g or GKdim D,,g = 1. Since &}, is finitely generated over D,,
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GKdim &' g = 1. The assertion follows by Lemma 4.11(3), and the consequence
holds by Theorem 1.3(2). O

Proof of Theorem 1.6. Refer to Figure 1 throughout. By Theorem 1.3(2), we find
that, to establish parts (1)—(3), it suffices to show that (a) & is AS-regular, (b)
&4 is AS-Gorenstein and but not AS-regular, and (c) &), is not AS-CM for n >
4. Now (a) holds as &} is the commutative polynomial ring k[y; 2], (b) holds by
Theorem 4.10(2,3), and (c) follows from Theorema 4.12 and 1.3(1).

Moreover, (4) holds since £ = k[y; 2] (AS-regular), since & = klz12]/(2?,)
(quotient of an AS-regular algebra by a regular element), and by Theorems 4.10(1)
and 4.6 for the algebras £ and &3, respectively. O

Proof of Corollary 1.8. Refer to Figure 1 throughout. The result on Auslander-
regularity holds for n = 2, as £ = k[y ] is clearly Auslander-regular, for n = 3
by Theorem 4.10(3), and for n > 4 by Theorem 1.6(3). The result on Auslander—
Gorenstein holds for n = 2 by Auslander-regularity, for n = 3 by Theorem 4.10(2),
and for n > 4 by Theorem 1.6(3). The result on the CM condition holds for n = 2, 3
by the Auslander-Gorenstein condition with Theorem 1.3(1), and for n > 4 by
Theorems 1.6(3) and 1.3(1). O

5. FURTHER DIRECTIONS

First, we make the following remark about Question 1.4 and Conjecture 1.7
discussed in the Introduction.

Remark 5.1. If £ is semiprime (i.e., if Question 1.4(1) is affirmative), then we
obtain that depth& = 1 (i.e., that Conjecture 1.7 holds). Namely, for any c.g.
algebra A # k, depth A = 0 implies that A is not semiprime as Hom4(k, A) C A
is a nonzero nilpotent ideal of A. Therefore, depth &, > 1 when &' is semiprime.
Now Conjecture 1.7 follows from Theorem 4.12.

In addition to Question 1.4 and Conjecture 1.7, along with Question 3.7, we
present here three other suggestions for further study of the quadratic dual &), of
Fomin—Kirillov algebras, yet there are numerous other directions that one could
pursue motivated by Fomin—Kirillov’s work [14] alone.

5.1. On the center of &£. In Section 2, we introduced the commutative sub-
algebras C,, and D, of ETIL in order to prove Theorem 1.3; recall C,, &£ D, by
Proposition 3.10. But we ask the following.

Question 5.2. What is the presentation of the center Z(&}) of &7

On a related note, there is an important subalgebra of the Fomin—Kirillov algebra
&, constructed in [14] generated by its Dunkl elements. This subalgebra, which we
denote by F,, is isomorphic to the cohomology of a flag manifold [14, Theorem 7.1]J;
the full presentation of F,, is also established in that result.

Question 5.3. What is the connection between F,, and the commutative algebras
Z(E!) and C,, discussed above?
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5.2. On the S,-action on &, and related algebras. As discussed in Milinski
and Schneider’s study of Nichols algebras over Coxeter groups [36], the Fomin—
Kirillov algebra &, admits an action of the symmetric group S,, and, moreover,
can be realized as a braided Hopf algebra in the category g" YD of Yetter—Drinfeld
modules over S,,. Namely, &, arises as a pre-Nichols algebra in g::yD, and, in
fact, it is conjectured that &, is an honest Nichols algebra in g:yD (which has
been verified for n < 5). Two algebras that are of interest in this context are the
invariant subalgebra £5» and the skew group algebra &, x S,. For instance, for
a finite group G, there is a useful functor from YD to the category of k-vector
spaces sending a braided Hopf algebra B to the k-Hopf algebra B x G. Vital classes
of finite-dimensional pointed Hopf algebras have been constructed in this fashion.

Now the quadratic dual £, also admits an action of the symmetric group S,,, and
an interesting direction for further research is to study the behavior of the resulting
invariant ring and skew group algebra.

5.3. On the Koszulity of ST!L. As mentioned in the Introduction, the Fomin—
Kirillov algebras &, fail to be Koszul for n > 3 due to a result of Roos [39],
so the same result holds for the quadratic dual £,. Toward understanding the
cohomology rings Ext; (k,k) and Extz (k,k) (for which &), and &,, respectively,
are the subalgebras generated in degree 171)7 the failure of Koszulity should be studied
more carefully. Indeed, if £, and &, were Koszul, then they would equal Extg (k, k)
and Extz (k, k), respectively.
As in [n37, Section 2.4], we say that a graded algebra A is p-Koszul if

Exty (k,k) =0 Vi<j<p.

For example, any graded algebra is 1-Koszul, any graded algebra generated in
degree 1 is 2-Koszul, and any quadratic algebra is 3-Koszul. Moreover, a graded
(quadratic) algebra is Koszul if and only if it is p-Koszul for all p > 1. By [37,
Proposition 2.4.5], if A is a (p—1)-Koszul quadratic algebra, then for each 2 < i < p
there is a natural perfect pairing

Ext’? (k, k) ® Ext’, TP (k, k) — k.
So, we ask the following question.

Question 5.4. What is the maximum value of p = p(n) for which &}, is p-Koszul?
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