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ON THE QUADRATIC DUAL

OF THE FOMIN–KIRILLOV ALGEBRAS

CHELSEA WALTON AND JAMES J. ZHANG

Abstract. We study ring-theoretic and homological properties of the qua-

dratic dual (or Koszul dual) E !
n of the Fomin–Kirillov algebras En; these al-

gebras are connected N-graded and are defined for n ≥ 2. We establish that

the algebra E !
n is module finite over its center (and thus satisfies a polynomial

identity), is Noetherian, and has Gelfand–Kirillov dimension �n/2� for each

n ≥ 2. We also observe that E !
n is not prime for n ≥ 3. By a result of Roos,

En is not Koszul for n ≥ 3, so neither is E !
n for n ≥ 3. Nevertheless, we prove

that E !
n is Artin–Schelter (AS-)regular if and only if n = 2, and that E!

n is both

AS-Gorenstein and AS-Cohen–Macaulay if and only if n = 2, 3. We also show

that the depth of E !
n is ≤ 1 for each n ≥ 2, conjecture that we have equality,

and show that this claim holds for n = 2, 3. Several other directions for further

examination of E !
n are suggested at the end of this article.

1. Introduction

Throughout this work, we let k denote an algebraically closed field of character-

istic zero, and we consider all algebraic structures to be k-linear.

In 1999, Fomin and Kirillov introduced a family of quadratic algebras for the

study of the quantum and the ordinary cohomology of flag manifolds in [14]. Since

then these algebras, now referred to as Fomin–Kirillov algebras En (Definition 1.1),

have been studied extensively by many authors with connections to algebraic com-

binatorics [7, 16, 35, 38], algebraic geometry, and cohomology theory [23, 27], Hopf

algebras and Nichols algebras [1,15,18,36], noncommutative geometry [31,32], and

number theory [33], and generalizations of these algebras have been examined in

several works [5,26,36]. The cohomology algebras Ext∗En
(k, k) of the Fomin–Kirillov

algebras have also been of interest: They are related to the cohomology ring of

quantum shuffle algebras in [13], for example, and is studied in detail by Ştefan

and Vay [43] when n = 3. Moreover, several questions asked by Fomin and Kirillov
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in their 1999 work are still open—most notably, it is unknown whether En is finite

dimensional for n ≥ 6 [14, Problem 2.2]. (The algebra En is finite dimensional

when n = 2, 3, 4, 5 [14, (2.8)].) Many of these questions can be recast in terms of

Ext∗En
(k, k)—for instance, the regularity of Ext∗En

(k, k) as an A∞-algebra is in a

certain sense equivalent to the finite-dimensionality of En [30].

With the aim of providing insight into the structure of both En and its cohomol-

ogy algebra, we examine in this article the subalgebra of Ext∗En
(k, k) generated by

Ext1En
(k, k). Namely, we study the structure of the quadratic dual (or Koszul dual)

E !
n of En, also known as the diagonal subalgebra

⊕
Exti,iEn

(k, k) of Ext∗En
(k, k).

Note 1. Due to the scope of fields in which the Fomin–Kirillov algebras appear, the

exposition of this article is intended for an audience broader than experts in non-

commutative graded algebras. As discussed below, much of the theory of commuta-

tive local algebras has been generalized to the noncommutative setting by working

with algebras that are connected graded. An N-graded k-algebra A =
⊕

i∈N
Ai is,

by definition, connected if A0 = k.

To begin, the presentations of En and of its quadratic dual E !
n are provided below.

Definition 1.1 (En, xi,j [14, Definition 2.1]). For n ≥ 2, the Fomin–Kirillov alge-

bra, En, is an associative k-algebra generated by indeterminates {xi,j | 1≤ i<j≤n}
of degree 1, subject to the following quadratic relations:

x2
i,j = 0, i < j,

xi,jxj,k − xj,kxi,k − xi,kxi,j = 0, i < j < k,

xj,kxi,j − xi,kxj,k − xi,jxi,k = 0, i < j < k,

xi,jxk,l − xk,lxi,j = 0, {i, j} ∩ {k, l} = ∅, i < j, k < l.

The presentation of E !
n is obtained in a straightforward manner from the defini-

tion above and is recorded below. For a graded quadratic k-algebra A = T (V )/(R)

with T (V ) as the tensor algebra on a k-vector space V and (R) the two-sided ideal

generated by a space R ⊂ V ⊗V , the quadratic dual A! of A is T (V ∗)/(R⊥), where

V ∗ is the linear dual of V and R⊥ is the orthogonal complement of R in V ⊗ V .

Definition-Lemma 1.2 (E !
n, yi,j). The quadratic dual E !

n of En is an associative

k-algebra generated by the indeterminates {yi,j := x∗
i,j | 1 ≤ i < j ≤ n} of degree 1,

subject to the following quadratic relations:

yi,jyj,k + yj,kyi,k = 0, i, j, k distinct, where yj,i = −yi,j for i < j;

yi,jyk,l + yk,lyi,j = 0, {i, j} ∩ {k, l} = ∅, i < j, k < l. �

Our first result pertains to ring-theoretic results on E !
n: one on the polynomial

identity (PI) property [Definition 2.6, Remark 2.7], i.e., a condition for a ring being

“measurably” close to being commutative (e.g., via its PI degree); and another on

the Gelfand–Kirillov (GK-)dimension (Definition 2.1, Remark 2.2), i.e., a growth

measure on a ring that serves as a noncommutative version of the Krull dimension.

Theorem 1.3. The algebra E !
n satisfies the following properties.

(1) E !
n is Noetherian and is module finite over its center (so it satisfies a poly-

nomial identity) when n ≥ 2.
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(2) E !
n has GK-dimension �n/2	 when n ≥ 2.

(3) E !
n is not prime when n ≥ 3.

For Theorem 1.3(3), recall that a ring A is prime if for all nonzero elements a, b

we get aAb 
= 0 (a weaker version of the domain property), and a ring is semiprime if

it contains no nilpotent ideals (a weaker version of the prime property). Semiprime

rings are still quite useful in their own right (see, e.g., [17, Chapter 6]). So, we ask

the following.

Question 1.4.

(1) Are the algebras E !
n semiprime?

(2) What is the PI degree of E !
n?

In any case, we obtain the following immediate results on the cohomology algebra

Ext∗En
(k, k) since E !

n is a subalgebra of Ext∗En
(k, k).

Corollary 1.5. We find that GKdim(Ext∗En
(k, k)) ≥ �n/2	 when n ≥ 2, and that

Ext∗En
(k, k) is not a domain when n ≥ 3. �

The GKdim bound in Corollary 1.5 is not sharp: Indeed, GKdimExt∗E3
(k, k) = 2

by a result of Ştefan and Vay [43, Theorem 4.17]. Nonetheless, it was shown recently

by Ellenberg, Tran, and Westerlan that the growth of E !
n and of Ext∗En

(k, k) are

related to the growth of the homology of Hurwitz spaces [13].

Now we consider various homological conditions on E !
n. To start, note that En is

not Koszul for n ≥ 3, due to a result of Roos [39]; thus, E !
n is not Koszul for n ≥ 3.

Thus, E !
n is a proper subalgebra of Ext∗En

(k, k) (see [37, Section 1.3]). In any case,

we examine E !
n in view of the hierarchy of Artin–Schelter (AS) versions of desir-

able homological properties for connected graded algebras that are not necessarily

commutative; see, e.g., [24, Introduction] for more details. In short, one has

AS-regular [Definition 4.1(2)] =⇒ AS-Gorenstein (Definition 4.1(1))

=⇒ AS-Cohen–Macaulay (Definition 4.1(4)).

A version of the classical complete intersection condition (Definition 4.2(3)) is

also related; see Figure 1 in Section 4 for more details. Our second result determines

whether E !
n satisfies the conditions above.

Theorem 1.6. We have the following statements for E !
n (and for E2, E3).

(1) E !
n is AS-regular if and only if n = 2.

(2) E !
n is AS-Gorenstein if and only if n = 2, 3.

(3) E !
n is AS-Cohen–Macaulay if and only if n = 2, 3.

(4) E !
2, E !

3, E2, and E3 are classical completion intersections.

Since E !
n is a Noetherian algebra that satisfies a polynomial identity (Theo-

rem 1.3), one can measure the failure of the AS-Cohen–Macaulay property of E !
n by

considering its depth (Definition 4.1(11)). Namely, the depth of a connected graded,

Noetherian algebra A that satisfies a PI is bounded above by its GK dimension,

and we have equality of these values if and only if A is AS-Cohen–Macaulay due to

the results of Jørgensen [20, Theorem 2.2]. In fact, we verify that E !
n has depth ≤ 1

for n ≥ 2 (Theorem 4.12; cf., Theorem 1.3(2)), and computational evidence yields

the following conjecture.
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Conjecture 1.7. The algebras E !
n have depth 1 for all n ≥ 2.

Note that if Question 1.4(1) has an affirmative answer, then Conjecture 1.7 holds

by Theorem 4.12; see Remark 5.1.

There is a similar hierarchy of Auslander versions of the regularity (Defini-

tion 4.1(8)) and the Gorenstein (Definition 4.1(7)) conditions, in comparison with a

version of the Cohen–Macaulay condition (Definition 4.1(9)) considered frequently

in noncommutative algebra; see Figure 1. From Theorem 1.6, we obtain the follow-

ing consequences.

Corollary 1.8. The algebra E !
n is Auslander-regular if and only if n = 2, and is

both Auslander–Gorenstein and Cohen–Macaulay if and only if n = 2, 3.

The proof of Theorem 1.3 is provided in Section 2, and Theorem 1.6 and Corol-

lary 1.8 are established in Section 4. Two important commutative subalgebras Cn
and Dn of E !

n (Notation 2.5) that play a key role in Section 2 are examined further

in Section 3. In addition to Question 1.4 and Conjecture 1.7, more questions and

directions for further investigation are presented in Section 5.

2. Ring-theoretic preliminaries and proof of Theorem 1.3

Here, we recall the Gelfand–Kirillov (GK-)dimension and PI property of rings,

along with providing examples of and remarks on these notions. Toward studying

the GK-dimension and PI property of E !
n, commutative subalgebras Cn and Dn of

E !
n are constructed below. After preliminary results on E !

n, and on its relationship

to Cn and Dn, are verified, we prove Theorem 1.3 at the end of the section.

To begin, recall that an N-graded k-algebra A =
⊕

i∈N
Ai is connected graded

(c.g.) if A0 = k, and is locally finite if dimk Ai < ∞ for all i. Moreover, the Hilbert

series of an N-graded, locally finite algebra A =
⊕

i∈N
Ai is, by definition,

HA(t) =
∑

i∈N
(dimk Ai)t

i.

Definition 2.1 ([25], [34, Chapter 8]). The Gelfand–Kirillov dimension (or GK-

dimension) of a connected N-graded, locally finite k-algebra A is defined to be

GKdim(A) = lim sup
n→∞

log(
∑n

i=0 dimk Ai)

log(n)
.

Remark 2.2.

(1) Suppose A is finitely generated. Then GKdim(A) = 0 if and only if

dimk A < ∞.

(2) Even though the definition of GK-dimension is technical, the dimension is

computable in many cases. For instance, the GK-dimension of a polynomial

ring k[z1, . . . , zm] is m, and so is any noncommutative k-algebra with a k-

vector space basis of monomials⊕
k z

ei1
i1

z
ei2
i2

· · · zeitit
zr11 zr22 · · · zrmm ,

where the sum runs over finitely many values of eij and rj ≥ 0. For q ∈ k
×,

the q-polynomial ring

kq[z1, . . . , zm] := k〈z1, . . . , zm〉/(zizj − qzjzi)i<j
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has such a monomial basis (with eij = 0), so its GK-dimension is m. In

fact, polynomial growth is the same condition as finite GK-dimension.

(3) The GK-dimension of a commutative finitely generated k-algebra is its Krull

dimension [34, Theorem 8.2.14].

(4) If B is either a subalgebra or a homomorphic image of a k-algebra A, then

we get GKdim(B)≤ GKdim(A) [34, Proposition 8.2.2]. Moreover, if A

is module finite over a k-subalgebra C, then GKdim(A)= GKdim(C) [34,

Proposition 8.2.9(ii)].

Toward computing the GK-dimension of E !
n, we present a set of monomials whose

k-span is E !
n.

Lemma 2.3. Order the generators {yi,j}1≤i<j≤n of E !
n such that yi,j < yk,l if j < l,

or if j = l and i < k. That is,

y1,2 < y1,3 < y2,3 < y1,4 < y2,4 < y3,4 < y1,5 < · · · < yn−2,n < yn−1,n.

Then every element in E !
n is a linear combination of the monomials of the form

y
r1,2
1,2 y

r1,3
1,3 y

r2,3
2,3 y

r1,4
1,4 · · · yrn−2,n

n−2,n y
rn−1,n

n−1,n for ri,j ≥ 0.

Proof. First, we show that if yk,l > yi,j , then yk,lyi,j can be written as a lower order

term by using relations of Definition-Lemma 1.2. If {k, l} ∩ {i, j} = ∅, then we use

the last relation of E !
n. Otherwise, for k > j > i we have

yi,kyi,j = −yi,jyj,k, yj,kyi,j = −yi,kyj,k, yj,kyi,k = −yi,jyj,k.

Now by Bergman’s diamond lemma [6], every element in E !
n is a linear combination

of the monomials y
r1,2
1,2 y

r1,3
1,3 y

r2,3
2,3 y

r1,4
1,4 · · · yrn−2,n

n−2,n y
rn−1,n

n−1,n . �

The following is a preliminary result needed for constructing a central subalgebra

of E !
n to aid in determining its GK-dimension (and PI property, introduced later).

Lemma 2.4. Let ai,j := y2i,j. We find that ai,j is central in E !
n for all i < j, and

that the following relations hold in E !
n:

ai,jyj,k = yj,kai,k and ai,jaj,k = ai,jai,k ∀ distinct i, j, k.

Proof. If {i, j} ∩ {s, t} = ∅, then by Definition-Lemma 1.2 we get

ys,tai,j = ys,ty
2
i,j = −yi,jys,tyi,j = y2i,jys,t = ai,jys,t.

On the other hand, we will show that ai,j and yj,k commute for any i < j with

k = i or j. Recall that yj,i = −yi,j for all i < j. Indeed,

ai,jyj,k = −y2i,jyk,j = yi,jyk,iyi,j = −yj,iyk,iyi,j = yk,jyj,iyi,j = yj,kai,j .

Hence, ai,j is central.

By Definition-Lemma 1.2, we also obtain that

ai,jyj,k = −yi,jyj,kyi,k = yj,kyi,kyi,k = yj,kai,k,

ai,jaj,k = −yi,jyj,kyi,kyj,k = yi,jyj,kyj,iyi,k = −yi,jyk,jyj,iyi,k
= yk,iyi,jyj,iyi,k = ai,jai,k,

as claimed. �
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Notation 2.5 (ai,j , Cn, Dn). From now on, we let ai,j denote the central elements

y2i,j (see Lemma 2.4), and we use the notation ai,j for aj,i when i > j.

Let Cn be the commutative subalgebra of E !
n generated by {ai,j | 1 ≤ i < j ≤ n}.

Let Dn be the commutative algebra generated by {ai,j | 1 ≤ i < j ≤ n}, subject to
the relations

ai,jaj,k = ai,jai,k ∀ distinct i, j, k.

By Lemma 2.4, there is a natural algebra surjection from Dn to Cn. Later, in

Proposition 3.10, we will show that Dn is indeed isomorphic to Cn. Note that

the relations in the algebra Dn are similar to those of the algebra An that appear

in [3, Section 4.1].

We use the commutative subalgebras Cn and Dn to study the GK-dimension and

the PI property (defined below) of E !
n as follows.

Definition 2.6 ([34, Chapter 13]). A polynomial identity (PI) for a ring A is a

monic multilinear polynomial f ∈ Z〈z1, . . . , zd〉 such that f(a1, . . . , ad) = 0 for all

ai ∈ A. A ring A is called a PI ring, or PI for short, if such a polynomial f exists

for A.

If a PI ring A is prime, then the PI degree of A is half of the minimal degree of

a PI for A.

Remark 2.7.

(1) The PI property is preserved by taking it under subalgebra and homo-

morphic image, and algebras that are module finite over a commutative

subalgebra are PI [34, Lemma 13.1.7, Corollary 13.1.13].

(2) If A is a commutative domain (and thus prime), then its PI degree is 1

since the commutator is a PI of minimal degree 2. On the other hand, the

q-polynomial ring kq[z1, . . . , zm] from Remark 2.2(2) is prime, and it is PI

if and only if q is a root of unity. When q is a primitive dth root of unity,

the PI degree of kq[z1, . . . , zm] is d�m/2	 [8, I.14].

(3) See [41, p. 98] for the (technical) definition of PI degree for nonprime PI rings.

Lemma 2.8. Recall Notation 2.5. The following statements hold.

(1) There is a natural surjective map Dn � Cn, and there is a natural injective

map Cn ↪→ E !
n. As a consequence, E !

n is a module over both Cn and Dn.

(2) E !
n is a finitely generated module over both Cn and Dn.

(3) Dn satisfies the relations

(E1.8.1) a2i,jai,k = ai,ja
2
i,k

for all distinct i, j, k.

(4) GKdimDn = �n/2	.
Proof.

(1) This follows from Lemma 2.4.

(2) By Lemmas 2.3 and 2.4, we find that as a k-vector space,

E !
n =

∑
ei,j=0,1

k y
e1,2
1,2 y

e1,3
1,3 · · · yen−1,n

n−1,n Cn.
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Therefore, E !
n is a finitely generated Cn-module. The last claim holds as

Dn � Cn.
(3) In Dn, we have ai,j(ai,k − aj,k) = 0 for all distinct i, j, k. Then we get

ai,jai,k(ai,j − ai,k) = ai,jaj,k(ai,j − ai,k) = 0,

as desired.

(4) Let m := �n/2	, and let I := {(1, 2), (3, 4), . . . , (2m−1, 2m)}. Let B be the

quotient algebra Dn/(ai,j)i<j,(i,j) 
∈I . Observe that B is the commutative

polynomial ring generated by the set {ai,j}(i,j)∈I . So,

GKdimDn ≥ GKdimB = m

by Remark 2.2(2,4).

Next, we will show that GKdimDn ≤ m. Order the generators {ai,j} of Dn by

ai,j < ak,l if either j < l, or j = l and i < k (we assume that i < j and k < l

here). Using the diamond lemma [6] and the relations in Lemmas 2.4 and 2.8(3),

we obtain that if we have a nonzero monomial of the form

a
ri1,j1
i1,j1

· · · arit,jtit,jt

that is not a linear combination of lower degree terms with ris,js ≥ 2 for all s, then

{is1 , js1} ∩ {is2 , js2} = ∅. Therefore, t ≤ m. Let V be the graded subspace of Dn

defined by

V =
∑

ka
ri1,j1
i1,j1

· · · arit,jtit,jt
,

where the sum runs over all possible (is, js) such that {is1 , js1} ∩ {is2 , js2} = ∅ for

any pairs with ris1 ,js1 , ris2 ,js2 
= 0. By the description of the monomials above, we

get

Dn =
∑

ei,j=0,1

k a
e1,2
1,2 a

e1,3
1,3 · · · aen−1,n

n−1,n V.

Since GKdimV ≤ m, and since Dn is a quotient space of a finite direct sum of V ,

we obtain that GKdimDn ≤ m, as desired. �
Proof of Theorem 1.3.

(1) By Lemma 2.8(2), E !
n is a finitely generated module over the finitely gen-

erated commutative (and thus Noetherian) k-subalgebra Cn from Nota-

tion 2.5. Thus, E !
n is a finitely generated Noetherian PI algebra and is

module finite over its center. See [17, Proposition 1.6] and Remark 2.7(1).

(2) First, we construct a factor algebra of E !
n to bound its GK-dimension from

below. Let m := �n/2	, and let I := {(1, 2), (3, 4), . . . , (2m− 1, 2m)}. Now

take

B := E !
n/(yi,j)i<j,(i,j) 
∈I ,

a factor algebra of E !
n. By Definition-Lemma 1.2, we get B to be isomor-

phic to the (−1)-skew polynomial ring k−1[y1,2, y3,4, . . . , y2m−1,2m]. So, by

Remark 2.2(2,4),

GKdim E !
n ≥ GKdimB = m.

On the other hand, since E !
n is a finite module over Cn and Cn is a

homomorphic image of Dn (Lemma 2.8(1,2)), we obtain that

GKdim E !
n = GKdim Cn ≤ GKdimDn = m
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3928 CHELSEA WALTON AND JAMES J. ZHANG

by Remark 2.2(4) and Lemma 2.8(4). Thus, GKdim E !
n = m = �n/2	.

(3) This follows from Lemma 2.4: Namely, yj,k(ai,j − ai,k) = 0 for all distinct

i, j, k, yet yj,k and ai,j −ai,k are nonzero in E !
n (by the diamond lemma [6]).

�

3. Results of Etingof on the algebras Cn and Dn

Recall that n is an integer ≥ 2. This section contains some results due to Pavel

Etingof on the commutative algebras Cn and Dn from Notation 2.5. We thank him

for suggesting these results and providing us with the key ideas for the proofs.

To begin, we need to set some notation on set partitions and corresponding

graphs and monomials.

Notation 3.1 ([n], π, Πn, Br, rk(π), #1(π), #≥2(π)). We fix some notation on set

partitions.

• Let [n] denote the set {1, . . . , n}.
• Let Πn denote the collection of set partitions of [n]. Namely, π ∈ Πn if π is

a set of nonempty subsets B1, . . . , Bd of [n] such that each positive integer

between 1 and n lies in exactly one of the Bi. We refer to the subsets Bi

as the blocks of π, and we denote the number of blocks of π by #π.

• The rank of π ∈ Πn, denoted by rk(π), is the value n−#π.

• We denote by #1(π) (resp., #≥2(π)) the number of blocks of π that are

singletons (resp., have cardinality ≥ 2).

• We call π ∈ Πn trivial if #π = #1(π) = n, that is, if π = {{1}, {2}, . . . , {n}}.

Notation 3.2 (G, Gr, mr, V (Gr), S(G), T (G)). Let G be a graph with the vertex

set [n] subject to the following conditions. It is loopless and we allow for multiple

edges between two vertices. Moreover, corresponding to π ∈ Πn as in Notation 3.1:

• The graph G has #π connected components of G denoted by {Gr}#π
r=1.

• Letmr = mr(Gr) be the total number of edges in each connected component

Gr for each r.

• We refer to π as the support of G, sometimes denoted by S(G), in the sense

that the block Br is the vertex set V (Gr) of Gr.

• The type of G, denoted by T (G), is the collection {(Br := V (Gr),mr)}#π
r=1.

Notation 3.3 (G(f), Gr(f), mr(f), V (Gr(f)), S(f), T (f)). Let F be a not neces-

sarily commutative algebra generated by {fi,j | 1 ≤ i < j ≤ n}.
• For each monomial f := fi1,j1fi2,j2 · · · fiw,jw , we define a graph, denoted by

G(f), with vertex set [n], and with edges is—js for each fis,js in f .

Then G(f) is a disjoint union of connected components {Gr(f)}dr=1 for some d ∈ N.

• Let mr(f) be the total number of edges in Gr(f) for each r.

• The type of f is defined to be the collection of pairs

T (f) := T (G(f)) =
{(

V (Gr(f)),mr(f)
)}d

r=1
,

and the support of f is the set partition of the vertex set of G(f),

S(f) := S(G(f)) =
{
V (Gr(f))

}d

r=1
.
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We define a partial ordering on the types of graphs defined above.

Definition 3.4. Choose two graphs G and H on n vertices as in Notation 3.2;

the same will apply for the graphs defined on monomials of the same degree as in

Notation 3.3. We write T (G) < T (H) if either of the following apply:

(a) The set partition πG ∈ Πn corresponding to T (G) is a proper refinement of

πH ∈ Πn of T (H) (i.e., each block of πG is a subset of a block of πH , with

one such being a proper subset).

(b) We have πG = πH (i.e., G and H have the same support) and the sequence

{mr(Gr)}dr=1 is less than {mr(Hr)}dr=1 in the lexicographic order.

We also write S(G) < S(H) if condition (a) holds.

Next, we turn our attention to the commutative algebra Dn from Notation 2.5

(which is studied in Lemma 2.8). Recall that Dn is generated by commuting ele-

ments {ai,j | 1 ≤ i < j ≤ n} and is subject to the relations

ai,jaj,k = ai,jai,k ∀ distinct i, j, k.(E2.4.1)

We will use Bergman’s diamond lemma [6] in the next proof. Let S be a reduc-

tion system for the set of relations R of a given finitely presented algebra. If all

ambiguities of R can be resolved using S, then we call S a Gröbner basis of R.

Lemma 3.5. Recall the commutative algebra Dn from Notation 2.5. Every mono-

mial of Dn (in the variables ai,j) is nonzero.

Proof. This basically follows from Bergman’s diamond lemma [6]. Rewrite the set

of relations of Dn as

ai1,j1ai2,j2 = ak1,l1ak2,l2

for some indices (i1, j1), (i2, j2), (k1, l1), and (k2, l2). By induction, every relation

in the Gröbner basis derived from overlap ambiguity is of the form

(E2.5.1) ai1,j1 · · · aiw,jw = ak1,l1 · · · akw,lw

for some pairs of indices (is, js), (ks, ls) for s = 1, . . . , w. It is not necessary to

specify what these indices are. In other words, the reduction in the diamond lemma

uses the relations only of the form (E2.5.1). This implies that every monomial is

equal to a reduced monomial. Therefore, every monomial of Dn is nonzero. �

We now discuss the growth of the algebra Dn.

Proposition 3.6. The Hilbert series of Dn is

HDn
(t) =

∑
π∈Πn

trk(π)

(1− t)#≥2(π)
= 1 +

∑
nontriv π∈Πn

trk(π)

(1− t)#≥2(π)
.

Proof. Take a :=
∏w

s=1 ais,js , a monomial of Dn; it is fine to use
∏

since Dn is

commutative. For B = {i1, . . . , iq} ⊆ [n] and m ≥ q − 1, let

a(B,m) := am−q+2
i1,i2

ai1,i3 · · · ai1,iq
be a certain monomial of Dn of degree m. By convention, a(B,m) = 1 if B is a

singleton and, consequently, m = 0. By using the relations (E2.4.1), one sees that

a is equal to a(B,m) in Dn if and only if G(a) is connected except for singletons.
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Further, let a be a monomial with T (a) = {(Br := V (Gr),mr)}dr=1; then we

claim that

(E2.6.1) a =
∏

mr≥1

a(Br,mr) =
∏
r

a(Br,mr)

in the algebra Dn. In other words, a monomial is determined by its type uniquely.

In equation (E2.6.1), Br’s are disjoint subsets of [n].

To show the above claim, we first show that every element of the form

(E2.6.2) a(B1,m1) · · · a(Bd,md)

is reduced. Every step in the reduction of the diamond lemma [6] uses one of the

commuting relations of Dn or one of the relations in (E2.4.1) such that (i, j, k)

includes one of the connected components of G(a). This means that in every step

f = f ′ in the reduction process, we have T (f) = T (f ′). Therefore, T (a) = T (a′)

if a = a′ for two monomials in Dn. Clearly, a(B1,m1) · · · a(Bd,md) is the small-

est with respect to the lexicographic order. Therefore, a(B1,m1) · · · a(Bd,md) is

reduced. Second, if a is a monomial that is not in the form of (E2.6.2), it can be

reduced to another monomial of the form of (E2.6.2) by induction on the degree of

the monomial. Thus, we proved the claim.

Now the assertion follows by counting monomials of the form in (E2.6.1). Namely,

fix π ∈ Πn. Then the monomials of positive degree of the form in (E2.6.1) corre-

sponding to π = {B1, . . . , B#π} are
∏

r with |Br |≥2 a(Br,mr); this contributes to

the Hilbert series of Dn the term∏
r with |Br |≥2

(t|Br |−1 + t|Br | + t|Br|+1 + · · · ) =
∏

r with |Br|≥2

t|Br|−1

1− t

since the degree of a(Br,mr) is mr, which has the lowest value |Br| − 1. Since∑
r with |Br |≥2 (|Br| − 1) =

(∑
r with |Br|≥2 |Br|

)
−#≥2(π)

= (n−#1(π))−#≥2(π)

= rk(π),

we find that the monomials of positive degree corresponding to a partition π ∈ Πn

contribute ∏
r with |Br|≥2

t|Br|−1

1− t
=

trk(π)

(1− t)#≥2(π)

to the Hilbert series of Dn. �

Naturally, we then inquire as follows.

Question 3.7. What is the Hilbert series of E !
n?

Proposition 3.8 (Etingof). The algebra Dn is reduced; that is, Dn has no nonzero

nilpotent elements. As a consequence, Dn is semiprime.

Proof. Let 0 
= f ∈ Dn be a linear combination of monomials
∑

i ciai for ci ∈ k.

Here, ai ∈ Dn are linearly independent monomials in ai,js. We want to show that

fm 
= 0 for all m ≥ 1. We pick a summand ci0ai0 
= 0 of f such that T (ai0) is

one of minimal type according to the partial ordering of Definition 3.4. We want
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to show that fm is a linear combination of ci1 · · · cimai1 · · · aim , with its summand

cmi0a
m
i0


= 0 being of minimal type. This is enough to conclude that fm 
= 0 by

Lemma 3.5.

Consider the term ai1 · · · aim that is not ami0 , and suppose by way of contra-

diction that T (ai1 · · · aim) < T (ami0 ). Then S(ai1 · · · aim) < S(ami0 ) = S(ai0) by

condition (a) of Definition 3.4. This implies that S(ais) ≤ S(ai0) for all s. Since

T (ai0) is minimal, we obtain that S(ais) = S(ai0). When all ais have the same

support, we use condition (b) of Definition 3.4 to obtain T (ais) < T (ai0) for some

ais 
= ai0 , which is a contradiction. Thus, fm is a linear combination of monomials

with one summand cmi0a
m
i0

of a summand with minimal type. The assertion follows.

The semiprimeness of Dn now holds since Dn is commutative. �

We need the following construction for the next result.

Definition-Lemma 3.9. Let {Ri}di=1 be some Z2-graded algebras. The super ten-

sor product between Ri and Rj is a Z2-graded algebra,

Ri ⊗super Rj ,

which is equal to Ri ⊗ Rj as Z2-graded algebras, where for homogeneous elements

f, f ′ ∈ Ri and g, g′ ∈ Rj we have

(f ⊗ g)(f ′ ⊗ g′) = (−1)|g||f
′|(ff ′ ⊗ gg′).

The Z2-grading of Ri ⊗super Rj is (Ri ⊗super Rj)0 = (Ri)0 ⊗ (Rj)0 + (Ri)1 ⊗ (Rj)1
and (Ri ⊗super Rj)1 = (Ri)1 ⊗ (Rj)0 + (Ri)0 ⊗ (Rj)1. Moreover, Ri ⊗super Rj is a

graded twist of Ri ⊗Rj in the sense of [45]. �

Recall that Cn is the central subalgebra of E !
n generated by ai,j := y2i,j for all i, j.

Proposition 3.10 (Etingof). There is a natural algebra isomorphism Dn
∼= Cn.

Proof. We achieve the result by studying the points of

Xn := SpecDn ⊆ k
(n2).

Let us set some notation used in this proof. Given a point z = (zi,j)1≤i<j≤n ∈ Xn,

let G(z) be the graph on the vertex set [n] where i and j are connected if and

only if zi,j 
= 0. Let {Gr(z)}dr=1 be the set of connected components of G(z). The

relations

zi,j(zi,k − zj,k) = 0

(derived from (E2.4.1)) imply that, for some xr ∈ k
×,

(E2.10.1) zi,j =

{
xr if i, j belong to the same component Gr(z),

0 otherwise

by definition. Thus, each connected component Gr(z) is a complete graph.

On the other hand, for each set partition π = {B1, . . . , Bd} ∈ Πn, we can

construct a stratum

Xn(π) := {z ∈ Xn | Gr(z) is the complete graph K(Br) ∀r}.

It is clear that Xn(π) is a torus of dimension equal to #2(π).
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For the rest of the proof, recall that by Lemma 2.8(1), there is a natural algebra

surjection from φ : Dn → Cn. So, the assertion is equivalent to the statement that

the map φ is injective. Let I be the kernel of φ, and let Z(I) ⊆ Xn be the zero set

of I. Since Dn is reduced (Proposition 3.8(1)), it suffices to show that Z(I) = Xn.

Note that I is also equal to the kernel of the composition (Cn ↪→ E !
n) ◦ φ, where

the inclusion holds by Lemma 2.8(1). Take a point z ∈ Xn and consider the

corresponding maximal ideal mz of Dn and form the algebra

E !
n(z) := E !

n ⊗Dn
Dn/(mz).

Then it suffices to show that E !
n(z) 
= 0 for all z ∈ Xn. Namely, this condition

is equivalent to the condition that mz contains I for all z ∈ Xn, which in turn is

equivalent to I ⊂
⋂

z∈Xn
mz; here,

⋂
z∈Xn

mz = 0 since Dn is reduced.

Let z be any point in Xn. Then it belongs to a stratum Xn(π) for some set

partition π = {B1, . . . , B#π} of [n], where Br = Gr(z). Then E !
n(z) is defined as

the quotient algebra

E !
n(z) = E !

n/
(
{y2i,j − xr}i,j∈Gr(z), {y2i,j}i or j 
∈Gr(z)

)
for xr in (E2.10.1).

Let us replace the last relations by an even stronger relation: Take the ideal

J = (yi,j)i, j in different blocks of π .

Then the resulting quotient algebra E !
n(z)/J is a super tensor product of algebras,

denoted by Rr, associated with components Br with |Br| ≥ 2. Now by Definition-

Lemma 3.9, it suffices to show that each Rr is nonzero, or equivalently, to show

that E !
n(z) is nonzero when #π = 1.

Without loss of generality, we can first assume that #π = 1 and, by replacing

yi,j with x
−1/2
1 yi,j , we may further assume that x1 = 1. Now zi,j = 1 for all i 
= j

by (E2.10.1). So it suffices to show that the algebra E !
n(1) is nonzero.

For n = 3, one can check directly or by using a computer algebra program that

the algebra

E !
3(1) =

k〈y1,2, y1,3, y2,3〉⎛
⎝ y21,2 − 1, y21,3 − 1, y22,3 − 1,

y1,2y2,3 + y2,3y1,3, y1,2y2,3 + y1,3y1,2,

y2,3y1,2 + y1,3y2,3, y2,3y1,2 + y1,2y1,3

⎞
⎠

is nonzero. For n ≥ 4, we can check that the algebra E !
n(1) is isomorphic to a factor

of the group algebra of a Schur cover 2 · S+
n of the symmetric group Sn. Namely,

the group 2 · S+
n has a presentation with generators w, s1, . . . , sn−1 and relations

w2 = 1,

wsi = siw and s2i = 1 ∀1 ≤ i ≤ n− 1,

si+1sisi+1 = sisi+1si, ∀1 ≤ i ≤ n− 2,

sjsi = sisjw, ∀1 ≤ i < j ≤ n− 1, |i− j| ≥ 2;

see [22, Chapter 12]. Now by identifying w = −1 and si = yi,i+1, we get

E !
n(1)

∼= k(2 · S+
n )/(w + 1).

Since |2 · S+
n | = 2n! and the order of w is 2, we find that k(2 · S+

n )/(w + 1) has

dimension n!, so E !
n(1) is not 0, as desired. �
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One quick consequence of the proposition above is the following.

Corollary 3.11. Every monomial in E !
n is nonzero.

Proof. Since the natural map Dn → E !
n is injective (Lemma 2.8(1) and Proposi-

tion 3.10), every element of the form y2i1,j1y
2
i2,j2

· · · y2iw,jw
is nonzero by Lemma 3.5.

Starting from any monomial yi1,j1yi2,j2 · · · yiw,jw in E !
n, one can see that

(yi1,j1yi2,j2 · · · yiw,jw)(yiw,jw · · · yi2,j2yi1,j1) = y2i1,j1y
2
i2,j2 · · · y

2
iw,jw 
= 0

in E !
n. Therefore, yi1,j1yi2,j2 · · · yiw,jw 
= 0. �

Finally, we recover a bound on the GK-dimension of E !
n via the proof of Propo-

sition 3.10.

Remark 3.12 (Etingof). We refer to the notation of the proof of Proposition 3.10.

By taking limits, one sees that one stratum, Xn(π
′), is in the closure of another

stratum, Xn(π), if and only if π′ is obtained from π by cutting some blocks of π

into single points. Thus, the irreducible components of Xn are closures Xn(π) of

strata with maximal set partitions π, i.e., those with at most one 1-point block. So,

the dimension of the stratum Xn(π) is #≥2(π), which is at most �n/2	. We then

recover GKdimE !
n = GKdimDn ≤ �n/2	; see Lemma 2.8(4) and Theorem 1.3(2).

4. Homological preliminaries and proof of Theorem 1.6

and Corollary 1.8

The goal of this section is to establish Theorem 1.6 and Corollary 1.8 on various

homological properties of E !
n. We begin by recalling these homological notions for

general connected N-graded algebras, and we show how these conditions are related

in Figure 1. Then we present preliminary results for E !
n, and we end the section by

establishing the proofs of Theorem 1.6 and Corollary 1.8.

We begin by presenting homological conditions on connected N-graded (c.g.), lo-

cally finite k-algebras that generalize the regularity, Gorenstein, Cohen–Macaulay,

and other favorable conditions on commutative local algebras. Some of these homo-

logical conditions can be defined for k-algebras that are not necessarily connected

N-graded nor locally finite, and we refer the reader to the references provided below

for more information.

Definition 4.1 ([2, Intro.], [44, p. 674, Section 4], [28, Intro., Defs. 2.1 and 5.8]).

Let A be a connected N-graded (c.g.), locally finite k-algebra. All A-modules and

Ext-groups below will be graded.

(1) A is called Artin–Schelter–Gorenstein (or AS-Gorenstein) (of dimension d)

if the following conditions hold:

(a) A has finite injective dimension d as both a left and a right A-module,

(b) ExtiA(k, A) = ExtiAop(k, A) = 0 for all i 
= d, and

(c) ExtdA(k, A) ∼= k(l) and ExtdAop(k, A) ∼= k(l) for some integer l.

(2) A is called Artin–Schelter-regular (or AS-regular) of dimension d if A is

AS-Gorenstein of finite global dimension d. (We do not assume finite GK-

dimension, as was introduced originally in [2]. See [21], for instance.)
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(3) For m := A≥1, a graded maximal ideal of A, the ith local cohomology module

for a left (or right) A-module M is defined to be

Hi
m(M) := lim

−→
m

ExtiA(A/A≥m, M).

(4) A is Artin–Schelter-Cohen–Macaulay (or AS-Cohen–Macaulay, AS-CM) if

there exists an integer d such that Hi
m(A) = Hi

mop(A) = 0 for all i 
= d.

(5) The grade number of a left (or right) A-module M is defined to be

jA(M) := inf{i | ExtiA(M,A) 
= 0} ∈ N ∪ {+∞}.
Write j(M) for jA(M) if A is understood. Note that jA(0) = +∞.

(6) In the case in which A is Noetherian, a left (right) A-module M satisfies

the Auslander condition if for any q ≥ 0, we get jA(N) ≥ q for all right

(left) A-submodules N of ExtqA(M,A).

(7) A Noetherian algebra A is Auslander–Gorenstein of dimension d if A has

finite injective dimension d as both a left and a right A-module, and if every

finitely generated left and right A-module satisfies the Auslander condition.

(8) A Noetherian algebra A is Auslander-regular of dimension d if A is

Auslander–Gorenstein of finite global dimension d.

(9) A Noetherian algebra A is Cohen–Macaulay (CM) if GKdim(A) = d ∈ N,

and if

j(M) + GKdim(M) = d

for every finitely generated nonzero left (or right) A-module M .

(10) Continuing (9), we have inequality of the grade (IG) if the weaker condition

that j(M) + GKdim(M) ≥ d is satisfied.

(11) The depth of a left (or right) A-module M is defined to be

depthM := inf{i | ExtiA(k,M) 
= 0}.
If ExtiA(k,M) = 0 for all i, then depthM = ∞.

The hierarchy of homological conditions on connected N-graded, locally finite

k-algebras also involve certain factors of regular algebras, namely, the complete

intersections discussed below. This is motivated by the fact that, in the context of

commutative local rings, for a Noetherian ring R, we have the following:

• If R is regular, then R is a complete intersection.

• If R is a complete intersection, then R is Gorenstein, and hence, in turn,

is CM.

See, for instance, the work of Bass [4] for the details of the commutative terminol-

ogy; Definitions 4.1 and 4.2 are a noncommutative generalization of these concepts.

Definition 4.2 ([17], [24, Definition 1.3]).

(1) An element Ω of a ring A is called normal if ΩA = AΩ, and is called regular

if Ω is a nonzero divisor in A.

(2) We say a collection of elements {Ω1, . . . ,Ωt} of a ring A is a normal sequence

in A if deg Ωi > 0 for all i, and if Ωi is a normal element in the factor ring

A/(Ω1, . . . ,Ωi−1) for all i. If, further, each Ωi is a regular element in the

factor ring A/(Ω1, . . . ,Ωi−1), then we say that {Ω1, . . . ,Ωt} is a regular

normal sequence in A.
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(3) A c.g. finitely generated k-algebra A is called a classical complete intersec-

tion (cci) if there is a c.g. Noetherian AS-regular algebra C and a regular

sequence of normalizing elements {Ω1, . . . ,Ωt} of positive degree such that

A ∼= C/(Ω1, . . . ,Ωt).

(4) In the case in which A is a cci, the cci number of A is defined to be

cci(A) = min{t | A ∼= C/(Ω1, . . . ,Ωt)}.

Now we illustrate the connections amongst the terminology above in the case in

which A is a connected N-graded, locally finite k-algebra. One fact that is used in

the hypotheses of some of the references below is that a Noetherian PI algebra is

fully bounded Noetherian [34, Definition 6.4.7, Corollary 13.6.6].

Ausl.-reg.

by def: gldim<∞ ⇒ injdim<∞

��

.

.
[28, Thm 6.3]

��

Ausl.-Goren.

[28, Thm 6.3]

��

IG ��

���
���

���
���

���
�

���
���

���
���

����

[19, Sec 5]
[20, T2.2]

A Noeth, PI

��

CM
by def��

depthA
=

GKdimA��

		 ���
���

���
���

���
���

���
���

AS-reg.

by def: gldim<∞ ⇒ injdim<∞





by def:
(C=A,
{Ω}=∅) �� cci

[28, Thm 3.6]
C Ausl.-Gor.

.

.

.

��

[24, Thm 3.4]

A=RG inv. ring


AS-Goren.

[21, Lem 2.1]

��
AS-CM

Figure 1. Homological conditions for c.g. locally finite algebras A (Definition 4.1)

The following result will be of use.

Proposition 4.3 ([28, Lemma 5.7], [10, Theorem 2.5]). Take C as a connected

N-graded Noetherian algebra with finite GK-dimension.

(1) Let Ω be a regular element of C of positive degree. Then GKdim(C/(Ω)) =

GKdim(C)− 1.

(2) Let m = GKdim(C). Suppose that C is Auslander–Gorenstein and CM, and

that there is a normalizing sequence {Ω1, . . . ,Ωm} of C with each element Ωi

homogeneous of positive degree. Then {Ω1, . . . ,Ωm} is a regular sequence in

C if and only if C/(Ω1, . . . ,Ωm) is finite dimensional (has GK-dimension

0). In this case, for each t = 1, . . . ,m, we get {Ω1, . . . ,Ωt} as a regular

sequence of C if and only if

GKdim(C/(Ω1, . . . ,Ωt)) = m− t. �

Now we study the Fomin–Kirillov algebra E3 from Definition 1.1 and show that it

is a cci. Recall that E3 is the k-algebra generated by x12, x13, x23 (where we suppress
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the comma in the subscript of the indices) subject to the following relations:

x2
12 = x2

13 = x2
23 = 0,

x12x23 − x23x13 − x13x12 = 0,

x23x12 − x13x23 − x12x13 = 0.

Notation 4.4 (C ′, S, Ω′
1, Ω

′
2, Ω

′
3). Let C

′ be the k-algebra generated by x12, x13, x23

subject to the relations

x2
12 + x2

13 = 0,

x12x23 − x23x13 − x13x12 = 0,

x23x12 − x13x23 − x12x13 = 0.

Let S be the k-algebra generated by x12 and x13 subject to the relation

x2
12 + x2

13 = 0.

Moreover, put Ω′
1 := x2

23, put Ω
′
2 := x12x23x13 − x13x23x12, and put Ω′

3 := x2
13.

For the result below, we refer the reader to [17, Chapter 2] for details about

σ-derivations and Ore extensions.

Lemma 4.5. Retain Notation 4.4. Then the following statements hold.

(1) S is connected N-graded, Noetherian, Auslander-regular, CM of global di-

mension 2.

(2) The map σ : x12 �→ x13 and x13 �→ x12 defines an algebra automorphism

of S, and δ : x12 �→ x12x13 and x13 �→ −x13x12 defines a σ-derivation of S.

(3) C ′ is an Ore extension S[x23;σ, δ]. Hence, C ′ is a connected N-graded,

Noetherian, Auslander-regular, CM k-algebra of global dimension 3.

(4) {Ω′
1,Ω

′
2,Ω

′
3} is a normal sequence in C ′.

(5) C ′/(Ω′
1,Ω

′
2,Ω

′
3) = E3.

Proof.

(1) This holds as S is isomorphic to the (−1)-skew polynomial ring k−1[z1, z2],

which is well known to possess the desired properties.

(2) It is clear that σ is an algebra automorphism. To check that δ is a σ-

derivation, we calculate

δ(x2
12 + x2

13) = δ(x12)x12 + σ(x12)δ(x12) + δ(x13)x13 + σ(x13)δ(x13)

= (x12x13)x12 + x13(x12x13)− (x13x12)x13 − x12(x13x12) = 0.

(3) By part (2) and the definition of C ′, we see that C ′ is an Ore extension

S[x23;σ, δ]. Now the second statement holds by (1) and several standard

results including [12, Theorem 4.2], [29, p. 184].

(4) First, we claim that Ω′
1 := x2

23 is central (and thus normal) in C ′. We check

x2
23x12 = x23(x13x23 + x12x13)

= (x12x23 − x13x12)x23 + (x13x23 + x12x13)x13

= x12x
2
23 − x13(x12x23 − x23x13) + x12x13x13

= x12x
2
23 − x13(x13x12) + x12x13x13

= x12x
2
23.
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Similarly, x2
23x13 = x13x

2
23 (and x2

23 commutes with x23). So, the first claim

holds.

Second, we claim that Ω′
2 is normal in C ′/(Ω′

1). We calculate

Ω′
2x12 = x12x23(x13x12)− x13(x23x12)x12

= x12x23(x12x23 − x23x13)− x13(x13x23 + x12x13)x12

= x12(x23x12)x23 − x2
13x23x12 − x13x12(x13x12)

= x12(x13x23 + x12x13)x23 − x2
13x23x12 − x13x12(x12x23 − x23x13)

= x2
12x13x23 − x2

13x23x12 − x13x12(x12x23 − x23x13)

= x13[−x2
13x23 − x13x23x12 − x12(x12x23 − x23x13)]

= x13(−x13x23x12 + x12x23x13)

= x13Ω
′
2.

Similarly, Ω′
2x13 = x12Ω

′
2 and Ω′

2x23 = −x23Ω
′
2. Thus, Ω′

2 is normal in

C ′/(Ω′
1).

Finally, we claim that Ω′
3 := x2

13 is central in C ′/(Ω′
1,Ω

′
2). We calculate

x2
13x12 = x13(x12x23 − x23x13)

= (x12x23 − x23x13)x23 − (x23x12 − x12x13)x13

= −x23x13x23 − x23x12x13 + x12x
2
13

= −x23(x23x12 − x12x13)− x23x12x13 + x12x
2
13

= x12x
2
13

and
x23x

2
13 = (x12x23 − x13x12)x13

= x12x23x13 − x13(x23x12 − x13x23)

= x2
13x23.

Since x2
13 commutes with x13, we have x2

13 being central in C ′/(Ω′
1,Ω

′
2).

(5) By comparing the generators and relations, one sees that C ′/(Ω′
1,Ω

′
3) = E3.

It remains to show that Ω′
2 = 0 in C ′/(Ω′

1,Ω
′
3). We check, in C ′/(Ω′

1,Ω
′
3),

that

Ω′
2 = x12x23x13 − x13x12x13 − x13x23x12 + x13x12x13 = x23x

2
13 − x2

13x23 = 0.

Thus, Ω′
2 = 0 in C ′/(Ω′

1,Ω
′
3), as desired. �

Theorem 4.6. We obtain that E3 is a cci, and that cci(E3) = 3. As a consequence,

E3 is Auslander–Gorenstein, CM, and Frobenius.

Proof. Recall Notation 4.4. By Lemma 4.5(3)–(5), we get {Ω′
1,Ω

′
2,Ω

′
3} as a normal

sequence of an Auslander-regular and CM algebra C ′ such that E3 = C ′/(Ω′
1,Ω

′
2,Ω

′
3).

By the definition of C ′ in Lemma 4.5(3), one sees that GKdimC ′ = 3 (Re-

mark 2.2(2)). Now by [14, (2.8)], GKdim E3 = 0. Hence, GKdimC ′/(Ω′
1,Ω

′
2,Ω

′
3) =

0, and with Proposition 4.3(2) we obtain that {Ω′
1,Ω

′
2,Ω

′
3} is a regular normal

sequence of C ′. By definition, E3 is a cci.

Since E3 is finite dimensional and a cci, it is Auslander–Gorenstein and CM, and,

consequently, Frobenius.
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For the cci number of E3, note that by the argument above we have cci(E3) ≤ 3. If

cci(E3) ≤ 2, then there is a Noetherian AS-regular algebra B and a regular normal

sequence {f1, f2} of B such that E3 ∼= B/(f1, f2). Recall that E3 is Auslander–

Gorenstein and CM, so by [28, Theorem 3.6 and Remark 5.10], B is Auslander-

regular and CM of GK-dimension and global dimension 2. Such a B must be

generated by two elements [2, Introduction]. This contradicts the fact that E3 is

generated by three elements. Thus, cci(E3) ≥ 3. �

Now we consider the quadratic dual E !
3 of E3. Recall that E !

3 is generated by

y12, y13, y23 (where we suppress the comma in the subscript of the indices) subject

to the relations

y12y23 + y23y13 = y12y23 + y13y12 = 0,

y23y12 + y13y23 = y23y12 + y12y13 = 0.

Definition-Lemma 4.7 (a, b, c, C ′′). Let a := y13 + y23, b := y13 − y23, c := y12.

After a linear transformation, E !
3 is generated by a, b, c, subject to the following

relations:

ca+ ac = cb− bc = −2bc+ a2 − b2 = −2ac+ (ab− ba) = 0.

Moreover, let C ′′ be the algebra generated by a, b, c, subject to the relations

ca+ ac = cb− bc = a2b− ba2 = ab2 − b2a = 0. �

Lemma 4.8. The algebra C ′′ is Noetherian, AS-regular, Auslander-regular, CM, of

global dimension 4, of GK-dimension 4, and it has Hilbert series (1−t)−3(1−t2)−1.

Proof. Let B be the k-algebra k〈a, b〉/(a2b − ba2, ab2 − b2a). This algebra is a

Noetherian AS-regular algebra of global dimension 3 [2, (8.5)], with Hilbert series

(1− t)−2(1− t2)−1 [2, (1.15)], and is also Auslander-regular and CM (e.g., via [28,

Corollary 5.10]) and has GK-dimension 3 (e.g., via Proposition 4.3(2)). Note that

C ′′ is an Ore extension B[c, σ], where σ : a �→ −a, b �→ b. So, C ′′ has Hilbert series

HB(t)/(1− tdeg c) = (1− t)−3(1− t2)−1. The rest of the result follows from several

standard results including [12, Theorem 4.2], [29, p. 184]. �

Lemma 4.9 (Ω′′
1 , Ω

′′
2 , Ω

′′
3). Retain the notation of Definition-Lemma 4.7.

(1) Let Ω′′
1 := (ab + ba)c, Ω′′

2 := −2bc + a2 − b2, and Ω′′
3 := −2ac + (ab − ba).

Then {Ω′′
1 ,Ω

′′
2 ,Ω

′′
3} is a normal sequence in C ′′.

(2) C ′′/(Ω′′
1 ,Ω

′′
2 ,Ω

′′
3) = E !

3.

Proof.

(1) Note that (ab+ba)c = −c(ab+ba) in C ′′. It is also easy to check that (ab+ba)

is central in the AS-regular algebra B from the proof of Lemma 4.8. Since

C ′′ is an Ore extension B[c;σ] (from the proof of Lemma 4.8), (ab+ ba) is

normal in C ′′, and so is c. Hence, Ω′′
1 = (ab+ ba)c is normal in C ′′.

To show that Ω′′
2 is normal in C ′′/(Ω′′

1), note that [Ω′′
2 , c] = [Ω′′

2 , b] = 0

and

[Ω′′
2 , a] = Ω′′

2a− aΩ′′
2 = 2(ab+ ba)c = 0

in C ′′/(Ω′′
1).

Licensed to Rice Univ. Prepared on Mon Jul 20 00:32:49 EDT 2020 for download from IP 128.42.202.150.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE QUADRATIC DUAL OF THE FOMIN–KIRILLOV ALGEBRAS 3939

Now, to see that Ω′′
3 is normal in C ′′/(Ω′′

1 ,Ω
′′
2), note that Ω′′

3c + cΩ′′
3 =

Ω′′
3a+ aΩ′′

3 = 0. Lastly, we have

Ω′′
3b+ bΩ′′

3 = (−2ac+ (ab− ba))b+ b(−2ac+ (ab− ba)) = −2acb− 2bac = 0

in C ′′/(Ω′′
1 ,Ω

′′
2). Therefore, {Ω′′

1 ,Ω
′′
2 ,Ω

′′
3} is a normal sequence in C ′′.

(2) In the algebra E !
3
∼= k〈a, b, c〉/(ca+ ac, cb− bc, Ω′′

2 , Ω′′
3), we get

[a2, b] = Ω′′
2b− bΩ′′

2

and

[a, b2] = Ω′′
3b+ bΩ′′

3 ,

and in the algebra k〈a, b, c〉/(ca + ac, cb − bc, [a2, b], [a, b2], Ω′′
2 , Ω′′

3) we

get

Ω′′
1 = abc− bca = 1

2a(a
2 − b2)− 1

2 (a
2 − b2)a = 1

2 [b
2, a] = 0,

as required. �

This brings us to our main result for E !
3.

Theorem 4.10.

(1) E !
3 is a cci and HE !

3
(t) = (1+t)(1+t+t2)

(1−t) .

(2) E !
3 is AS-Gorenstein and Auslander–Gorenstein.

(3) E !
3 is not AS-regular or Auslander-regular.

Proof.

(1) By Lemmas 4.8 and 4.9, there exists a normalizing sequence {Ω′′
1 ,Ω

′′
2 ,Ω

′′
3} of

an Auslander-regular, CM algebra C ′′ with E !
3
∼= C ′′/(Ω′′

1 ,Ω
′′
2 ,Ω

′′
3). More-

over, GKdimC ′′ = 4 by Lemma 4.8. Now consider the normal element

Ω′′
4 := 1

2 (a
2+ b2)+ c2 of E !

3. Then with variable ordering a < b < c, one can

compute (via the GBNP package of GAP [11]) that the ideal of relations

for E !
3/(Ω

′′
4) has Gröbner basis{

ba+ 2ac− ab, bc+ 1
2 (b

2 − a2), ca+ ac, cb− bc, c2 + 1
2 (b

2 + a2),

a3, b3 + 1
3 (2a

2c+ a2b)

}
.

Thus, C ′′/(Ω′′
1 ,Ω

′′
2 ,Ω

′′
3 ,Ω

′′
4) = E !

3/(Ω
′′
4) has Hilbert series 1+3t+4t2+3t3+t4

and has GK-dimension 0. Since E !
3 = C ′′/(Ω′′

1 ,Ω
′′
2 ,Ω

′′
3) has GK-dimension 1

(Theorem 1.3(2)), we obtain {Ω′′
1 ,Ω

′′
2 ,Ω

′′
3} as a regular normal sequence of

C ′′ by Proposition 4.3(2). By definition, E !
3 is a cci.

Since {Ω′′
1 ,Ω

′′
2 ,Ω

′′
3} is a regular normal sequence of C ′′ with degrees 3, 2,

and 2, respectively, we get by Lemma 4.8

HE !
3
(t) = HC′′(t)(1− t2)2(1− t3) =

(1− t2)2(1− t3)

(1− t)3(1− t2)
=

(1 + t)(1 + t+ t2)

1− t
.

(2) This follows from (1), along with Lemma 4.8 and [28, Theorems 3.6 and 6.3].

(3) We have by Theorem 1.3(1) and [42, Corollary 1.2] the result that if E !
3 had

finite global dimension, then E !
3 would be a domain. But this contradicts

Theorem 1.3(3). So, E !
3 is neither AS-regular nor Auslander-regular. �

Now we turn our attention to the AS-CM property of E !
n, and for this we need

results on the depth of E !
n. We start with the following preliminary result.
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Lemma 4.11. For connected N-graded algebras A and C, we have the statements

below.

(1) Suppose that A has a regular homogeneous element f of positive degree.

Then depthA > 0.

(2) Let C be a Noetherian commutative algebra, and let M be a finitely generated

module over C. If depthM > 0, then there is a homogeneous element of

positive degree f ∈ C that is regular on M .

(3) Let A be Noetherian and finitely generated over its affine center. Suppose

that A has a homogeneous element g of positive degree such that GKdimAg

≤ r. Then depthA ≤ r.

Proof.

(1) This is a connected N-graded analogue of a standard homological result

from the theory of commutative local rings; see, e.g., [9, Proposition 1.2.3].

Suppose, by way of contradiction, that depthA = 0. Then, by definition,

HomA(k, A) 
= 0, so there exists a one-dimensional nonzero ideal I of A.

Let x be a generator of I. Since f has positive degree, we get fx = 0. This

contradicts the regularity of f .

(2) Let m := C≥1 be the maximal graded ideal of C. If m consists of nonregular

elements of M , then m is contained in the union of the associated primes

of the C-module M . By the Noetherian property and prime avoidance, m

is actually contained in one associated prime p of M . Thus, p = m. Now

there exists a monomorphism C/p → M . Composing this with the natural

isomorphism C/m → C/p, we get a nonzero C-module map C/m → M .

Thus, HomC(k,M) 
= 0 and depthM = 0.

(3) If depthA = 0, then we are done. Now suppose that depthA > 0. Let

C be the center of A. Since A is finitely generated over C, depthC A =

depthA A > 0. By part (2), there exists a homogeneous element f ∈ C of

positive degree that is regular on A. Replacing f by fn for some n � 0, we

may assume that deg f > deg g. Consider the sequence

0 −→ Ag
·f−→ Ag −→ Ag/Agf −→ 0.

Since GKdim(Ag) ≤ r by assumption, we have GKdim(Ag/Agf) ≤ r −
1 [34, Proposition 8.3.5]. Define A := A/(f), and let g be the image of g in

A. Using the surjection Ag/Agf � Ag/(Ag ∩ Af), we have

GKdim(Ag) = GKdim(Ag/(Ag ∩ Af)) ≤ r − 1.

By induction, depth(A) ≤ r− 1. Now the result holds by Rees’s lemma [40,

Theorem 8.34]. �

Theorem 4.12. For every n ≥ 2, depth(E !
n) ≤ 1. As a consequence, for n ≥ 4,

we get depth E !
n < GKdim E !

n.

Proof. Let

g =
∏
i<j

ai,j ,

which is nonzero by Corollary 3.11. It is easy to check that ai,jg = a1,2g by (E1.8.1).

Hence, Dng = k[a1,2]g or GKdimDng = 1. Since E !
n is finitely generated over Dn,
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GKdim E !
ng = 1. The assertion follows by Lemma 4.11(3), and the consequence

holds by Theorem 1.3(2). �

Proof of Theorem 1.6. Refer to Figure 1 throughout. By Theorem 1.3(2), we find

that, to establish parts (1)–(3), it suffices to show that (a) E !
2 is AS-regular, (b)

E !
3 is AS-Gorenstein and but not AS-regular, and (c) E !

n is not AS-CM for n ≥
4. Now (a) holds as E !

2 is the commutative polynomial ring k[y1,2], (b) holds by

Theorem 4.10(2,3), and (c) follows from Theorema 4.12 and 1.3(1).

Moreover, (4) holds since E !
2 = k[y1,2] (AS-regular), since E2 = k[x1,2]/(x

2
1,2)

(quotient of an AS-regular algebra by a regular element), and by Theorems 4.10(1)

and 4.6 for the algebras E !
3 and E3, respectively. �

Proof of Corollary 1.8. Refer to Figure 1 throughout. The result on Auslander-

regularity holds for n = 2, as E !
2 = k[y1,2] is clearly Auslander-regular, for n = 3

by Theorem 4.10(3), and for n ≥ 4 by Theorem 1.6(3). The result on Auslander–

Gorenstein holds for n = 2 by Auslander-regularity, for n = 3 by Theorem 4.10(2),

and for n ≥ 4 by Theorem 1.6(3). The result on the CM condition holds for n = 2, 3

by the Auslander–Gorenstein condition with Theorem 1.3(1), and for n ≥ 4 by

Theorems 1.6(3) and 1.3(1). �

5. Further directions

First, we make the following remark about Question 1.4 and Conjecture 1.7

discussed in the Introduction.

Remark 5.1. If E !
n is semiprime (i.e., if Question 1.4(1) is affirmative), then we

obtain that depth E !
n = 1 (i.e., that Conjecture 1.7 holds). Namely, for any c.g.

algebra A 
= k, depthA = 0 implies that A is not semiprime as HomA(k, A) ⊆ A

is a nonzero nilpotent ideal of A. Therefore, depth E !
n ≥ 1 when E !

n is semiprime.

Now Conjecture 1.7 follows from Theorem 4.12.

In addition to Question 1.4 and Conjecture 1.7, along with Question 3.7, we

present here three other suggestions for further study of the quadratic dual E !
n of

Fomin–Kirillov algebras, yet there are numerous other directions that one could

pursue motivated by Fomin–Kirillov’s work [14] alone.

5.1. On the center of E !
n. In Section 2, we introduced the commutative sub-

algebras Cn and Dn of E !
n in order to prove Theorem 1.3; recall Cn ∼= Dn by

Proposition 3.10. But we ask the following.

Question 5.2. What is the presentation of the center Z(E !
n) of E !

n?

On a related note, there is an important subalgebra of the Fomin–Kirillov algebra

En constructed in [14] generated by its Dunkl elements. This subalgebra, which we

denote by Fn, is isomorphic to the cohomology of a flag manifold [14, Theorem 7.1];

the full presentation of Fn is also established in that result.

Question 5.3. What is the connection between Fn and the commutative algebras

Z(E !
n) and Cn discussed above?
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5.2. On the Sn-action on E !
n and related algebras. As discussed in Milinski

and Schneider’s study of Nichols algebras over Coxeter groups [36], the Fomin–

Kirillov algebra En admits an action of the symmetric group Sn and, moreover,

can be realized as a braided Hopf algebra in the category Sn

Sn
YD of Yetter–Drinfeld

modules over Sn. Namely, En arises as a pre-Nichols algebra in Sn

Sn
YD, and, in

fact, it is conjectured that En is an honest Nichols algebra in Sn

Sn
YD (which has

been verified for n ≤ 5). Two algebras that are of interest in this context are the

invariant subalgebra ESn
n and the skew group algebra En � Sn. For instance, for

a finite group G, there is a useful functor from G
GYD to the category of k-vector

spaces sending a braided Hopf algebra B to the k-Hopf algebra B�G. Vital classes

of finite-dimensional pointed Hopf algebras have been constructed in this fashion.

Now the quadratic dual E !
n also admits an action of the symmetric group Sn, and

an interesting direction for further research is to study the behavior of the resulting

invariant ring and skew group algebra.

5.3. On the Koszulity of E !
n. As mentioned in the Introduction, the Fomin–

Kirillov algebras En fail to be Koszul for n ≥ 3 due to a result of Roos [39],

so the same result holds for the quadratic dual E !
n. Toward understanding the

cohomology rings Ext∗En
(k, k) and Ext∗E !

n
(k, k) (for which E !

n and En, respectively,
are the subalgebras generated in degree 1), the failure of Koszulity should be studied

more carefully. Indeed, if E !
n and En were Koszul, then they would equal Ext∗En

(k, k)

and Ext∗E !
n
(k, k), respectively.

As in [37, Section 2.4], we say that a graded algebra A is p-Koszul if

Exti,jA (k, k) = 0 ∀i < j ≤ p.

For example, any graded algebra is 1-Koszul, any graded algebra generated in

degree 1 is 2-Koszul, and any quadratic algebra is 3-Koszul. Moreover, a graded

(quadratic) algebra is Koszul if and only if it is p-Koszul for all p ≥ 1. By [37,

Proposition 2.4.5], if A is a (p−1)-Koszul quadratic algebra, then for each 2 < i < p

there is a natural perfect pairing

Exti,pA (k, k)⊗ Extp−i+2,p
A! (k, k) −→ k.

So, we ask the following question.

Question 5.4. What is the maximum value of p = p(n) for which E !
n is p-Koszul?
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