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ABSTRACT. A result of Braverman and Gaitsgory from 1996 gives necessary
and sufficient conditions for a filtered algebra to be a Poincaré-Birkhoff-Witt
(PBW) deformation of a Koszul algebra. The main theorem in this paper
establishes conditions equivalent to the Braverman-Gaitsgory Theorem to effi-
ciently determine PBW deformations of quadratic monomial algebras. In par-
ticular, a graphical interpretation is presented for this result, and we discuss
circumstances under which some of the conditions of this theorem need not be
checked. Several examples are also provided. Finally, with these tools, we show
that each quadratic monomial algebra admits a nontrivial PBW deformation.

1. INTRODUCTION

Let k denote a field throughout, and note that all algebraic structures in this work
will be over k. The goal of this article is to study filtered deformations of quadratic
monomial algebras in the following sense. Consider the quadratic monomial algebra
A :=T(V)/(R), where V is a finite-dimensional k-vector space with basis z1, . .., Zn,
and (R) is the two-sided ideal of the tensor algebra T'(V) generated by the span of
a finite set of simple tensors R = {x; ® 2;}; ; in V ® V. For linear maps o : R =V
and B : R —k, let

P={r—a(r)—pB(r):r € R},
and take D to be the filtered algebra T'(V)/(P). Our aim is to present user-friendly
necessary and sufficient conditions for the associated graded algebra of D to be
isomorphic to A as graded algebras, or by definition, such conditions so that D is a
Poincaré-Birkhoff-Witt (PBW) deformation of A [Definition 2.1].

In general, PBW deformations of graded algebras are useful because many ring-
theoretic and homological properties are preserved under this construction. For
example, if A is an integral domain, prime ring, or Noetherian ring, then so is
any PBW deformation (see, e.g., [6, Section 1.6]). The homological Calabi-Yau
property under PBW deformations has also been studied in [2] and [10]. Moreover,
for a survey of recent results on PBW theorems and methods, see [8].

The primary tool used in this work is a fundamental PBW theorem due to
Braverman and Gaitsgory, [3, Theorem 4.1], restated in Theorem 2.4, which pro-
vides necessary and sufficient conditions for a certain filtered algebra to be a PBW
deformation of a Koszul algebra (see Definition 2.2). Since all quadratic monomial
algebras are Koszul [Proposition 2.3], the Braverman-Gaitsgory Theorem applies
for our work here.

2010 Mathematics Subject Classification. 16580, 16537, 16 W70, 05C20.
Key words and phrases. Poincaré-Birkhoff-Witt deformation, monomial algebra, quadratic al-
gebra, directed graph.



2 Z. CLINE, A. ESTORNELL, C. WALTON, M. WYNNE

For our main result, Theorem 3.6, we introduce scalars a® and b% in k, deter-
mined by the equations

alz; ® xj) = Z a2 m, Blz; @ x;) =b", for z; @ x; € R.
m=1

We then apply the theorem of Braverman and Gaitsgory mentioned above to de-
termine conditions on the scalars a® and b*, which we label (I, II, III), that are
necessary and sufficient for D to be a PBW deformation of A as above.

For instance, we have by work of Berger [1, Proposition 6.1]: when R is the
span of z; ® z; for some given ¢, then D =T(V)/(P) is a PBW deformation of
A =T(V)/(R) if and only if (o 4+ B)(x; ® z;) is a polynomial in z; (i.e., when
alt = 0 for all m # i and a¥’,b* are free). This fact can be easily recovered with
our main result Theorem 3.6— see Example 5.4.

To contrast with other results in the literature, note that the monomial algebras
that have appeared often in the representation theory of finite-dimensional algebras
(also known as zero relation algebras) are somewhat different than the monomial
algebras that we study here, which could be infinite-dimensional. Both algebras
arise as quotients of path algebras of a quiver by an ideal of monomial relations;
the quiver is typically acyclic in the former case, whereas the quiver here consists
of n loops. In the former case there is a classification of the monomial algebras
that are rigid in the sense that they do not admit nontrivial (PBW) deformations,
due to work of Cibils [4, Theorem 3.12]. On the other hand, we establish via the
framework of Theorem 3.6 that quadratic monomial algebras in the form of A above
are never rigid: see Theorem 6.1.

This paper is organized as follows. In Section 2, we discuss PBW deformations
more precisely and provide the theorem of Braverman and Gaitsgory mentioned
above. In Section 3, we discuss further monomial algebras in our context, attach a
graph T'(A) to these algebras which depicts their relation space, and we also prove
our main result, Theorem 3.6. The graph I'(A) is used in subsequent sections to
help execute Theorem 3.6. Section 4 is devoted to examining special cases when
conditions (II) and (III) of Theorem 3.6 need not be checked (after assuming condi-
tion (I) holds). We apply Theorem 3.6 to several examples in Section 5 to illustrate
its usefulness. Finally, in Section 6, we use Theorem 3.6 to show that each quadratic
monomial algebra admits a nontrivial PBW deformation.

2. BACKGROUND MATERIAL

In this section, we first recall facts about graded and filtered k-algebras, the
associated graded algebra corresponding to a filtered algebra D, along with PBW
deformations of graded algebras. We end the section by recalling a theorem of
Braverman and Gaitsgory [3] [Theorem 2.4] that provides necessary and sufficient
conditions for a quadratic (filtered) algebra to be a PBW deformation of a Koszul
algebra [Definition 2.2]. The Braverman-Gaitsgory Theorem will be used in subse-
quent sections to study PBW deformations of quadratic monomial algebras as such
algebras are Koszul ([7, Corollary 2.4.3], restated in Proposition 2.3).

2.1. Graded and filtered algebras. We begin with a discussion of graded and
filtered k-algebras. An N-graded k-algebra A is an associative k-algebra together
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with a decomposition of A into k-subspaces A = @, A; so that A; - A; C A;;
for any i, j € N. The subspace A; is referred to as the degree i part of A.

For example, let V' be a vector space over k and consider k-vector spaces Ty := k
and T; := V®? for i > 0. Then, the tensor algebra T(V') on V, which is the k-vector
space @?io T; with multiplication given by concatenation, is an N-graded k-algebra.
If V is n-dimensional, say with basis 1, ..., z,, then T'(V) is isomorphic to the free
algebra k(z1,...,x,). Moreover, let R be a subset of T(V). If every element of R
is homogeneous of the same degree, that is, R C T(V); for some ¢, then T(V)/(R)
will inherit the grading from T'(V') above.

Convention. Henceforth, we will often suppress ® when expressing elements of
the tensor algebra T'(V') or quotients thereof.

An N-filtered k-algebra D (with increasing filtration) is an associative k-algebra
together with an increasing sequence of subspaces of D

{0}y c F*(D)c FY(D)C --- C F{(D CUP

so that F*(D) - /(D) C F*J(D) for any i, j € N. Moreover, if D = [J;2, F*(D) is
a filtered algebra, then the associated graded algebra, gr (D), is the graded algebra

gryz(D @P )/F=H(D),

where we take F~1(D) = {0} by convention. The multiplication is given on cosets
by [z] [y] = [xy] for z € F4(D) and y € F?(D), and is well-defined.

In this work, the filtered algebra D will be a quotient of the tensor algebra
T(V), with filtration inherited from T(V'), that is, F7(T(V)) = @J_, V&% So, the
filtration F on D is understood as such.

Definition 2.1. Given a graded algebra A and a filtered algebra D with filtration
F, we say that (D, F) is a Poincaré-Birkhoff-Witt (PBW) deformation of a graded
algebra A if gr (D) = A as graded algebras.

2.2. The Braverman-Gaitsgory Theorem. Here, we discuss a result of Braver-
man and Gaitsgory [3] which enables us to compute the PBW deformations of
certain quadratic algebras, namely of Koszul algebras which are defined below.

Definition 2.2. Let A = @,., A; be an N-graded k-algebra with Ay =k
(a) The left A-module A/ P, A; =k is referred to as the trivial A-module.
(b) Let M = @, My be a Z-graded A-module so that A; - M,, C M, for
all i,n. Take ¢ € Z. Then the shift of M by ¢ is an A-module M (¢) whose
degree n part is M(£),, = M, 4¢.
(c) We say that A is Koszul if there exists a long exact sequence

s A(=3)P 5 A(=2)%2 5 A1) A — k— 0,

where A(—m) is the shift of the regular A-module A by the integer —m,
and each b; is some non-negative integer.

In the setting of part (c) above, we also say that the trivial A-module k admits
a linear minimal graded resolution by free A-modules. See notes of Krahmer [5] for
more information. Moreover, Koszul algebras are necessarily graded and quadratic



4 Z. CLINE, A. ESTORNELL, C. WALTON, M. WYNNE

(see, e.g., [7, Section 2.1]), and a class of examples of such graded algebras are given
as follows.

Proposition 2.3. [7, Corollary 2.4.3] A quadratic monomial algebra is Koszul. [
Now we present the Braverman-Gaitsgory Theorem.

Theorem 2.4 ([3, Theorems 0.5 and 4.1]). Let A = T(V)/(R) be a (quadratic)
Koszul algebra. Let a: R —V and 8 : R — k be k-linear maps, and define

P={r—a(r)—p(r):r € R}.

Then the filtered algebra D = T(V')/(P) is a PBW deformation of A if and only if
the following conditions are satisfied:

(1) POFHT(V)) =0,

(2) Im(a idy —idy o) C R,

(3) Oé(Oé idv — idV Ot) = —(5 idv — idv 5),

(4) 6(0& idv — idv a) =0.
Here, the maps o idy —idy « and B idy —idy B are defined on the k-vector space
(RV)N(V®R). |

3. MAIN RESULT

The goal of this section is to provide a method to efficiently compute all PBW
deformations of any given quadratic monomial algebra A. We do so by producing
Theorem 3.6, which provides conditions equivalent to Theorem 2.4 when applied to
quadratic monomial algebras.

For a preview of the notation used below, recall that the relation space R of
A is given by only quadratic monomials, and our main result can be interpreted
easily via a graph I'(A) consisting of vertices and arrows corresponding respectively
to generators and relations of A. In particular, each path of length three in I'(A)
corresponds to an element of a basis @ of the space (R V)N(V®R) =: RVNVR.
Since linear maps on this space determine (the nontrivial) restrictions for a filtered
algebra to be a PBW deformation of A (see Theorem 2.4), we will be able to compute
all PBW deformations of A by analyzing length three paths of the graph I'(A).

3.1. Quadratic monomial algebras.

Hypothesis 3.1. (A). From now on, A will denote a finitely generated quadratic
monomial algebra generated in degree one. That is, we have

A=k{z1,22,...,22)/(R) = T(V)/(R),

where deg(z;) = 1 for all ¢, R is the span of a finite set of monomials in the z; of
degree 2, and V is the k-vector space with basis {z1,xa2,...,Zn}.

Notation 3.2 (I'(A)). For each such algebra A, we can associate to it a directed
graph I'(A4). The vertices of I'(A) will be {1,2,...,n} corresponding to the chosen
basis {1, 22,...,2,} of V. For each pair of vertices, i and j, let there be a single
arrow from ¢ to j if and only if x;x; is a monomial in the relation space (R).

The graph T'(A) defined above is the complement of the Ufnarovskii graph U(A)
of A defined in [9] in the sense that I'(A) depicts the basis of the relation space of
A, while the graph U(A) depicts the monomial basis (of nonzero elements) of A.
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Example 3.3. Consider the quadratic monomial algebra
A =Kk(x1, 20, 23)/ (2}, 1179, Tox3, T3).

In this case, we have I'(A) is the following graph:

FIGURE 1. T'(A) for A = kw1, 72, 23)/(23, x122, T273, 23)

Now since all quadratic monomial algebras are Koszul algebras [Proposition 2.3]
the Braverman-Gaitsgory Theorem [Theorem 2.4] applies to A above. So, given
linear maps a: R — V and 8 : R — k, we define

P={r—a(r)—B(r):re R} CROV &Kk,

and we let D = T(V)/(P) denote the corresponding filtered algebra. Here, V =
@, _, kz,,. Since R has a basis consisting of monomials of degree 2, o and j are
determined by the following scalars:

{a¥ ek:mz; € R, m=1,2,...,n} and {bY €k:x;x; € R},

which are respectively defined by

a(zz;) = Z az, and Blzzj) =bY.

m=1
Definition 3.4 (a¥, b"/). Retain the notation above.

(a) We refer to the scalars a¥ and b%/ as the filtration parameters for the filtered
algebra D = T(V')/(P) associated to the graded algebra A in Hypothesis 3.1.

(b) If, further, D is a PBW deformation of A, then we refer to a% and b" as
deformation parameters of D which deform A.

In the next section, we use Theorem 2.4 to determine explicit necessary and
sufficient conditions on the filtration parameters of D so that they are deformation
parameters of D.

3.2. Braverman-Gaitsgory Theorem for quadratic monomial algebras. Re-
call the role of the space RV N VR in Theorem 2.4. The following lemma gives a
simple way of producing a basis of RV NV R. This basis, which we will denote by
@, represents all paths of length three in the graph I'(A) from Notation 3.2.

Lemma 3.5 (Q). Let Q := {z;x;xy : x;xj, z;x5 € R}. Then Q is a basis for the
space RV NV R. As a consequence, x;x;x1, € Q if and only if i — j — k is a path
contained in I'(A); note that i, j, k need not be distinct.

Proof. 1t is clear that @ C RV NV R. Now suppose R = spany ({x;, z;,}!_;) and
take an arbitrary element of RV NV R,

t t
E Ty Tin Uy = E W;Tjy LTy s
i=1 i=1
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with v, w; € V. Write v; = >0 | X s@s and w; = Y u_; fi,sTs, for Aj s, p1i s € k.

Then we have
n n t
E Ni Ty Tiy Ty = E E i sTsTiy Ty

s=1i=1 s=1 i=1

Note that {z,xpzc}1<ab,e<n is a basis for V®3. We conclude that if the coefficient
of some x,xpx. is nonzero, then we must have z,z, € R and zpz. € R. Thus, the
element x 2z, is in @, so @ spans RV NV R. The linear independence of @ follows

from the basis of V®3 given above. O

t

The following theorem provides conditions equivalent to conditions (1)-(4) of
Theorem 2.4 when applied to quadratic monomial algebras. Recall that the maps
« and [ are given by the filtration parameters af* and b** respectively. Subject to
certain restrictions, these filtration parameters are deformation parameters which
determine the relation space P such that D = T(V)/(P) is a PBW deformation
of A=T(V)/(R). These restrictions can be defined exclusively on elements of Q.
Moreover, elements of the relation space R (which determines Q) can be interpreted
as arrows of the graph I'(A). As a result, the conditions in Theorem 3.6 can be
visualized using I'(A) as we will see below.

Theorem 3.6 (di7%). With A, R, P, and D as in Section 3.1 and Q as in
Lemma 3.5, the filtered algebra D is a PBW deformation of the quadratic monomial
algebra A (i.e. the filtration parameters a¥y and b are deformation parameters) if
and only if the following conditions hold for each element x;x;x) of Q.
(I) We have the conditions below (as illustrated in Figure 2):
(a) a¥ =0 for every m # i such that x,,x) ¢ R,
(b) afjf, =0 for every m' # k such that x;x, ¢ R,

(c) a¥ = al if zxy, & R.

(2

(IT) For each r € {1,...,n}, let

ijk .__ ij omk im’ gk
dl" = E a;la; E a," a,,;.

me{l,...,n} m'e{1,....,n}
TmTrER :E,;meIER
0, ifr#£i,k
vk ifr =i

5 0, ' ;
(b) Ifi=k, thend?* =7 g
b —b4,  ifr=i.

(III) Moreover,

Z aldpmk Z bim,aif, =0.

me{l,....n} m'e{l,...,n}
TmTRER T;x,, ER

Proof. We will show first that condition (1) of Theorem 2.4 holds for all quadratic
monomial algebras. We will then proceed to prove that condition (2) of Theorem 2.4
is equivalent to (I) in the case of quadratic monomial algebras. Finally, under
condition (I), we prove that conditions (3) and (4) of Theorem 2.4 are equivalent
to conditions (IT) and (III), respectively.
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m' # j,k m# i, j
P e
(b): @ =0,/ N (a)a, =0
/ \‘
(AN 7 -k

FIGURE 2. Depiction of condition (I) of Theorem 3.6 in terms of
the graph I'(A), with % --» o denoting z.z, € R.

Recall that condition (1) of Theorem 2.4 requires that
PNFYT(V))=0.

Notice that P has a basis consisting of degree 2 terms, each with a single distinct
leading degree 2 monomial. Therefore, every element of P can be expressed as
Z cij(mix; —aizy — - —ax, —b7)
T;x; ER

for some constants c;; € k. Now the degree of each element of P is determined by
the values of ¢;;. Namely, if any c;; # 0, then the above element has degree 2, and
if each ¢;; = 0, then it has degree 0. We obtain that each polynomial in P must
necessarily be of degree 2 or 0. Therefore any nonzero element of P cannot be in
FYT(V)).

To see that (I) is equivalent to condition (2) of Theorem 2.4, say that the filtration
parameters corresponding to the map « as in Definition 3.4 are given by

n
a(zxj) = Z a”wm and  o(z;zk) Z am,xm
m=1 m'=1

Therefore, for z;x;x € @, we have

(aidy —idy o)(zzjzy) E ad xay — E a’ ,:L‘ iy

m/=1
ik
= E adxy — E am,x T + (aj—aff Vo T -
m#i m’'#k

Since @ is a basis of RV NV R, by Lemma 3.5, we see that condition (2) of Theo-
rem 2.4, namely that Im(a idy —idy o) € R, holds if and only if for each z; 22, € Q
the expansion of the displayed equation above is in R. It is now clear that condi-
tion (I) is equivalent to condition (2) of Theorem 2.4.

Next, to study condition (IT), we assume that condition (I) holds and we use the
filtration parameters to evaluate the maps a(a idy —idy «) and —(8 idy —idy 3)
of Theorem 2.4(3) on Q. First, by condition (I), we have that for ;x5 € Q,

. . iy "
(3.7 (idy —idy a)(zzjzr) = E ay Ty — E al T
me{l,...,n} m'e{l,...,n}
TmTRER zizm/GR
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Thus, we compute a(« idy — idy «)(z;z;x1) as follows:

ij ik ..
a a) Ty — @1 T Ty

me{l,....,n} m'e{l,...,n}
TmTRER T, ER
n n n
_ ij mk _ jk im/ _ ijk
= E ay E a, " x, g a,, E a," x| = a7z,
me{l,...,n} r=1 m'e{l,...,n} r=1 r=1
TmTrER i, ER

On the other hand, we have
—(Bidy —idy B)(ziz zr) = —b gy, + b,

Therefore, by comparing coefficients, condition (3) of Theorem 2.4 is equivalent to
condition (II).

Lastly, we show that condition (4) of Theorem 2.4 is equivalent to condition (IIT).
To conclude this, apply 8 to (3.7) to obtain:

B (e idy —idy a)(zizjzk)) = Z aldpmk _ Z bim/af}’fn
me{L,....n} (L}
TmTLER z;x,, ER 0

Example 3.8. As a continuation of Example 3.3, we compute all PBW deforma-
tions of A = k(x1,xa,23)/(23, 2172, w273, 73).

To start, note that the basis Q of RV N VR consists of the elements z3, z2x,,
T12973, Tox3, 3. Applying condition (I) of Theorem 3.6 to each basis element
yields

(39) 11 11 12 23 33 33

— — — - — _ 12 23
ay =a3 =a3" =aj"=a]" =a3"=0 and a;

=a3°.
For example, let us apply Theorem 3.6(I) to 7225 € Q, where i = j = 1 and k = 2.
This can be visualized by considering Figure 2 as a subgraph of Figure 1 with
i=j=1and k =2. InT(A) there are no arrows from vertex 2 to vertex 2, or from
3 to 2; so, Theorem 3.6(L.a) with m = 3,2 respectively will yield a! = ail = 0.
Similarly, there is no arrow from 1 to 3; Theorem 3.6(1.b) with m' = 3 will yield
ai? = 0. Now (3.9) holds by similar uses of Figures 1 and 2 applied to the rest of
the basis Q.
Theorem 3.6(IT) applied to the elements of @ will yield

11 _ (,12y2 _ 1112 12 _ 12,12

(3 10) b = (a2 ) —arpass, b= —a1"as",
: 23 _ _ 23 23 33 _ (,23\2 _ 2333
b*° = —a5°a3’, b = (a3°)® — a3’a3’.

Finally, condition (III) is vacuous from the computations above; namely, condi-
tion (III) is equivalent to

a%1b12 _ blla%2 _ b12a%2 — a%2b23 _ b12a§3 _ a%3b23 + a§3b33 _ b23ag3 — 0’

and the first three expressions are equal to 0 by (3.10). Thus, the PBW deformations

of A are determined and classified by the free parameters ail, ai?, ai?, a23, a3® with

all other parameters determined by (3.9) and (3.10).
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4. SPECIAL CASES

Recall that V is the k-vector space with basis {z1,...,z,} and R C T(V) is the
span of a set of quadratic monomials in x;. In the last section, we considered maps
a: R — Vand 8 : R — k, corresponding filtration parameters a® and b (see
Definition 3.4), along with P := {r —a(r) — 8(r) : r € R}, and we provided explicit
necessary and sufficient conditions on the filtration parameters so that the filtered
algebra D = T(V)/(P) is a PBW deformation of the graded algebra A = T' (V) /(R).
Namely, we established the three conditions (I)-(III) of Theorem 3.6. In practice,
one computes the basis Q of RV NV R as given in Lemma 3.5; next, one checks (I)
for each element of @ first, then (II) for each element of @, then (III). Here, we
will investigate special cases in which condition (III) of Theorem 3.6 need not be
checked for a given element of @), and in which condition (II) is partially verified.

By Lemma 3.5, any element of () can be written in one of the following forms,

l‘il'jl‘k, I?I}w ‘Iil’i, l‘il'jl‘i, or l‘?

where i, j, k are distinct; we examine each of these cases separately. The results
achieved are Propositions 4.1, 4.3, 4.5, 4.6, and 4.7, respectively. Recall that con-
dition (II) of Theorem 3.6 gives restrictions on the filtration parameters of D in
terms of the expressions denoted by d%* for each r € {1,...,n}. Our results will
be presented in terms of d#* for particular values of r. Conditions under which
the propositions apply will also be represented by conditions on subgraphs of I'(A)
(see Notation 3.2). For convenience of notation, we will sometimes write a% and
b even if it is not known whether z;x; € R, with the understanding that all such
constants are zero if z;x; ¢ R.

Proposition 4.1. Assume that part (I) of Theorem 3.6 holds for each element of
Q, and take x;x 71 € Q with 1, j, k distinct.
(1) Suppose that
® ;T & R for each m' #1i,5; and
o x,x, & R for each m # j k.
Then condition (II) of Theorem 3.6, applied to x;x;xk, holds for r # 1, j, k;
thus, one only needs to verify (II) forr=1,j,k.
(2) Along with the hypotheses of part (1), suppose that condition (II) of Theo-
rem 3.6 holds for each element of Q@ and that

v}, 73 ¢ R or 27,27 €R.
Then condition (III) of Theorem 3.6, applied to x;x;xk, holds automatically.

The applicability of these conditions can be visualized by the subgraphs of I'(A) in
Figure 3.

Proof of Proposition 4.1. (1) By assumption, &;&m,, tm2r ¢ R for all m’ # i, and
m # j, k. Let r # 4,4, k. Then,

ijk _ ij omk im’ _jk
" = E ayla; g a,” @,

me{1,...,n} m’e{l,...,n}
TmTRER %, ER
_ i gk ij kk _ ii gk _ _ij jk
=aja. +agay a,. a; a;a;”.

Since z;z,, v,z ¢ R, we get that a/* = a¥ = 0 by Theorem 3.6 (Lb) and (L.a),

applied to z;z;zy,. Therefore, d¥* = a} al* — a’'a?*. 1f 22 € R, then we can apply
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vm'#4,j  Vm#j§k

[
4 Q\
‘—>0—>‘.
i j
V' £j  Vm#j V' £ij  Vm#jk
4. ) S ¢

/ \‘
(—».—»o\ @o—>
\/z/\ \/k\ 7 7 k

FIGURE 3. Here, — (resp. --+) depicts an element of R (resp. not
in R). If T'(A) contains the top subgraph (resp. one of the bottom
subgraphs), then Prop. 4.1(1) (resp. (2)) applies to z;xjz, € Q.

Theorem 3.6 to 27 € Q; in that case, since z;x, ¢ R we have by Theorem 3.6(1.b)
that a® = 0. On the other hand, if 2? ¢ R, then a® = 0 by definition, so in either
case, a” = 0. We see similarly that a** = 0. Therefore, d* = 0, giving that
condition (II), when applied to z;x;xy, holds for r # 4, j, k

(2) Now suppose also that condition (II) holds and that both z7,z% ¢ R or both
x?, 1‘% € R. Then Theorem 3.6(III), applied to z;z;x), reduces to showing that

a;-jbjk—Fa;chkk—b”af _bija;_ =0.

Note that if xf,w% ¢ R, then b" = b** = 0 by definition. On the other hand, if

z?, 2% € R, then zixj,zj2% € Q. Since z;x ¢ R, applying (I.b) to z?z; yields

ag = 0. Similarly, applying (La) to x;x% yields a‘gk = 0. In both cases we have

all bF* = ba?" = 0. Thus, we only need to show that
ik pig gk _

(4.2) ay b’ —b7a;” = 0.

Applying (II) to z;zjz) for r = i and 7 = k, we get b/¥ = a;ja]}C a”aﬂ“ and

J
ij ik ij ik

b = aj a; —aj a,C . Now, if 27,27 € R, then as noted above, a]k = ak =0. On

the othgr hand, 1f z?, x? gZ.R, by () apphed to x;x 2k, we“stlll haye agk = a;g =0.

Thus, b = —aéjajk and vk = —azja;k. Substituting for b and 5% in (4.2) yields
—a7d7a ]k + a” alfa?t = 0.

J J

Since x;xr ¢ R, we have by (L.c), applied to z;x;xy, that aij = aik. Thus, (III)
holds for z;x ;. O

Proposition 4.3. Let 2%z, € Q for i, k distinct, and assume that Theorem 3.6(1)
holds for each element of Q).

(1) Suppose that
e T,z & R for each m' #i,k; and
e z,x; & R for each m # i, k.
Then condition (II) of Theorem 3.6, applied to x2xy, holds for r # i, k;
thus, one only needs to verify (II) for r =1, k.
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(2) Along with the hypotheses of part (1), suppose that Theorem 3.6(11) holds
for each element of Q and that

13 ¢ R or xpr; ¢ R
Then condition (I11) of Theorem 3.6, applied to x?xy, holds automatically.

These conditions are depicted by the subgraphs of T'(A) in Figure 4.

vm' #£i,k VYm #ik

[
A Q\
‘.
i k
V' #ik Vm#1i vVm' #ik vYm#ik
4. ¢ 4. e

FIGURE 4. Here, — (resp. --+) depicts an element in R (resp. not
in R). If I'(A) contains the top subgraph (resp. one of the bottom
subgraphs), then Prop. 4.3(1) (resp. (2)) applies for z2x, € Q.

Proof of Proposition 4.3. (1) By assumption, 2; T/, Ty € R for all m’ # i, k and
m # i, k. Let r # i, k. Then,

itk il _mk im ik
d,;"” = E apan” — E a" any

me{l,...,n} m'e{l,...,n}

TmTrER T %,  ER
_ i ik ii kk ii ik ik ik
=a;a, +aga,. —a.a;” —a, a .

r
z7 € R, then we can apply Theorem 3.6 to z3 € Q; in that case, since z,zx ¢ R we

have by Theorem 3.6(Lb) that a** = 0. On the other hand, if #7 ¢ R, then a** =0
by definition, so in either case, a** = 0. Therefore, d?* = 0 so (II), when applied
to z2xy, holds for r # i, k.

(2) Now suppose also that condition (II) holds and that 27 ¢ R or z,z; ¢ R.
Then Theorem 3.6(I1I), applied to zZxy, reduces to showing that

azzbzk + a?bkk o biiaz:k o bikaik =0.

Since, z;x,, T,x) ¢ R, by Theorem 3.6(1), ai* = a® = 0. Thus, d* = aliat*. If

Since z;7 ¢ R or xpr; ¢ R, we have ai’ = 0; in the first case, this follows from
Theorem 3.6(L.a) applied to 22z and in the second case, this follows from Theo-
rem 3.6(L.a) applied to z3. Thus, we only need to show that

(4.4) (alf — a};k)bik — b”aﬁk =0.

Applying (IT) to z2zy for r = i and r = k, we get bi* = —a*a?* and bv¥ =
aik(atF—al"). Substituting for b and b™* in (4.4) yields (III) for 22wy, as desired. O

Proposition 4.5. Let z;x2 € Q with i # k, and assume that Theorem 3.6(1) holds
for each element of Q.
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(1) Suppose that
® ;T & R for each m' #i,k; and
o x,x, & R for each m # i,k
Then condition (II) Theorem 3.6, applied to zi:ci, holds for r # i, k; thus,
one only needs to verify (1) for r =1, k.
(2) Along with the hypotheses of part (1), suppose that Theorem 3.6(11) holds
for each element of Q and that

?¢ R or xpz; ¢ R.
Then condition (1IT) of Theorem 3.6, applied to mixi, holds automatically.

These conditions can be visualized by the subgraphs of I'(A) in Figure 5.

vm' #ik Vm#ik

FIGURE 5. Here, — (resp. --+) depicts an element in R (resp. not
in R). If I'(A) contains the top subgraph (resp. one of the bottom
subgraphs), then Prop. 4.5(1) (resp. (2)) applies for z;2% € Q.

Proof of Proposition 4.5. The proof is similar to that of Proposition 4.3. O

Proposition 4.6. Let x;x;x; € Q with i # j, and assume that Theorem 3.6(I)
holds for each element of Q.

(1) Suppose that for each m # i, j, one of the following conditions holds:
i, Tm®; § R or  TiZm,Tmz; ¢ R or 2 ¢ R.

Then condition (II) of Theorem 3.6, applied to x;x;x;, holds for r # i, j;
thus, one only needs to verify (II) forr =1,j.

(2) Along with the hypotheses of part (1), suppose that condition (II) of The-
orem 3.6 holds for each element of Q and that both xf,x? ¢ R. Then
condition (III) of Theorem 8.6, applied to x;x;x;, holds automatically.

These conditions are pictured as subgraphs of I'(A) in Figure 6.

Proof. (1) Let m # 4, j and consider the following 3 cases.
(a) x;xm ¢ R and z,2; ¢ R
(b) zjxm ¢ R and z,2; ¢ R
(¢) z;xm € Ror xpz; € R, but 22, ¢ R
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m#i,j m#i,j m#£i,j
/& 4.\\ /(.\\
o v \ ’
/ f \ \ = -
// / \ \\
/ / \ \
/ // \\ \
- T - S
7 7 7 i 7 J
m#£i,j m #i,j m#£i,j
y b -~

FIGURE 6. Here, — (resp. --+) depicts an element in R (resp. not
in R). If I'(A) contains the top subgraph (resp. one of the bottom
subgraphs), then Prop. 4.6(1) (resp. (2)) applies for z;x;z; € Q.

We will show that in any case, a¥¥ = aji = ali = 0.

In case (a), by applying Theorem 3.6(I) to z;z;z; we see that a¥ = aJ = 0.
If 2 ¢ R, then by definition a? = 0. Otherwise, if 27 € R, then we can apply
Theorem 3.6 to x3 € Q: since x,,z; ¢ R we have by Theorem 3.6(I.a) that al = 0.

Similarly, in case (b), by applying (I) to z;x;x;, the first two parameters listed
are zero. If 22 € R, then by applying (Lb) to z;z;z;, we get a’i = 0.

Finally, in case (c), if z,,2; € R, then since z2, ¢ R, by applying (Lb) to z,,z;z;,
we get a4 = 0. On the other hand, if z,,,z; ¢ R, then applying (La) to x;z;z; yields
a¥ = 0. Similarly, regardless of whether x,,z; € R or not, we get a/! = 0. Also,
if :522 € R, then since z;x,, € R or x,,x; € R, either xfxm € Ror :Em:cf € R.
Therefore, by applying (L.a) to 22, or by applying (I.b) to z,,z7, we get ai¥ = 0.

Thus, for any m # i, j, we have a¥ = al! = ! = 0. Therefore, for r # i, j,

ij1 ij omi im’ _ji i _gi _ ij Jt
dyt = E a;la; E a," @y, = a;a;’ —aay; = 0.
me{l,...,n} m'e{l,...,n}
TmTiER T, ER

Hence, (IT) holds for r # i, j.

(2) Now suppose also that condition (IT) holds and that 7,27 ¢ R. Then by

applying (I.c) to @z z; and xjz;x;, we have a::j = a{i and aéj = agi, respectively.
Thus, Theorem 3.6(I1I) reduces to showing that 0 = a;j (b7 — ). Applying (II)
to @z x; for r =i yields that b7" — b = aéjazi - aijagi, which is 0, by the above.
Thus, (IIT) holds automatically. O
Proposition 4.7. Let z} € Q, and assume that Theorem 3.6(I) holds for each

element of Q. Suppose that for each m # i, one of the following conditions holds:
rixm € R, or xnxi¢ R, or 22 ¢ R.
Then, Theorem 3.6(ILIIL), applied to the element x3, hold automatically.

These conditions are pictured as subgraphs of I'(A) in Figure 7.
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i m#£i i m#i i m#1i

S O OIS

FIGURE 7. Here, — (resp. --+) depicts an element in R (resp. not
in R). If, for each m # i, T'(A) contains one of the above subgraphs,
then Proposition 4.7 applies for 23 € Q.

Proof. Let m # i and consider the following three cases:
(a) zix,m, ¢ R, (b) xmax; € R (¢) ZiTm, Tmz; € R and 22, ¢ R.

We will show that in each case, we get a?, = 0. In case (a), x;z,, ¢ R, so
applying Theorem 3.6(Lb) to 3 will yield a! = 0. Similarly in case (b), x,z; ¢ R,
so applying (L.a) to 23 will yield a’2 = 0. In case (c), we have z;T,, Tx; € R and
22 ¢ R. Therefore, 22z, € Q. Since z2, ¢ R, applying (La) to x?z,, will yield

i _
ay, = 0.
Therefore, for all r:
211 k22 mt m kX3 — 7 17 1,11
d’" = E Gy — E a," ay = a;a; —aya; = 0.
me{l,...,n} m'e{l,...,n}
TmT;ER zix,1ER

m

Thus Theorem (II) applied to z? is vacuous.
Similarly, since ai! = 0 in all cases, Theorem 3.6(III), applied to x?, holds auto-

matically. O

5. EXAMPLES AND APPLICATIONS

The goal of this section is to illustrate Theorem 3.6 by studying PBW defor-
mations of several classes of quadratic monomial algebras A = T'(V')/(R). In par-
ticular, we will show how the theorem can be applied to the basis Q of RVNVR
[Lemma 3.5] or, equivalently, to the graph I'(A) [Notation 3.2] in our computations.
We begin with the most trivial example: Q = (.

Example 5.1. Suppose A = k(z1,...,2,)/(R) such that Q = @ (equivalently,
RV NVR =0). That is, I'(A) contains no paths of length two. So, Theorem 3.6
yields no restrictions on the filtration parameters of A to be deformation parameters,

and thus any choice of a% and b%, for each x;z; € R, yields a PBW deformation
of A.

Now we study filtration parameters in the context of connected components
of T'(4).

Lemma 5.2. Let A =k(zx1,...,z,)/(R), for R the span of some set of quadratic
monomials in the x;, and let T'(A) denote the corresponding graph as in Nota-
tion 3.2. Let T'y be a connected component of T'(A). Then Theorem 3.6 applied to
any path of length two in 'y will only yield restrictions on the filtration parameters
a¥ and b¥ corresponding to arrows i — j in I'y; the filtration parameters associated
to arrows in other components remain unaffected.

Moreover, if every arrow i — j in 'y is part of a path of length two, then for
filtration parameters to yield a PBW deformation, we must have ai = 0 for all
vertices m € T'\ T'y.
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Proof. Let i — j — k be a path of length two in I';. Theorem 3.6 applied to z;x;x
gives conditions only on filtration parameters corresponding to arrows with ¢, j, or
k as the source or target, which are all arrows in I';. For the second statement, let
i — j be an arrow in I';. If we have a path of length two ¢ — j — k in I', then by
Theorem 3.6(1.a), a¥) = 0; indeed, there is no arrow m — k for m € T'\ I'y. If, on
the other hand, we have h — i — j, then by Theorem 3.6(1.b), a’] = 0. ]

Remark 5.3. By Lemma 5.2, in order to compute PBW deformations of a qua-
dratic monomial algebra A, we may compute the deformation restrictions for each
connected component of I'(A) separately, so long as each arrow is part of a path of
length two.

Example 5.4. Consider the algebra A = k(x1,...,2,)/(R), where R only contains

elements of the form x?, i.e. '(A) only contains loops. By Remark 5.3, in order
to compute deformation parameters of A it suffices to compute the deformations of
the algebras A := k(x;)/(z2) for each loop at i in I'(A). So we proceed as such.

Now take A® :=k(z;)/(z7). Then I'(A?) is the following:

@

Observe that Q = {z3}. We have only two filtration parameters, ai’ and b%. For
any choice of these, condition (I) of Theorem 3.6 is vacuously true, and by Propo-
sition 4.7, conditions (IT) and (IIT) of Theorem 3.6 hold automatically.

Hence, any choice of a®, b € k with aifl# =0 yields a PBW deformation of A.

(Recall that the scalars a and b™ for i # j do not play a role in such a computation
since x;x; ¢ R.)

Example 5.5. Let A =k(z1,...,20)/(Tp, Tpys TpyTpy,---5 Tp, 1 Tp,), With z,, all
distinct and n > t > 3. Reorder these indices so that pg = d for 1 < d < t¢. In
light of Remark 5.3, in order to compute deformation parameters of A, it suffices
to compute the deformations of A= k(z1,...,2)/(z122, X223, ..., Tt_12¢). SO
we proceed as such.

With A as above, I'(A) can be visualized as a path of length ¢ — 1:

We will apply the conditions of Theorem 3.6 for an element x;z;z; in @, that is,
j=1i41and k =174 2. Note that i, j, and k are distinct, so for each m # i, j, we
get xxr € R. Also, for m’ # j, k, we get x;x, & R. Therefore, Theorem 3.6(1)
gives us that

(5.6) a = a* =0, for m #i,j and m’ # j, k.

m’
Furthermore, since z;x; € R, we also obtain that

(5.7) a? = aik.

Assuming the above restrictions, Theorem 3.6(II) only needs to be checked for r =
i, §, k, due to Proposition 4.1. If » = 4, condition (II) gives that b/* = aj afk —a?a;k.



16 Z. CLINE, A. ESTORNELL, C. WALTON, M. WYNNE

But by (5.6) we get a{k =0. So, b*F = —a?kaﬁj. By a similar argument for the case

r = k, we obtain that b¥/ = —a;j aik. By (5.7), these give the following restriction:
(5.8) b = —a;:jazj for all ¢ — j.

When r» = j, we obtain the vacuous condition a;j a?k — a;:ka;j = 0, yielding no
new restrictions. Lastly, observe that x%xi ¢ R, so Proposition 4.1 gives that
Theorem 3.6(III) is satisfied automatically. Therefore, the set of restrictions on the
filtration parameters given by the relations z;z;,z;2, € Rwith k =j+1=1742
to be deformation parameters are given by (5.6), (5.7), and (5.8).

Example 5.9. We now suppose that

A:k<$1a-~~7xn>/($p1$p2a LpyLpgy -y Tp,_1Tpys ‘Tptxpl)’

in which the z,, are all distinct, with n > ¢ > 3. As in the previous example, we
will reorder the p; as 1,2,...,¢, and it will suffice to compute the deformations of

A:=Kk(xy,...,2)/(x1, 2, ..., 24124, 2,x1). The graph I(A) will be a cycle with

t nodes:
1 \‘f‘/’/—\. t

20— »O__» - - - - - - \——V.\/v/t 1
3 t—2

This may be viewed as an extension of Example 5.5, since we are appending one
additional arrow from the node p; to the node p;. All of the conditions previously
satisfied in Theorem 3.6 and Proposition 4.1 are again satisfied in this example.
Proposition 4.1 yields restrictions (5.6), (5.7), (5.8) on the filtration parameters for
%5, ;2 € R to be deformation parameters. The element x;z; € R adds only the
extra restriction: a!_ 1" = ¢! and a!' = al?.

We will now provide an example in which the results in Section 4 do not apply
to an element of ().

Example 5.10. Let A = k(xy, 22,23, 24)/(x122, L2253, 2124), so that T'(A) is

—>@— >0
;\2 3
®
4

We have that x1zox3 is the only element of @), so the conditions of Theorem 3.6 need
only be checked for this element. Since x,,x3 ¢ R for m = 3,4, Theorem 3.6(L.a)
gives that ai? = a}? = 0. Since 22 ¢ R, (Lb) gives that a2®> = 0. Lastly, since
r123 ¢ R, (L.c) gives that al? = a23.

For (IT), we note that dl?® = ai?a?® — al?a3® — al*a?33. Thus, for r = 1, we get
b = al2a23 — al2a2 —
that

(5.11) b3 = —al?a2 — alta®.

at*a?®. Now since a?® = 0 by the preceding, we conclude

In a similar fashion, setting r = 2 gives that

(5.12) —ay*a?® =0.
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For r = 3, we obtain —b'2 = a§2a§3 — a§2a§3 — aé‘lai?’, and since aéz = 0, this gives

(5.13) b'? = —aj?a3® + aytad’.
Lastly, when r = 4, we get
(5.14) ad?a? —ata?® = 0.

Now we need only check condition (IIT) of Theorem 3.6, which is equivalent to
ad?b?3 —aZ3p'? —a23p' = 0. By (5.11) and (5.13), along with a}? = a2? from above,

we get that
(5.15) ad?aita? + ad®aia?® + a3 = 0.
Finally, we conclude that all PBW deformations of A are of the form

D = ]k<x1,’1,’2,$3,1'4>/(P)7

where
129 — a?zy — ad?xy + al?ad? — atta??, (5.12),
P =span, | zox3 — aze — al’z3 — aPBxy + al?ad® + alta?®, | (5.14),
r124 — attzy — altey — altes — altey — b (5.15)

6. EXISTENCE OF NONTRIVIAL DEFORMATIONS

The purpose of this section is to show that each quadratic monomial algebra
admits a nontrivial PBW deformation; we establish this result by using Theorem 3.6.
Let us recall some notation from Section 3. Take A :=k(x1,...,z,)/(R) for R the
k-span of a collection of quadratic monomials in the ;. Let D :=k(z1,...,2,)/(P)
for P={zjz; — > _ a¥x,, — b7 | z;o; € R} with {a¥} and {b"} a collection of
scalars in k called filtration parameters. Such filtration parameters are referred to
as deformation parameters in the case when D is a PBW deformation of A. Denote
by V the k-span of the z;, and let ) denote the basis of the space RV NV R.

Theorem 6.1. Retain the notation above. Then any quadratic monomial algebra
A admits a nontrivial PBW deformation D.

Proof. We proceed by cases: In each case, we exhibit filtration parameters {a%
and {b¥}, not all zero, and show they satisfy the conditions of Theorem 3.6 to be
deformation parameters of A.

(x We assume that a®) = 0 for all m # i, j so that conditions (La), (Lb)
of Theorem 3.6 are satisfied.

Next, the following reduction will be of use.

Note that if all b = 0, then both Theorem 3.6(III) is satisfied and
condition (II) of Theorem 3.6 is reduced to showing that

ijk . ij mk im’ _jk
dl" = g ala; E a,” @,
me{l,...,n} m'e{l,...,n}

TmzrER TiZy €ER

equals O for all r =1,... n.
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Case 1: Suppose for some ¢ € {1,2,...,n} that 27 € R. Without loss of generality,
we reindex so that £ = 1. Then 3 € Q. Set all filtration parameters of A to be
zero, except ajl = 1.

Fix 4, j, k so that the monomial x;x;z; lies in Q. By (%) and (xx), it suffices to
verify condition (I.c) of Theorem 3.6 and that d/* = 0 for all r.

For condition (I.c), both % and aik are O, unless i =j=1lorj=k=1. In
either of those cases, z;z1 € R, so condition (I.c) holds vacuously.

On the other hand, in both the sums defining d/*, the only way any term is
nonzero is if i = j = k = r = 1. In this case, we get di!! = (a}!)? — (a}!)? = 0.
Thus, d¥* = 0 for all 7, as required.

Case 2: Suppose z7 ¢ R for any £ € {1,2,...,n}, but that sz, 2425 € R for some
s, t € {1,2,...,n} with s # t. We take s = 1 and ¢ = 2 by reindexing. For any
ue{l,2,...,n}, set

L, ={ie{1,2,...,n} 22, € R} and R, :={ke{l,2,...,n}:z,21 € R}.

So z;xyx, € Q if and only if ¢ € £, and k € R,. Let all filtrations parameters of
A be zero except the following:

if pe Ly, set agl =1

if ¢ € Ry, set al? = 1;

if p € Ly, set ab? = 1;

if g € Ro, set agq =1; and
set b2 = b2t = —1.

We will show that these are deformation parameters of A.

Again, fix 4, j, k so that the monomial x;x;x) lies in @; it suffices to verify
conditions (I.c), (II), (IIT) of Theorem 3.6, due to ().

For condition (I.c), suppose that z;z; ¢ R. Then we have a/ = al* = 0 unless
j € {1,2}. However, if j € {1, 2}, then aij = aik = 1, as required for condition (I.c).

To verify condition (II) of Theorem 3.6, we consider whether ¢, j, and k are in
the set {1,2}.

For (IT): None of the indices 4, j, k are in {1,2}. Then d¥* = 0 since all a¥) and
a’¥, are zero. Since b = b* = 0 in this case, condition (I1) is satisfied; see (4x).

For (IT): Only one of the indices i, j, k is in {1,2}. Say i € {1,2}, but j,k & {1, 2}.
Then a = 0 unless m = j. Also, aﬁ/ = 0 for any m'. Thus, d¥*F = azjaik =0.
Since b = b/ = 0, condition (II) is satisfied; see (¥x).

If k € {1,2}, but i,5 ¢ {1,2}, then condition (II) is verified by an argument
symmetric to that above.

Say j € {1,2}, but i,k & {1,2}. Then a¥ = 0 unless m = i. Also, af:f, = 0 unless
m' = k. Now if i € Ly, then d/* = a:;jai’“ — aff“aik7 which is 0; this holds as a’* = 0
for all 7. On the other hand, if i & Ly, then d¥* = 0; this holds as a4 = 0 for any
m € Ly, and as afff/ = 0 for any m’ € R;. Therefore, condition (II) is satisfied since
b9 = bk = 0; see (xx).

For (IT): Two of the indices 4, j, k are in {1,2}. Now suppose that ¢ = 1, j = 2, and
k & {1,2}. Then a'2a”" = 0 unless m € {1,2} and r = k. Similarly, a}™ a2, =0

m m

unless 7 = m’ = k. Thus, for r # k, we get d:?* = 0. Now, if k € Ry, we have




PBW DEFORMATIONS OF QUADRATIC MONOMIAL ALGEBRAS 19

alm’C = alzalk—l-a12 %k ik 2k = 1. If k ¢ Ry, then we still have de’C = a12a2k 1.
Since b2 = —1 and b** = 0, condition (IT) holds.

Now suppose that i = 2, j = 1, and k ¢ {1, 2}; then condition (II) is verified by
an argument symmetric to that above.

Likewise, condition (II) holds for the cases when j, k € {1,2} with j # k and
i ¢ {1,2} by an argument symmetric to that above.

Finally suppose that i,k € {1,2}. Then j ¢ {1,2}, so a¥a™ = 0 unless
j =m =r. Similarly, ””,aﬁrlf 0 unless j = m’ = r. Therefore, for r # j, we get
dijk = 0, and on the other hand, d;jk = aéjagk a;]ajk = 0. Since b7 = bk =0,
condition (II) is satisfied.

For (IT): All of the indices ¢, j, k are in {1,2}. Here, we have that (i, j, k) = (1,2,1)

or (2,1,2) by the assumption that 2 ¢ R. In order for a%a,ﬁ”k to be nonzero, we

must have m = j and r € {1,2}. Similarly, for a”” ] , to be nonzero, we must
have m' = j and r € {1,2}. Therefore, for r ¢ {1, 2}, we get di/* = 0. On the
other hand, for r € {1,2}, we have d”’C = a;]ajk a”a?lC = 0. Since b = b,
condition (II) is satisfied.

Thus in Case 2, Theorem 3.6(II) holds for our choice of filtration parameters.

For condition (IIT) of Theorem 3.6, recall that b = 0 except for b'? = b2t = —1.
Thus, condition (III) is satisfied trivially if ¢,k ¢ {1, 2}.

Ifi=1, but k & {1,2}, then the sum which must be zero reduces to —(b'2a2");
this is indeed zero because a3® = 0. Similarly, if i = 2, but k ¢ {1,2}, condition (III)
is satisfied. The same holds if k € {1,2}, but i ¢ {1,2}.

If i = k =1, then the sum in (IIT) reduces to azj b2 —b'2q Jl This sum is zero
if j # 2, because aéj =a} =0 in that case. However, if j = 2, the sum is also zero
by our choice of filtration parameters. Similarly, if ¢ = k = 2, then (III) is satisfied.
]b12 b12

Finally, if ¢ = 1 and k£ = 2, the sum reduces to a; a}?, which is zero

because a}’ = a}® = 0, and similarly if i = 2 and k = 1.

Therefore, Theorem 3.6 is satisfied and our choice of filtration parameters yield
a nontrivial PBW deformation of A in this case.

Case 3: Suppose neither of Cases 1 or 2 holds. Then with £, and R, as defined
in Case 2, we obtain for each u € {1,2,...,n} that the sets {u}, £,, and R, are
disjoint. We can choose some u so that at least one of £, or R, is nonempty, and
without loss of generality, we can assume that such u is equal to 1 by reindexing.
Let all filtration parameters of A be zero except the following;:
o if pe Ly, set agl =1,
o if g € Ry, set aéq =1
If Q is empty, then there is nothing to check, so any choice of filtration parameters
would yield a deformation. (See Example 5.1.) Otherwise, fix i, j, k so that
the monomial x;xz;z) lies in Q. By (%) and (%*), we only need to check that
condition (I.c) of Theorem 3.6 holds, and that di/* = 0 for all 7.
If none of 4, j, or k are equal to 1, the requirements above are satisfied because
all parameters involved are set to zero.
Suppose that ¢ = 1. Then j € R; and k # 1, so condition (I.c) holds because

1m’
r

1 Y L
ay) = ak = 0. Also, for any m,m/, r, the products alja and az:,a

the first, al? = 0 unless m = j, but in that case, a™* = 0 since neither m(= j) nor

are 0: For
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k is 1. For the second, afj, = 0 since neither j nor k is 1. Therefore, d,l,jk =0 for
any r.

The case when k = 1 follows in a symmetric fashion to the ¢ = 1 case.

Now suppose that j = 1. Here, we get i € £; and k € Ry, and that i,k # 1.

By definition, all = a}gk = 1, so condition (I.c) is satisfied. Towards showing that

di** = 0 for all , we have a’la™" = 0 unless m = i, in which case a”* = 0. Thus,

allam® = 0. Similarly, aim/aﬁ, = 0 unless m/ = k, in which case a?™ = 0. So,

a™ alk = 0. Therefore, d’'* = 0 for all 7, as desired. O
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