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Abstract: We propose a two-stage sequential method for obtaining tandem-width confidence intervals for a
Bernoulli proportion p. The term “tandem-width” refers to the fact that the half-width of the 100(1 − α)%
confidence interval is not fixed beforehand; it is instead required to satisfy two different half-width upper
bounds, h0 and h1, depending on the (unknown) values of p. To tackle this problem, we first propose a
simple but useful sequential method for obtaining fixed-width confidence intervals for p, whose stopping
rule is based on the minimax estimator of p. We observe Bernoulli(p) trials sequentially, and for some fixed
half-width h = h0 or h1, we develop a stopping time T such that the resulting confidence interval for p,
[p̂T −h, p̂T +h], covers the parameter with confidence at least 100(1−α)%,where p̂T is the maximum like-
lihood estimator of p at time T . Furthermore, we derive theoretical properties of our proposed fixed-width
and tandem-width methods, and compare their performances with existing alternative sequential schemes.
The proposed minimax-based fixed-width method performs similarly to alternative fixed-width methods,
while being easier to implement in practice. In addition, the proposed tandem-width method produces ef-
fective savings in sample size compared to the fixed-width counterpart, and provides excellent results for
scientists to use when no prior knowledge of p is available.
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1. INTRODUCTION

Confidence interval (CI) estimation for a Bernoulli proportion p has a wide variety of impor-
tant real-world applications such as those involving the prevalence of a rare disease (Sullivan
et al., 2013), the overall response rate in clinical trials (Abramson et al., 2013), and accuracy
assessment in remote sensing (Morisette and Khorram, 1998). Perhaps the most widely known
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fixed-sample-size 100(1 − α)% CI is what is commonly referred to as the Wald CI of the form
p̂ ± zα/2

√
p̂(1− p̂)/n, where p̂ is the sample mean of n independent and identically distributed

(i.i.d.) Bernoulli(p) observations, and zα/2 is the 1− α/2 quantile of the standard normal distribu-
tion. This CI is known to have poor properties when np(1−p) is small; see Vollset (1993), Agresti
and Coull (1998), Newcombe (1998), and Brown et al. (2001). Research continues to be under-
taken to improve this CI in the “offline” or “online” contexts. In particular, extensive research has
been devoted to CIs for p in the offline context, in which the sample size is fixed a priori. Wilson
(1927) proposed the “score” CI, which incorporates a correction term to Wald’s CI so as to yield
improved performance. Clopper and Pearson (1934) obtain an exact CI by inverting equal-tailed
binomial tests; also see Sterne (1954), Crow (1956), Blyth and Still (1983), and Reiczigel (2003).
Agresti and Coull (1998) and Brown et al. (2001, 2002) provide excellent surveys and comparisons
of the methods.

In the online context, in which the sample size is not fixed beforehand and in fact depends on
the observed data, a great deal of research has obviously been devoted to sequential CIs. In such
cases, one continues to take observations until the 100(1 − α)% CI satisfies a certain stopping
criterion, often related to the length of the CI. For an estimator δT of p, with T being the time we
stop sampling (i.e., the stopping time), one criterion for obtaining a CI is the fixed-width criterion,
where the CI for p is given by [δT −h, δT +h] for fixed half-width h > 0. Example articles among
the rich literature in this area include Armitage (1958), Tanaka (1961), Robbins and Siegmund
(1974), Khan (1998), Zacks and Mukhopadhyay (2007) (which gives two-stage and sequential
modifications of Robbins and Siegmund, 1974), Frey (2010), and Yaacoub et al. (2018) (a pro-
cedure satisfying certain optimality criteria). References involving broader methodology (e.g., a
greater variety of distributions and/or functions of parameters) include Chow and Robbins (1965),
Khan (1969), Siegmund (1985), and Mukhopadhyay and De Silva (2009).

A related basis for obtaining a CI is the proportional accuracy criterion, where the CI for p
is given by {p : |δT − p| < ηp} for some fixed η ∈ (0, 1). Huber (2017) and Malinovsky and
Zacks (2018) cover the Bernoulli proportion; but also see Zacks (1966) and Nadas (1969). A third
measure under which we can consider a CI is the fixed-accuracy criterion, where the CI for p is
given by {p : p ∈ [d−1δT , dδT ]} for some fixed d > 1; see Mukhopadhyay and Banerjee (2015)
for the Bernoulli case, and Mukhopadhyay and Banerjee (2014) and Banerjee and Mukhopadhyay
(2015) which discuss other cases.

In this paper, we investigate a sequential CI for a Bernoulli proportion p but with the new twist
that the CI is tandem-width. By this we mean that the half-width h of the 100(1 − α)% CI is not
fixed beforehand; it is instead required to satisfy two different upper bounds, h0 and h1, depending
on the (unknown) values of p. Some motivating examples include the customer click-through rate
to measure the efficacy of a new online ad marketing campaign, and the Statistical Model Checking
(SMC) approach adopted in complicated stochastic systems, e.g., see Jegourel et al. (2017). In both
of these modern applications, it is very expensive and time-consuming to set up the experiments
or simulations. Once they are set up, one wants to use the smallest number of samples to gain
knowledge of the Bernoulli proportion p as accurately and precisely as possible due to the time
or cost constraints. For instance, if the true (unknown) value of p were to be in [0.2, 0.8], then
one may feel that the half-width h0 = 0.1 is precise enough and is acceptable. On the other hand,
if the true p were to be in [0, 0.1) or (0.9, 1], then one may feel that h0 = 0.1 is too crude, and
the half-width h1 = 0.01 might be more suitable. This inspires us to investigate the problem of
tandem-width sequential interval estimation.
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We propose to develop effective sequential methods for tandem-width interval estimation of
the Bernoulli proportion p at the pre-specified confidence level 100(1 − α)%. It is intuitive to
combine two sequential fixed-width CIs together, one for each fixed half-width h0 or h1, but un-
fortunately it might be very difficult to implement the combination in the sequential context if the
two corresponding stopping times are not monotone decreasing in the half-width. Indeed, while
many existing methods yield statistically efficient 100(1− α)% CIs in the sense of small expected
sample sizes for a fixed half-width h, the stopping time T (h) often depends heavily on h, and it
is unclear whether the stopping boundary (i.e., termination criterion) of T (h) at each time step is
a monotone decreasing function of h or not. As a concrete illustration, the stopping time of the
sequential CI proposed by Frey (2010) is based on the Bayesian point estimator whose prior distri-
bution depends on the half-width h when optimized for the smallest expected sample size, and thus
the monotonicity property is unclear here. To circumvent the monotonicity issue, we propose to
use the minimax point estimator of p instead of the Bayesian estimator to develop effective sequen-
tial methods for fixed-width sequential CIs. By doing so, it will be straightforward to show that
the monotonicity properties hold. The methodology to be described in the paper will allow us to
conveniently combine two fixed-width sequential interval estimators together, yielding an efficient
tandem-width sequential interval estimation method.

The remainder of this article is organized as follows. In §2, we formulate our problem on
tandem-width sequential CIs for a Bernoulli proportion p and provide some background regarding
different point estimators for p and, in particular, on the method proposed by Frey (2010). In §3,
we describe our sequential stopping rules for the fixed-width CI and the tandem-width CI. In §4,
we discuss some asymptotic properties for our proposed methods. §5 presents simulation results
for our tandem-width stopping rule. We also provide numerical results that compare our proposed
fixed-width stopping rule to Frey’s stopping rule. These numerical results are obtained through
recursive formulas that were inspired by the methodologies given in Zacks (2017). Concluding
remarks are included in §6.

2. PROBLEM FORMULATION AND BACKGROUND

Assume that we observe a sequence of i.i.d. Bernoulli random variables, X1, X2, . . . sequentially,
i.e., one at a time. Suppose P(Xi = 1) = p and P(Xi = 0) = 1 − p, and we want to use
as few samples as possible to make an accurate and precise interval estimate about the unknown
parameter p ∈ [0, 1] at the confidence level 100(1−α)% for some pre-specified α. We assume that
the 100(1− α)% CI for p is written in the form [δT − h, δT + h], where h is the desired half-width
of the CI, and δT can be thought as the point estimator of p when we stop taking observations at
time T .

In the problem of formulating tandem-width sequential confidence intervals, we want to find a
stopping time T and then a corresponding 100(1 − α)% CI for p whose half-width is required to
satisfy two different upper bounds, h0 and h1, depending on the unknown value of p and in turn
the point estimate of p. On the one hand, when the estimate δT is not too small or large, say, when
δT ∈ [p0, 1 − p0] for some pre-specified p0, e.g., p0 = 0.1, we would like to set the half-width
h of the CI to a relatively large value h0 (e.g., h0 = 0.1) so as to save time and sampling costs.
On the other hand, when δT is quite small or large, say, when δT < p0 or > 1 − p0, we would
like to set the half-width of the CI to a smaller value h1 (e.g., h1 = 0.01) in order for the CI to be
more meaningful. In the latter case, it is useful to take more time (additional samples) to produce
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a meaningful CI instead of stopping earlier with a CI that is too wide to be practical.
To be more rigorous, we would like to find a stopping time T and the corresponding estimator

δT that minimize the average run lengths (ARLs), Ep(T ), simultaneously for all 0 ≤ p ≤ 1, subject
to the coverage probability (CP) constraint that

CPp(h0) = Pp (p ∈ [δT − h0, δT + h0]) ≥ 1− α, when p0 ≤ p ≤ 1− p0, and (2.1)
CPp(h1) = Pp (p ∈ [δT − h1, δT + h1]) ≥ 1− α, when p < p0 or p > 1− p0, (2.2)

where 0 < h1 < h0 < 1 and α ∈ (0, 1) are pre-specified. Note that Ep and Pp denote the
expectation and the probability measure, respectively, when p is the true Bernoulli parameter.

Let us now provide some background information on the point and interval estimation of the
Bernoulli proportion p. For this purpose, we first review three different kinds of point estimators
of p in the offline context when the complete set of observations is {X1, X2, . . . , Xn}: the maxi-
mum likelihood estimator (MLE), Bayes estimator, and minimax estimator, denoted by p̂n, p̃n, p?n,
respectively, to emphasize their dependence on the sample size n. First of all, the MLE of p is the
sample mean,

p̂n = p̂MLE =
Sn
n
, where Sn =

n∑
i=1

Xi. (2.3)

Below we follow the literature to assume that the point estimator p̂T from (2.1) is the MLE estima-
tor from (2.3) when implemented with the (random) stopping time T. This will allow us to make
a fair, apples-to-apples comparison between our proposed stopping time T and other sequential
methods in the literature.

As for the Bayes estimator of p, it is well known that if the prior distribution of p is the
Beta(a, b) distribution for some pre-specified a, b > 0, then the posterior of p given observed
(X1, X2, . . . , Xn) is the Beta(a + Sn, b − Sn + n) distribution. Thus the mean of the posterior
distribution, (Sn+a)/(n+a+ b), is the Bayes estimator of p under the standard squared error loss
function. One important special case of the prior Beta distribution is when b = a > 0, so that the
corresponding Bayes estimator of p becomes

p̃n,a = p̃Bayes =
Sn + a

n+ 2a
. (2.4)

Meanwhile, under the squared error loss function, the minimax framework is to find an estimator
δ = δ(X1, . . . , Xn) that minimizes the largest mean square error over the entire space [0, 1] of the
true parameter p. In other words, the minimax estimator minimizes max0≤p≤1 Ep[(δ − p)2]. For
Bernoulli random variables and for fixed sample size n, the minimax estimator is known to be
given by

p?n = p?minimax =
Sn +

√
n
2

n+
√
n
; (2.5)

see, for example, Lehmann and Casella (1998, pp. 311–312). Note that p?n is minimax in the offline
context because it is Bayes with respect to the (least favorable) prior distribution Beta(

√
n/2,

√
n/2)

and has a constant risk or mean square error of 1/(4(
√
n+ 1)2).
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It is useful to compare the Bayes estimator p̃n,a from (2.4) with the minimax estimator p?n from
(2.5). On the one hand, for a fixed sample size n, the minimax estimator p?n can be thought of as
a special case of the Bayes estimator with a =

√
n/2. On the other hand, when the sample size

n is variable, the estimators are fundamentally different: The minimax estimator incorporates the
sample size n adaptively in the estimator itself, whereas the Bayes estimator involves a constant
parameter a that can be tuned for optimization depending on the problem context.

Next, we review the well-known offline sample size formula for estimating the Bernoulli pro-
portion p. Recall that in the offline context with a fixed sample size n, the Central Limit Theorem
(CLT) gives (p̂n − p)/

√
p(1− p)/n ≈ N(0, 1) for large n, where p̂n is the MLE from (2.3). Thus

an (approximate) 100(1− α)% CI for p is p̂n± zα/2
√
p(1− p)/n. If we would like the half-width

of this CI to be at most h, then the sample size n needs to satisfy

zα/2

√
p(1− p)

n
≤ h, (2.6)

so that the fixed-sample lower bound on the required sample size for the two-sided 100(1 − α)%
CI is

n0 =

⌈
p(1− p)

(zα/2
h

)2⌉
, (2.7)

where d·e is the ceiling function. When we do not have any prior knowledge of p, it is often
conservative to set the fixed sample size ncons = 0.25(zα/2/h)

2 by using the fact that p(1 − p) ≤
0.25 for any 0 ≤ p ≤ 1. For instance, for survey polls, one typically sets α = 5% and h = 3%
(often called the margin of error), and thus the conservative required sample size will be ncons ≈
1068.

Note that the conservative required fixed sample size ncons depends heavily on the half-width h.
In modern applications, a smaller half-width often makes sense only when the true p value is very
small or very large, and this occasionally allows us to significantly reduce the sample size from
the conservative required fixed sample size obtained from (2.7) when we have prior knowledge on
the bounds of p. For instance, for the half-width h = 0.01, if we have prior knowledge that p is
very small or very large, say, p ≤ 0.03 or p ≥ 0.97, then we can significantly reduce the required
sample size from the conservative value ncons = 9604 to n0 = (0.03)(0.97)(1.96/0.01)2 ≈ 1118,
which is more manageable. This is exactly the main idea in the sequential context, where we are
able to update our estimate of p over time as we collect data, which in turn may occasionally allow
us to identify opportunities to reduce the required sample size.

Finally, let us review the existing methods for sequential fixed-width CIs for p. The fixed-
width sequential CI problem can be thought of as a special case of our proposed tandem-width CI
problem when h0 = h1 = h in (2.1). In other words, for the fixed-width 100(1 − α)% sequential
CI, we would like to find a stopping time T that (asymptotically) minimizes the ARLs, Ep(T ),
simultaneously for all 0 ≤ p ≤ 1, subject to the CP constraint that

inf
0≤p≤1

Pp (p ∈ [p̂T − h, p̂T + h]) ≥ 1− α, (2.8)

where α > 0 and h > 0 are pre-specified (e.g., α = 5% and h = 0.1).
In the context of sequential CIs with fixed half-width h, one often writes the sequential CI in

the form [p̂T − h, p̂T + h], where p̂T is the MLE from (2.3). Of course, when the lower bound

5



Table 1: Optimal choices of a and γ for 100(1−α)% CIs with fixed half-width h from Frey (2010).

1− α 90% 95% 99%

h a γ a γ a γ
0.10 4 0.0754 4 0.0356 6 0.0068
0.05 4 0.0859 6 0.0433 8 0.0083
0.01 8 0.0972 10 0.0487 14 0.0097

p̂T − h ≤ 0 or the upper bound p̂T + h ≥ 1, we can threshold these values to 0 and 1, respectively.
Note that no statistical procedure can exactly and simultaneously optimize over all 0 ≤ p ≤ 1,
and thus it is reasonable to adopt an asymptotic approach as h, α → 0, e.g., finding a family of
stopping times T = Th,α such that Ep(T ) is asymptotically equivalent to the fixed-sample lower
bound from (2.7) at each 0 < p < 1.

Most existing methods for fixed-width sequential CIs work with the relationship (2.6) by esti-
mating the unknown true p carefully, especially at the early stages when few samples are available.
To highlight the challenge of sequential CIs, let us estimate the unknown p from (2.6) by the MLE
p̂n (2.3). This will yield a naive stopping time based on Wald’s CI:

TW = inf

{
n ≥ 1 :

p̂n(1− p̂n)
n

≤
(

h

zα/2

)2
}
. (2.9)

Unfortunately, TW from (2.9) is not effective. In fact, when n = 1, the MLE p̂n = 0 or 1; and
thus TW will always stop at time 1! There are many ways to improve this stopping time, say,
implementing it only after taking m0 ≥ 2 observations or setting lower bounds on p̂n(1− p̂n); but
the corresponding new stopping times often require various tuning parameters and become very
complicated.

Frey (2010) proposes an interesting idea to salvage (2.9) by using the Bayes estimate p̃n,a, and
this yields the stopping time

TF = inf

{
n ≥ 1 :

p̃n,a(1− p̃n,a)
n

≤
(

h

zγ/2

)2
}
, (2.10)

where the parameter γ = γ(a, h, α) is chosen so as to satisfy the CP constraint from (2.8). The
main advantage of Frey’s method TF is that it is intuitively appealing and avoids the trivial stopping
scenario of (2.9). Unfortunately, in Frey’s method TF, both the decision statistic and the threshold
(h/zγ/2)

2 depend on the tuning parameter a, which needs to be optimized according to the specific
half-width h and confidence level 1−α; see Table 1 for the optimal values of a and γ recommended
by Frey (2010). As a result, it is challenging to combine two fixed-width sequential CIs, each
individually arising from Frey’s method, together in the tandem-width sequential CI context.

3. PROPOSED SEQUENTIAL METHODS

For the problem of tandem-width sequential CIs, we propose to develop sequential methods by
combining two efficient sequential methods that are designed for fixed-width CIs. For efficiency
and easy implementation, we require that these two sequential methods for fixed-width CIs have
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the same decision statistics, with the only difference being the thresholds of the decision statistics.
For this purpose, we will use the minimax estimator p?n from (2.5) to estimate the unknown p from
(2.6). This allows us to develop effective stopping times that do not involve tuning parameters.

To better present our methods, this section is divided into three parts: §3.1 develops our pro-
posed stopping times for sequential CIs; §3.2 derives the asymptotic properties of those sequential
methods; and §3.3 discusses finite-sample numerical issues, particularly how to accurately com-
pute the ARL and CP properties of our proposed sequential methods by non-Monte-Carlo numer-
ical methods. This will allow us to validate our theoretical results.

3.1. Proposed stopping times

To simplify our notation, below we fix the α value in the CP constraint from (2.8), and write the
proposed fixed-width and tandem-width stopping times as a function of the half-width h of the CI.

Let us begin with the proposed stopping time for a sequential 100(1 − α)% CI with the fixed
half-width h. The key idea is to apply the minimax estimator p?n from (2.5) to estimate p from (2.6).
This motivates us to propose the following stopping time:

TM(c) = inf

{
n ≥ 1 :

p?n(1− p?n)
n

≤ c

}
, (3.1)

where the threshold c = ch is chosen to satisfy the CP constraint from (2.8). We report the fixed-
width sequential CI for p as [p̂TM(c) − h, p̂TM(c) + h], or more accurately as

[max(0, p̂TM(c) − h),min(1, p̂TM(c) + h)].

An alternative way to consider confidence intervals is the one introduced in Mukhopadhyay
and Banerjee (2014) where we adopt the fixed-accuracy criterion. This selection proposes a con-
tinuously variable CI with respect to the true parameter and forms a “cone of confidence” over all
the values it can take. Even though such an approach is interesting, for our problem, when p is
close to 1 it will result in the largest possible CI. Instead, our approach treats values close to 0 and
1 similarly and switches to a more stringent CI in these two cases.

It is also important to point out that the threshold c = ch from (3.1) is an increasing function of
h, in order to satisfy the CP constraint in (2.8). To see this, note that

Pp

(
p ∈ [p̂TM(c) − h, p̂TM(c) + h]

)
= Pp

(
p̂TM(c) ∈ [p− h, p+ h]

)
,

and thus the CP constraint in (2.8) implies that p̂TM(c) needs to be closer to the true p with high
probability for a smaller half-width h. This can only happen if the sample size TM(c) becomes
larger. Meanwhile, the stopping time TM(c) from (3.1) or the (expected) sample size is clearly
increasing as the threshold c = ch decreases. This implies that ch is increasing in h.

For the purpose of comparison with relation (2.6) and Frey’s method from (2.10), we can
rewrite the threshold c from (3.1) as

c = ch =

(
h

zγ/2

)2

, (3.2)

where γ = γ(h, α) depends on both h and α. In the finite-sample setting, we usually have 0 <
γ < α due to the repeated estimation over time from (3.1), although asymptotically γ/α → 1 as
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h→ 0; see Theorem 3.1 in the next subsection. Our extensive numerical experiments also suggest
that γ is a decreasing function of h; see Table 2 below, but unfortunately we have been unable to
prove the result rigorously.

Now we are ready to present our proposed tandem-width sequential CI. Denote by TM(c0) and
TM(c1) the stopping times TM(c) from (3.1) with h = h0 (e.g., = 0.1) and h = h1 (e.g., = 0.01),
respectively. Furthermore, based on the values of h0 and h1, we can write

c0 = ch0 =

(
h0
zγ0/2

)2

and c1 = ch1 =

(
h1
zγ1/2

)2

, (3.3)

where γ0 = γ(h0, α) and γ1 = γ(h1, α). At a high-level, our proposed stopping time is a two-stage
procedure: The first-stage uses our stopping time TM(c0) to derive a sequential CI with a larger
half-width h0; and if the estimate p̂TM(c0) at the end of the first-stage is too small or too large, then
we continue to conduct the second-stage by using TM(c1) to derive another sequential CI with a
smaller half-width h1. Note that TM(c0) ≤ TM(c1), and the observations in the first-stage are kept
and used in TM(c1) in the second-stage.

In other words, our proposed stopping time for the tandem-width sequential CI is defined by

TTW ≡
{
TM(c0), if p̂TM(c0) ∈ [p0, 1− p0];
TM(c1), otherwise. (3.4)

When TTW = TM(c0), we have p̂TM(c0) ∈ [p0, 1 − p0], and thus we report the 100(1 − α)% CI
as the one with a larger half-width h0, i.e., [max(0, p̂TM(c0) − h0),min(1, p̂TM(c0) + h0)]. When
TTW = TM(c1), we have p̂TM(c0) 6∈ [p0, 1− p0], and typically report the 100(1− α)% CI as the one
with a smaller half-width h1, i.e., [max(0, p̂TM(c1) − h1),min(1, p̂TM(c1) + h1)]. In the finite-sample
setting, it is possible, though very rare, that p̂TM(c0) 6∈ [p0, 1− p0] but p̂TM(c1) ∈ [p0, 1− p0]. In such
rare cases, when TTW = TM(c1), one may choose to report the 100(1 − α)% CI by using p̂TM(c1)

with a larger half-width h0, e.g., report CI as [max(0, p̂TM(c1) − h0),min(1, p̂TM(c1) + h0)].
For the purpose of numerical computations, it is useful to rewrite TTW from (3.4) as

TTW = TM(c1)−
(
TM(c1)− TM(c0)

)
· 1{p̂TM(c0) ∈ [p0, 1− p0]}, (3.5)

which allows us to investigate the properties of TTW by conditioning on the sufficient statistics Sn
from (2.3) when (n, Sn) is on the boundary of the stopping region of TM(c0).

3.2. Asymptotic Properties

In this subsection, we present the asymptotic properties of the proposed tandem-width sequential
CI defined by the stopping time TTW from (3.4), including both the asymptotic expressions of ARL
and the asymptotic CP. The main theoretical challenge is to investigate the asymptotic properties
of the stopping time TM(c) from (3.1) for fixed-width sequential CI as h → 0, or equivalently,
as c = ch → 0. It is useful to point out that our technique is applicable to derive the asymptotic
properties of Frey’s stopping time TF(a, h) from (2.10); this complements Frey (2010), which only
reports finite-sample numerical performance results.

Let us begin with the investigation of the asymptotic properties of our proposed stopping time
TM(c) from (3.1) for the fixed-width CI — including the CP in the unconstrained scenario as the
threshold c → 0. This will later allow us to investigate the constrained scenario by finding c that
satisfies the CP constraint in (2.8). The following theorem summarizes the main results for TM(c).
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Theorem 3.1. As c→ 0, we have TM(c)→ p(1− p)/c almost surely for each p ∈ (0, 1), and

Ep[TM(c)] =
(
1 + o(1)

)p(1− p)
c

. (3.6)

Moreover, denote by p̂TM the MLE of p from (2.3) at time TM(c). Then, as c→ 0,

1√
c
(p̂TM − p)→ N(0, 1) in distribution, (3.7)

and thus an asymptotic 100(1− α)% CI for p is p̂TM ± zα/2
√
c.

Before detailing the proof of this theorem, we comment on the usefulness of the theorem.
First, for TM(c), if we set the half-width of the asymptotic 100(1 − α)% CI for p to be h, then
zα/2
√
c = h, and thus c = (h/zα/2)

2. This justifies the form of c = ch from (3.2) and shows that
γ ∼ α as h → 0. Moreover, for TM(c0), with the threshold c0 = ρ0c for some constant ρ0 > 0, as
c0 → 0, we have that Pp(p̂TM(c0) ∈ [p0, 1 − p0]) is equal to 1 − o(1) if p ∈ [p0, 1 − p0] and o(1)
otherwise. When the sample sizes of these two cases are of the same order, then the o(1) term will
become negligible. Thus, for the proposed stopping time, TTW(c), for the tandem-width CI, the
asymptotic properties follow directly from the theorem if the thresholds c0 and c1 in the two stages
are of the same order. Such results are summarized by the following corollary.

Corollary 3.1. Let T0 and T1 denote the stopping times TM(c) from (3.1) with the thresholds
c0 = ρ0c and c1 = ρ1c, respectively, for some ρ0 > ρ1 > 0. Then for the proposed stopping time
TTW(c) from (3.4), we have with probability 1 under Pp, that as c→ 0,

TTW(c) =

{
T0, if p ∈ [p0, 1− p0];
T1, if p < p0 or if p > 1− p0.

(3.8)

and

Ep[TTW(c)] =



(
1 + o(1)

)p(1− p)
c0

, if p0 < p < 1− p0;

(
1 + o(1)

)p(1− p)
c1

, if p < p0 or p > 1− p0;

(
1 + o(1)

)
p(1− p)

(
1

2c0
+

1

2c1

)
, if p = p0 or p = 1− p0.

(3.9)

Two simple lemmas will enable us to prove the theorem. One shows that TM(c) in Theorem
3.1 is bounded above, and the other shows that TM(c) is bounded below. Both bounds are non-
asymptotic and hold for any threshold c > 0.

Lemma 3.1. For TM(c) in Theorem 3.1, we have TM(c) ≤ max(1, 1/(4c)) for any c > 0.

Proof. The key idea is to note that p?n(1 − p?n) ≤ 1/4 regardless of the value of p?n. When n >
1/(4c) ≥ 1, we have

p?n(1− p?n)
n

≤ 1

4n
<

1

4 · ( 1
4c
)
= c.

The lemma then follows directly from the definition of the stopping time from (3.1).
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Lemma 3.2. For TM(c) in Theorem 3.1, we have TM(c) ≥
(

1
8c

)2/3 for any c > 0.

Proof. By the definition of the minimax estimator p?n from (2.5), an elementary argument shows
that for all n ≥ 1,

p?n(1− p?n)
n

=
Sn(n− Sn) + n

√
n
2

+ n/4

n(n+
√
n)2

≥
0 + n

√
n
2

+ 0

n(n+
√
n)2

>
n
√
n
2

n(n+ n)2
=

1

8
n−1.5.

Here we use the fact that Sn(n − Sn) ≥ 0 since 0 ≤ Sn =
∑n

i=1Xi ≤ n. Hence, whenever
n ≤

(
1
8c

)2/3
, we have p?n(1−p?n)

n
> c, and thus TM(c) will not stop at time n. This proves the

lemma.

Remark 3.1. Lemmas 3.1 and 3.2 provide non-asymptotic bounds that allow us to prove the
asymptotic results in Theorem 3.1 as c → 0 for our stopping time TM(c). However, these results
also apply to Frey’s procedure TF(c, a) from (2.10). In particular, by the elementary arguments in
Lemmas 3.1 and 3.2, we can show that for a > 0 and c > 0,√

a

c
− 2a ≤ TF(c, a) ≤ max

(
1,

1

4c

)
, (3.10)

which results in TF(c, a)→∞ almost surely as c→ 0.

Given the non-asymptotic bounds in Lemmas 3.1 and 3.2, we are now ready to prove the
asymptotic results in Theorem 3.1 as c→ 0.

Proof of Theorem 3.1: By Lemma 3.2, as c → 0, we have TM(c) → ∞ with probability 1. To
find an accurate asymptotic expression of TM(c), it is useful to rewrite its stopping rule in terms
of the MLE p̂n from (2.3) whose asymptotic properties are well-known. A simple mathematical
argument shows that

p?n(1− p?n)
n

=
p(1− p) + 1

2
√
n
+ 1

4n
+
(
p̂n(1− p̂n)− p(1− p)

)
n
(
1 + 1√

n

)2 . (3.11)

At a high level, the proof is based on two disjoint events related to p̂n, depending on how close the
term from (3.11) is to p(1− p)/n. By the law of large numbers, for any given 0 < p < 1, the term
from (3.11) is asymptotically equivalent to p(1 − p)/n with probability that tends to 1 for large
n. This turns out to capture the first-order asymptotic analysis, as the corresponding complement
event is negligible, since TM(c) is bounded from above by Lemma 3.1.

Below is the detailed, rigorous proof. Fix 0 < p < 1 and ε > 0. Then there exists an integer
nε > 0 such that for all n ≥ nε, (

1 +
1√
n

)2

≤ 1 + ε. (3.12)

Furthermore, all n ≥ nε, denote the event

An,ε =
{∣∣∣∣ 1

2
√
n
+

1

4n
+
(
p̂n(1− p̂n)− p(1− p)

)∣∣∣∣ ≤ ε · p(1− p)
}
. (3.13)
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First consider the case when the event An,ε does not hold. Then for ε > 0 and δ > 0, the weak law
of large numbers implies that there exists nε,δ > 0 such that for n ≥ nε,δ, we have P(Acn,ε) < δ.
Moreover,

E[TM(c)] = E[TM(c);An,ε] + E[TM(c);Acn,ε]. (3.14)

In the previous equation and throughout the proof, we use E[TM(c);An,ε] to denote E[TM(c)] when
the event An,ε holds. By Lemma 3.1, TM(c) ≤ 1/(4c), so

E[TM(c);An,ε] ≤ E[TM(c)] ≤ E[TM(c);An,ε] +
1

4c
P(Acn,ε) < E[TM(c);An,ε] +

1

4c
δ. (3.15)

Now, we prove the case when the event An,ε is true. In this case, a combination of (3.11) and
the fact that the event An,ε holds yields that for all n ≥ nε,

(1− ε)p(1− p)
(1 + ε)n

≤ p?n(1− p?n)
n

≤ (1 + ε)p(1− p)
n

. (3.16)

Note that such nε might depend on p and ε, but relation (3.16) holds for all n ≥ nε.Now by Lemma
3.2, there exists a c∗ > 0 such that for all c ≤ c∗, we have TM(c) ≥ nε+1, and thus relation (3.16)
holds to both TM(c) and TM(c)− 1.

By the definition from (3.1), when n = TM(c), we have p?n(1−p?n)
n

≤ c. Combining this with the
first inequality in (3.16) for n = TM(c) yields that for all c ≤ cε,

(1− ε)p(1− p)
(1 + ε)TM(c)

≤ c, or equivalently, cTM(c) ≥
1− ε
1 + ε

p(1− p)

Letting c→ 0 yields that

lim
c→0

inf{cTM(c)} ≥
1− ε
1 + ε

· p(1− p)

with probability 1− δ for any given ε > 0. Now the inf-limit on the left-hand side does not depend
on ε. Letting ε→ 0, we have, with probability 1− δ,

lim
c→0

inf{cTM(c)} ≥ p(1− p). (3.17)

On the other hand, by the definition from (3.1), when n = TM(c) − 1, we have p?n(1−p?n)
n

> c.
Combining this with the second inequality in (3.16) for n = TM(c)− 1 yields that for all c ≤ cε,

c <
(1 + ε)p(1− p)
TM(c)− 1

, or equivalently, cTM(c) < (1 + ε)p(1− p) + c

with probability 1− δ. Letting c→ 0, we have

lim
c→0

sup{cTM(c)} ≤ (1 + ε)p(1− p)

for any ε > 0, which results in

lim
c→0

sup{cTM(c)} ≤ p(1− p) (3.18)
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with probability 1− δ. Combining (3.17) and (3.18),

lim
c→0
{cTM(c)} = p(1− p).

with probability 1− δ. By Lemma 3.1 and Lebesgue’s dominated convergence theorem, we have

lim
c→0

Ep[cTM(c);An,ε] = Ep[lim
c→0

cTM(c);An,ε] = p(1− p),

and so

Ep[TM(c);An,ε] =
(
1 + o(1)

)p(1− p)
c

. (3.19)

Now, letting δ → 0 and using (3.19),(
1 + o(1)

)p(1− p)
c

≤ E[TM(c)] ≤
(
1 + o(1)

)p(1− p)
c

+ o(1/c) =
(
1 + o(1)

)p(1− p)
c

. (3.20)

This proves (3.6).
To prove (3.7), a crucial step is to define a integer-valued constant m = mc = bp(1− p)/cc as

c→ 0. On the one hand, by the central limit theorem,
√
m(p̂m− p)/

√
p(1− p) = (p̂m− p)/

√
c is

asymptotically normally N(0, 1) distributed, as c→ 0. On the other hand, for T = TM(c), we just
showed that T/m→ 1 almost surely. By equation (2.43) in Theorem 2.40 of Siegmund (1985, p.
23), we have

√
m(p̂T − p̂m)→ 0 in probability. (3.21)

Combining these two results together yields (3.7), thus completing the proof of the theorem.

3.3. Finite-Sample Numerical Computation

In this subsection, we discuss the numerical computation of the finite-sample properties of our
proposed stopping times TM(c) from (3.1) and TTW(c) from (3.9), including the ARL, Ep[T ], and
the CP, Pp(|p̂T − p| ≤ h) at each p. This allows us to validate the asymptotic properties of our
stopping times in the previous subsection as well as compare properties of different methods.

For a given stopping time T and its corresponding sequential CI, there are two approaches to
compute its finite-sample properties, Ep[T ] and Pp(|p̂T − p| ≤ h) for all 0 < p < 1. The first
one is an approximate Monte Carlo method based on repeated random sampling of Bernoulli(p)
random variables for each 0 < p < 1. It is straightforward to implement such Monte Carlo method,
although it is very time consuming to obtain accurate estimates of the ARL or CP properties over
the whole interval p ∈ (0, 1), especially when the true p is close to 0 or 1. The second approach is
an accurate non-Monte-Carlo numerical method based on the path-counting ideas in Girshick et al.
(1946) and Schultz et al. (1973), also see Frey (2010). This non-Monte-Carlo numerical method is
validated against the Monte Carlo method, and both yield the same results.

Let us provide a more detailed discussion on the accurate non-Monte-Carlo numerical method.
Note that Sn =

∑n
i=1Xi = Sn−1 +Xn is a sufficient statistic for the Bernoulli proportion p, and

conditional on Sn−1, the value of Sn has only two choices: Sn−1 or Sn−1+1, depending on whether
Xn = 0 or 1. Then, the key idea of the non-Monte-Carlo numerical method is to count the number
of paths, denoted by H(a, n), from S0 = 0 at time 0 to Sn = a at time n without hitting any earlier
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stopping boundaries of T before time n. For many reasonable stopping times T, including our
proposed stopping time T = TM(h), the stopping points/bondaries of T can be written as the set of
discrete points, (Sn1 = a1, n1), . . . , (Snk

= ak, nk), for some (possibly large) k ≥ 1. Furthermore,
in our proposed stopping time and many other stopping times, (Sni

= a, ni) is a stopping point
if and only if (ni − a, ni) is also a stopping point, due to the fact that the problem is symmetric
at p = 1/2. Then, when the stopping time T stops at time ni with the observed value Sni

= ai,
i.e., when (ai, ni) is a stopping point, we estimate p by p̂T = p̂i = ai/ni and report the confidence
interval as [max(0, p̂T − h),min(1, p̂T + h)].

Now once we have counted the number H(ai, ni) of sample paths from (0, 0) to (n = ni, Sn =
ai) without hitting any earlier stopping regions for all stopping points of T, we can compute the
finite-sample properties of T simultaneously for all p by

Pp(|p̂T − p| ≤ h) =
k∑
i=1

H(ai, ni)p
ai(1− p)ni−ai1{|p− p̂i| ≤ h}, and (3.22)

Ep[T ] =
k∑
i=1

H(ai, ni)p
ai(1− p)ni−aini. (3.23)

Numerically, we can use (3.22) and (3.23) to compute Pp(|p̂T − p| ≤ h) and Ep[T ] as a function
p as p varies from 0 to 1 (or to 1/2 due to symmetric properties) with a small step size.

For each threshold c or tuning parameter γ from (3.2), we will be able to derive the corre-
sponding finite-sample properties, Ep[T ] and Pp(|p̂T − p| ≤ h), of our proposed stopping times
T = TM(c) from (3.1) or T = TTW(c) from (3.9) for all 0 < p < 1. To satisfy the 1 − α CP
constraints from (2.1) or (2.8), we propose to use the bisection search method to obtain the desired
threshold c or γ.

We split the remainder of this subsection into two parts: (a) the numerical computation of the
finite-sample properties of T = TM(c) from (3.1) and (b) the numerical computation of the finite-
sample properties of T = TTW(c) from (3.9). The latter part uses the numerical computations of
part (a) but is more involved in computation because the stopping region for the tandem method
involves two stopping regions, one from the first stage using h0 and another from the second stage
using h1.

3.3.1. Finite-Sample Properties of TM(c)

Let us first focus on how to count the number of paths for a stopping time T such as T = TM(c)
from (3.1) whose stopping region boundary is convex. Without loss of generality, assume that the
stopping time is defined as T = inf{n ≥ 1 : Sn ∈ Rn}, where Rn = Rn(γ) is the stopping
region at time n. Note that 0 ≤ Sn ≤ n for all n ≥ 1. Now for each n and each possible value
Sn = a, we define two functions: one is the indicator function I(a, n) = 1 if Sn = a is an interior
(non-stopping) at time n and I(a, n) = 0 if Sn = a belongs to the stopping region Rn, and the
other is the counting function H(a, n) that denotes the number of ways to get to Sn = a successes
at time step n without hitting any earlier stopping regions Rk’s at time 1 ≤ k ≤ n − 1. Note that
H(0, 1) = H(1, 1) = 1, since we only have one way to obtain S1 = 0 or 1 at time n = 1.

To compute the counting functionH(Sn = a, n) in general, note that Sn−1 = a or a−1 if Sn =
a, depending on whether Xn = 1 or 0, and thus the number of path counts for points (Sn = a, n)
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Table 2: Choices of γ = γ(h, α) and c = c(h, α) for 90%, 95%, and 99% CIs of fixed half-width
h for our method.

1− α = 90% 1− α = 95% 1− α = 99%
h γ c γ c γ c

0.10 0.0736 3.12417× 10−3 0.0351 2.25210× 10−3 0.0051 1.27492× 10−3

0.09 0.0762 2.57622× 10−3 0.0373 1.86780× 10−3 0.0057 1.05982× 10−3

0.08 0.0801 2.08954× 10−3 0.0394 1.50818× 10−3 0.0064 8.60900× 10−4

0.07 0.0826 1.62629× 10−3 0.0412 1.17569× 10−3 0.0071 6.76096× 10−4

0.06 0.0851 1.21429× 10−3 0.0426 8.75656× 10−4 0.0078 5.08559× 10−4

0.05 0.0877 8.57312× 10−4 0.0436 6.13951× 10−4 0.0086 3.62106× 10−4

0.04 0.0901 5.56989× 10−4 0.0450 3.98145× 10−4 0.0089 2.33823× 10−4

0.03 0.0925 3.17985× 10−4 0.0462 2.26456× 10−4 0.0092 1.32673× 10−4

0.02 0.0950 1.43496× 10−4 0.0475 1.01844× 10−4 0.0095 5.94678× 10−5

0.01 0.0975 3.64170× 10−5 0.0488 2.57585× 10−5 0.0097 1.49495× 10−5

can be computed by the number of paths to either (Sn−1 = a, n− 1) or (Sn−1− 1 = a− 1, n− 1),
when at least one of them is an interior (non-stopping) point. In other words, the counting function
H(Sn = a, n) can be recursively computed by

H(a, n) = H(a, n− 1)I(a, n− 1) +H(a− 1, n− 1)I(a− 1, n− 1), (3.24)

where I(a, n−1) and I(a−1, n−1) are the indicator functions from the definition of the stopping
time whether Sn−1 = a or a − 1 are interior (non-stopping) points at time n − 1 or not. For the
purpose of numerical computation, the valueH(a, n) can be large for large n, and in such case, this
recursion can be implemented on the log scale to avoid overflow problems by using the equality
log (c+ d) = log c+ log

(
1 + exp (log d− log c)

)
.

Table 2 below presents the numerical values of γ for different choices of α and h that guarantee
that the coverage probability of the confidence interval is at least 1− α.

3.3.2. Finite-Sample Properties of TTW(c)

It is much more challenging to count the number of paths for the stopping TTW(c) from (3.9) for
tandem-width sequential CIs, since its stopping region boundary is non-convex.

To better illustrate the challenges, consider Fig. 1, that plots the stopping points for our pro-
posed tandem method with h0 = 0.1, h1 = 0.05, γ0 = 0.0351, γ1 = 0.0436 and p0 = 0.15.
Equivalently, c0 = 2.2521 × 10−3 and c1 = 2.5758 × 10−5. The stopping points in red rep-
resent the stopping points for TM(c0) when h0 = 0.1 and p̂TM(c0) ∈ [p0, 1 − p0]. This means
if we hit these red stopping points, then we stop sampling and report the 100(1 − α)% CI as
[max(0, p̂TM(c0)−h0),min(1, p̂TM(c0)+h0)]. However, if we do not hit these points in the first stage
and instead hit the green stopping points for TM(c0) where p̂TM(c0) /∈ [p0, 1 − p0], then we need to
keep on sampling until we reach the blue stopping points for TM(h1) and report the 100(1 − α)%
CI as [max(0, p̂TM(c1) − h1),min(1, p̂TM(c1) + h1)]. As a result, the stopping region boundary of
TTW(c) from (3.9) consists of both red and blue stopping times, which form a non-convex set. The
good news is that this non-convex set is the difference of two convex boundaries, which allows us
to simplify the computations.
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Figure 1: The stopping points for TTW from (3.5) with h0 = 0.1, h1 = 0.05, γ0 = 0.0351, γ1 =
0.0436 and p0 = 0.15.

To be more concrete, we use the definition of our tandem stopping time from (3.5) to split the
CP and ARL for the tandem procedure into three parts as follows. First, we compute CP and ARL
achieved by using TM(c1), hitting the blue stopping points when the blue region is the only stopping
region. Second, compute CP and ARL achieved by hitting the red stopping points, i.e. the stopping
points for the first stage where we stop sampling using the equations in §3.3.1. The third part is the
more demanding part, as we need to compute the number of ways to hit the blue stopping points
starting from the red stopping points without hitting any stopping points in the process. We start
the recursion (3.24) from each red stopping point as the origin and continue recursively until we
hit the blue region. Then, we finish the third step by computing CP and ARL as from (3.22) and
(3.23) but with the modified number of ways reaching these blue points. The CP and ARL for the
tandem procedure can be combined by adding the CP and ARL from the first and third parts and
subtracting the second part.

4. Numerical Studies

In this section, we report the numerical study results to further demonstrate the usefulness of our
proposed stopping times. In §4.1, we illustrate the performance of the tandem-width stopping time
TTW from (3.4). In §4.2, we compare our proposed fixed-width stopping time TM from (3.1) with
Frey’s method TF from (2.10) that involves an additional tuning parameter of the Bayes prior.

4.1. Tandem-width CI

Suppose that we are interested in deriving a 95% tandem-width sequential CI with half-width
h0 = 0.1 if p̂ ∈ [1 − p0, p0] for p0 = 0.15 and with half-width h1 = 0.01 if p̂ < p0 = 0.15
or > 1 − p0 = 0.85. For our proposed tandem-width CI method, two threshold values are c0 =
2.2521 × 10−3 and c1 = 2.5758 × 10−5, or equivalently, γ0 = 0.0351 and γ1 = 0.0488 based on
Table 2. Next, we obtain the the coverage probability and ARL through simulation, with 500,000
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replications at each value of p = 0.001, 0.002, . . . , 0.999. Note that we could also use the path-
counting ideas in the previous section to obtain CP and ARL analytically, but in this case it is
easier to verify our results through simulation. We report the estimate of Pp(|p̂TTW

− p| ≤ h)
as the number of instances that p is within the reported confidence interval divided by the total
number of replications. Furthermore, we report the estimate of Ep[TTW] as the average number
of run lengths at each replication for each value of p. In Figure 2, we compare the tandem-width
CI simulation results (blue line) versus the analytical results (obtained through through the finite-
sample numerical computational methods in §3.3) of the fixed-width CI based on p?n obtained with
h = 0.1 (green line) and h = 0.01 (red line).

We can notice that by not choosing to use a fixed-width CI for h = 0.01, as that based on
TM from (3.1), we can save in the worst case about 60 % of the sampling cost and time if we are
willing to report a 100(1− α)% CI for p with larger half-width h = 0.1 when p is not close to 0 or
close to 1. This saving in sampling cost becomes more obvious as we get closer to p = 0.5. This
illustrates the importance of our tandem-width methodology, because when resources are scarce or
when no historical data is available to gain prior knowledge about p, then we do not need to spend
so much time to report a very accurate CI with a very small half-width when p is close to 1/2.

Now that we illustrated the importance of our tandem-width methodology, we compare the
performance of the minimax-based method from (3.1) versus Frey’s method from (2.10).

4.2. Fixed-width CI Comparisons

In this subsection, we compare our proposed fixed-width method with Frey’s method TF from
(2.10) and with the optimum scheme in our earlier work in Yaacoub et al. (2018). Using the
numerical iterations from §3.3, we calculate numerically Pp(|p̂T − p| ≤ h) and Ep[T ] for p =
1/2001, 2/2001, . . . , 2000/2001. Note that the requirement is to be able to guarantee a minimal
coverage probability for all p. Therefore, parameters were selected so that all competing schemes
guaranteed the same worst-case coverage probability, i.e., coverage of at least 1−α for all p. Here
the tuning parameter γ is chosen from Table 2 for our method and from Table 1 for Frey’s method
TF. The optimum scheme in Yaacoub et al. (2018) requires two tuning parameters: one is the
parameter u that sets the Beta(u, u) as the prior distribution of p, and the other is the parameter κ
for the cost per observation. Here, for the choice of u = 1 (uniform prior), cost κ = 0.00097 will
satisfy the coverage probability constraint in Yaacoub et al. (2018) for α = 0.05 and h = 0.1.

In Fig. 3a, we plot the coverage probability for each test versus p and in Fig. 3b, the corre-
sponding average sample size required to obtain this performance for α = 0.05 and h = 0.1. We
can draw the following conclusions from the figures: Our proposed scheme and Frey’s require
about the same sample sizes for most values of p, although our fixed-width scheme is slightly
more parsimonious when p is close to 0 or 1. Moreover, the two procedures exhibit similar cover-
age probability profiles. The optimum scheme in Yaacoub et al. (2018) is the best in terms of the
smallest number of samples to guarantee the worst-case CP of at least 0.95.

We also ran numerical experiments for many other combinations of (α, h), and we make similar
conclusions. For instance, in Fig. 4a, we plot the coverage probability for each test versus p and in
Fig. 4b, the corresponding average sample size required to obtain this performance for α = 0.05
and h = 0.05. Our proposed method and Frey’s method perform almost identically, whereas the
optimum method has smaller sample size and larger coverage probability if the true p is not too
close to 0 or 1. Notice that the behavior of the optimum scheme differs between different values
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Figure 2: A comparison of coverage probability and average run length for three sequential meth-
ods: (i) our proposed tandem-width CI with h0 = 0.01 and h1 = 0.1 (blue line); (ii) our pro-
posed fixed-width CI with h = h0 = 0.01 (red line); and (iii) our proposed fixed-width CI with
h = h1 = 0.1 (green line).
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Figure 3: A comparison of coverage probabilities and expected sample sizes of three methods, for
h = 0.1.

of h. For instance, for h = 0.1, the optimum scheme has a lower expected sample size than both
methods, whereas for the case of h = 0.05 the expected sample size of the optimum scheme is
sometimes larger than both methods, even though in such cases the coverage probability is larger.
One possible explanation to this phenomenon is that the optimum scheme puts more weights on
the expected sample size when h is larger, but more weights on CP when h is smaller. However,
we are unable to prove such claim.

We should emphasize that the optimum scheme in our earlier work in Yaacoub et al. (2018)
becomes computationally expensive as h gets smaller, e.g., h = 0.01, as it involves dynamic
programming and involves matrices of dimension of order 1/h2; see Yaacoub et al. (2018). For the
fixed half-width h = 0.01, the performance between our fixed-width method and Frey’s are also
similar, although Frey’s method Frey (2010) gives a slightly smaller (i.e. better) ARL whereas our
proposed method gives a slightly larger coverage probability.

In summary, as compared to Frey’s method Frey (2010) that needs to optimize the tuning
parameter for Bayes prior, our proposed method has similar finite-sample properties, but is much
simpler since the minimax estimator does not involve any tuning parameters. In other words, our
research on tandem-width sequential CI shed new light to develop simple but useful fixed-width
sequential CI that is fast and efficient with performance characteristics that are comparable to or
only slightly worse than those of the optimum scheme.

5. Conclusions

We proposed two sequential schemes for obtaining confidence intervals for a binomial proportion
p using the minimax estimator of p: A fixed-width scheme, and a tandem-width scheme. We also
established upper and lower bounds for our stopping times, presented their asymptotic properties,
and compared our proposed schemes with other existing methods. We found that our proposed
sequential schemes are computationally simple and also enjoy nice theoretical properties.
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Figure 4: A comparison of coverage probabilities and expected sample sizes of three methods, for
h = 0.05.

Our proposed tandem-width method can be extended in a couple of different directions. First,
it can easily be extended to three or more half-widths or stages, allowing better flexibility with the
choice of half-widths based on the true value of p. For instance, one may prefer a half-width size
of (i) h0 = 0.10 if the true p ∈ [0.4, 0.6], (ii) h1 = 0.05 if p ∈ [0.1, 0.4) or p ∈ (0.6, 0.9], or (iii)
h2 = 0.01 if p < 0.1 or p > 0.9. In such cases, we can easily extend our proposed stopping time in
(3.4) to develop a three-stage stopping time, depending on the value of p̂ at the end of each stage.
Moreover, it will be interesting to combine our method with a proportional accuracy (aka relative-
width) CI, where the half-width h is a function of p, e.g. h = h(p) = ηp for some η ∈ (0, 1). This
allows us to overcome a disadvantage of relative-width schemes that often become very costly for
small p.
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