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ABSTRACT 

Effective process monitoring of high-dimensional data streams with embedded spatial 

structures has been an arising challenge for environments with limited resources. Utilizing the 

spatial structure is key to improve monitoring performance. This article proposes a correlation-

based dynamic sampling technique for change detection. Our method borrows the idea of Upper 

Confidence Bound algorithm and uses the correlation structure not only to calculate a global 

statistic, but also to infer unobserved sensors from partial observations. Simulation studies and two 

case studies on solar flare detection and carbon nanotubes (CNTs) buckypaper process monitoring 

are used to validate the effectiveness of our method. 
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1. INTRODUCTION 

The ubiquitous use of sensing systems in manufacturing, healthcare, biosurveillance, 

network security, and service processes has created data rich environments that have presented 

challenges for real-time monitoring and analysis. This is especially true in the environments with 

limited resources, whether at the data acquisition level or processing level. For instance, when 

low-cost wireless sensor networks are employed for monitoring volcano activity (Pereira et al. 

2014), one may want to prolong the lifetime of such networks by turning on only a limited number 

of battery-power sensors unless the volcano is active. When using touch-probe coordinate 

measuring machines (CMM) to monitor wafer manufacturing processes (Jin et al. 2012), the 

current profile measurement schemes are time-consuming. Therefore, it is essential to reduce the 

number of samples measured in wafers while still adequately monitoring process quality. Besides 

physical devices, the term “sensor” can also be used to denote any sources that generate relevant 

information. Moreover, in many real-world data rich environments, we often face resource 

constraints in the capacity of acquisition, transmission, analysis, or fusion of data. In 

biosurveillance and epidemiology, the Center for Disease Control and Preventions (CDC) has a 

limited capacity for drug resistance tests that monitor the resistance status for certain infectious 

diseases. Thus, it is crucial to decide how to effectively allocate the resources and choose which 

affected patients, sub-populations, or regions to monitor. Hence, in the general context of real-time 

or online monitoring high-dimensional data streams in resource constrained environments, it is 

important to dynamically sample those informative local data streams while making adequate 

online anomaly detection. In particular, in this paper, we investigate two such constrained 

environments in the form of case studies: one is to detect solar flares via satellite imaging 

processing with limited transmission capacities, and the other is carbon nanotubes (CNTs) 

buckypaper process monitoring with limitations immerging from trade-offs between scanning 

durations and signal to noise ratios. 

There are several recent articles that tackle this problem by introducing an adaptive 

sampling scheme that only uses a fraction of the full observation spectrum to make real-time 

inferences on the state of a system. Liu et al. (2015) proposed an adaptive sampling strategy with 

resource limitations in which data streams are assumed to be normally distributed. Furthermore, a 

nonparametric adaptive sampling procedure under limited resources has been proposed by Xian et 
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al. (2018b). These methods assume that the data streams are spatially independent, which means 

that observations collected from different sensors at any given time are independent. Wang et al. 

(2018) proposed an adaptive sampling strategy that take a random grid and then uses finer grids 

when a hint of a signal occurs based on the weighted average of the likelihood ratio statistics of 

the data from itself as well as from its neighborhood, where the spatial information is used to define 

the weights. However, it is unclear how to extend to more complicated data models. 

In this article, we apply the ideas of the celebrated Upper Confidence Bound (UCB) 

algorithm proposed by Lai (1987), Lai and Robbins (1985) in the Multi-Armed Bandit  (MAB) 

problems to Statistical Process Control (SPC), and develop effective process monitoring of high-

dimensional data streams with embedded spatial structure for environments with limited 

resources.  In many real-world applications of SPC, the anomalies are often clustered and sparse, 

and thus we need to balance the tradeoff between randomly searching for possible anomalous 

local data streams or local regions (exploration) and performing focused sampling on local data 

streams or local regions near the anomalous regions for quick detection (exploitation).  Now the 

exploration-exploitation tradeoff has been well-studied in MAB problems, and the key idea of 

the celebrated UCB algorithm is to use the upper confidence bound of the parameter estimation 

for adaptive sampling. These inspire us to explore the embedded spatial structures of local data 

streams/sensors to use the upper confidence bound of the local stream post-change parameter 

estimator to develop efficient dynamic sampling methods for online monitoring and SPC. It turns 

out that the existing method in Liu et al. (2015) is a special case of our proposed methods for 

independent data, and thus is a UCB-type algorithm for SPC. We feel that our combination of 

MAB and SPC is novel, and this opens a new research direction in SPC for dynamic sampling of 

incomplete high-dimensional data monitoring under resource constrained environments.    

We should acknowledge that dynamic sampling strategies in SPC literature usually revolve 

around the temporal domain where the objective is mainly to inspect the quality of the product or 

service (Montgomery 2009). In such scenarios, the limitation is in the frequency of acquisition 

times, which is usually associated with the cost of data acquisition. A common example of the cost 

of acquisition is when the quality inspection procedure calls for a destructive test on the parts being 

produced. Meanwhile, our sampling strategies are over the spatial domain, and the issue lies in the 

capacity of deploying, observing, transmitting, or fusing all the available sensors that are 
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monitoring the process at any given time. The key concern that we address is how to utilize the 

information embedded in the spatial structure of the data streams to improve the effectiveness of 

the monitoring procedure. This allows for a more informative and intuitive framework when 

dynamically sampling the partition of streams to be observed at any given acquisition period. 

A dynamic sampling strategy based on the correlation structure of data streams is 

characterized by how it accomplishes the following tasks at every data acquisition time 𝑡𝑡: (1) 

determining the fraction of sensors to be deployed; (2) providing an educated compensation for 

unobserved readings of undeployed sensors based on their correlation with measured variables 

from deployed sensors; (3) computing local statistics for deployed sensors based on the observed 

measurements while using the correlation based compensations for the undeployed ones; (4) fusing 

these local statistics into a single global statistic for global-level decision making. 

The novelty of our proposed dynamic sampling method lies in exploiting the spatial 

correlation structure to provide an upper confidence bound of post-change parameter estimation 

and is therefore named Correlation-based Dynamic Sampling (CDS). The procedure is dynamic in 

the sampling process of the variables to be observed at each acquisition period, as well as in 

providing compensation for the unobserved variables. The dynamic behavior is achieved by 

combining the correlation structure with the information obtained from the observed partition of 

the data streams. The dynamic compensation we propose is constructed from the upper confidence 

bound of the marginal conditional distribution of the unobserved variables given the observed 

variables. When a well-structured framework such as multivariate normal distribution is assumed, 

the marginal conditional distribution is very well defined to be another Gaussian distribution. The 

marginal distribution is tractable even in high dimension when the spatial structure is readily 

available. This sensor assignment procedure allows for a pseudo-random sampling strategy when 

the process is in-control, as well as fast localization of faulty variables when the process is out-of-

control. We use the term “pseudo-random” here because, although the sampling procedure tends 

to select a cluster of variables to be observed at any given time based on the spatial structure, the 

clusters themselves are randomly constructed. Furthermore, these clusters are formed from 

variables that are correlated. This feature of cluster formation will be illustrated further in the 

simulation and case studies. 
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The remainder of this paper is organized as follows: In Section 2, we provide a brief 

literature review relevant to the issue of limited resources, followed by a more detailed review of 

adaptive sampling methods in the literature. Next, in Section 3, we discuss in detail our proposed 

adaptive sampling strategy for online high-dimensional process monitoring, and also present two 

properties pertaining to its sampling behavior depending on the state of the system. Section 4 

assesses the performance of our proposed sampling strategy on virtually simulated scenarios, 

while Section 5 tests the performance using two case studies involving solar flare detection and 

in-line Raman spectroscopy. We conclude our paper with a brief discussion of the key findings 

of our proposed monitoring scheme. 

 

2. LITERATURE REVIEW 

The following section is split into two further sub-sections. The first (Section 2.1) provides 

a brief review of relevant topics that address different aspects of resource limitations from our 

problem, whereas the second (Section 2.2) gives a detailed review of closely related procedures 

discussed in the literature as well as the renowned UCB algorithm in the classical MAB problem. 

This will lay the proper foundation for our subsequent discussions. 

2.1 Relevant Topics for Limited Resources 

There are two main problems explored in the literature that share some resemblance to our 

limited resources process monitoring setting from an application perspective: (i) the optimal design 

of sensors in a DSN system and (ii) the theory of searching and tracking targets. Regarding the 

first, the objective of a DSN is to find a fixed sensor layout optimized for process monitoring. 

However, due to the fixed layout, shifts that occur outside the predefined layout will reduce 

detection power, as well as diagnostic capability, as discussed in (Li and Jin 2010, Liu and Shi 

2013). Studies in (Mandroli et al. 2006, Ding et al. 2006) provide inclusive reviews of the state-

of-the-art advances in DSNs for enhancement in quality and productivity. 

In the second example, the objective of searching and tracking target studies is to obtain 

an effective employment of the limited resources available to locate a target object of interest that 

is within an unknown location (Frost and Stone 2001, Lim et al. 2006, Zoghi and Kahaei 2010, 
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Ben-Gal and Kagan 2013). The main assumption of these studies is that there exists a singular 

object in the searching space but at some unknown locations.  

This article differs from the aforementioned applications in that our objective is to develop 

a dynamic monitoring strategy in which the data streams are correlated and are flowing 

continuously with the uncertainty that a failure, target, or event may or may not occur to the system. 

Furthermore, in its core, our proposed methodology does not assume prior information on the 

failure characteristics. Nonetheless, it is also capable of incorporating such information seamlessly 

as will be demonstrated in the case studies in Section 5. 

 

2.2 Review of Adaptive Sampling Methodologies 

There are several ways of approaching the issue of monitoring a process with limited 

resources. The two most forward approaches are (i) random sampling and (ii) choosing a fixed set 

of variables to monitor. While both approaches can be effective in certain situations, they both 

suffer from not utilizing any information gained during the monitoring procedure. For example, 

setting fixed sensors can only detect changes in the sensors selected, but it is rare in practice to 

have perfect knowledge about where the fault may occur. On the other hand, while random 

sampling might eventually detect a change in a subset of sensors, its detection delay can be large 

if the magnitude of the change is not large enough to set an immediate alarm, as the process 

switches to monitor a different set of sensors in the next acquisition period.  

One of the most relevant and recent research efforts was completed by Liu et al. (2015) 

who proposed an adaptive sampling strategy that is effective for the online monitoring of high-

dimensional data streams. Their proposed method was based on a procedure called Top-r 

cumulative sum (CUSUM), which was first introduced in (Mei 2010). Although their proposed 

Top-r adaptive sampling strategy (TRAS) was shown to be effective for online monitoring of high 

dimensional data streams, it is limited to applications where there is no significant embedded 

correlation structure in the streams and independence across different data streams can be assumed. 

Furthermore, a similar adaptive sampling procedure under limited resources was proposed by Xian 
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et al. (2018b). Their method is a nonparametric approach that addresses a similar problem under 

the independent assumption except when the underlying distribution of data streams is unknown.  

The aforementioned proposed algorithms in the literature monitor individual sensors or 

local data streams by computing local statistics based on the commonly used cumulative sum 

(CUSUM) procedures in statistical process control, and then take advantage of the independence 

assumptions across different sensors to construct the global monitoring statistic based on the sum 

of a few larger local CUSUM statistics. These methods address the limitation of resources by 

assigning a uniform non-informative constant compensation value to all the undeployed sensors. 

Wang et al. (2017) proposed an adaptive sampling strategy under the assumption that data 

streams are spatially independent, and the occurring faults affect a local cluster of sensors within 

a grid. The method requires setting the cluster size, which typically would require former 

knowledge of fault patterns. Another study on climate simulation (Xian et al. 2018a) attempts to 

address the challenge of dynamically sampling data and deciding which to archive due to memory 

limitations. However, this problem is different than ours in the sense that the limitation is not in 

acquiring the data, but rather in choosing what is worth keeping. 

Next, we provide a brief review on the classical multi-armed bandit problem (MAB), which 

includes many useful adaptive/dynamic sampling methodologies. In the simplest case of classical 

MAB, one assumes that there are 𝑝𝑝 sensors or arms, and each sensor provides a random reward 

from an unknown probability distribution specific to that sensor. The objective is to maximize the 

sum of rewards earned through allocating resources to the choice of sensors over time. 

Mathematically, the 𝑖𝑖-th sensor generates i.i.d. observations over time, say, �𝑋𝑋𝑖𝑖,1,⋯ ,𝑋𝑋𝑖𝑖,𝑡𝑡,⋯�.  

Suppose that sensor observations 𝑋𝑋𝑖𝑖,𝑡𝑡  have the common variance 𝜎𝜎2,  but might have different 

means for different sensors. At each time step 𝑡𝑡, one can take observations only from one sensor, 

say, the 𝑖𝑖∗(𝑡𝑡)-th sensor, and receives the reward 𝑟𝑟𝑡𝑡 = 𝑋𝑋𝑖𝑖∗(𝑡𝑡),𝑡𝑡. Then one wants to decide which 

sensor to take observation at every time step to maximize the expected overall rewards, 𝐸𝐸(∑ 𝑟𝑟𝑡𝑡)𝑇𝑇
𝑡𝑡=1 ,  

where 𝑇𝑇 is the pre-specified total number of time steps. 

The crucial tradeoff one faces at the MAB is between “exploitation” of the sensor that has 

the highest mean and “exploration” to get more information about the mean of the other sensors. 
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An intuitive and appealing policy is to estimate each unknown mean 𝜇𝜇𝑘𝑘 by the corresponding 

sample mean of each sensor, and then take observations from the sensor that has the largest sample 

mean. Unfortunately, such a myopic policy performs poorly, due to the poor exploration of other 

sensors. One of the asymptotically optimal MAB policies is the notable Upper Confidence Bound 

(UCB) algorithm proposed by Lai (1987), Lai and Robbins (1985). The main idea of the UCB 

algorithm is to take observations from the arm having the highest upper confidence bound index, 

constructed from the Kullback-Leibler divergence between the estimated distributions of the 

sensors. In the setting when the sensor observations are normally distributed, the UCB-Lai 

algorithm chooses the arm maximizing 𝑋𝑋�𝑘𝑘,𝑡𝑡𝑘𝑘 + 𝜎𝜎�2 log(𝑇𝑇/𝑡𝑡)
𝑡𝑡

  at each time step 𝑡𝑡, where 𝑋𝑋�𝑘𝑘,𝑡𝑡𝑘𝑘 is the 

current observed sample mean from the 𝑘𝑘-th sensor, 𝑡𝑡𝑘𝑘 is the current number of observations from 

the 𝑘𝑘-th sensor, and 𝜎𝜎 is the standard deviation of sensor observations. There are many 

modifications or extensions of the UCB-Lai algorithm, e.g., Auer et al. (2002) proposed a modified 

UCB algorithm that does not involve the total sample size 𝑇𝑇 in the setting of normal distributions 

with unequal and unknown variances.  

Here we extend the classical MAB with two twists: one is the changing environments with 

a different reward function that is non-additive over the time domain for the purpose of quick 

detection, and the other is to increase the number of sampled sensors from 1 to 𝑚𝑚 ≥ 1 over the 

spatial domain. We propose to apply the idea of the UCB to SPC, which leads to a dynamic 

compensation value to the unobserved streams or sensors based on the spatial correlation structure 

of the data and the information obtained from the observed streams or sensors. In order to highlight 

our main ideas, we make a simplified assumption that the correlation structure remains unchanged 

and thereby stationary throughout the whole monitoring period, and we focus on detecting the 

sparse mean shifts of high-dimensional data with embedded spatial structures in the environments 

with limited resources. 

 

3. CORRELATION-BASED DYNAMIC SAMPLING (CDS) STRATEGY 

In this section we develop a method for effective monitoring of correlated high-

dimensional data streams under the constraint of resource limitations. In our proposed strategy, we 
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first construct efficient local statistics for each individual data stream and consequently combine 

these local statistics into a single global statistic while utilizing the information embedded in the 

correlation structure of the streams. There are two novel ideas in the proposed strategy: (1) 

following the MAB algorithm to explore the spatial correlation structure and introduce a dynamic 

compensation value for the unobserved variables based on the confidence limit of their parameter 

estimates, and (2) deploying sensors to those variables efficiently to collect as much global change 

information after adjusting the spatial correlation. 

The following subsections will elaborate on the steps of our proposed correlation-based 

dynamic sampling (CDS) strategy. Section 3.1 provides a detailed overview of our algorithm. 

Next, a detailed discussion of parameter settings is provided in Section 3.1.5. Finally, Section 3.3 

discusses options for estimating or imposing the embedded spatial structure of the data streams. 

 

3.1 CDS Methodology Development 

In preparation to our discussion, we will first introduce the notations for the variables that 

will be used throughout the course of this paper. Suppose that the system to be monitored consists 

of 𝑝𝑝 variables 𝒫𝒫 = {1, … ,𝑝𝑝} that are observable at any time 𝑡𝑡. The vector of observed variables at 

time 𝑡𝑡 is given by 𝑿𝑿𝑡𝑡 = (𝑋𝑋1,𝑡𝑡, … ,𝑋𝑋𝑝𝑝,𝑡𝑡)′. Due to limitations in the resources available for 

monitoring, only a fraction of this vector is measured in real time. Let 𝑚𝑚 be the maximum number 

of variables/sensors that can be measured/deployed at any acquisition time. From the problem 

statement, 𝑚𝑚 is a process parameter dictated by the system monitoring capability. This could 

translate to the number of sensors available for deployment at each acquisition time, the 

transmission capacity, or the computational power at the data fusion center. To facilitate 

referencing measured variables at each time 𝑡𝑡, we introduce two sets  𝜔𝜔𝑡𝑡 ⊂ Ω and 𝜓𝜓𝑡𝑡 ⊂ Ψ. Here, 

Ω and Ψ are all possible partitions of the data streams into observed and unobserved sets, 

respectively.  Thereby, variable 𝑋𝑋𝑖𝑖,𝑡𝑡 ∈ 𝜔𝜔𝑡𝑡 if and only if it is measured at time 𝑡𝑡, otherwise it is 

assigned to set 𝜓𝜓𝑡𝑡. Hence, the cardinalities of 𝜔𝜔𝑡𝑡 and 𝜓𝜓𝑡𝑡 are respectively |𝜔𝜔𝑡𝑡| = 𝑚𝑚 and |𝜓𝜓𝑡𝑡| =

𝑝𝑝 −𝑚𝑚.  
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We assume that 𝑿𝑿𝑡𝑡 comes from a multivariate normal distribution, in which the mean 

vector is 𝜇𝜇𝑡𝑡 and the covariance structure Σ. The covariance structure plays an important role in our 

proposed dynamic sampling procedure. Particularly, the covariance between the unobserved 

sensors and the observed ones (denoted by ΣΨΩ) is the base of inferences to be made on unobserved 

sensors. The in-control mean and covariance are also assumed to be known. While these 

parameters are not generally known, they can be estimated from an adequate amount of historical 

data. They can also be set to target values defined by the engineering design of the process. Without 

loss of generality, we assume that the data has been preprocessed to have mean 0 and standardized 

to have a covariance matrix equal to that of the correlation matrix. After some point in time 𝜏𝜏 

during the operation of the monitored system, a change in the mean vector occurs, where a subset 

Θ of the variables 𝑿𝑿𝑡𝑡 will have a non-zero mean. Moreover, we assume that the correlation 

structure remains unchanged during this change and thereby stationary throughout the whole 

monitoring period. Our objective then becomes to first detect this change with minimum delay 

from the onset at 𝜏𝜏. Secondly, we need to identify the subset Θ with the shifted mean, when the 

variables at each given time are partially observable.  

There are four components to our proposed method. First, we construct the local statistics 

for the deployed sensors based on the observed measurements. Second, we utilize the correlation 

between undeployed sensors and deployed ones to determine the local statistics of the unobserved 

variables. Third, we select the fraction of sensors to be deployed at the next acquisition time. 

Finally, we fuse the local statistics into a multivariate global statistic that is used to test whether 

the process remains in-control. In the following subsections, we will demonstrate how we can 

construct each one of the components and then conclude with an overview of the proposed 

monitoring scheme. 

3.1.1 Determining Local Statistics 

Our objective in this paper is to detect any change to the mean of the monitored variables. 

Since this shift can be either positive or negative, it is appropriate to deploy a two-sided CUSUM 

monitoring statistic for each variable 𝑘𝑘 at time 𝑡𝑡 defined as 

 𝐶𝐶𝑘𝑘,𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝐶𝐶𝑘𝑘,𝑡𝑡
+ ,𝐶𝐶𝑘𝑘,𝑡𝑡

− ), (1) 
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where the notations 𝐶𝐶𝑘𝑘,𝑡𝑡
+  and 𝐶𝐶𝑘𝑘,𝑡𝑡

−  represent, respectively, the positive and negative local statistics 

for variable 𝑘𝑘 at time 𝑡𝑡. 

At any given time, we are limited by the available resources, computation power, or 

transmission capabilities to calculate these local statistics using partial observations. Statistics 

pertaining to an observed sensor 𝑋𝑋𝑘𝑘,𝑡𝑡 ∈ ωt at time 𝑡𝑡 can be defined as CUSUM statistics (Lorden 

(1971)) as follows: 

 𝐶𝐶𝑘𝑘,𝑡𝑡
+ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝐶𝐶𝑘𝑘,𝑡𝑡−1

+ + 𝛿𝛿𝑋𝑋𝑘𝑘,𝑡𝑡 −
𝛿𝛿2

2
�  and    𝐶𝐶𝑘𝑘,𝑡𝑡

− = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,𝐶𝐶𝑘𝑘,𝑡𝑡−1
− − 𝛿𝛿𝑋𝑋𝑘𝑘,𝑡𝑡 −

𝛿𝛿2

2
�, (2) 

where 𝐶𝐶𝑘𝑘,0
+ = 𝐶𝐶𝑘𝑘,0

− = 0. Here, 𝛿𝛿 is the smallest mean shift magnitude that is of interest to detect 

(see the guidelines in subsection 3.1.5 on how to determine the value of 𝛿𝛿). 

The main difficulty is how to define the local CUSUM statistics in (2) for those unobserved 

variables �𝑋𝑋𝑘𝑘,𝑡𝑡 ∈ ψt�. Inspired by the UCB algorithm of Lai (1987), Lai and Robbins (1985) for 

MAB, here we propose to salvage (2) by utilizing the spatial correlation structure to obtain the 

estimated upper and lower bounds, say, 𝑈𝑈𝑘𝑘,𝑡𝑡 and 𝐿𝐿𝑘𝑘,𝑡𝑡, on the true unobserved variable 𝑋𝑋𝑘𝑘,𝑡𝑡 at time 

𝑡𝑡 (the estimates of 𝑈𝑈𝑘𝑘,𝑡𝑡 and 𝐿𝐿𝑘𝑘,𝑡𝑡 will be discussed in a little bit). Then we dynamically construct 

the local statistic as follows: 

 
𝐶𝐶𝑘𝑘,𝑡𝑡
+ = max �0,𝐶𝐶𝑘𝑘,𝑡𝑡−1

+ + 𝛿𝛿𝑈𝑈𝑘𝑘,𝑡𝑡 −
𝛿𝛿2

2
�, (3) 

 𝐶𝐶𝑘𝑘,𝑡𝑡
− = max �0,𝐶𝐶𝑘𝑘,𝑡𝑡−1

− − 𝛿𝛿 𝐿𝐿𝑘𝑘,𝑡𝑡 −
𝛿𝛿2

2
�. (4) 

It remains to discuss how to obtain the estimates, 𝑈𝑈𝑘𝑘,𝑡𝑡 and 𝐿𝐿𝑘𝑘,𝑡𝑡, for unobserved sensors 

�𝑋𝑋𝑘𝑘,𝑡𝑡 ∈ ψt�. Since the data streams are assumed to come from a standardized multivariate normal 

distribution, the marginal conditional distribution of an unobserved variable 𝑋𝑋𝑘𝑘 ⊂ Ψ over the 

remaining set of observed variables Ω is also normal with mean 𝜇𝜇′𝑘𝑘 and variance 𝜎𝜎′𝑘𝑘 given by: 

 𝜇𝜇′𝑘𝑘 = Σk,ΩΣΩΩ−1𝑋𝑋Ω, (5) 

 𝜎𝜎′𝑘𝑘 = 1 − Γ𝑘𝑘𝑘𝑘, (6) 
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where, Σk,Ω is the covariance between  𝑋𝑋𝑘𝑘 ∈ Ψ and the observed variables in Ω. Moreover, Γ𝑘𝑘𝑘𝑘 

denotes the 𝑘𝑘𝑡𝑡ℎ diagonal entry of Γ = ΣΨΩΣΩΩ−1 ΣΩΨ. 

Using the marginal conditional distribution of an unobserved variable 𝑋𝑋𝑘𝑘 ∈ Ψ, we can 

construct an (1 − α)100% two-sided confidence interval as follows:  

 𝐶𝐶𝐶𝐶𝑘𝑘,𝑡𝑡 = �𝐿𝐿𝑘𝑘,𝑡𝑡,𝑈𝑈𝑘𝑘,𝑡𝑡� 
(7) 

where, 𝐿𝐿𝑘𝑘,𝑡𝑡 = 𝜇𝜇′𝑘𝑘,𝑡𝑡 − Φ−1(1 − α 2⁄ )𝜎𝜎′𝑘𝑘  𝑎𝑎𝑎𝑎𝑎𝑎 𝑈𝑈𝑘𝑘,𝑡𝑡 = 𝜇𝜇′𝑘𝑘,𝑡𝑡 + Φ−1(1− α 2⁄ )𝜎𝜎′𝑘𝑘. 

Here, Φ−1(. ) is the inverse of the cumulative standard normal distribution. Hence, the bounds of 

the confidence interval 𝑈𝑈𝑘𝑘,𝑡𝑡 and 𝐿𝐿𝑘𝑘,𝑡𝑡 will be the base of our correlation based dynamic 

compensation procedure given in equations (3) and (4). 

It is informative to compare our proposed dynamic compensations in (3) and (4) with the 

static uninformative compensation in (Liu et al. 2015).  In that study, the local statistics for an 

unobserved variable are based on a static compensation Δ ≥ 0, and are defined as follows: 

 𝐶𝐶𝑘𝑘,𝑡𝑡
+ = 𝐶𝐶𝑘𝑘,𝑡𝑡−1

+ + Δ and 𝐶𝐶𝑘𝑘,𝑡𝑡
− = 𝐶𝐶𝑘𝑘,𝑡𝑡−1

− + Δ. (8) 

However, Liu et al. (2015) did not provide any statistical justification why one needs to add a 

static compensation Δ for unobserved variable.  

The following proposition shows that the method in (Liu et al. 2015)  is a special case of 

our approach for independent data streams, and thus the compensation defined in equation (8) is 

essentially an upper bound confidence (UCB)-type algorithm in the SPC context.   

 

Proposition: Our proposed dynamic compensation procedure is a generalization of the constant 

compensation, and is consequently equivalent to it when all data streams are spatially 

independent. In that case, Δ = 𝛿𝛿Φ−1(1 − α 2⁄ ) − 𝛿𝛿2

2
. 

Proof: For spatially independent data, and for any partition of the data into observed and 

unobserved sets Ω and Ψ, the covariance between the two sets ΣΨΩ = 0. Consequently: 

𝜇𝜇′𝑘𝑘 = 0, 𝜎𝜎′𝑘𝑘 = 1, 𝐶𝐶𝐶𝐶𝑘𝑘
± = ±Φ−1(1− α 2⁄ ) for all {𝑘𝑘:𝑋𝑋𝑘𝑘 ∈ ψ}, 
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          𝐶𝐶𝑘𝑘,𝑡𝑡
+ = max �0,𝐶𝐶𝑘𝑘,𝑡𝑡−1

+ + 𝛿𝛿 Φ−1(1 − α 2⁄ ) − 𝛿𝛿2

2
�, 

           𝐶𝐶𝑘𝑘,𝑡𝑡
− = max �0,𝐶𝐶𝑘𝑘,𝑡𝑡−1

− + 𝛿𝛿 Φ−1(1 − α 2⁄ ) − 𝛿𝛿2

2
�. 

Let Δ = 𝛿𝛿Φ−1(1− α 2⁄ ) − 𝛿𝛿2

2
 and choose (𝛿𝛿,𝛼𝛼) such that  Δ ≥ 0. Then, the update reduces to the 

format in equation (8). ∎ 

The main reason that the confidence limits, 𝑈𝑈𝑘𝑘,𝑡𝑡 and 𝐿𝐿𝑘𝑘,𝑡𝑡, are chosen to represent 

unobserved instances rather than the middle of the confidence interval is to promote exploration 

during the in-control phase of the process by favoring those unobserved variables that have been 

sampled less. It can be noted that a compensation based on the middle of the interval would require 

the significance level α = 1, and yields a myopic policy that only uses the estimated means for 

decision making. Moreover, when an unobserved variable is independent of all observed variables, 

the previous proposition suggests that the compensation Δ = 𝛿𝛿
2
− 𝛿𝛿2

2
, which might be negative. A 

negative compensation will result in a monotonic decrease in the local CUSUM statistics until they 

hit 0, which will in turn diminish the likelihood of those variables to ever be explored at future 

acquisition times. Further discussions of appropriate parameter settings and their role in promoting 

the in-control variable exploration behavior are available in subsection 3.1.4 and 3.1.5. 

3.1.2 Global Statistics and Out-of-Control Criteria 

Since the data streams are spatially correlated, we propose to use a multivariate CUSUM 

(MCUSUM) statistic as the global statistic. To be more concrete, the local CUSUM statistics 

𝐶𝐶𝑖𝑖,𝑡𝑡 calculated for those observed sensors at time 𝑡𝑡 are fused into a global CUSUM statistic as 

follows: 

 𝐺𝐺𝐶𝐶𝑡𝑡 = ||𝐶𝐶𝑘𝑘,𝑡𝑡|| = �𝐶𝐶𝑘𝑘,𝑡𝑡Σωω−1 𝐶𝐶𝑘𝑘,𝑡𝑡 𝑘𝑘 = {𝑛𝑛:𝑋𝑋𝑛𝑛 ∈ ω}. (9) 

The process is then deemed to be out-of-control at time 𝑡𝑡 if 𝐺𝐺𝐶𝐶𝑡𝑡 > 𝑈𝑈𝑈𝑈𝑈𝑈, where 𝑈𝑈𝑈𝑈𝑈𝑈 is a predefined 

upper control limit. Guidelines to choosing the value of the 𝑈𝑈𝑈𝑈𝑈𝑈 is discussed in subsection 3.1.5. 

Recall that there are two main ways of constructing the MCUSUM statistic as described in 

(Pignatiello and Runger 1990). The two methods differ in the order in which the accumulation and 
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the quadratic transformation is performed. The first method performs the accumulation first by 

calculating the individual local CUSUM statistics and then combining them into a single quadratic 

form. On the other hand, the second method calculates local Hoteling T-square statistic (quadratic 

form) and then performs the accumulation using a univariate CUSUM on the result. Here we adopt 

the first approach of MCUSUM in equation (9) when constructing the global statistic as it fits well 

with the framework described in the previous section. 

3.1.3 Sensor Reassignment 

Sensor reassignment is simply reassigning the sensors to the sets of observing sensors  ω ⊂

Ω and non-observing sensors 𝜓𝜓 ⊂ Ψ at each time step. We propose to choose the set of observing 

sensors that maximizes the global statistic in (9) to have the potential to detect the true change 

quickly. Mathematically, at each time step before taking any observations, our proposed sensor 

reassignment method is to choose the set of observed sensors ω ⊂ Ω that is the solution to the 

following optimization problem: 

 arg max
ω⊂Ω 

�𝐶𝐶𝑘𝑘,𝑡𝑡Σωω−1 𝐶𝐶𝑘𝑘,𝑡𝑡� ,𝑘𝑘 = {𝑛𝑛:𝑋𝑋𝑛𝑛 ∈ ω}  𝑎𝑎𝑎𝑎𝑎𝑎 ω ⊂ Ω   (1), (10) 

where 𝐶𝐶𝑖𝑖,𝑡𝑡 is the local CUSUM statistic of sensor 𝑖𝑖 at time 𝑡𝑡 and Ω is the set of all possible sensor 

subsets of size 𝑞𝑞.  

While the above optimization problem in (10) is well-defined from the mathematical 

viewpoint, it becomes very challenging to solve from the computational viewpoint, especially in 

high dimension situations, as the set of candidate solutions Ω becomes too large. Therefore, we 

propose the following greedy forward selection heuristic method to solve the combinatorial 

optimization problem in (10). 

We start with ω = Φ; the empty set. The first variable to enter the set ω will be the variable 

that maximizes equation (9) when the cardinality of the set is one. The solution is the variable with 

the maximum local CUSUM statistic �𝑋𝑋𝑖𝑖:𝐶𝐶𝑖𝑖,𝑡𝑡 ≥ 𝐶𝐶𝑗𝑗,𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗�. If we partition the covariance 

matrix of the standardized data into the following block form, 

Σ = �
Σωω Σωψ
Σψω Σψψ

�. 
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then the inverse can be written as: 

Σ−1 = �
Σωω−1 + 1

𝑏𝑏
𝐹𝐹𝐹𝐹′        − 1

𝑏𝑏
𝐹𝐹

− 1
𝑏𝑏
𝐹𝐹                      1

𝑏𝑏

�, 

where 𝐹𝐹 = Σωω−1 Σωψ , and 𝑏𝑏 = 1 − ΣψωΣωω−1 Σωψ. Hence if we let 𝐺𝐺ω = 𝐶𝐶ω,𝑡𝑡Σωω−1 𝐶𝐶ω,𝑡𝑡, the global 

statistic with respect to the set ω, then the global statistic with respect to the joint set {ω ∪ ψ} is 

 𝐺𝐺ω∪ψ = 𝐺𝐺ω +
1
𝑏𝑏
�𝐶𝐶ψ,𝑡𝑡

2 (1 − 𝐹𝐹) − 𝐶𝐶ψ,t𝐹𝐹 + 𝐹𝐹𝐹𝐹′�, (11) 

which means that the gain in the global statistic after adding variables in set  ψ to set ω can be 

represented by the following: 

 𝐺𝐺ω∪ψ/ω = 𝐺𝐺ω∪ψ − 𝐺𝐺ω =
1
𝑏𝑏
�𝐶𝐶ψ,𝑡𝑡

2 (1 − 𝐹𝐹) − 𝐶𝐶ψ,t𝐹𝐹 + 𝐹𝐹𝐹𝐹′�. (12) 

The following variable to enter the set ω will be the variable that maximizes (9) when the 

cardinality of the set is two given that the first chosen variable is 𝑋𝑋𝑖𝑖.  This translates to the variable 

𝑋𝑋𝑗𝑗 that maximizes the gain given by (12) when the set ω = {𝑋𝑋𝑖𝑖} and the set ψ = �𝑋𝑋𝑗𝑗�. 

Consequently, at any step, the next variable to enter set ω given its current cardinality is the 

variable that maximizes the gain. The steps at each iteration of this heuristic is illustrated in 

algorithm 1. 

Algorithm 1: Greedy Forward Sensor Selection to Solve Equation (10) 
 Input: Empirical covariance matrix Σ, scalar 𝑟𝑟,𝐶𝐶𝑘𝑘,𝑡𝑡 for all k 
 Forward sensor selection strategy: 
 While (|ω| < 𝑟𝑟), 
1 Calculate the gain 𝐺𝐺ω∪j/j for all variables 𝑋𝑋𝑗𝑗 ∉  ω according to eq.(12) 
2 Augment the set of ω by including �𝑋𝑋𝑖𝑖:𝐺𝐺ω∪i/i ≥ 𝐺𝐺ω∪j/j 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗� 
3 Update the global statistic 𝐺𝐺ω 
 End 

The initial assignment of sensors in the sets ω and 𝜓𝜓 has no significant impact to the 

monitoring procedure (Liu et al. 2015). This is due to the adaptive nature of the sampling strategy 

that reassigns the sensors at each observation time.  
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3.1.4 Properties of CDS 

This subsection illustrates two behavioral properties of the proposed CDS procedure. These 

two properties address the desire to disperse sensor deployment when the system is running 

smoothly under the in-control state, while also quickly localizing at a fault location whenever a 

true fault occurs. Proofs of the proposed properties can be found in Appendices A.1 and A.2. 

Recall that a variable 𝑥𝑥𝑖𝑖,𝑡𝑡 ∈ 𝜔𝜔𝑡𝑡 if and only if it is observed at time 𝑡𝑡. Thus, at a given time 

𝑡𝑡0, the set of sampled variables 𝑥𝑥𝑘𝑘,𝑡𝑡0 is given by 𝜔𝜔𝑡𝑡0. The following property shows that when the 

process is in-control or when those variables in  𝜔𝜔𝑡𝑡0 involve insignificant mean shifts, our proposed 

sensor deployment procedure will eventually choose variable 𝑥𝑥𝑘𝑘′,𝑡𝑡0 that does not belong to a 

neighborhood of 𝜔𝜔𝑡𝑡0. This implies the random behavior of our dynamic sampling method under 

the in-control phase, where sensors will be sampled infinitely many times as the 𝑈𝑈𝑈𝑈𝑈𝑈 → ∞. This 

essentially guarantees that the sensor deployment procedure will not permanently localize at any 

specific location. 

Property 1: For a fix time 𝑡𝑡0, we assume that |𝐸𝐸[𝑥𝑥𝑘𝑘]| ≤ Φ(1 − 𝛼𝛼 2⁄ ) for any 𝑥𝑥𝑘𝑘 ∈ 𝜔𝜔𝑡𝑡0 .  

Consider another variable 𝑥𝑥𝑘𝑘′ ∉ 𝜔𝜔𝑡𝑡0 satisfying 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑘𝑘′ , 𝑥𝑥𝑘𝑘) = 0 for all 𝑥𝑥𝑘𝑘 ∈ 𝜔𝜔𝑡𝑡0 . Let 𝑈𝑈𝑈𝑈𝑈𝑈 → ∞, 

and denote 𝑇𝑇𝑡𝑡,𝑘𝑘′ = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑡𝑡 ≥ 𝑡𝑡0: 𝑥𝑥𝑘𝑘′ ∈ 𝜔𝜔𝑡𝑡}, then 𝑃𝑃�𝑇𝑇𝑡𝑡,𝑘𝑘′ < ∞� = 1.  

Next, we will show that when a significant mean shift occurs, our proposed sensor 

deployment procedure has a greedy property that eventually sticks to the fault area, or to its 

neighborhood when we do not have enough sensors to cover the whole fault area. 

Property 2:  Denote the fault area as 𝒪𝒪 = {𝑥𝑥𝑘𝑘: |𝐸𝐸[𝑥𝑥𝑘𝑘]| > Φ(1 − 𝛼𝛼 2⁄ )}.  Let 𝑈𝑈𝑈𝑈𝑈𝑈 → ∞, 

there exists 𝒪𝒪0 ⊆ 𝒪𝒪 such that 𝑃𝑃1(𝑂𝑂0 ⊂ 𝜔𝜔𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ≥ 𝑡𝑡0) = 1 for some 𝑡𝑡0. 

In the event that the process is out-of-control, the second property suggests that sensors 

localized at the fault area will remain deployed within its neighborhood. When a fault is detected 

in an area, it is desired to check that area as well as its surroundings, because the main issue may 

be in the neighborhood rather than the initially detected location. Therefore, we are only interested 

in showing that a remote location, relevant to the fault area, will not be a point of interest for future 
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sampling. This level of flexibility allows the sampling procedure to better localize around the 

faulty area rather than simply sticking to an initial suspect area. 

3.1.5 Overview of the CDS Algorithm 

Algorithm 2 illustrates the steps of the proposed CDS procedure. Compared to other 

procedures that assume spatial independence, our approach uses the correlation structure and the 

information obtained from observed sensors to dynamically compensate unobserved ones. If an 

unobserved sensor is positively correlated with an out-of-control sensor, then the sensor will be 

compensated more than the one that is independent. This makes it more likely to choose that sensor 

in the next step. This property will be demonstrated in the case studies in Section 5. 

Algorithm 2: Online monitoring by our proposed Correlation based Dynamic 
Sampling (CDS) algorithm  
 Input: Empirical covariance matrix Σ, scalar 𝑟𝑟, δ, UCL,α ∈ (0,1)  

           𝐶𝐶𝑘𝑘,0 = 𝐶𝐶𝑘𝑘,0
+ = 𝐶𝐶𝑘𝑘,0

− = 0 for all sensors 
 For each time step t=1,2,…  
1 Take observations from sensors based on the current assignments to ω and 

𝜓𝜓 based on the top-r sensors at time 𝑡𝑡 − 1 
2 For sensor 𝑘𝑘 ∈ ω, recursively compute the local statistics 𝐶𝐶𝑘𝑘,𝑡𝑡,𝐶𝐶𝑘𝑘,𝑡𝑡

+ , and 𝐶𝐶𝑘𝑘,0
−  

according to equation (2) 
3 For sensor 𝑘𝑘′ ∈ 𝜓𝜓, recursively compute the local statistics 

𝐶𝐶𝑘𝑘′,𝑡𝑡,𝐶𝐶𝑘𝑘′,𝑡𝑡+ , and 𝐶𝐶𝑘𝑘′,0−  according to equations (3) and (4)  
4 Reassign sensors to the sets ω and 𝜓𝜓 according to Algorithm 1 and take 

observations from the updated set ω 
5 Obtain the global statistic 𝐺𝐺𝐺𝐺𝑡𝑡 based on the updated set ω from step 4 
6 If (𝐺𝐺𝐶𝐶𝑡𝑡 ≥  𝑈𝑈𝑈𝑈𝑈𝑈), raise a global alarm that a change has occurred. Otherwise 

go to next time step.    
 

 

Table 1 provides a miniature example with three variables to illustrate the steps of 

algorithm 2. In this example, we assume all three variables have mean 0 and unit variance, 

cov(𝑥𝑥1,𝑥𝑥2) = 0.5 and that 𝑥𝑥3 is independent of the others. Initially we only observe 𝑥𝑥1; i.e., ω =

{𝑥𝑥1} and 𝜓𝜓 = {𝑥𝑥2, 𝑥𝑥3} and we set the parameters to be δ = 1 and Φ(1 − 𝛼𝛼 2⁄ ) = 1.04 (𝛼𝛼 = 0.3). 
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Table 1 Demonstration of the compensation and assignment steps of CDS 

  In-control Out-of-control 
  𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 

𝒕𝒕
=
𝟏𝟏 

Observation -1.58 - - 1.76 - - 
𝑳𝑳𝒌𝒌,𝒕𝒕 - -1.37 1.04 - -0.53 1.04 
𝑼𝑼𝒌𝒌,𝒕𝒕 - 0.57 1.04 - 1.41 1.04 
𝑪𝑪𝒌𝒌,𝒕𝒕 1.10 0.87 0.54 1.26 0.91 0.54 

𝒕𝒕
=
𝟐𝟐 

Observation 2.20 - - 0.89 - - 
𝑳𝑳𝒌𝒌,𝒕𝒕 - -0.42 1.04 - -0.74 1.04 
𝑼𝑼𝒌𝒌,𝒕𝒕 - 1.52 1.04 - 1.19 1.04 
𝑪𝑪𝒌𝒌,𝒕𝒕 1.70 1.09 1.07 1.65 1.60 1.07 

𝒕𝒕
=
𝟑𝟑 

Observation -0.03 - - 0.69 - - 
𝑳𝑳𝒌𝒌,𝒕𝒕 - -0.98 1.04 - -0.80 1.04 
𝑼𝑼𝒌𝒌,𝒕𝒕 - 0.96 1.04 - 1.14 1.04 
𝑪𝑪𝒌𝒌,𝒕𝒕 1.17 1.58 1.61 1.84 2.25 1.61 

 

During the in-control phase, we notice that the compensation for the neighborhood of the observed 

variable 𝑥𝑥1, in this case 𝑥𝑥2, receives lower compensation than 𝑥𝑥3. This essentially influences the 

algorithm to move out of this neighborhood towards the unexplored variable 𝑥𝑥3. On the other hand, 

when 𝑥𝑥1 is out-of-control (mean shift = 1.5), the compensation allocated to its neighborhood 

(𝑥𝑥2) exceeds that of the independent variable 𝑥𝑥3. This promotes the exploitation of the 

neighborhood of 𝑥𝑥1, which is consistent with the second property discussed in subsection 3.1.4. 

3.2 Setting Input Parameters 

Algorithm 2 of CDS is essentially a phase 2 procedure that can be used for high-

dimensional datasets where the multivariate normal assumption is appropriate. A phase 1 analysis 

is required to validate the assumed underlying distribution as well as determining the required 

input parameters 𝑟𝑟,𝛼𝛼, δ and the UCL of algorithm 2 if they are not readily available for direct 

implementation. This section will provide guidelines for determining the values of these input 

parameters as discussed below. 

• Setting 𝛿𝛿: From the literature review presented in Section 3.1.1 on the calculation of the 

local CUSUM statistic, 𝛿𝛿 represents the smallest mean change magnitude that we are 
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interested in detecting. In practice, the choice of 𝛿𝛿 can be a target value set using 

engineering knowledge in the application domain.  

• Setting 𝑟𝑟: The choice of 𝑟𝑟 directly affects the detection power of the monitoring procedure. 

Setting 𝑟𝑟 to be too large will dilute the contribution of the out-of-control sensors to the 

global monitoring statistic, thereby causing an undesired delay in the detection of the mean 

shift. Moreover, 𝑟𝑟 ≤ |𝜔𝜔|, where | ∗ | denotes the cardinality of a set. The ideal choice for 

𝑟𝑟  would be the total number of variables associated with the faults that are of interest for 

detection, also referred to as the root causes. However, this is usually unknown unless it 

can be provided from engineering knowledge. In the case that it is unknown, choosing a 

small value of 𝑟𝑟 has been shown to be robust to various fault types (Mei 2010). 

• Setting UCL: The 𝑈𝑈𝑈𝑈𝑈𝑈 is the threshold that determines when to stop the monitoring 

procedure and alert the detection of a change. The value of 𝑈𝑈𝑈𝑈𝑈𝑈 is related to the pre-scribed 

in-control ARL of the monitoring scheme. The practitioner can determine the optimal 𝑈𝑈𝑈𝑈𝑈𝑈 

value from sufficiently large in-control measurements or via Monte Carlo simulation and 

bootstrap techniques (Efron and Tibshirani 1994, Chatterjee and Qiu 2009).  

• Setting 𝛼𝛼: The tuning parameter 𝛼𝛼 ∈ (0,1) is a very crucial parameter that essentially 

determines the trade-off between how sporadic the behavior of the algorithm is when the 

process is in-control and how fast it converges to the faulty sensors when the process is 

out-of-control. To illustrate this further, as 𝛼𝛼 approaches 0, the local statistic compensation 

provided to variable  𝑘𝑘 ∈ 𝜓𝜓 will exceed that of variable 𝑘𝑘 ∈ 𝜔𝜔. While this is not an issue 

when the process is in-control, the algorithm will not be able to converge to a unique set 𝜔𝜔 

when the process goes out-of-control, as there will always be a variable in 𝜓𝜓 with a larger 

local statistic. On the other extreme, if 𝛼𝛼 approaches 1, variables belonging to set 𝜓𝜓 will 

receive almost no compensation causing the sensor assignment of the algorithm to be static 

which is clearly undesired.  

To narrow down the choice of α we can initially try to find tighter bounds. From the proof 

of properties 1 and 2 of our CDS algorithm, the compensation requires δ <

Φ−1(1− α 2⁄ ) < |𝛿𝛿∗|. Here, 𝛿𝛿∗ is the true mean when the process goes out of control. 

Generally speaking, 𝛿𝛿∗ is unknown and this makes it challenging to get an upper bound.  
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In order to obtain an appropriate value for α, we simulate the monitoring procedure 

iteratively with a binary search over the range of α. The criteria for terminating the search 

is when the percent decrease in standard deviation (denoted by 𝜐𝜐) of the number of times 

(denoted by 𝜂𝜂) that each variable is assigned to set 𝜔𝜔 is less than some predefined value 𝜁𝜁. 

The details of this procedure are outlined in algorithm 3. The intuition is to determine a 

choice of α that provides minimum deviation between sensor sampling frequencies while 

maintaining the pre-specified ARL. 

Algorithm 3: Choosing the value of α 

 for 𝑡𝑡 = 0, set αt = �2
[1 −Φ(|𝛿𝛿∗|)],   if 𝛿𝛿∗ is known

2[1 −Φ(2𝛿𝛿)], o. w                      

                       𝜐𝜐𝑡𝑡 = Μ, where Μ is sufficiently large 
 for (𝑖𝑖 = 1: 𝐼𝐼), (𝐼𝐼: Maximum number of iterations) 
1 Generate 𝑁𝑁 instances of 𝑛𝑛 in-control observation for 

all sensors 
2 Run algorithm (1) for each instance 𝑗𝑗 calculating 𝜂𝜂𝑡𝑡,𝑗𝑗  

and 𝜐𝜐𝑡𝑡,𝑗𝑗 = 𝑉𝑉𝑉𝑉𝑉𝑉[𝜂𝜂𝑡𝑡,𝑗𝑗] 
3 Let 𝜐𝜐𝑡𝑡 = 𝐸𝐸[𝜐𝜐𝑡𝑡,𝑗𝑗] 
4 If |𝜐𝜐𝑡𝑡 − 𝜐𝜐𝑡𝑡−1| 𝜐𝜐𝑡𝑡−1⁄ < 𝜁𝜁 ; break loop 

5 set αt = �αt 2⁄ ,       𝜐𝜐𝑡𝑡 < 𝜐𝜐𝑡𝑡−1   
3αt 2⁄ ,    𝑜𝑜.𝑤𝑤               

 End 

3.3 Estimating the Precision Matrix 

The acquisition of the inverse covariance matrix, also referred to as the precision matrix 

(Hsieh et al. 2011), is essential for effectively implementing our proposed CDS algorithm. While 

we assume in our method that the precision matrix is readily available, that is rarely the case in 

practice. This section highlights two approaches in which we can reasonably obtain it. In practice, 

the precision matrix can be either learned from historical training data or alternatively imposed by 

the domain knowledge. The first subsection 3.3.1 provides a brief literature review of methods to 

empirically obtain an estimate of the precision matrix. While the second subsection 3.3.2 discusses 

the latter approach of imposing the matrix by leveraging domain knowledge.   

3.3.1 Learning the covariance structure from historical data 
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The estimation of the precision matrix in high dimension is a nontrivial task that has been 

an area of interest for many researchers in the past years. In the literature, it is especially used to 

provide information on the interrelations between variables in graphical models (Scheinberg et al. 

2010). 

A sparse representation of the inverse covariance matrix is desirable in high dimensional 

settings, due to the advantages that sparsity offers. When the number of observations is limited, as 

is the case in many modern high-dimensional statistical problems, sparsity promotes robustness to 

the estimation process, which translates well to the future observations (Duchi et al. 2012). 

Moreover, inducing sparsity functions regularize and enhance interpretability and counter 

overfitting (Scheinberg et al. 2010). 

Methods to estimate the precision matrix look into solving the following optimization 

problem, its dual or some variation of it:  

 log det 𝜃𝜃 − 𝑡𝑡𝑡𝑡(𝑆𝑆𝑆𝑆) − 𝜌𝜌|𝜃𝜃|1, (13) 

where 𝜃𝜃 = 𝛴𝛴−1, and 𝑆𝑆 is the empirical covariance matrix. 

The objective function in (13) is a convex problem that can be solved with interior point 

methods in 𝑂𝑂�𝑝𝑝6 log (1 𝜀𝜀⁄ )�, however this becomes infeasible for even moderate 𝑝𝑝. Banerjee et 

al. (2008) used block coordinate decent with a cost of 𝑂𝑂(𝑝𝑝4) with their proposed algorithm 

COVSEL. By solving iterative LASSO problems, the graphical LASSO algorithm proposed by 

Friedman et al. (2008) manages to reduce the computation complexity to 𝑂𝑂(𝑝𝑝3). The greedy 

gradient ascent method and alternating linearization methods (Scheinberg and Rish 2009, 

Scheinberg et al. 2010), as well as the projected subgradient method developed by Duchi et al. 

(2012) all claim to reduce the complexity to 𝑂𝑂(𝑝𝑝2). The second order algorithm QUIC proposed 

by Hsieh et al. (2011) solves iterative quadratic approximations that has a reduced cost of 𝑂𝑂(𝑝𝑝) to 

find a Newton direction. 

3.3.2 Imposing the covariance structure 

There are several domains in which prior knowledge of the system being monitored can be 

used to extract some process characteristics that can help bypass the estimation of the inverse 
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covariance matrix and alternatively imposing one. A prominent example of such an application is 

when the data is acquired in the form of images.  

If we regard each pixel of an image to be a variable for monitoring purposes, then it is 

reasonable to assume that the value of any pixel is independent of other pixels given its 

neighborhood. This assumption can be translated to a precision matrix in which the entries 

corresponding to two pixels that are not within a certain pre-specified proximity is set to zero. This 

level of proximity represents the closeness of the values of nearby pixels. Naturally, different areas 

of an image can have a different level that is suited to the correlation of the pixels in set area. This 

type of structure imposition will be demonstrated in the solar flare case study discussed in 

subsection 5.1. Furthermore, the case study explores the sensitivity of the methodology to the 

choice of imposition since it may be subjective. 

We note that the same estimated or imposed covariance matrix will be used in both the in-

control and out-of-control phases. This assumption is suitable for systems in which the occurring 

faults are not expected to change the way sensors relate to each other. For example, in a 

manufacturing process in which both temperature and pressure are monitored, an occurring fault 

is not likely to change the fact that pressure will increase as the temperature rises. Moreover, in 

the case of images, an occurring fault is also not likely to alter the dependency between pixels 

within the same proximity. However, for systems in which the faults are expected to change how 

the observable variables relate, this assumption is restrictive and may significantly affect the 

performance of the method. 

4. SIMULATIONS 

This section serves as an evaluation for the performance of our proposed CDS algorithm. 

We compare the performance to two state-of-the-art algorithms, TRAS (Liu et al. 2015) and Top-

r (Mei 2010). It is very important to note that the Top-r method assumes no limitations in the 

number of variables that can be observed and thereby has full access to all raw sensors or data 

streams. We include it in the comparison to illustrate how competitive our proposed method is, 

even when compared to those without sampling limitations. 
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4.1 Data Generation 

In our simulations, the data is generated using the following generative model: 

 𝑋𝑋𝑡𝑡 = 𝐴𝐴𝑍𝑍𝑡𝑡 + 𝜀𝜀𝑡𝑡, (14) 

where the observed variables at time 𝑡𝑡 are 𝑋𝑋𝑡𝑡 ∈ 𝑅𝑅𝑝𝑝, latent variables 𝑍𝑍𝑡𝑡 ∈ 𝑅𝑅𝑞𝑞 following a 

multivariate normal distribution 𝑀𝑀𝑀𝑀(0, 𝐼𝐼), and white noise 𝜀𝜀𝑡𝑡 ∈ 𝑅𝑅𝑝𝑝 following 𝑁𝑁(0,𝜎𝜎𝜀𝜀𝐼𝐼). Matrix 

𝐴𝐴 ∈ 𝑅𝑅𝑝𝑝×𝑞𝑞 that maps the latent variables into the domain of the observed variables. Hence, the 

observed variables follow a multivariate normal distribution as well with 𝑀𝑀𝑀𝑀(0,𝐴𝐴𝐴𝐴𝑇𝑇 + 𝜎𝜎𝜀𝜀𝐼𝐼). 

In the generative model described above, the transformation matrix 𝐴𝐴 controls the sparsity 

in the covariance of the observed variables 𝑋𝑋𝑡𝑡. If the matrix 𝐴𝐴 is block diagonal, such that each 

block is of size 𝑝𝑝𝑖𝑖 × 𝑞𝑞𝑖𝑖 with ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝 and ∑ 𝑞𝑞𝑖𝑖𝑖𝑖 = 𝑞𝑞, then the covariance matrix of the observed 

variables 𝑋𝑋𝑡𝑡 will also be block diagonal with blocks of sizes 𝑝𝑝𝑖𝑖 × 𝑝𝑝𝑖𝑖. Therefore, as we decrease the 

block size in the transformation matrix 𝐴𝐴, we induce a higher level of sparsity in the observed 

variables 𝑋𝑋𝑡𝑡. In our simulations, we chose 𝑝𝑝 = 1500 and 𝑞𝑞 = 150. The blocks in the 

transformation matrix are of size 𝑝𝑝𝑖𝑖 × 𝑞𝑞𝑖𝑖 = 100 × 10 for all 𝑖𝑖, and each block is a random matrix 

whose entries are i.i.d. Uniform(-1,1) random variables. 

4.2 Simulation Experiments and Results 

We set the parameters of the experiment as follows. The control limits were chosen to 

achieve an in-control ARL of 200. The mean shifts (𝛿𝛿 = 0.25,0.5,1,2,4) were introduced in a 

single block of latent variables. Only 150 variables from the full observations 𝑋𝑋𝑡𝑡 could be obtained 

at any given time (i.e 𝑚𝑚 = 150). Out of the 150 available observations, the test statistics were 

constructed using 𝑟𝑟 = 15 variables. The confidence size for compensations was set to 𝛼𝛼 = 0.27. 

We conducted the simulated experiments with the varying shift magnitude that were 

replicated 1000 times. The experiments were run on MATLAB R2019 on a Windows 10 operating 

system with AMD Ryzen 7 1700 eight-core 3.0 GHz processors and 16 GB RAM. The average 

computational time for each iteration of algorithm 2 was 0.036 seconds, which is adequate for 

many real production systems. 
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Table 2 Performance evaluations of the CDS algorithm under different shift magnitudes 
compared to benchmark techniques (Top-r and TRAS) 

 

Shift size 

In-control ARL (standard deviation) Out-of-control ARL (standard deviation) 

Top-r TRAS CDS Top-r TRAS CDS 

𝜹𝜹 = 𝟎𝟎.𝟐𝟐𝟐𝟐 214(210) 222(186) 220(182) 56(23) 74(42) 51(31) 

𝜹𝜹 = 𝟎𝟎.𝟓𝟓 212(189) 226(172) 223(180) 24(14) 50(31) 34(21) 

𝜹𝜹 = 𝟏𝟏 201(175) 205(181) 210(172) 11(5) 17(8) 12(7) 

𝜹𝜹 = 𝟐𝟐 207(182) 210(188) 197(210) 8(2) 8(3) 5(2) 

𝜹𝜹 = 𝟒𝟒 221(193) 220(213) 210(185) 1 1 1 

 

Tables 2 demonstrates that the CDS algorithm consistently outperforms the TRAS 

algorithm by an average 42% reduction in detection delay. Moreover, it is interesting to compare 

our proposed method to the Top-r procedure, which assumes no limitations on data acquisition. 

Although it may be expected that it would be better than our proposed CDS procedure due to the 

full visibility, the detection delay of CDS within 3.5% from the Top-r and can even surpasses it. 

This can be attributed to the global monitoring statistic of our proposed CDS method, which 

considers the correlation of the data streams rather than the independence assumption of the other 

two competing methods. 

5. CASE STUDY 

This section presents a study on two real datasets to showcase the capability of our adaptive 

monitoring procedure in practical scenarios. The first subsection 5.1 illustrates how the correlation 

based adaptive method can achieve high performance under limited transmission capacity by 

leveraging partial images obtained from video recording of solar flare occurrences. The second 

subsection 5.2 demonstrates how adaptive sampling can be utilized to monitor in-line Raman 

spectroscopy for CNTs manufacturing. 

5.1 Solar flare detection 



25 

The detection of solar flares via satellite imaging is an example of a monitoring process 

that generates high dimensional data in which the occurrence of solar flares is regarded as the 

change (defect). The solar flare phenomenon, a result of various dynamical processes in the solar 

atmosphere, is a sudden brightening that can last from 1-15 minutes (Parker 1963). The energy 

released from this phenomenon can interfere with radio communications by disturbing Earth’s 

ionosphere (Augusto et al. 2011). This serves as motivation to detect these flares upon onset with 

minimal delay.  

Solar flare images are captured and generated in high volume at each second during the 

satellite’s recording. Modern solar flare imaging instruments can acquire images at a frame rate 

up to 25 frames per second with a memory capacity of 16TB. When continuous observation of the 

solar disk is viable and recording at a frame rate of 25 s-1, around 8TB of data could be acquired 

in a day. Due to the enormous amount of data and relatively limited memory of the imaging 

instruments, only one data set every 1 to 5 seconds can be archived and the rest is eliminated (Ishii 

et al. 2013). While it is beneficial to use all the captured frames to rapidly detect the transient (1-

15 min) solar flares, transmission of the enormous amount of data is a challenge. Moreover, 

processing the large data with methodologies for image change detection such as (Yan et al. 2018) 

may not be suitable for detecting solar flares in real time. Such methods analyze the full data 

streams, which likely exceed the transmission and processing capabilities during online 

monitoring. An adaptive sampling technique that can selectively transmit partial frames not only 

reduces the amount of data but may also preserve information relevant to flare detection by not 

eliminating whole frames intermittently.  

The solar flare dataset used in this study is publicly accessible in video format at 

http://nislab.ee.duke.edu/MOUSSE/index.html. The data is collected from satellite images that are 

taken at very high frequencies. Each video contains 300 frames, and at each frame is of size 

232 × 292 pixels resulting in a total dimension of 67744 pixels. This is a very high dimensional 

dataset to process, especially when the number of available observations is relatively small. There 

are two clear occurrences of solar flares that are visible at frames t=187~202 and t=216~268, 

respectively. 
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Pre-processing of the raw data before implementing our proposed methodology is required 

due to the varied intensities of the pixels of original images. The time dependency of the raw pixels 

results in a background that is not suitable for directly using CUSUM charts for change detection.  

Thus the pre-processing is needed to address (i) the autocorrelation between successive frames by 

removing the background and (ii) the normalization of pixels to remove the effect of varying 

intensities. We accomplish these tasks by differencing the data with a moving average window of 

size 4 in a manner similar to that used by Liu et al. (2015). The processed data 𝑋𝑋′𝑡𝑡 is calculated 

through the relation: 

 
𝑋𝑋′𝑡𝑡 = 𝑋𝑋𝑡𝑡 −

1
4
� 𝑋𝑋𝑡𝑡−𝑖𝑖

4

𝑖𝑖=1
,   for 𝑡𝑡 ≥ 5 

𝑋𝑋′𝑡𝑡 = 𝑋𝑋𝑡𝑡 −
1
𝑡𝑡−1

∑ 𝑋𝑋𝑡𝑡−𝑖𝑖𝑡𝑡
𝑖𝑖=1 , for 2 ≤ 𝑡𝑡 ≤ 4 , and 𝑋𝑋1 = 0. 

 

The remaining data after removing the background was found to be approximately normal, as was 

the case in the study in (Xie et al. 2013). 

Next, we conduct the phase 1 analysis in which we consider the first 100 frames to be 

historical data. This will provide the input parameters of algorithm 2 for the phase 2 analysis. We 

set 𝛿𝛿 = 1 and 𝛼𝛼 = 0.27 via algorithm 3, which corresponds to Δ = 0.1. It should be noted that 

several manipulations of the previous parameters also yield similar results to the ones chosen here. 

We further assume that the number of pixels that can be transmitted for analysis at any acquisition 

time to be 1000 out of the available 67744 pixels in a full frame (image) of the video. In other 

words, the parameter 𝑚𝑚 is equal to 1000, while we set 𝑟𝑟 = 40. Moreover, we set the UCL such 

that the false alarm rate is 0.0004 as was proposed by Liu et al. (2015). This was achieved via 

bootstrapping the first 100 frames with replacement.  

It remains to determine the spatial covariance structure in which we opt to choose the 

imposition approach discussed in subsection 3.3.2 to be exponentially decaying with radius of 20 

pixels. This is typically appropriate for images in general and particularly for images of solar flares, 

which often occur in a local area. We later discuss the sensitivity of the performance to this 

imposition. This specific covariance imposition is demonstrated by Figure 1, in which three plots 

illustrate the imposed covariance structure over the three different pixels (17107, 34214, 51321). 

For example, figure 1(b) is an image that is obtained when the 34,214th row/column vector of the 
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67744×67744 pixels covariance matrix is reshaped into a 232×292 matrix, which corresponds to 

the dimensions of a video frame. This serves to illustrate that any given pixel is only correlated 

with other pixels in its proximity. 

Figure 1 (a), (b) and (c) illustrate the imposed covariance structure over the three different pixels. 

Given the determined input parameters, we can now start the phase 2 analysis for online 

monitoring the remaining 200 frames sequentially by implementing our proposed CDS procedure 

in algorithm 2 to the pre-processed 𝑋𝑋′𝑡𝑡  that remove the background based on a moving average 

window of size 4. In Figures 2 and 3, the images in (a) show the original frames from the raw 

video with the solar flare slightly noticeable on a small curvature located in the upper left corner, 

(b) demonstrate the observable variables, that are sampled using the benchmark TRAS method, by 

representing them with white pixels, and (c) illustrate the dynamic sampling results from our 

proposed CDS method. 

Frame 186 is approximately the frame that precedes the first solar flare occurrence. Figure 

2 shows that both methods behave in a random fashion, which is desirable since the process is 

essentially still in control (i.e. a flare has yet to occur). This can also be seen from the images at 

frame 215, before the second flare, which also serves to demonstrate the capability of our CDS 

algorithm to return to the random behavior after the end of the first flare. 

Frame 198 represents the moment when the solar flare is the brightest. Figure 3 illustrates 

the sampled pixels at this frame as well as frame 230, when the second flare is brightest. Our 

    

(a) (b) (c)  
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proposed CDS algorithm covers the flare area completely in both occasions. On the other hand, 

they are only partially covered when using methods that do not consider the correlation structure. 

To demonstrate the capability to localize faster than the competing TRAS algorithm, we 

provide a side-by-side comparison of the sampled variables (white pixels) using the two methods 

before and after the detection of a flare. Figure 4 (a, b) shows the sampled pixels right before and 

after the detection of the flare using the benchmark TRAS algorithm at frames 194 and 195, 

respectively. Figure 4 (c, d) shows the sampled pixels right before and after detection by the CDS 

algorithm at frames 190 and 191, respectively. The ability of the CDS algorithm to outperform the 

TRAS algorithm, with regards to detection delay, can be attributed to the significantly faster 

localization. This can be clearly observed from the instantaneous localization within a single 

frame. 

With only 1.5% pixels available from the 67744 pixels per frame, our proposed algorithm 

can detect the flare at frame 191; only 4 frames after its onset at frame 187. Liu et al. (2015) 

reported the detection of the change at frame 190 when 2000 pixels were observed at any time. 

While as shown in the figure, this performance deteriorates to frame 195 when the amount of pixels 

is cut to 1000. Our proposed CDS algorithm with only half of the resources can thus still compete 

with that performance due to the superior localization strategies. 

Figure 5 plots the global monitoring statistic of the proposed CDS algorithm from frame 

100 to the end of the captured video at frame 300. For comparison, Figure 5 (b) illustrates the 

monitoring statistic obtained from the competing TRAS algorithm. The first 100 frames were 

considered a training sample and were used to obtain the control limits using a bootstrap procedure. 

The control limits for both CDS and TRAS algorithms were set to a pre-specified in-control ARL 

of 2500 were determined to be 970 and 950, respectively. The occurrence of the second flare was 

very close to the first and therefore Figure 5 only shows the monitoring statistic crossing the 

threshold once. 

This is because the 14 frame difference between the end of the first flare and the beginning of the 

second is insufficient to reset the declining statistic. In such scenarios, the statistic can be simply 

reset upon resolving the preceding out of control occurrence. In this study, the monitoring statistic 

was reset at frame 203 after the end of the first flare. 
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Frame 
186 

   

Frame 
215 

   
 (a) (b) (c) 

Figure 2 Monitoring frames before the two flares: (a) frame capture from video; (b) sampled 
pixels from the TRAS algorithm; (c) sampled pixels from the proposed CDS algorithm 

Frame 
198 

   

Frame 
230 

   
 (a) (b) (c) 

Figure 3 Monitoring at the solar flares peak: (a) frame capture from video when the flare is the 
brightest; (b) sampling from TRAS; (c) sampling from CDS. 



30 

    
(a) (b) (c) (d) 

Figure 4 Detection of the first flare: (a), (b) sampling from TRAS right before and after 
detection; (c), (d) sampling from CDS right before and after detection 
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 Frame  Frame 
 (a) Proposed CDS algorithm performance  (b) TRAS algorithm performance 

Figure 5 Monitoring statistics by respectively implementing the CDS/TRAS algorithms with the 

detection frames illustrated by the data cursors 

 

Similarly, the CDS algorithm is capable of detecting the second flare at frame 219, only 3 

frames upon onset. Meanwhile, the competing TRAS algorithm lags by 7 frames, and detects the 

flare at frame 223. The detection in 3 frames not only beats the TRAS algorithm under the same 

limitations, but also outperforms the reported detection time of frame 221 reported in (Liu et al. 

2015), which had double the visibility. 

Moreover, let us discuss the sensitivity of the performance of the CDS method to the 

imposed precision matrix. Initially, we impose the precision matrix with an exponential decay with 



31 

a radius size of 20 pixels. We aim to evaluate the change in performance as the radius size varies 

from 1 pixel to 100 pixels. It should be noted that a radius of 1 pixel results in the imposition of 

an identity matrix, which essentially means that we assume that the pixels are independent. So, we 

can expect that the performance of the CDS method will converge to the benchmark TRAS method 

as the radius goes to 1. Table 3 reports the resulting average detection delays and standard 

deviations from an analysis with 100 iterations. 

Table 3 Average detection delays (standard deviations) of the CDS method under imposed 
precision matrices with different radius sizes with TRAS as the benchmark 

  Radius size 
  1 10 25 50 100 

Fi
rs

t 
Fl

ar
e CDS 7.88(1.47) 5.72(0.46) 4.17(0.13) 5.85(0.83) 7.24(1.26) 

TRAS 7.93(1.52) - - - - 

Se
co

nd
 

Fl
ar

e CDS 6.75(1.19) 4.66(0.37) 3.58(0.09) 4.90(0.99) 5.86(1.10) 

TRAS 6.81(1.15) - - - - 

The results from the sensitivity analysis in Table 3 indicate that a small deviation from the 

initial choice of a 20-pixel radius yield similar results. Moreover, when the radius is reduced to 1, 

the performance of CDS is statistically equivalent to that of the benchmark TRAS method, which 

is to be expected from the proposition in subsection 3.1.1. It is important to note that the standard 

deviation of the detection delay first decreases as the radius size increases from 1 to 25, but then 

increases as the radius size increases from 25 to 100. This can be attributed to the fact that the 

radius size controls the tradeoff between exploration and exploitation, as a too small or too large 

radius size results in a slower localization around the fault area and yields an increased variation. 

In particular, our proposed CDS method will heavily favor exploration over exploitation when the 

radius is size is very small, whereas a very large radius does the opposite.  

Finally, we need to point out the computational challenges of online monitoring in Phase 

2 analysis of solar flare when using our proposed CDS algorithm. The main challenge is to find 

the suitable choice of the control limit, 𝑈𝑈𝑈𝑈𝑈𝑈.  It took our personal laptop (Windows 10 Laptop with 

Intel i7-4700MQ CPU 2.40 GHz and MATLAB R2018b) about 2 hours to find the control limit 

that satisfies the ARL to false alarm constraint of 2500 by bisection search method based on 2500 



32 

Monte Carlo runs. If one wants to increase the ARL to false alarm constraint, then it will become 

more time-consuming. The good news is that after the value of 𝑈𝑈𝑈𝑈𝑈𝑈 is determined, then it is 

straightforward to implement our proposed CDS algorithm when online monitoring solar flare 

frames. It took our personal laptop 12.6 seconds to online monitor the 200 testing frames and 

generate the monitoring statistics in Figure 5.  This is 20 times faster than the existing method of 

archiving and analyzing one full data every 1 to 5 seconds (Ishii et al. 2013), and thus our proposed 

CDS algorithm is efficient from both computational and statistical viewpoints.   

5.2 Fault detection of in-line Raman spectroscopy 

In this subsection we evaluate the performance of our methodology in addressing the 

challenges of monitoring the production process of continuous carbon nanotubes (CNTs) 

buckypaper using inline Raman spectroscopy. The monitoring of the manufacturing process of 

CNTs buckypaper manufacturing in real time using in-line Raman spectroscopy has gained much 

interest recently (Yue et al. 2018). The ability to monitor this process in real time is critical to scale 

up while meeting high quality standards. However, it is challenging to detect changes in the data 

collected from this procedure since there are several sources for variation in Raman spectrums.  

One source of variation is related to the scanning duration when obtaining the signals. 

Characterization of an in-line Raman spectrum may take multiple scans with a duration of ten 

seconds to several minutes. The longer the scanning duration the higher signal to noise (S/N) ratio, 

due to the rapidly moving samples. Figure 6 illustrates acquired Raman spectrums from two 

operating conditions (red, blue), in which the blue signals are obtained from shorter scanning 

durations and lower intensity at the peaks.  

The higher S/N ratio, such as that of the red signals, is desirable for process monitoring. 

However, it comes at a cost of longer scanning durations which may delay fault detection. On the 

other hand, the rapidly obtained signals from shorter scanning durations may mask faults with the 

excessive noise. In this case, it may be beneficial to save scanning time while retaining a higher 

S/N ratio by acquiring partial signals. Profile monitoring methods in the literature typically 

approach this problem from a denoising perspective (Yue et al. 2018). Here we want to 

demonstrate that our proposed CDS method provides a useful alternative approach to this problem 

from the adaptive sampling perspective.  
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In a similar way to the first study, we begin the phase 1 analysis which allows us to  determine the 

input parameters of algorithm 2 for the phase 2 analysis. The data set consists of 200 in-control 

profiles and 50 out-of-control instances, where the dimension of each profile is 𝑝𝑝 = 512. The first 

200 in-control profiles are used as historical data, which is used for normalization  

and setting the input parameters. In order to obtain signals with a high S/N ratio, approximately  

10% of the Raman spectra (𝑚𝑚 = 50) will be measured at any given time. For each method, a 

threshold that satisfies an in-control average run length (ARL) of 500 is determined by 

bootstrapping the 200 in-control samples. The remaining parameters are set to the following: 𝑟𝑟 =

25, 𝛿𝛿 = 1 and the compensation significance level was found to be 𝛼𝛼 = 0.23 (Δ = 0.21) via 

algorithm 3. Figure 6 illustrates the mean of out of control signals, where it can be noted that the 

shift approximately within the index interval [95,115] of the Raman spectrum. Finally, the 

covariance matrix is estimated from the first 100 in-control data using the method QUIC (Hsieh et 

al. 2011), which is the precision matrix estimation technique discussed in subsection 3.3.1. 

This study compares our CDS procedure against the same benchmark methods in the other 

studies; TRAS and Top-r. The Top-r method requires full observations and therefore will be 

applied to data with low S/N ratios. While the two adaptive monitoring schemes (CDS, TRAS) 

will be implemented on partial data with high S/N ratio as illustrated by the red profiles of Figure 

6 (left). 

The results from implementing the different monitoring schemes are presented in Figure 7. 

Our CDS procedure outperforms the other benchmark methods and signals an alarm at time 209, 

which is 9 epochs upon failure onset. Since TRAS does not take into account the correlation 

structure between variables, it is unable to quickly localize at the fault region. This results in a 

detection delay of 18 epochs. Finally, the Top-r procedure achieves the lowest performance among 

the three with a detection delay of 21 epochs, even though it was implemented on complete data. 

This is because complete data collected at a high frequency comes at the cost of low S/N ratios as 

we have discussed in the introduction of this study. Hence, we can conclude from this study that 

there are practical scenarios where it may be beneficial to sacrifice sensor visibility in exchange 

for better quality data. This emphasizes the importance of making educated decisions on which 

sensors to acquire in real time. 
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Figure 6. Left: illustration of the Raman spectra data. Right: illustration of out-of-control Raman 
spectrum mean shift 

 

Figure 7 Monitoring statistics for in-line Raman spectra 

 

6. CONCLUSION 

The development of sensing technologies that generate high dimensional data has offered 

unprecedented process monitoring capabilities. However, with this advancement rose new 

challenges that require novel monitoring schemes in limited resources due to sensor availability 

for deployment, transmission capacity and computational power. Hence, the application of multi-

armed bandit algorithms to the SPC context is useful to tackle the issue of efficient monitoring 

under the limited resources environments. 

This paper proposes a novel correlation-based dynamic sampling strategy that constructs a 

dynamic compensation factor to unobserved data streams. This is performed by using the idea of 
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celebrated upper confidence bound (UAB) algorithm from the multi-armed bandit (MAB) 

problem, as well as by utilizing the correlation structure between the observed and unobserved 

streams. A novel integration of the Top-r procedure with multivariate CUSUM is developed to 

construct the global monitoring statistic used for decision making related to the state of the process. 

This results in a strategy that is effective in monitoring high dimensional data streams with partial 

observations, which consequently reduces the computational cost at the data fusion center. 

Moreover, utilizing the correlation structure embedded in the data streams allows for faster 

localization at the fault source while maintaining a random sampling behavior when the process is 

in-control, which was illustrated by the two properties of the dynamic sampling behavior. This 

allows this method to be suited for a wide area of applications, such as network processes and 

images as was demonstrated in the solar flare case study. Additionally, it can be implemented in 

advanced industrial manufacturing operations as showcased by the in-line Raman spectroscopy 

case study. 

Note that our proposed CDS algorithm is designed to detect sparse mean shifts of high-

dimensional data in the resource limited environments under the assumption that the occurrence 

of faults did not influence the relation between system variables. In many real-world applications, 

faults may alter the dependencies between system variables, and it will be interesting to develop 

algorithms that are able to effectively detect the changes on the spatial correlation structure in the 

resource limited environments. This remains an open problem, as it is unclear how to effectively 

estimate the post-change spatial correlation structure of high-dimensional data using partially 

observable data. Hopefully this paper can stimulate further research on SPC for high-dimensional 

data in the resource limited environments. 
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APPENDIX 

In this Appendix, A.1 and A.2 provide the proofs for properties 1 and 2 of the proposed 

CDS algorithm, which were discussed in subsection 3.1.4. The following Lemma 1, which 

essentially follows from the weak law of large numbers, will be used in the proofs in A.1 and A.2. 

Lemma 1: For an independent and identically sequence of a bivariate normal random 

variables 𝑥𝑥𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑡𝑡, such that 𝐸𝐸[𝑥𝑥] = 𝜇𝜇𝑥𝑥 > 𝜇𝜇𝑦𝑦 = 𝐸𝐸[𝑦𝑦]: 

lim
𝑇𝑇→∞

𝑃𝑃�� 𝑥𝑥𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑡𝑡0

> �𝑦𝑦𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑡𝑡0

� → 1 

Proof of lemma: Define the random variable 𝑧𝑧𝑡𝑡 = ∑ 𝑥𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=𝑡𝑡0 − ∑ 𝑦𝑦𝑡𝑡𝑇𝑇

𝑡𝑡=𝑡𝑡0 , then 𝑧𝑧𝑡𝑡 is a 

Gaussian random walk. And we have: 
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lim
𝑇𝑇→∞

𝑃𝑃�� 𝑥𝑥𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑡𝑡0

> �𝑦𝑦𝑡𝑡

𝑇𝑇

𝑡𝑡=𝑡𝑡0

� = lim
𝑇𝑇→∞

𝑃𝑃(𝑧𝑧𝑇𝑇 > 0) 

By assumption of 𝜇𝜇𝑥𝑥 > 𝜇𝜇𝑦𝑦, we conclude that 𝑧𝑧𝑡𝑡 is a random walk with a positive drift 

𝐸𝐸(𝑥𝑥𝑡𝑡 − 𝑦𝑦𝑡𝑡) = 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 > 0, then it follows that: 

lim
𝑇𝑇→∞

(𝑧𝑧𝑇𝑇) = ∞ 

and hence,  

lim
𝑇𝑇→∞

𝑃𝑃(𝑧𝑧𝑇𝑇 > 0) = 1∎ 

A.1  Proof of Property 1 

At the high-level, the proof of property 1 involves two subcases. When there are no 

changes, the local statistics at sensors with infinitely many time observations will go back to 0, 

whereas the local statistics at those local sensors without any observations and not correlated to 

observed sensors will be linearly increasing. Hence, we will sample from those non-observed 

sensors eventually. The second case is for when there is an insignificant change, where the linear 

increase of the unobserved sensors will still outrun the increase of the observed counterparts. 

Since our sensor sampling procedure (algorithm 1) starts with picking elements of 𝜔𝜔𝑡𝑡 

according to the max
𝑖𝑖
𝐶𝐶𝑖𝑖,𝑡𝑡, it suffices to show that for any unobserved variable 𝑥𝑥𝑘𝑘′ ∉ 𝜔𝜔𝑡𝑡0 there 

exists a time 𝑡𝑡 such that 𝐶𝐶𝑘𝑘′,𝑡𝑡 > max
𝑘𝑘

𝐶𝐶𝑘𝑘,𝑡𝑡. If we take any unobserved variable 𝑥𝑥𝑘𝑘′ ∉ 𝜔𝜔𝑡𝑡0 that is also 

not in the neighborhood of 𝜔𝜔𝑡𝑡0 �i. e. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑥𝑥𝑘𝑘′ , 𝑥𝑥𝑘𝑘] = 0 for all 𝑥𝑥𝑘𝑘 ∈ 𝜔𝜔𝑡𝑡0�, the increments of the 

positive and negative CUSUM will depend on  𝑈𝑈𝑘𝑘′,𝑡𝑡 = 𝐿𝐿𝑘𝑘′,𝑡𝑡 = Φ(1 − 𝛼𝛼 2⁄ ). Then without loss of 

generality we can only consider the positive CUSUM �𝐶𝐶𝑘𝑘′
+ �. Hence, property 1 can be proven by 

comparing the increments of the CUSUM statistics from elements in 𝐶𝐶𝑘𝑘 to those of 𝐶𝐶𝑘𝑘′, and 

showing that there exists a time 𝑡𝑡 such that 𝐶𝐶𝑘𝑘′,𝑡𝑡 > max
𝑘𝑘

𝐶𝐶𝑘𝑘,𝑡𝑡. It suffices to show that there exists 𝑇𝑇 

such that when 𝛿𝛿 > 0: 

� �𝛿𝛿𝑈𝑈𝑘𝑘′,𝑡𝑡 −
𝛿𝛿2

2
�

𝑇𝑇

𝑡𝑡=𝑡𝑡0
> � �𝛿𝛿𝑥𝑥𝑘𝑘,𝑡𝑡 −

𝛿𝛿2

2
�

𝑇𝑇

𝑡𝑡=𝑡𝑡0
, 

or equivalently, 
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𝑧𝑧𝑇𝑇 = � �𝑈𝑈𝑘𝑘′,𝑡𝑡 − 𝑥𝑥𝑘𝑘,𝑡𝑡�
𝑇𝑇

𝑡𝑡=𝑡𝑡0
> 0. 

The assumption on |𝐸𝐸[𝑥𝑥𝑘𝑘]| from property 1 can be broken down into two cases. First, we 

consider the case when |𝐸𝐸[𝑥𝑥𝑘𝑘]| <  Φ(1 − 𝛼𝛼 2⁄ ). Since 𝑥𝑥𝑘𝑘′,𝑡𝑡 is not in a neighborhood of 𝑥𝑥𝑘𝑘,𝑡𝑡 ∈ 𝜔𝜔𝑡𝑡0, 

𝐸𝐸[𝑈𝑈𝑘𝑘′] = Φ(1− 𝛼𝛼 2⁄ ). Hence, 𝑧𝑧𝑇𝑇 is a random walk with a positive drift and by Lemma 1: 

𝑃𝑃(𝑧𝑧𝑇𝑇 > 0) → 1 

The second case is when 𝐸𝐸[𝑥𝑥𝑘𝑘] = Φ(1 − 𝛼𝛼 2⁄ ) = 𝐸𝐸[𝑈𝑈𝑘𝑘′]. In this case, 𝑧𝑧𝑡𝑡 becomes a 

Gaussian random walk with no drift. Let 𝐻𝐻 = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑧𝑧𝑡𝑡: 𝑡𝑡 ≥ 1}, then 𝐻𝐻
𝑎𝑎𝑎𝑎
→ −∞ as 𝑡𝑡 → ∞ (Gut 1988). 

Hence, for any two variables 𝑥𝑥𝑘𝑘′,𝑡𝑡 and 𝑥𝑥𝑘𝑘,𝑡𝑡 there exists a time 𝑡𝑡 such that 𝐶𝐶𝑘𝑘′,𝑡𝑡 > 𝐶𝐶𝑘𝑘,𝑡𝑡. ∎ 

A.2  Proof of Property 2 

It suffices to show that increments of significantly out-of-control samples will be greater 

than the compensation given to the unobserved variables outside its neighborhood. Specifically, if 

we define 𝑧𝑧𝑡𝑡′ = ∑ �𝑥𝑥𝑘𝑘,𝑡𝑡 − 𝑈𝑈𝑘𝑘′,𝑡𝑡�,𝑇𝑇
𝑡𝑡=𝑡𝑡0  and |𝐸𝐸[𝑥𝑥𝑘𝑘]| > Φ(1 − 𝛼𝛼 2⁄ ) by the assumption in property 2, 

then 𝑧𝑧𝑡𝑡′ is a random walk positive drift (𝐸𝐸[𝑥𝑥𝑘𝑘] − 𝐸𝐸[𝑈𝑈𝑘𝑘′]). As 𝑡𝑡 → ∞ then 𝑧𝑧𝑡𝑡′ → ∞, this implies that 

there exists time 𝑡𝑡0 such that ∀𝑡𝑡 ≥ 𝑡𝑡0 𝑧𝑧𝑡𝑡′ ≥ 0 and 𝐶𝐶𝑘𝑘′,𝑡𝑡 < 𝐶𝐶𝑘𝑘,𝑡𝑡. ∎ 

It should be noted that the speed of the localization here depends on the drift 

�𝐸𝐸[𝑥𝑥𝑘𝑘] −Φ(1 − 𝛼𝛼 2⁄ )�: the higher the post mean shift (𝐸𝐸[𝑥𝑥𝑘𝑘]) is, the faster it will diverge to ∞, 

which translates to quicker localization. Moreover, this shows that the sampling method will not 

favor a variable outside of the neighborhood. However, that does not mean that it will not explore 

the neighborhood even after it detects a faulty area. This essentially means that our method will 

not necessarily stick to the initial faulty area, but may still explore the surroundings to find an even 

bigger fault. 
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