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ABSTRACT

Effective process monitoring of high-dimensional data streams with embedded spatial
structures has been an arising challenge for environments with limited resources. Utilizing the
spatial structure is key to improve monitoring performance. This article proposes a correlation-
based dynamic sampling technique for change detection. Our method borrows the idea of Upper
Confidence Bound algorithm and uses the correlation structure not only to calculate a global
statistic, but also to infer unobserved sensors from partial observations. Simulation studies and two
case studies on solar flare detection and carbon nanotubes (CNTs) buckypaper process monitoring

are used to validate the effectiveness of our method.
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thresholding; change detection.



1. INTRODUCTION

The ubiquitous use of sensing systems in manufacturing, healthcare, biosurveillance,
network security, and service processes has created data rich environments that have presented
challenges for real-time monitoring and analysis. This is especially true in the environments with
limited resources, whether at the data acquisition level or processing level. For instance, when
low-cost wireless sensor networks are employed for monitoring volcano activity (Pereira et al.
2014), one may want to prolong the lifetime of such networks by turning on only a limited number
of battery-power sensors unless the volcano is active. When using touch-probe coordinate
measuring machines (CMM) to monitor wafer manufacturing processes (Jin et al. 2012), the
current profile measurement schemes are time-consuming. Therefore, it is essential to reduce the
number of samples measured in wafers while still adequately monitoring process quality. Besides
physical devices, the term “sensor” can also be used to denote any sources that generate relevant
information. Moreover, in many real-world data rich environments, we often face resource
constraints in the capacity of acquisition, transmission, analysis, or fusion of data. In
biosurveillance and epidemiology, the Center for Disease Control and Preventions (CDC) has a
limited capacity for drug resistance tests that monitor the resistance status for certain infectious
diseases. Thus, it is crucial to decide how to effectively allocate the resources and choose which
affected patients, sub-populations, or regions to monitor. Hence, in the general context of real-time
or online monitoring high-dimensional data streams in resource constrained environments, it is
important to dynamically sample those informative local data streams while making adequate
online anomaly detection. In particular, in this paper, we investigate two such constrained
environments in the form of case studies: one is to detect solar flares via satellite imaging
processing with limited transmission capacities, and the other is carbon nanotubes (CNTs)
buckypaper process monitoring with limitations immerging from trade-offs between scanning

durations and signal to noise ratios.

There are several recent articles that tackle this problem by introducing an adaptive
sampling scheme that only uses a fraction of the full observation spectrum to make real-time
inferences on the state of a system. Liu et al. (2015) proposed an adaptive sampling strategy with
resource limitations in which data streams are assumed to be normally distributed. Furthermore, a

nonparametric adaptive sampling procedure under limited resources has been proposed by Xian et



al. (2018b). These methods assume that the data streams are spatially independent, which means
that observations collected from different sensors at any given time are independent. Wang et al.
(2018) proposed an adaptive sampling strategy that take a random grid and then uses finer grids
when a hint of a signal occurs based on the weighted average of the likelihood ratio statistics of
the data from itself as well as from its neighborhood, where the spatial information is used to define

the weights. However, it is unclear how to extend to more complicated data models.

In this article, we apply the ideas of the celebrated Upper Confidence Bound (UCB)
algorithm proposed by Lai (1987), Lai and Robbins (1985) in the Multi-Armed Bandit (MAB)
problems to Statistical Process Control (SPC), and develop effective process monitoring of high-
dimensional data streams with embedded spatial structure for environments with limited
resources. In many real-world applications of SPC, the anomalies are often clustered and sparse,
and thus we need to balance the tradeoff between randomly searching for possible anomalous
local data streams or local regions (exploration) and performing focused sampling on local data
streams or local regions near the anomalous regions for quick detection (exploitation). Now the
exploration-exploitation tradeoff has been well-studied in MAB problems, and the key idea of
the celebrated UCB algorithm is to use the upper confidence bound of the parameter estimation
for adaptive sampling. These inspire us to explore the embedded spatial structures of local data
streams/sensors to use the upper confidence bound of the local stream post-change parameter
estimator to develop efficient dynamic sampling methods for online monitoring and SPC. It turns
out that the existing method in Liu et al. (2015) is a special case of our proposed methods for
independent data, and thus is a UCB-type algorithm for SPC. We feel that our combination of
MAB and SPC is novel, and this opens a new research direction in SPC for dynamic sampling of

incomplete high-dimensional data monitoring under resource constrained environments.

We should acknowledge that dynamic sampling strategies in SPC literature usually revolve
around the temporal domain where the objective is mainly to inspect the quality of the product or
service (Montgomery 2009). In such scenarios, the limitation is in the frequency of acquisition
times, which is usually associated with the cost of data acquisition. A common example of the cost
of acquisition is when the quality inspection procedure calls for a destructive test on the parts being
produced. Meanwhile, our sampling strategies are over the spatial domain, and the issue lies in the

capacity of deploying, observing, transmitting, or fusing all the available sensors that are



monitoring the process at any given time. The key concern that we address is how to utilize the
information embedded in the spatial structure of the data streams to improve the effectiveness of
the monitoring procedure. This allows for a more informative and intuitive framework when

dynamically sampling the partition of streams to be observed at any given acquisition period.

A dynamic sampling strategy based on the correlation structure of data streams is
characterized by how it accomplishes the following tasks at every data acquisition time t: (1)
determining the fraction of sensors to be deployed; (2) providing an educated compensation for
unobserved readings of undeployed sensors based on their correlation with measured variables
from deployed sensors; (3) computing local statistics for deployed sensors based on the observed
measurements while using the correlation based compensations for the undeployed ones; (4) fusing

these local statistics into a single global statistic for global-level decision making.

The novelty of our proposed dynamic sampling method lies in exploiting the spatial
correlation structure to provide an upper confidence bound of post-change parameter estimation
and is therefore named Correlation-based Dynamic Sampling (CDS). The procedure is dynamic in
the sampling process of the variables to be observed at each acquisition period, as well as in
providing compensation for the unobserved variables. The dynamic behavior is achieved by
combining the correlation structure with the information obtained from the observed partition of
the data streams. The dynamic compensation we propose is constructed from the upper confidence
bound of the marginal conditional distribution of the unobserved variables given the observed
variables. When a well-structured framework such as multivariate normal distribution is assumed,
the marginal conditional distribution is very well defined to be another Gaussian distribution. The
marginal distribution is tractable even in high dimension when the spatial structure is readily
available. This sensor assignment procedure allows for a pseudo-random sampling strategy when
the process is in-control, as well as fast localization of faulty variables when the process is out-of-
control. We use the term “pseudo-random” here because, although the sampling procedure tends
to select a cluster of variables to be observed at any given time based on the spatial structure, the
clusters themselves are randomly constructed. Furthermore, these clusters are formed from
variables that are correlated. This feature of cluster formation will be illustrated further in the

simulation and case studies.



The remainder of this paper is organized as follows: In Section 2, we provide a brief
literature review relevant to the issue of limited resources, followed by a more detailed review of
adaptive sampling methods in the literature. Next, in Section 3, we discuss in detail our proposed
adaptive sampling strategy for online high-dimensional process monitoring, and also present two
properties pertaining to its sampling behavior depending on the state of the system. Section 4
assesses the performance of our proposed sampling strategy on virtually simulated scenarios,
while Section 5 tests the performance using two case studies involving solar flare detection and
in-line Raman spectroscopy. We conclude our paper with a brief discussion of the key findings

of our proposed monitoring scheme.

2. LITERATURE REVIEW

The following section is split into two further sub-sections. The first (Section 2.1) provides
a brief review of relevant topics that address different aspects of resource limitations from our
problem, whereas the second (Section 2.2) gives a detailed review of closely related procedures
discussed in the literature as well as the renowned UCB algorithm in the classical MAB problem.

This will lay the proper foundation for our subsequent discussions.
2.1 Relevant Topics for Limited Resources

There are two main problems explored in the literature that share some resemblance to our
limited resources process monitoring setting from an application perspective: (i) the optimal design
of sensors in a DSN system and (ii) the theory of searching and tracking targets. Regarding the
first, the objective of a DSN is to find a fixed sensor layout optimized for process monitoring.
However, due to the fixed layout, shifts that occur outside the predefined layout will reduce
detection power, as well as diagnostic capability, as discussed in (Li and Jin 2010, Liu and Shi
2013). Studies in (Mandroli et al. 2006, Ding et al. 2006) provide inclusive reviews of the state-

of-the-art advances in DSNs for enhancement in quality and productivity.

In the second example, the objective of searching and tracking target studies is to obtain
an effective employment of the limited resources available to locate a target object of interest that

is within an unknown location (Frost and Stone 2001, Lim et al. 2006, Zoghi and Kahaei 2010,



Ben-Gal and Kagan 2013). The main assumption of these studies is that there exists a singular

object in the searching space but at some unknown locations.

This article differs from the aforementioned applications in that our objective is to develop
a dynamic monitoring strategy in which the data streams are correlated and are flowing
continuously with the uncertainty that a failure, target, or event may or may not occur to the system.
Furthermore, in its core, our proposed methodology does not assume prior information on the
failure characteristics. Nonetheless, it is also capable of incorporating such information seamlessly

as will be demonstrated in the case studies in Section 5.

2.2 Review of Adaptive Sampling Methodologies

There are several ways of approaching the issue of monitoring a process with limited
resources. The two most forward approaches are (i) random sampling and (ii) choosing a fixed set
of variables to monitor. While both approaches can be effective in certain situations, they both
suffer from not utilizing any information gained during the monitoring procedure. For example,
setting fixed sensors can only detect changes in the sensors selected, but it is rare in practice to
have perfect knowledge about where the fault may occur. On the other hand, while random
sampling might eventually detect a change in a subset of sensors, its detection delay can be large
if the magnitude of the change is not large enough to set an immediate alarm, as the process

switches to monitor a different set of sensors in the next acquisition period.

One of the most relevant and recent research efforts was completed by Liu et al. (2015)
who proposed an adaptive sampling strategy that is effective for the online monitoring of high-
dimensional data streams. Their proposed method was based on a procedure called Top-r
cumulative sum (CUSUM), which was first introduced in (Mei 2010). Although their proposed
Top-r adaptive sampling strategy (TRAS) was shown to be effective for online monitoring of high
dimensional data streams, it is limited to applications where there is no significant embedded
correlation structure in the streams and independence across different data streams can be assumed.

Furthermore, a similar adaptive sampling procedure under limited resources was proposed by Xian



et al. (2018b). Their method is a nonparametric approach that addresses a similar problem under

the independent assumption except when the underlying distribution of data streams is unknown.

The aforementioned proposed algorithms in the literature monitor individual sensors or
local data streams by computing local statistics based on the commonly used cumulative sum
(CUSUM) procedures in statistical process control, and then take advantage of the independence
assumptions across different sensors to construct the global monitoring statistic based on the sum
of a few larger local CUSUM statistics. These methods address the limitation of resources by

assigning a uniform non-informative constant compensation value to all the undeployed sensors.

Wang et al. (2017) proposed an adaptive sampling strategy under the assumption that data
streams are spatially independent, and the occurring faults affect a local cluster of sensors within
a grid. The method requires setting the cluster size, which typically would require former
knowledge of fault patterns. Another study on climate simulation (Xian et al. 2018a) attempts to
address the challenge of dynamically sampling data and deciding which to archive due to memory
limitations. However, this problem is different than ours in the sense that the limitation is not in

acquiring the data, but rather in choosing what is worth keeping.

Next, we provide a brief review on the classical multi-armed bandit problem (MAB), which
includes many useful adaptive/dynamic sampling methodologies. In the simplest case of classical
MAB, one assumes that there are p sensors or arms, and each sensor provides a random reward
from an unknown probability distribution specific to that sensor. The objective is to maximize the
sum of rewards earned through allocating resources to the choice of sensors over time.
Mathematically, the i-th sensor generates i.i.d. observations over time, say, {Xi,l, o, Xits }
Suppose that sensor observations X;, have the common variance g2, but might have different
means for different sensors. At each time step t, one can take observations only from one sensor,
say, the i"(t)-th sensor, and receives the reward 1. = X;+(4),. Then one wants to decide which
sensor to take observation at every time step to maximize the expected overall rewards, E(X.7_, 1¢),

where T is the pre-specified total number of time steps.

The crucial tradeoff one faces at the MAB is between “exploitation” of the sensor that has

the highest mean and “exploration” to get more information about the mean of the other sensors.



An intuitive and appealing policy is to estimate each unknown mean y; by the corresponding
sample mean of each sensor, and then take observations from the sensor that has the largest sample
mean. Unfortunately, such a myopic policy performs poorly, due to the poor exploration of other
sensors. One of the asymptotically optimal MAB policies is the notable Upper Confidence Bound
(UCB) algorithm proposed by Lai (1987), Lai and Robbins (1985). The main idea of the UCB
algorithm is to take observations from the arm having the highest upper confidence bound index,
constructed from the Kullback-Leibler divergence between the estimated distributions of the

sensors. In the setting when the sensor observations are normally distributed, the UCB-Lai

. L= f log(T . = .
algorithm chooses the arm maximizing Xy ;, + o 2198/8 4t each time step t, where X}, ¢, 1s the
, t "k

current observed sample mean from the k-th sensor, t;, is the current number of observations from
the k-th sensor, and o is the standard deviation of sensor observations. There are many
modifications or extensions of the UCB-Lai algorithm, e.g., Auer et al. (2002) proposed a modified
UCB algorithm that does not involve the total sample size T in the setting of normal distributions

with unequal and unknown variances.

Here we extend the classical MAB with two twists: one is the changing environments with
a different reward function that is non-additive over the time domain for the purpose of quick
detection, and the other is to increase the number of sampled sensors from 1 to m > 1 over the
spatial domain. We propose to apply the idea of the UCB to SPC, which leads to a dynamic
compensation value to the unobserved streams or sensors based on the spatial correlation structure
of the data and the information obtained from the observed streams or sensors. In order to highlight
our main ideas, we make a simplified assumption that the correlation structure remains unchanged
and thereby stationary throughout the whole monitoring period, and we focus on detecting the
sparse mean shifts of high-dimensional data with embedded spatial structures in the environments

with limited resources.

3. CORRELATION-BASED DYNAMIC SAMPLING (CDS) STRATEGY

In this section we develop a method for effective monitoring of correlated high-

dimensional data streams under the constraint of resource limitations. In our proposed strategy, we



first construct efficient local statistics for each individual data stream and consequently combine
these local statistics into a single global statistic while utilizing the information embedded in the
correlation structure of the streams. There are two novel ideas in the proposed strategy: (1)
following the MAB algorithm to explore the spatial correlation structure and introduce a dynamic
compensation value for the unobserved variables based on the confidence limit of their parameter
estimates, and (2) deploying sensors to those variables efficiently to collect as much global change

information after adjusting the spatial correlation.

The following subsections will elaborate on the steps of our proposed correlation-based
dynamic sampling (CDS) strategy. Section 3.1 provides a detailed overview of our algorithm.
Next, a detailed discussion of parameter settings is provided in Section 3.1.5. Finally, Section 3.3

discusses options for estimating or imposing the embedded spatial structure of the data streams.

3.1 CDS Methodology Development

In preparation to our discussion, we will first introduce the notations for the variables that
will be used throughout the course of this paper. Suppose that the system to be monitored consists
of p variables P = {1, ..., p} that are observable at any time t. The vector of observed variables at
time t is given by X; = (Xq4,..,Xp¢). Due to limitations in the resources available for
monitoring, only a fraction of this vector is measured in real time. Let m be the maximum number
of variables/sensors that can be measured/deployed at any acquisition time. From the problem
statement, m is a process parameter dictated by the system monitoring capability. This could
translate to the number of sensors available for deployment at each acquisition time, the
transmission capacity, or the computational power at the data fusion center. To facilitate
referencing measured variables at each time t, we introduce two sets w; € { and Y, € W. Here,
Q and W are all possible partitions of the data streams into observed and unobserved sets,
respectively. Thereby, variable X;; € w, if and only if it is measured at time ¢, otherwise it is
assigned to set Y. Hence, the cardinalities of w, and 1, are respectively |w¢| = m and |¢;| =

p—m.



We assume that X; comes from a multivariate normal distribution, in which the mean
vector is 4y and the covariance structure X. The covariance structure plays an important role in our
proposed dynamic sampling procedure. Particularly, the covariance between the unobserved
sensors and the observed ones (denoted by Xy q) is the base of inferences to be made on unobserved
sensors. The in-control mean and covariance are also assumed to be known. While these
parameters are not generally known, they can be estimated from an adequate amount of historical
data. They can also be set to target values defined by the engineering design of the process. Without
loss of generality, we assume that the data has been preprocessed to have mean 0 and standardized
to have a covariance matrix equal to that of the correlation matrix. After some point in time t
during the operation of the monitored system, a change in the mean vector occurs, where a subset
0O of the variables X; will have a non-zero mean. Moreover, we assume that the correlation
structure remains unchanged during this change and thereby stationary throughout the whole
monitoring period. Our objective then becomes to first detect this change with minimum delay
from the onset at 7. Secondly, we need to identify the subset ® with the shifted mean, when the

variables at each given time are partially observable.

There are four components to our proposed method. First, we construct the local statistics
for the deployed sensors based on the observed measurements. Second, we utilize the correlation
between undeployed sensors and deployed ones to determine the local statistics of the unobserved
variables. Third, we select the fraction of sensors to be deployed at the next acquisition time.
Finally, we fuse the local statistics into a multivariate global statistic that is used to test whether
the process remains in-control. In the following subsections, we will demonstrate how we can
construct each one of the components and then conclude with an overview of the proposed

monitoring scheme.
3.1.1 Determining Local Statistics

Our objective in this paper is to detect any change to the mean of the monitored variables.
Since this shift can be either positive or negative, it is appropriate to deploy a two-sided CUSUM

monitoring statistic for each variable k at time t defined as

Cy, = max (CI:-,t' Ck_,t)a (1)

10



where the notations C, ,j ¢ and Cy;, represent, respectively, the positive and negative local statistics

for variable k at time t.

At any given time, we are limited by the available resources, computation power, or
transmission capabilities to calculate these local statistics using partial observations. Statistics
pertaining to an observed sensor X ; € w; at time t can be defined as CUSUM statistics (Lorden

(1971)) as follows:

2 2
Cie = max (0, Crooqg + 68Xy — 67) and Cp, = max (O, Crto1— 0Xpe — 67), 2)

where Cy = Cio = 0. Here, & is the smallest mean shift magnitude that is of interest to detect

(see the guidelines in subsection 3.1.5 on how to determine the value of §).

The main difficulty is how to define the local CUSUM statistics in (2) for those unobserved
variables (X kt € lljt). Inspired by the UCB algorithm of Lai (1987), Lai and Robbins (1985) for
MAB, here we propose to salvage (2) by utilizing the spatial correlation structure to obtain the
estimated upper and lower bounds, say, Uy ; and Ly ¢, on the true unobserved variable Xj ; at time
t (the estimates of Uy and Ly, will be discussed in a little bit). Then we dynamically construct

the local statistic as follows:

2

8
Cite = max (0, Gy + 6Upe — =), 3)
- _ 52
Cioe = max (0, Co_y — 8 Lige — =), 4)
It remains to discuss how to obtain the estimates, Uy, and Ly ., for unobserved sensors
(X ke € L|Jt). Since the data streams are assumed to come from a standardized multivariate normal

distribution, the marginal conditional distribution of an unobserved variable X, € ¥ over the

remaining set of observed variables Q is also normal with mean y'; and variance ¢'j, given by:

1 = ZaZaaXas ®)
o' =1 — Ty, (6)

11



where, Xy q 1s the covariance between X; € W and the observed variables in ). Moreover, I

denotes the k" diagonal entry of ' = Sy X6 aw.

Using the marginal conditional distribution of an unobserved variable X, € ¥, we can

construct an (1 — «)100% two-sided confidence interval as follows:

Clk,t = [Lk,t' Uk,t]

7
where, Lie =W — @A —a/2)0’, and Uy, = ', + @7 (1 —a/2)0",. @)

Here, ®~1(.) is the inverse of the cumulative standard normal distribution. Hence, the bounds of
the confidence interval Uy, and Lj, will be the base of our correlation based dynamic

compensation procedure given in equations (3) and (4).

It is informative to compare our proposed dynamic compensations in (3) and (4) with the
static uninformative compensation in (Liu et al. 2015). In that study, the local statistics for an

unobserved variable are based on a static compensation A > 0, and are defined as follows:
Cie = Cipoy+Aand Gy = Cipqy + A (8)

However, Liu et al. (2015) did not provide any statistical justification why one needs to add a

static compensation A for unobserved variable.

The following proposition shows that the method in (Liu et al. 2015) is a special case of
our approach for independent data streams, and thus the compensation defined in equation (8) is

essentially an upper bound confidence (UCB)-type algorithm in the SPC context.

Proposition: Our proposed dynamic compensation procedure is a generalization of the constant

compensation, and is consequently equivalent to it when all data streams are spatially

2
independent. In that case, A=8P (1 — a/2) — %.

Proof: For spatially independent data, and for any partition of the data into observed and

unobserved sets (1 and W, the covariance between the two sets Ly = 0. Consequently:

fWe=0,0%=1CIf=+d1(1 - a/2) forall {k: X, € U},

12



+ + 82
Cite = max (0,Cfry + 6071 (1 —0/2) = %),
62
Cie = max (0, Cigyq + 6 0711 = 0/2) = 2).

2
Let A=8071(1—a/2) — % and choose (6§, @) such that A > 0. Then, the update reduces to the

format in equation (8). =

The main reason that the confidence limits, Uy, and L., are chosen to represent
unobserved instances rather than the middle of the confidence interval is to promote exploration
during the in-control phase of the process by favoring those unobserved variables that have been
sampled less. It can be noted that a compensation based on the middle of the interval would require
the significance level a = 1, and yields a myopic policy that only uses the estimated means for

decision making. Moreover, when an unobserved variable is independent of all observed variables,

. "y . 5 &2 . . .
the previous proposition suggests that the compensation A = ST which might be negative. A

negative compensation will result in a monotonic decrease in the local CUSUM statistics until they
hit 0, which will in turn diminish the likelihood of those variables to ever be explored at future
acquisition times. Further discussions of appropriate parameter settings and their role in promoting

the in-control variable exploration behavior are available in subsection 3.1.4 and 3.1.5.
3.1.2  Global Statistics and Out-of-Control Criteria

Since the data streams are spatially correlated, we propose to use a multivariate CUSUM
(MCUSUM) statistic as the global statistic. To be more concrete, the local CUSUM statistics
C; ¢ calculated for those observed sensors at time t are fused into a global CUSUM statistic as

follows:

GCe = ||Crtll = /CrtZatCrt k={nX, € w}. )

The process is then deemed to be out-of-control at time t if GC; > UCL, where UCL is a predefined

upper control limit. Guidelines to choosing the value of the UCL is discussed in subsection 3.1.5.

Recall that there are two main ways of constructing the MCUSUM statistic as described in

(Pignatiello and Runger 1990). The two methods differ in the order in which the accumulation and

13



the quadratic transformation is performed. The first method performs the accumulation first by
calculating the individual local CUSUM statistics and then combining them into a single quadratic
form. On the other hand, the second method calculates local Hoteling T-square statistic (quadratic
form) and then performs the accumulation using a univariate CUSUM on the result. Here we adopt
the first approach of MCUSUM in equation (9) when constructing the global statistic as it fits well

with the framework described in the previous section.
3.1.3 Sensor Reassignment

Sensor reassignment is simply reassigning the sensors to the sets of observing sensors w C
(1 and non-observing sensors ) € W at each time step. We propose to choose the set of observing
sensors that maximizes the global statistic in (9) to have the potential to detect the true change
quickly. Mathematically, at each time step before taking any observations, our proposed sensor
reassignment method is to choose the set of observed sensors w C () that is the solution to the

following optimization problem:

arg Lngé({ck‘tzg)ﬁ)ck’t},k ={n:X, €Ew} andwc Q (1), (10)

where C; ; 1s the local CUSUM statistic of sensor i at time ¢ and ) is the set of all possible sensor

subsets of size g.

While the above optimization problem in (10) is well-defined from the mathematical
viewpoint, it becomes very challenging to solve from the computational viewpoint, especially in
high dimension situations, as the set of candidate solutions () becomes too large. Therefore, we
propose the following greedy forward selection heuristic method to solve the combinatorial

optimization problem in (10).

We start with w = @; the empty set. The first variable to enter the set w will be the variable
that maximizes equation (9) when the cardinality of the set is one. The solution is the variable with
the maximum local CUSUM statistic {X i:Cit = Ciy forallj } If we partition the covariance

matrix of the standardized data into the following block form,

_ me me]
Lo Zyyl

14



then the inverse can be written as:

-1 4 Yo _
por _ [Fob +EFF

(SRS S

_lgp
b

where F = 256,24y, and b = 1 — 2y, 25520y Hence if we let G® = C,, 256, C - the global

statistic with respect to the set w, then the global statistic with respect to the joint set {w U Y} is
1., ,
GO =G® + E{Cw(l — F) — Cy.F + FF'}, (11)

which means that the gain in the global statistic after adding variables in set s to set w can be

represented by the following:
1
GOW/© = GOV — G = E{Cj,tm — F) — CyF + FF'}. (12)

The following variable to enter the set w will be the variable that maximizes (9) when the
cardinality of the set is two given that the first chosen variable is X;. This translates to the variable
X; that maximizes the gain given by (12) when the set w = {X;} and the set y = {Xj}.
Consequently, at any step, the next variable to enter set w given its current cardinality is the
variable that maximizes the gain. The steps at each iteration of this heuristic is illustrated in

algorithm 1.

Algorithm 1: Greedy Forward Sensor Selection to Solve Equation (10)
Input: Empirical covariance matrix X, scalar 7, C; . for all k

Forward sensor selection strategy:

While (Jw| < 1),
1 Calculate the gain G®Y/) for all variables X ;i € w according to eq.(12)
2 Augment the set of w by including {X;: G®VV/1 > G*Y/) for all j}
3 Update the global statistic G

End

The initial assignment of sensors in the sets w and 1 has no significant impact to the
monitoring procedure (Liu et al. 2015). This is due to the adaptive nature of the sampling strategy

that reassigns the sensors at each observation time.

15



3.1.4 Properties of CDS

This subsection illustrates two behavioral properties of the proposed CDS procedure. These
two properties address the desire to disperse sensor deployment when the system is running
smoothly under the in-control state, while also quickly localizing at a fault location whenever a

true fault occurs. Proofs of the proposed properties can be found in Appendices A.1 and A.2.

Recall that a variable x; ; € w, if and only if it is observed at time t. Thus, at a given time
to, the set of sampled variables xy ., is given by w; . The following property shows that when the
process is in-control or when those variables in w,, involve insignificant mean shifts, our proposed
sensor deployment procedure will eventually choose variable x,/ . that does not belong to a
neighborhood of w;,. This implies the random behavior of our dynamic sampling method under

the in-control phase, where sensors will be sampled infinitely many times as the UCL — oo. This
essentially guarantees that the sensor deployment procedure will not permanently localize at any

specific location.

Property 1: For a fix time t,, we assume that |E[x; ]| < ®(1 — a/2) for any x; € w,.
Consider another variable x;/ & w, satisfying corr(x;, x;) = 0 for all x; € w,. Let UCL — oo,

and denote T,/ = inf{t > ty: %’ € w,}, then P(T, ;s < ) = 1.

Next, we will show that when a significant mean shift occurs, our proposed sensor
deployment procedure has a greedy property that eventually sticks to the fault area, or to its

neighborhood when we do not have enough sensors to cover the whole fault area.

Property 2: Denote the fault area as O = {xi: |E[x;]| > ®(1 —a/2)}. Let UCL — oo,

there exists Oy € O such that P; (0, € w; for all t = t,) = 1 for some t,,.

In the event that the process is out-of-control, the second property suggests that sensors
localized at the fault area will remain deployed within its neighborhood. When a fault is detected
in an area, it is desired to check that area as well as its surroundings, because the main issue may
be in the neighborhood rather than the initially detected location. Therefore, we are only interested

in showing that a remote location, relevant to the fault area, will not be a point of interest for future

16



sampling. This level of flexibility allows the sampling procedure to better localize around the

faulty area rather than simply sticking to an initial suspect area.
3.1.5 Overview of the CDS Algorithm

Algorithm 2 illustrates the steps of the proposed CDS procedure. Compared to other
procedures that assume spatial independence, our approach uses the correlation structure and the
information obtained from observed sensors to dynamically compensate unobserved ones. If an
unobserved sensor is positively correlated with an out-of-control sensor, then the sensor will be
compensated more than the one that is independent. This makes it more likely to choose that sensor

in the next step. This property will be demonstrated in the case studies in Section 5.

Algorithm 2: Online monitoring by our proposed Correlation based Dynamic
Sampling (CDS) algorithm

Input: Empirical covariance matrix X, scalar r, §, UCL, a € (0,1)
Cro = Cio = Cro = 0 for all sensors

For each time step t=1,2,...

1 Take observations from sensors based on the current assignments to w and
1) based on the top-r sensors at time t — 1

2 For sensor k € w, recursively compute the local statistics Cy ¢, Cx ¢, and Cy
according to equation (2)

3 For sensor k'€, recursively compute the local statistics
Crrt, C ,j,’t, and Cy, o according to equations (3) and (4)

4 Reassign sensors to the sets w and Y according to Algorithm 1 and take
observations from the updated set w

5 Obtain the global statistic GC; based on the updated set w from step 4

6 If (GC; = UCL), raise a global alarm that a change has occurred. Otherwise
g0 to next time step.

Table 1 provides a miniature example with three variables to illustrate the steps of
algorithm 2. In this example, we assume all three variables have mean 0 and unit variance,
cov(xy,x,) = 0.5 and that x5 is independent of the others. Initially we only observe x;; i.e., ® =

{x1} and ¥ = {x,, x3} and we set the parameters to be § = 1 and ®(1 — a/2) = 1.04 (@ = 0.3).
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Table 1 Demonstration of the compensation and assignment steps of CDS

In-control Out-of-control

X1 Xy X3 Xq Xy X3

Observation -1.58 - - | 1.76 - -

‘ﬁ‘ Ly, - -1.37 1.04] - -0.53 1.04
~ Uy, - 057 104 - 141 1.04
Crs 110 0.87 0.54]1.26 091 0.54
Observation 2.20 - - 10.89 - -

o Ly, - 042 1.04] - -0.74 1.04
I Use - 152 04| - 119 1.04
Crs 1.70 1.09 1.07]1.65 1.60 1.07
Observation -0.03 - - 10.69 - -

e Ly, - 098 1.04]| - -0.80 1.04
I Use - 096 104 - 114 1.04
Cr: 117 158 1.61|184 225 1.6l

During the in-control phase, we notice that the compensation for the neighborhood of the observed
variable x4, in this case x,, receives lower compensation than x3. This essentially influences the
algorithm to move out of this neighborhood towards the unexplored variable x3. On the other hand,
when x; is out-of-control (mean shift = 1.5), the compensation allocated to its neighborhood
(x,) exceeds that of the independent variable x;. This promotes the exploitation of the

neighborhood of x;, which is consistent with the second property discussed in subsection 3.1.4.
3.2 Setting Input Parameters

Algorithm 2 of CDS is essentially a phase 2 procedure that can be used for high-
dimensional datasets where the multivariate normal assumption is appropriate. A phase 1 analysis
is required to validate the assumed underlying distribution as well as determining the required
input parameters 7, a, 6 and the UCL of algorithm 2 if they are not readily available for direct
implementation. This section will provide guidelines for determining the values of these input

parameters as discussed below.

o Setting §: From the literature review presented in Section 3.1.1 on the calculation of the

local CUSUM statistic, § represents the smallest mean change magnitude that we are
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interested in detecting. In practice, the choice of § can be a target value set using
engineering knowledge in the application domain.

Setting r: The choice of r directly affects the detection power of the monitoring procedure.
Setting r to be too large will dilute the contribution of the out-of-control sensors to the
global monitoring statistic, thereby causing an undesired delay in the detection of the mean
shift. Moreover, r < |w|, where | * | denotes the cardinality of a set. The ideal choice for
r would be the total number of variables associated with the faults that are of interest for
detection, also referred to as the root causes. However, this is usually unknown unless it
can be provided from engineering knowledge. In the case that it is unknown, choosing a
small value of r has been shown to be robust to various fault types (Mei 2010).

Setting UCL: The UCL is the threshold that determines when to stop the monitoring
procedure and alert the detection of a change. The value of UCL is related to the pre-scribed
in-control ARL of the monitoring scheme. The practitioner can determine the optimal UCL
value from sufficiently large in-control measurements or via Monte Carlo simulation and
bootstrap techniques (Efron and Tibshirani 1994, Chatterjee and Qiu 2009).

Setting a: The tuning parameter a € (0,1) is a very crucial parameter that essentially
determines the trade-off between how sporadic the behavior of the algorithm is when the
process is in-control and how fast it converges to the faulty sensors when the process is
out-of-control. To illustrate this further, as a approaches 0, the local statistic compensation
provided to variable k € Y will exceed that of variable k € w. While this is not an issue
when the process is in-control, the algorithm will not be able to converge to a unique set w
when the process goes out-of-control, as there will always be a variable in ¢ with a larger
local statistic. On the other extreme, if @ approaches 1, variables belonging to set 1 will
receive almost no compensation causing the sensor assignment of the algorithm to be static

which is clearly undesired.

To narrow down the choice of a we can initially try to find tighter bounds. From the proof
of properties 1 and 2 of our CDS algorithm, the compensation requires§ <
®71(1 —a/2) < |6*|. Here, §* is the true mean when the process goes out of control.

Generally speaking, §* is unknown and this makes it challenging to get an upper bound.
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In order to obtain an appropriate value for o, we simulate the monitoring procedure
iteratively with a binary search over the range of . The criteria for terminating the search
is when the percent decrease in standard deviation (denoted by v) of the number of times
(denoted by 7) that each variable is assigned to set w is less than some predefined value .
The details of this procedure are outlined in algorithm 3. The intuition is to determine a
choice of a that provides minimum deviation between sensor sampling frequencies while

maintaining the pre-specified ARL.

Algorithm 3: Choosing the value of o

2[1 — ®(]6*|)], if §* is known

2[1 —®(268)],0.w

v; = M, where M is sufficiently large

for (i = 1:1), (I: Maximum number of iterations)

1 Generate N instances of n in-control observation for
all sensors

2 Run algorithm (1) for each instance j calculating 7 ;
and v, j = Var([n,]

3 Letv, = Ev]

4 If vy — ve_q1|/ve—q < { ; break loop

/2, U <V

3a,/2, o.w

fort=0,setat={

5 set a; = {
End

3.3 Estimating the Precision Matrix

The acquisition of the inverse covariance matrix, also referred to as the precision matrix
(Hsieh et al. 2011), is essential for effectively implementing our proposed CDS algorithm. While
we assume in our method that the precision matrix is readily available, that is rarely the case in
practice. This section highlights two approaches in which we can reasonably obtain it. In practice,
the precision matrix can be either learned from historical training data or alternatively imposed by
the domain knowledge. The first subsection 3.3.1 provides a brief literature review of methods to
empirically obtain an estimate of the precision matrix. While the second subsection 3.3.2 discusses

the latter approach of imposing the matrix by leveraging domain knowledge.

3.3.1 Learning the covariance structure from historical data
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The estimation of the precision matrix in high dimension is a nontrivial task that has been
an area of interest for many researchers in the past years. In the literature, it is especially used to
provide information on the interrelations between variables in graphical models (Scheinberg et al.

2010).

A sparse representation of the inverse covariance matrix is desirable in high dimensional
settings, due to the advantages that sparsity offers. When the number of observations is limited, as
is the case in many modern high-dimensional statistical problems, sparsity promotes robustness to
the estimation process, which translates well to the future observations (Duchi et al. 2012).
Moreover, inducing sparsity functions regularize and enhance interpretability and counter

overfitting (Scheinberg et al. 2010).

Methods to estimate the precision matrix look into solving the following optimization

problem, its dual or some variation of it:
logdet8 — tr(S0) — p|6|4, (13)
where 8 = Y71 and S is the empirical covariance matrix.

The objective function in (13) is a convex problem that can be solved with interior point
methods in 0(p6 log (1/ e)), however this becomes infeasible for even moderate p. Banerjee et
al. (2008) used block coordinate decent with a cost of O(p*) with their proposed algorithm
COVSEL. By solving iterative LASSO problems, the graphical LASSO algorithm proposed by
Friedman et al. (2008) manages to reduce the computation complexity to O(p3). The greedy
gradient ascent method and alternating linearization methods (Scheinberg and Rish 2009,
Scheinberg et al. 2010), as well as the projected subgradient method developed by Duchi et al.
(2012) all claim to reduce the complexity to O(p?). The second order algorithm QUIC proposed
by Hsieh et al. (2011) solves iterative quadratic approximations that has a reduced cost of O (p) to

find a Newton direction.
3.3.2  Imposing the covariance structure

There are several domains in which prior knowledge of the system being monitored can be

used to extract some process characteristics that can help bypass the estimation of the inverse
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covariance matrix and alternatively imposing one. A prominent example of such an application is

when the data is acquired in the form of images.

If we regard each pixel of an image to be a variable for monitoring purposes, then it is
reasonable to assume that the value of any pixel is independent of other pixels given its
neighborhood. This assumption can be translated to a precision matrix in which the entries
corresponding to two pixels that are not within a certain pre-specified proximity is set to zero. This
level of proximity represents the closeness of the values of nearby pixels. Naturally, different areas
of an image can have a different level that is suited to the correlation of the pixels in set area. This
type of structure imposition will be demonstrated in the solar flare case study discussed in
subsection 5.1. Furthermore, the case study explores the sensitivity of the methodology to the

choice of imposition since it may be subjective.

We note that the same estimated or imposed covariance matrix will be used in both the in-
control and out-of-control phases. This assumption is suitable for systems in which the occurring
faults are not expected to change the way sensors relate to each other. For example, in a
manufacturing process in which both temperature and pressure are monitored, an occurring fault
is not likely to change the fact that pressure will increase as the temperature rises. Moreover, in
the case of images, an occurring fault is also not likely to alter the dependency between pixels
within the same proximity. However, for systems in which the faults are expected to change how
the observable variables relate, this assumption is restrictive and may significantly affect the

performance of the method.

4. SIMULATIONS

This section serves as an evaluation for the performance of our proposed CDS algorithm.
We compare the performance to two state-of-the-art algorithms, TRAS (Liu et al. 2015) and Top-
r (Mei 2010). It is very important to note that the Top-r method assumes no limitations in the
number of variables that can be observed and thereby has full access to all raw sensors or data
streams. We include it in the comparison to illustrate how competitive our proposed method is,

even when compared to those without sampling limitations.
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4.1 Data Generation

In our simulations, the data is generated using the following generative model:
X, =AZ + g, (14)

where the observed variables at time t are X; € RP, latent variables Z, € RY following a
multivariate normal distribution MN (0, I), and white noise &; € RP following N (0, g.I). Matrix
A € RP*1 that maps the latent variables into the domain of the observed variables. Hence, the

observed variables follow a multivariate normal distribution as well with MN (0, AAT + o.1).

In the generative model described above, the transformation matrix A controls the sparsity
in the covariance of the observed variables X;. If the matrix A is block diagonal, such that each
block is of size p; X q; with }.; p; = p and ),; q; = q, then the covariance matrix of the observed
variables X; will also be block diagonal with blocks of sizes p; X p;. Therefore, as we decrease the
block size in the transformation matrix A, we induce a higher level of sparsity in the observed
variables X;. In our simulations, we chose p = 1500 and g = 150. The blocks in the
transformation matrix are of size p; X g; = 100 X 10 for all i, and each block is a random matrix

whose entries are i.i.d. Uniform(-1,1) random variables.
4.2 Simulation Experiments and Results

We set the parameters of the experiment as follows. The control limits were chosen to
achieve an in-control ARL of 200. The mean shifts (6§ = 0.25,0.5,1,2,4) were introduced in a
single block of latent variables. Only 150 variables from the full observations X; could be obtained
at any given time (i.e m = 150). Out of the 150 available observations, the test statistics were

constructed using r = 15 variables. The confidence size for compensations was set to a = 0.27.

We conducted the simulated experiments with the varying shift magnitude that were
replicated 1000 times. The experiments were run on MATLAB R2019 on a Windows 10 operating
system with AMD Ryzen 7 1700 eight-core 3.0 GHz processors and 16 GB RAM. The average
computational time for each iteration of algorithm 2 was 0.036 seconds, which is adequate for

many real production systems.
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Table 2 Performance evaluations of the CDS algorithm under different shift magnitudes
compared to benchmark techniques (Top-r and TRAS)

In-control ARL (standard deviation) | Out-of-control ARL (standard deviation)
Shift size Top-r TRAS CDS Top-r TRAS CDS
6 =0.25| 214(210) 222(186) 220(182) 56(23) 74(42) 51(31)
6=0.5 | 212(189) 226(172) 223(180) 24(14) 50(31) 34(21)
6=1 201(175)  205(181) 210(172) 11(5) 17(8) 12(7)
6=2 207(182)  210(188) 197(210) 8(2) 8(3) 502)
6=4 221(193)  220(213) 210(185) 1 1 1

Tables 2 demonstrates that the CDS algorithm consistently outperforms the TRAS
algorithm by an average 42% reduction in detection delay. Moreover, it is interesting to compare
our proposed method to the Top-r procedure, which assumes no limitations on data acquisition.
Although it may be expected that it would be better than our proposed CDS procedure due to the
full visibility, the detection delay of CDS within 3.5% from the Top-r and can even surpasses it.
This can be attributed to the global monitoring statistic of our proposed CDS method, which
considers the correlation of the data streams rather than the independence assumption of the other

two competing methods.

5. CASE STUDY

This section presents a study on two real datasets to showcase the capability of our adaptive
monitoring procedure in practical scenarios. The first subsection 5.1 illustrates how the correlation
based adaptive method can achieve high performance under limited transmission capacity by
leveraging partial images obtained from video recording of solar flare occurrences. The second
subsection 5.2 demonstrates how adaptive sampling can be utilized to monitor in-line Raman

spectroscopy for CNTs manufacturing.

5.1 Solar flare detection
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The detection of solar flares via satellite imaging is an example of a monitoring process
that generates high dimensional data in which the occurrence of solar flares is regarded as the
change (defect). The solar flare phenomenon, a result of various dynamical processes in the solar
atmosphere, is a sudden brightening that can last from 1-15 minutes (Parker 1963). The energy
released from this phenomenon can interfere with radio communications by disturbing Earth’s
ionosphere (Augusto et al. 2011). This serves as motivation to detect these flares upon onset with

minimal delay.

Solar flare images are captured and generated in high volume at each second during the
satellite’s recording. Modern solar flare imaging instruments can acquire images at a frame rate
up to 25 frames per second with a memory capacity of 16TB. When continuous observation of the
solar disk is viable and recording at a frame rate of 25 s™!, around 8TB of data could be acquired
in a day. Due to the enormous amount of data and relatively limited memory of the imaging
instruments, only one data set every 1 to 5 seconds can be archived and the rest is eliminated (Ishii
et al. 2013). While it is beneficial to use all the captured frames to rapidly detect the transient (1-
15 min) solar flares, transmission of the enormous amount of data is a challenge. Moreover,
processing the large data with methodologies for image change detection such as (Yan et al. 2018)
may not be suitable for detecting solar flares in real time. Such methods analyze the full data
streams, which likely exceed the transmission and processing capabilities during online
monitoring. An adaptive sampling technique that can selectively transmit partial frames not only
reduces the amount of data but may also preserve information relevant to flare detection by not

eliminating whole frames intermittently.

The solar flare dataset used in this study is publicly accessible in video format at
http://nislab.ee.duke.edu/MOUSSE/index.html. The data is collected from satellite images that are
taken at very high frequencies. Each video contains 300 frames, and at each frame is of size
232 X 292 pixels resulting in a total dimension of 67744 pixels. This is a very high dimensional
dataset to process, especially when the number of available observations is relatively small. There
are two clear occurrences of solar flares that are visible at frames t=187~202 and t=216~268,

respectively.
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Pre-processing of the raw data before implementing our proposed methodology is required
due to the varied intensities of the pixels of original images. The time dependency of the raw pixels
results in a background that is not suitable for directly using CUSUM charts for change detection.
Thus the pre-processing is needed to address (i) the autocorrelation between successive frames by
removing the background and (ii) the normalization of pixels to remove the effect of varying
intensities. We accomplish these tasks by differencing the data with a moving average window of
size 4 in a manner similar to that used by Liu et al. (2015). The processed data X'; is calculated

through the relation:

1 4
X,t :Xt_zz 1Xt_i, fOI‘t 2 5
i=

’ 1
Xt:Xt_tT

- L Xe_pfor2<t<4,andX, =0.

The remaining data after removing the background was found to be approximately normal, as was

the case in the study in (Xie et al. 2013).

Next, we conduct the phase 1 analysis in which we consider the first 100 frames to be
historical data. This will provide the input parameters of algorithm 2 for the phase 2 analysis. We
setd = 1 and a = 0.27 via algorithm 3, which corresponds to A = 0.1. It should be noted that
several manipulations of the previous parameters also yield similar results to the ones chosen here.
We further assume that the number of pixels that can be transmitted for analysis at any acquisition
time to be 1000 out of the available 67744 pixels in a full frame (image) of the video. In other
words, the parameter m is equal to 1000, while we set r = 40. Moreover, we set the UCL such
that the false alarm rate is 0.0004 as was proposed by Liu et al. (2015). This was achieved via

bootstrapping the first 100 frames with replacement.

It remains to determine the spatial covariance structure in which we opt to choose the
imposition approach discussed in subsection 3.3.2 to be exponentially decaying with radius of 20
pixels. This is typically appropriate for images in general and particularly for images of solar flares,
which often occur in a local area. We later discuss the sensitivity of the performance to this
imposition. This specific covariance imposition is demonstrated by Figure 1, in which three plots
illustrate the imposed covariance structure over the three different pixels (17107, 34214, 51321).

For example, figure 1(b) is an image that is obtained when the 34,214 row/column vector of the
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67744%x67744 pixels covariance matrix is reshaped into a 232x292 matrix, which corresponds to
the dimensions of a video frame. This serves to illustrate that any given pixel is only correlated

with other pixels in its proximity.

(a) (b) (c)

Figure 1 (a), (b) and (c) illustrate the imposed covariance structure over the three different pixels.

Given the determined input parameters, we can now start the phase 2 analysis for online
monitoring the remaining 200 frames sequentially by implementing our proposed CDS procedure
in algorithm 2 to the pre-processed X'; that remove the background based on a moving average
window of size 4. In Figures 2 and 3, the images in (a) show the original frames from the raw
video with the solar flare slightly noticeable on a small curvature located in the upper left corner,
(b) demonstrate the observable variables, that are sampled using the benchmark TRAS method, by
representing them with white pixels, and (c) illustrate the dynamic sampling results from our

proposed CDS method.

Frame 186 is approximately the frame that precedes the first solar flare occurrence. Figure
2 shows that both methods behave in a random fashion, which is desirable since the process is
essentially still in control (i.e. a flare has yet to occur). This can also be seen from the images at
frame 215, before the second flare, which also serves to demonstrate the capability of our CDS

algorithm to return to the random behavior after the end of the first flare.

Frame 198 represents the moment when the solar flare is the brightest. Figure 3 illustrates

the sampled pixels at this frame as well as frame 230, when the second flare is brightest. Our
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proposed CDS algorithm covers the flare area completely in both occasions. On the other hand,

they are only partially covered when using methods that do not consider the correlation structure.

To demonstrate the capability to localize faster than the competing TRAS algorithm, we
provide a side-by-side comparison of the sampled variables (white pixels) using the two methods
before and after the detection of a flare. Figure 4 (a, b) shows the sampled pixels right before and
after the detection of the flare using the benchmark TRAS algorithm at frames 194 and 195,
respectively. Figure 4 (c, d) shows the sampled pixels right before and after detection by the CDS
algorithm at frames 190 and 191, respectively. The ability of the CDS algorithm to outperform the
TRAS algorithm, with regards to detection delay, can be attributed to the significantly faster
localization. This can be clearly observed from the instantaneous localization within a single

frame.

With only 1.5% pixels available from the 67744 pixels per frame, our proposed algorithm
can detect the flare at frame 191; only 4 frames after its onset at frame 187. Liu et al. (2015)
reported the detection of the change at frame 190 when 2000 pixels were observed at any time.
While as shown in the figure, this performance deteriorates to frame 195 when the amount of pixels
is cut to 1000. Our proposed CDS algorithm with only half of the resources can thus still compete

with that performance due to the superior localization strategies.

Figure 5 plots the global monitoring statistic of the proposed CDS algorithm from frame
100 to the end of the captured video at frame 300. For comparison, Figure 5 (b) illustrates the
monitoring statistic obtained from the competing TRAS algorithm. The first 100 frames were
considered a training sample and were used to obtain the control limits using a bootstrap procedure.
The control limits for both CDS and TRAS algorithms were set to a pre-specified in-control ARL
of 2500 were determined to be 970 and 950, respectively. The occurrence of the second flare was
very close to the first and therefore Figure 5 only shows the monitoring statistic crossing the

threshold once.

This is because the 14 frame difference between the end of the first flare and the beginning of the
second is insufficient to reset the declining statistic. In such scenarios, the statistic can be simply
reset upon resolving the preceding out of control occurrence. In this study, the monitoring statistic

was reset at frame 203 after the end of the first flare.
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Frame
186

Frame
215

(a) (b) ©
Figure 2 Monitoring frames before the two flares: (a) frame capture from video; (b) sampled
pixels from the TRAS algorithm; (c) sampled pixels from the proposed CDS algorithm

Frame
198

Frame
230

(a) (b) (c)
Figure 3 Monitoring at the solar flares peak: (a) frame capture from video when the flare is the
brightest; (b) sampling from TRAS; (c) sampling from CDS.
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(a) (b) (c) (d)
Figure 4 Detection of the first flare: (a), (b) sampling from TRAS right before and after
detection; (c), (d) sampling from CDS right before and after detection
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Figure 5 Monitoring statistics by respectively implementing the CDS/TRAS algorithms with the

detection frames illustrated by the data cursors

Similarly, the CDS algorithm is capable of detecting the second flare at frame 219, only 3
frames upon onset. Meanwhile, the competing TRAS algorithm lags by 7 frames, and detects the
flare at frame 223. The detection in 3 frames not only beats the TRAS algorithm under the same
limitations, but also outperforms the reported detection time of frame 221 reported in (Liu et al.

2015), which had double the visibility.

Moreover, let us discuss the sensitivity of the performance of the CDS method to the

imposed precision matrix. Initially, we impose the precision matrix with an exponential decay with
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a radius size of 20 pixels. We aim to evaluate the change in performance as the radius size varies
from 1 pixel to 100 pixels. It should be noted that a radius of 1 pixel results in the imposition of
an identity matrix, which essentially means that we assume that the pixels are independent. So, we
can expect that the performance of the CDS method will converge to the benchmark TRAS method
as the radius goes to 1. Table 3 reports the resulting average detection delays and standard

deviations from an analysis with 100 iterations.

Table 3 Average detection delays (standard deviations) of the CDS method under imposed
precision matrices with different radius sizes with TRAS as the benchmark

Radius size

1 10 25 50 100
CDS  7.88(1.47) 5.72(0.46)  4.17(0.13)  5.85(0.83)  7.24(1.26)

TRAS 7.93(1.52) ; ; _ ;

First
Flare

CDS 6.75(1.19) 4.66(0.37)  3.58(0.09)  4.90(0.99) 5.86(1.10)
TRAS 6.81(1.15) ; ; - -

Second
Flare

The results from the sensitivity analysis in Table 3 indicate that a small deviation from the
initial choice of a 20-pixel radius yield similar results. Moreover, when the radius is reduced to 1,
the performance of CDS is statistically equivalent to that of the benchmark TRAS method, which
is to be expected from the proposition in subsection 3.1.1. It is important to note that the standard
deviation of the detection delay first decreases as the radius size increases from 1 to 25, but then
increases as the radius size increases from 25 to 100. This can be attributed to the fact that the
radius size controls the tradeoff between exploration and exploitation, as a too small or too large
radius size results in a slower localization around the fault area and yields an increased variation.
In particular, our proposed CDS method will heavily favor exploration over exploitation when the

radius is size is very small, whereas a very large radius does the opposite.

Finally, we need to point out the computational challenges of online monitoring in Phase
2 analysis of solar flare when using our proposed CDS algorithm. The main challenge is to find
the suitable choice of the control limit, UCL. It took our personal laptop (Windows 10 Laptop with
Intel 17-4700MQ CPU 2.40 GHz and MATLAB R2018b) about 2 hours to find the control limit
that satisfies the ARL to false alarm constraint of 2500 by bisection search method based on 2500
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Monte Carlo runs. If one wants to increase the ARL to false alarm constraint, then it will become
more time-consuming. The good news is that after the value of UCL is determined, then it is
straightforward to implement our proposed CDS algorithm when online monitoring solar flare
frames. It took our personal laptop 12.6 seconds to online monitor the 200 testing frames and
generate the monitoring statistics in Figure 5. This is 20 times faster than the existing method of
archiving and analyzing one full data every 1 to 5 seconds (Ishii et al. 2013), and thus our proposed

CDS algorithm is efficient from both computational and statistical viewpoints.
5.2 Fault detection of in-line Raman spectroscopy

In this subsection we evaluate the performance of our methodology in addressing the
challenges of monitoring the production process of continuous carbon nanotubes (CNTs)
buckypaper using inline Raman spectroscopy. The monitoring of the manufacturing process of
CNTs buckypaper manufacturing in real time using in-line Raman spectroscopy has gained much
interest recently (Yue et al. 2018). The ability to monitor this process in real time is critical to scale
up while meeting high quality standards. However, it is challenging to detect changes in the data

collected from this procedure since there are several sources for variation in Raman spectrums.

One source of variation is related to the scanning duration when obtaining the signals.
Characterization of an in-line Raman spectrum may take multiple scans with a duration of ten
seconds to several minutes. The longer the scanning duration the higher signal to noise (S/N) ratio,
due to the rapidly moving samples. Figure 6 illustrates acquired Raman spectrums from two
operating conditions (red, blue), in which the blue signals are obtained from shorter scanning

durations and lower intensity at the peaks.

The higher S/N ratio, such as that of the red signals, is desirable for process monitoring.
However, it comes at a cost of longer scanning durations which may delay fault detection. On the
other hand, the rapidly obtained signals from shorter scanning durations may mask faults with the
excessive noise. In this case, it may be beneficial to save scanning time while retaining a higher
S/N ratio by acquiring partial signals. Profile monitoring methods in the literature typically
approach this problem from a denoising perspective (Yue et al. 2018). Here we want to
demonstrate that our proposed CDS method provides a useful alternative approach to this problem

from the adaptive sampling perspective.

32



In a similar way to the first study, we begin the phase 1 analysis which allows us to determine the
input parameters of algorithm 2 for the phase 2 analysis. The data set consists of 200 in-control
profiles and 50 out-of-control instances, where the dimension of each profile is p = 512. The first
200 in-control profiles are used as historical data, which is used for normalization
and setting the input parameters. In order to obtain signals with a high S/N ratio, approximately
10% of the Raman spectra (m = 50) will be measured at any given time. For each method, a
threshold that satisfies an in-control average run length (ARL) of 500 is determined by
bootstrapping the 200 in-control samples. The remaining parameters are set to the following: r =
25,8 = 1 and the compensation significance level was found to be @ = 0.23 (A = 0.21) via
algorithm 3. Figure 6 illustrates the mean of out of control signals, where it can be noted that the
shift approximately within the index interval [95,115] of the Raman spectrum. Finally, the
covariance matrix is estimated from the first 100 in-control data using the method QUIC (Hsieh et

al. 2011), which is the precision matrix estimation technique discussed in subsection 3.3.1.

This study compares our CDS procedure against the same benchmark methods in the other
studies; TRAS and Top-r. The Top-r method requires full observations and therefore will be
applied to data with low S/N ratios. While the two adaptive monitoring schemes (CDS, TRAS)
will be implemented on partial data with high S/N ratio as illustrated by the red profiles of Figure
6 (left).

The results from implementing the different monitoring schemes are presented in Figure 7.
Our CDS procedure outperforms the other benchmark methods and signals an alarm at time 209,
which is 9 epochs upon failure onset. Since TRAS does not take into account the correlation
structure between variables, it is unable to quickly localize at the fault region. This results in a
detection delay of 18 epochs. Finally, the Top-r procedure achieves the lowest performance among
the three with a detection delay of 21 epochs, even though it was implemented on complete data.
This is because complete data collected at a high frequency comes at the cost of low S/N ratios as
we have discussed in the introduction of this study. Hence, we can conclude from this study that
there are practical scenarios where it may be beneficial to sacrifice sensor visibility in exchange
for better quality data. This emphasizes the importance of making educated decisions on which

sensors to acquire in real time.
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6. CONCLUSION

The development of sensing technologies that generate high dimensional data has offered
unprecedented process monitoring capabilities. However, with this advancement rose new
challenges that require novel monitoring schemes in limited resources due to sensor availability
for deployment, transmission capacity and computational power. Hence, the application of multi-
armed bandit algorithms to the SPC context is useful to tackle the issue of efficient monitoring

under the limited resources environments.

This paper proposes a novel correlation-based dynamic sampling strategy that constructs a

dynamic compensation factor to unobserved data streams. This is performed by using the idea of
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celebrated upper confidence bound (UAB) algorithm from the multi-armed bandit (MAB)
problem, as well as by utilizing the correlation structure between the observed and unobserved
streams. A novel integration of the Top-r procedure with multivariate CUSUM is developed to
construct the global monitoring statistic used for decision making related to the state of the process.
This results in a strategy that is effective in monitoring high dimensional data streams with partial
observations, which consequently reduces the computational cost at the data fusion center.
Moreover, utilizing the correlation structure embedded in the data streams allows for faster
localization at the fault source while maintaining a random sampling behavior when the process is
in-control, which was illustrated by the two properties of the dynamic sampling behavior. This
allows this method to be suited for a wide area of applications, such as network processes and
images as was demonstrated in the solar flare case study. Additionally, it can be implemented in
advanced industrial manufacturing operations as showcased by the in-line Raman spectroscopy

case study.

Note that our proposed CDS algorithm is designed to detect sparse mean shifts of high-
dimensional data in the resource limited environments under the assumption that the occurrence
of faults did not influence the relation between system variables. In many real-world applications,
faults may alter the dependencies between system variables, and it will be interesting to develop
algorithms that are able to effectively detect the changes on the spatial correlation structure in the
resource limited environments. This remains an open problem, as it is unclear how to effectively
estimate the post-change spatial correlation structure of high-dimensional data using partially
observable data. Hopefully this paper can stimulate further research on SPC for high-dimensional

data in the resource limited environments.
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APPENDIX

In this Appendix, A.1 and A.2 provide the proofs for properties 1 and 2 of the proposed
CDS algorithm, which were discussed in subsection 3.1.4. The following Lemma 1, which

essentially follows from the weak law of large numbers, will be used in the proofs in A.1 and A.2.

Lemma 1: For an independent and identically sequence of a bivariate normal random

variables x, and y;, such that E[x] = p,, > u, = E[y]:

T T
lim P th>2yt -1
T—oo
t=t0 t=t0

Proof of lemma: Define the random variable z, = ZZ:tO Xt —Zfzto V¢, then z, is a

Gaussian random walk. And we have:
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T T
TlimP th>2yt =TlimP(ZT>O)
t=t0 t=t0

By assumption of u, > u,,, we conclude that z; is a random walk with a positive drift

E(x; —y¢) = iy — iy > 0, then it follows that:
g (zr) = 0

and hence,

A.1 Proof of Property 1

At the high-level, the proof of property 1 involves two subcases. When there are no
changes, the local statistics at sensors with infinitely many time observations will go back to 0,
whereas the local statistics at those local sensors without any observations and not correlated to
observed sensors will be linearly increasing. Hence, we will sample from those non-observed
sensors eventually. The second case is for when there is an insignificant change, where the linear
increase of the unobserved sensors will still outrun the increase of the observed counterparts.

Since our sensor sampling procedure (algorithm 1) starts with picking elements of w;

according to the max Ci¢, 1t suffices to show that for any unobserved variable x;+ € w;, there
exists a time t such that Cy, , > max Cy ¢ If we take any unobserved variable x;/ € w, thatis also
not in the neighborhood of w,, (i. e.corr[x,:,x;] = 0 forall x, € wto), the increments of the
positive and negative CUSUM will depend on Uy, = Lyr , = ®(1 — a/2). Then without loss of

generality we can only consider the positive CUSUM (C ,:',) Hence, property 1 can be proven by
comparing the increments of the CUSUM statistics from elements in Cj to those of Cy,, and

showing that there exists a time t such that Cy, , > max Cy ¢ It suffices to show that there exists T

such that when 6 > 0:

T 52 T 52
SU.  —2) > z Sxp s —— |,
zt:to( o 2) t=to< ot 2)

or equivalently,
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Zp = Z:=to(Uk"t — xk,t) > 0.

The assumption on |E[x;]| from property 1 can be broken down into two cases. First, we
consider the case when |E[x]| < ®(1 — a/2). Since x; , is not in a neighborhood of x + € w,,,
E[Uy, ] = ®(1 — a/2). Hence, z; is a random walk with a positive drift and by Lemma 1:

P(zr>0)-1

The second case is when E[x;] = ®(1 — a/2) = E[U},]. In this case, z; becomes a

Gaussian random walk with no drift. Let H = inf{z;:t = 1}, then H 8w ast — oo (Gut 1988).

Hence, for any two variables x;, and x; , there exists a time ¢ such that Cy,; > Cy ;. ®

A.2 Proof of Property 2

It suffices to show that increments of significantly out-of-control samples will be greater

than the compensation given to the unobserved variables outside its neighborhood. Specifically, if
we define z{ = Zfzto(xk,t - Uk’,t)' and |E[xy]| > ®(1 — a/2) by the assumption in property 2,
then z; is a random walk positive drift (E[x] — E[Uy,]). As t — oo then z{ — oo, this implies that

there exists time ¢, such that Vt > t, z, > 0and C,/ , < Cyp. M

It should be noted that the speed of the localization here depends on the drift
(E [x,] —P(1—a/ 2)): the higher the post mean shift (E [x,]) is, the faster it will diverge to oo,
which translates to quicker localization. Moreover, this shows that the sampling method will not
favor a variable outside of the neighborhood. However, that does not mean that it will not explore
the neighborhood even after it detects a faulty area. This essentially means that our method will
not necessarily stick to the initial faulty area, but may still explore the surroundings to find an even

bigger fault.
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