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Abstract

In distributed sequential detection problems, local sensors observe raw local observations over time, and are allowed to

communicate local information with their immediate neighborhood at each time step so that the sensors can work together to

make a quick but accurate decision when testing binary hypotheses on the true raw sensor distributions. One interesting algorithm

is the Consensus-Innovation Sequential Probability Ratio Test (CISPRT) algorithm proposed by Sahu and Kar (IEEE Trans. Signal

Process., 2016). In this article, we present improved finite-sample properties on error probabilities and expected sample sizes of

the CISPRT algorithm for Gaussian data in term of network connectivity, and derive its sharp first-order asymptotic properties

in the asymptotic regime when Type I and II error probabilities go to 0. The usefulness of our theoretical results are validated

through numerical simulations.
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I. INTRODUCTION

DISTRIBUTED online learning becomes increasingly important in many real-world applications such as cognitive radio

networks [1], [2], social recommender systems [3], [4], natural language processing [5]. Under a general setting, there

are N sensors or agents taking raw observations over time in a system, and each local sensor can only communicate its local

information with the immediate neighbors at each time. Such local information communication can be conducted adaptively or

sequentially over time so that sensors can work together to reach consensus quickly. The advantages of distributed settings are

to protect intrinsic privacy of sensitive data [4], increase computational capacity [6]–[8], and mitigate collection and storage

burden of modern large datasets [9], [10].

There are many important distributed online learning problems in engineering and statistics, and one of them is the distributed

sequential detection, see [11]–[13], where the distributed sensors work together to quickly and correctly decide which is the true

underlying probability measure or model for raw sensor observations. Had the local sensors been able to send local information

to a central location, often called the fusion center, for further analysis, extensive research has been done along two distinct

directions. The first one is when the fusion center has access to all raw sensor observations, which is the centralized sequential

detection problem. This is well studied in the classical subfield of sequential analysis in statistics [14]–[17]. In particular, the

optimal centralized procedure is the well-known Sequential Probability Ratio Test (SPRT), see [14]. The other direction is

the decentralized sequential detection, where the local sensors send quantized sensor messages to the fusion center to make a

global decision, see [18]–[21].
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Research is rather limited in the distributed sequential detection where there is no fusion center and the local sensors need

to work together to make a decision: very few efficient algorithms have been proposed partly because it involves complicated

communication strategies between local sensors and their neighborhood sensors. One exception is the Consensus-Innovation

SPRT (CISPRT) algorithm developed in [22] that is based on the weighted average of local log-likelihood ratio tests, see [23]–

[27] for the motivation and more background. The CISPRT algorithm is novel and interesting, as each local sensor utilizes

local information not only from itself and its immediate neighbor sensors, but also from remote connected sensors that are

2-hop or more hops away from itself. Also see [28] for an interesting generalization of the CISPRT algorithm under the fixed

q-round message passing protocol and see [29] for the extension in composite hypothesis testing problems.

Intuitively, the performance of distributed algorithms including the CISPRT will depend on the neighborhood structure of

local senors, or the network connectivity. For any pre-specified neighborhood structure of local senors, Sahu and Kar [22]

characterized the various performance properties of the CISPRT for Gaussian data. In particular, for the CISPRT satisfying

the error probability constraint ε, explicit lower and upper bounds were derived on its performance properties h(ε) such as

the expected sample sizes and the information loss with respect to the optimal centralized SPRT: L(ε) < h(ε) < U(ε), which

holds non-asymptotically for any network structure. These are remarkable non-asymptotic results on sequential detection in the

high-dimensional setting, as the explicit bounds L(ε) and U(ε) clearly characterize the effects of the network structure and the

dimension (or the number of sensors). Unfortunately, these bounds are too loose in the special centralized setting when each

local sensor is connected to all other sensors and the CISPRT becomes the well-known centralized SPRT: the ratio U(ε)/L(ε)

converges to 5/4 and 10/7 for the expected sample size and information loss, respectively, under the asymptotic regime when

the error probability constraint ε → 0. This led us to raise an open problem whether one can derive non-asymptotic lower

and/or upper bounds that are also asymptotically sharp.

The objective of this article is to provide a positive answer to this open problem, and our main focus is to present improved

finite-sample upper bounds on error probabilities and expected sample sizes of the CISPRT algorithm, and derive its sharp

first-order asymptotic properties when the error probability constraint ε goes to 0. Note that it is mathematically challenging to

provide an accurate analysis on the performance properties of procedures in sequential detection or sequential hypothesis testing.

The standard techniques are renewal theory and overshoot analysis [14]–[17], but they are designed for the fixed dimensional

setting and are inappropriate in our context for any network structure regardless of the dimension N (or the number N of

sensors), since the corresponding results implicitly involve overshoot constants that cannot be computed explicitly for a given

dimension N and will be exponentially increasing as a function of the dimension N .

Our main scientific contributions are two-fold. From the technique viewpoint, we develop a tail probability analysis technique

that is able to derive sharp information bounds that are not only comparable to the classical techniques in the one or low

dimensional setting (i.e., when there are one or very few sensors), but also much better in the high-dimensional setting (i.e.,

when there are a large number of sensors). Our proposed technique is to extend the finite sum of tail probabilities in [22] to

the infinite sum, and provides a new and useful tool that is able to provide accurate performance analysis in the sequential

detection context. From the network application viewpoint, we derive refined, non-asymptotic upper bounds on the performance

properties of the CISPRT algorithm for Gaussian data under any pre-specified neighborhood structure of local senors regardless

of the number N of sensors, as compared to those in [22]. Our results indicate that the more the number of sensors or the

sparser the network neighborhood connectivity is, the larger the information loss is, i.e., the larger expected sample size is

needed to achieve the desired Type I and II error probabilities.

The remainder of this article is organized as follows. In Section II, we present the formulation of the distributed sequential
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detection problem, the CISPRT algorithm proposed in [22], and the background materials for spectral graph theory. In Section

III, we present our main theoretical results on the refined performance properties of the CISPRT. Simulation studies results are

presented in Section IV, and the detailed proof of our main theorem, Theorem 1, is provided in Section V. Some conclusion

remarks are included in Section VI.

II. PRELIMINARIES AND BACKGROUND

A. Distributed Sequential Detection Problems

Consider a network system of N sensors that takes observations over time. At each time step t = 1, 2, · · · , the i-th sensor

observes an observation yi(t) for i = 1, . . . , N . There are two hypotheses on the distributions of the local sensor observations

yi(t)’s. Under the null hypothesis H0, the yi(t)’s are N(−µ, σ2) and under the alternative hypothesis H1, the yi(t)’s are

N(µ, σ2). Here the sensor observations yi(t)’s are assumed to be independent and identically distributed (iid) over time and

across sensors, conditional on each hypothesis. Note that Guassian distributions are one of the most widely used models in signal

processing and many other applications, and by the linear additive properties of Gaussian models, our problem is equivalent

to a more familiar problem in the additive white Gaussian noise channel of utilizing the observations y∗i (t) = yi(t)+µ to test

hypotheses H0 : N(0, σ2) (i.e., white noises) against H1 : N(2µ, σ2) (i.e., a signal exists). Here we follow [22] to adopt the

current notation so as to simplify the technical presentations and proofs.

Under the distributed sequential detection setting, the objective is for each local sensor to work with its neighborhood sensors

to make a quick and accurate decision on which of these two hypotheses is true. In particular, each local sensor can only

communicate its local information with its (one-hop) neighborhood sensors. Here we assume that the neighborhood structure

of sensors is pre-specified, and can be represented as an undirected graph G = (V,E) : the i-th vertex in V represents the

i-th sensor, and there is an edge between the i-th vertex/sensor and the j-th vertex/sensor, i.e., (i, j) ∈ E, if and only if

the corresponding sensors are neighbors and can communicate local information with each other. Here we assume that the

graph G = (V,E) is simple, i.e., without self loops and multiple edges. For the i-th sensor, its neighborhood is given by

Ωi = {j ∈ V |(i, j) ∈ E}, and its degree is given by the cardinality di = |Ωi|. See [30] for more graph theoretic methods in

network systems.

For a distributed sequential procedure D, it consists of (Ti, δi)
N
i=1, where Ti is the number of time steps the i-th local

sensor needs to make a local decision δi ∈ {0, 1}. Here Ti is a local stopping time in the sense that {Ti = t} depends on the

information from the i-th local sensor as well as its neighborhood up to time t. The local decision δi = 0 or 1 means that the

i-th local sensor accepts H0 or H1, respectively.

The performance of a distributed sequential procedure D = (Ti, δi)
N
i=1 is evaluated by its local expected sample sizes,

E1[Ti] and E0[Ti], and its local error probabilities, P0[δi = 1] and P1[δi = 0]. Ideally one would like all these four local

quantities to be simultaneously as small as possible for all local sensors, which is impossible. As mentioned in [22], one useful

formulation is to find a distributed sequential procedure D = (Ti, δi)
N
i=1 that (asymptotically) minimizes

max
i=1,2,··· ,N

E1[Ti] (1)

subject to the local false alarm and missed detection constraints:

P0[δi = 1] ≤ α and P1[δi = 0] ≤ β (2)

for all i = 1, 2, · · · , N, where 0 < α, β ≤ 1/2 are the pre-specified false alarm bounds.
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Note that the objective function in (1) can also be replaced by other functions if one wants. For instance, the local criterion

E1[Ti] can be replaced by E0[Ti], or more generally, the Bayesian-type criterion π0E0[Ti] + (1− π0)E1[Ti]. Fortunately, in

the context of sequential tests, Wald’s (optimal centralized) SPRT can minimize each and every of these criteria, and thus

we consider the criterion of E1[Ti] here. Moreover, we can also consider other kind of criteria at the global level such as

mini=1,2,··· ,N E1[Ti]. Here we do not discuss the appropriateness of different formulations or the corresponding optimality

theories, and our focus is to investigate the performance of a specific distributed sequential procedure. For that reason, our

results below deal with the local expected sample sizes E1[Ti]’s themselves, since it is straightforward to extend these local

results to the global level such as that in (1).

B. SPRT and CISPRT

Let us first consider the centralized setup when the graph of the network neighborhood structure is complete in the sense

that at each time step each local sensor has access to all raw observations over the graph. This is equivalent to the scenario

with the fusion center, as each and every local sensor can be regarded as the fusion center. In such scenario, Wald’s SPRT is

the optimal centralized sequential test under the formulation of (1) and (2). To define the SPRT, denote the local log-likelihood

ratio of the i-th sensor at time step t by

ηi(t) = log
f1(yi(t))

f0(yi(t))
=

2µ

σ2
yi(t), (3)

and denote the centralized likelihood ratio statistic up to time t by

Sc(t) =
t∑

s=1

N∑
i=1

ηi(s) = Sc(t− 1) +
N∑
i=1

ηi(t) (4)

for all t ≥ 1. The centralized SPRT is then defined by the stopping time

Tc = inf{t : Sc(t) 6∈ [γlc, γ
h
c ]}, (5)

for some pre-specified constants γlc < 0 < γhc . When stopping, the centralized SPRT makes a decision δc = 0 or 1 depending

on whether lower bound γlc or upper bound γhc is crossed at time Tc. It is well-known (Ch 2 of [15]) that

P0[δc = 1] ≤ exp(−γhc )(1− P1[δc = 0]),

P1[δc = 0] ≤ exp(γlc)(1− P0[δc = 1]). (6)

Hence, in order to satisfy the false alarm constraints in (2), by (6), a commonly used choice of the threshold is

γlc = log
β

1− α
and γhc = log

1− β
α

. (7)

Moreover, since yi(t) ∼ N(−µ, σ2) under H0 or N(µ, σ2) under H1, the Kullback-Leibler divergence at each local sensor is

m = E1(ηi(t)) =
2µ2

σ2
(8)

and thus the centralized Kullback-Leibler divergence of the joint observation Y(t) = (Y1(t), · · · , YN (t)) is Nm. Furthermore,

as shown in [14], subject to the false alarm constraint in (2), for any sequential test T, distributed or centralized, E1(T ) ≥

M(α, β), where the universal lower bound is given by

M(α, β) =
1

Nm

[
(1− β) log 1− β

α
+ β log

β

1− α

]
. (9)

Also the centralized SPRT Tc in (5) attains this lower bound asymptotically for fixed N and m as α, β → 0.
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Now let us switch to the distributed setup for a general neighborhood structure where each local sensor can only communicate

with its neighborhood sensors. In [22], the authors proposed an interesting CISPRT algorithm where each local sensor makes

a local decision based on the weighted average of the local likelihood ratio statistics from itself and its neighborhood sensors.

Specifically, at time step t, each i-th local sensor computes its local test statistic recursively:

Si(t) = wiiSi(t− 1) +
∑
j∈Ωi

wijSj(t− 1)

+wiiηi(t) +
∑
j∈Ωi

wijηj(t), (10)

for t = 1, 2, · · · , where the initial value Si(0) = 0 and Ωi is the (one-hop) neighborhood of the i-th sensor. Here the wij’s

are pre-specified weights satisfying

wii +
∑
j∈Ωi

wij = 1, and wij ≥ 0, ∀i, j (11)

and the discussion on the choices of the weights wij’s will be postponed a little bit.

Under the matrix notation, let us collect the weights wij’s in an N × N matrix W, where wij = 0 if (i, j) 6∈ E. Denote

by S(t) and η(t) as the N × 1 vectors (S1(t), · · · , SN (t))T and (η1(t), · · · , ηN (t))T . The local test statistics can be updated

recursively as

S(t) = W
(
S(t− 1) + η(t)

)
. (12)

for t ≥ 1.

For the CISPRT, each i-th sensor makes a local decision at time

Ti = inf{t ≥ 1 : Si(t) 6∈ [γli, γ
h
i ]}, (13)

for some pre-specific thresholds γli < 0 < γhi . When stopping, the i-th sensor makes a local decision

δi =

 0, if Si(Ti) ≤ γli;

1, if Si(Ti) ≥ γhi .
(14)

From the pure mathematical viewpoint, the stopping times Ti’s in (13) depend on the properties of Si(t)’s, which is a

component of the N -dimensional random walks S(t). One may be able to apply the classical renewal theory to analyze the

“asymptotic” properties of the stopping times Ti’s in (13), but unfortunately such an approach will involve “constant” terms

for overshoot analysis that are exponentially increasing as the dimension N increases. In particular, when the number N of

sensors is large, such constant terms can be huge, and thus the corresponding asymptotic analysis can be meaningless under

any reasonable practical setting of distributed detection. Here we provide an alternative approach that yields the same first-order

asymptotic result as in the classical renewal theory when the number N of sensors is 1 or very small, but has a potential to

derive useful oracle properties of stopping times under the setting of high dimension N for Gaussian data.

C. Spectral Graph Theory and Weight Matrix W

In this subsection, let us present some basic materials for spectral graph theory that are related to the main assumption for

our network structure and the design of the weight matrix W in (11). Also see [30] for a more complete introduction of graph

theory.

Recall our network neighbor structure is characterized by the undirected simple graph G = (V,E). In spectral graph theory,

the degree matrix D is an N ×N diagonal matrix with the i-th diagonal being di, the degree of the i-th vertex. The adjacency
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matrix A is a (0, 1)-matrix with zeros on its diagonal and Aij = 1 if and only if the i-th vertex and the j-th vertex are

connected for all 1 ≤ i 6= j ≤ N. The Laplacian matrix is then defined as

L = D−A. (15)

Alternatively, for the Laplacian matrix L, its elements are given by

Li,j =


di if i = j;

−1 if i-th and j-th vertex connected for i 6= j;

0 otherwise.

The Laplacian matrix L is a positive semidefinite matrix, and thus has N non-negative eigenvalues:

0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN (L). (16)

Moreover, the number of times 0 appears as an eigenvalue of the Laplacian matrix L is the number of connected components

in the graph. Equivalently, a graph is connected if and only if λ2(L) > 0, see [31].

Our main assumption on the network neighborhood structure is as follows.

Assumption 1. The graph G = (V,E) is connected, or equivalently, the second smallest eigenvalue of the Laplacian matrix

L is positive, i.e., λ2(L) > 0.

Next, let us discuss the choices of the weight matrix W in (12). From the technical or algorithm viewpoint, the weight

matrix W can be arbitrary as long as W is a stochastic matrix in the sense of satisfying (11). However, in the context of

distributed sequential detection, the implicit assumption is that wij > 0 if and only if the i-th and j-th sensors are neighbors.

There are still many reasonable choices for the weight matrix W, and one useful one is to define

W = IN×N − δL, (17)

where IN×N is the N ×N identity matrix and δ is a small positive constant so that all elements of W are positive and thus

(11) holds. Under this choice of the weight matrix W, for a given i-th sensor/vertex, it assigns a small but equal weight of

wij = δ to all of its di neighbor sensors, and assigns most weight wii = 1− δdi to itself.

An interesting fact of the weight matrix W in (17) is that it is symmetric (wij = wji) and irreducible, and the latter is

due to the fact that the graph is connected under Assumption 1. In addition, it is straightforward to show that as a stochastic

matrix satisfying (11), the matrix W has the largest eigenvalue 1, and the second largest eigenvalue, denote by r, is strictly

less than 1. Recall that any N × N symmetric matrix can be written as W =
∑N
i=1 λiuiv

T
i , where ui and vi are singular

vectors associated with the i-th largest eigenvalue λi. For the stochastic symmetric matrix W satisfying (11), we have λ1 = 1

and u1 = v1 = 1√
N
1, where 1 is an N -dimensional all one vector. Thus W − J =

∑N
i=2 λiuiv

T
i , where J = 1

N 11T is an

N × N matrix with all entries being the constant 1/N. This eigenvalue decomposition representation shows that the largest

eigenvalue of W− J is simply the second largest eigenvalue of W. Hence, under our notation, the second largest eigenvalue

r of W can be characterized by the spectral norm (or the largest eigenvalue) of the matrix W − J, i.e.,

r = ||W − J||. (18)

III. IMPROVED PROPERTIES OF CISPRT

In this section, we derive our main theoretical properties of the CISPRT procedure in (13) and (14) under Assumption 1

when the network is connected. Note that there are two thresholds, γli and γhi , in the CISPRT procedure in (13). At the high
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level, the upper threshold γhi is closely related to Type I error probability and the expected sample size under H1, whereas the

lower threshold γli is closely related to Type II error probability and the expected sample size under H0. For simplicity of the

technical proofs, below our main theorem will focus on the effects of the upper bound γhi on the Type I error probability and

the expected sample size under H1 of the CISPRT. The usefulness of the our main theorem is illustrated in several corollaries

which consider the symmetric scenario when the lower and upper thresholds satisfy γli = −γhi .

Let us first summarize the main theoretical results of [22] that are closely related to our paper. For a given weight matrix

W, denote by

ρ = 1− exp

(
− Nm

4(Nr2 + 1)

)
, (19)

where m is the Kullback-Leibler divergence in (8) and r is the second largest eigenvalue of W and can be rewritten as in

(18). It was shown in [22] that the Type I error of the CISPRT algorithm satisfies

P0(δi = 1) ≤ 2ρ−1 exp

(
−7

8
D

)
, (20)

with the term D in the exponent being

D =
N

Nr2 + 1
γhi , (21)

and its expected sample size satisfies

1

m
[γhi − P1(δi = 0)(γhi − γli)− c]

≤ E1(Ti) ≤
5

4

1

m
γhi + ρ−1 + 1, (22)

see Theorem 4.1, Theorem 4.7, and equation (49) of [22]. Here the constant c > 0 in the lower bound in (22) is independent

of the thresholds γhi , γ
l
i and is a complicated function of the network topology and the Gaussian model statistics, see equations

(47)-(49) of [22]. Note that the original upper bound does not have the constant 1 in the right-hand side of (22), but we found

out that the original proof in [22] contains a minor mistake to count the number of integers in the interval 0 ≤ t ≤ a as a,

not a+ 1. Thus we add 1 here so that the results are mathematically rigorous.

Moreover, the authors in [22] considered the asymptotic properties of the symmetric CISPRT with γli = −γhi subject to the

local false alarm constraints with α = β = ε as ε→ 0. By (20) and (21), a conservative choice of the thresholds γhi = −γli is

γh,0i = −γl,0i =
8(Nr2 + 1)

7N

(
log(2ρ−1) + log ε−1

)
, (23)

see equation (19) in Theorem 4.1 of [22]. For the CISPRT with the thresholds in (23), the authors in [22] then compared its

expected stopping time with the universal lower bound in (9):

1 ≤ lim sup
ε→0

E1(Ti)

M(ε)
≤ 10

7
(Nr2 + 1), (24)

where the lower bound is trivial since M(ε) =M(α = ε, β = ε) is the universal lower bound in (9) for any stopping times

satisfying the local false alarm constraints when α = β = ε, and the factor 10
7 in the upper bound are based on the factors

8
7 ×

5
4 from (23) and (22).

In this paper, we improve the constants 7/8 and 5/4 of the non-asymptotic upper bounds in (20)-(22) in the original CISPRT

paper [22] to 1 and 1, respectively, which in turn allows us to improve the asymptotic inequality in (24) to find the exact

asymptotic limit. This is because our non-asymptotic upper bounds turn out to be first-order tight under the asymptotic regime,

and the price we pay is to add extra terms that can be thought of as the second-order terms under the asymptotic regime.
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Our main new results under the non-asymptotic regime can be summarized in the following theorem, whose proof is very

technical and will be postponed to Section V.

Theorem 1. For the CISPRT, at any given i-th local sensor, the Type I error probability satisfies

P0(δi = 1) ≤ ρ−1 exp (−D)×

×
{
1 +

1

2
min

k=1,2,···

[
k exp(

1

8k
D)
]
+

+
1

2
min

k=1,2,···

[
k exp

( 1

4k + 4
D
)]}

, (25)

where the constant D > 0 is defined in (21). Moreover, its expected sample size under H1 satisfies

E1(Ti) ≤ 1

m
γhi + 1+

+ min
k=1,2,···

(
γhi

2(k + 1)m
+
k + 1

2
ρ−1

)
, (26)

where ρ is a constant in (19), and m is the Kullback-Leibler divergence in (8).

Theorem 1 deals with the non-asymptotic properties of the CISPRT, and holds for any network structure regardless of how

large the number N of sensors is. The original CISPRT upper bounds in (20) and (22) follows directly from Theorem 1 by

letting k = 1. When the upper threshold γhi of the CISPRT or the exponent D in (21) is large, Theorem 1 can be simplified

by the following corollary, which will be useful in our asymptotic analysis below.

Corollary 1. Under the notation of Theorem 1, the CISPRT satisfies

P0(δi = 1) ≤ ρ−1 exp
{
−D + log

(
D

4
+ 1

)
+ 1

}
, (27)

and

E1(Ti) ≤


5

4mγ
h
i + 1 + 1

ρ , if γhi ≤ m/ρ;
1
mγ

h
i + 1 +

√
1
mργ

h
i + 1

2ρ , if γhi > m/ρ.
(28)

Proof of Corollary 1: In (26), fix a given k = 1, 2, · · · , we have 1 ≤ exp( 1
8kD) ≤ exp( 1

4k+4D) for D > 0, and thus

P0(δi = 1) ≤ ρ−1 exp(−D)
[
1 +

k

2
+
k

2

]
exp(

1

4k + 4
D)

≤ ρ−1 exp(−D) exp
{
log(u) +

1

4u
D
}
, (29)

where u = k + 1. A simple calculus analysis shows that for any given D > 0, the function log(u) +D/(4u) is minimized at

uopt = D/4 with the minimum value of log(D/4)+ 1. However, a subtly here is that we should restrict u to be integers. The

good news is that (29) holds for any integer u = k + 1 and thus we can choose a specific integer u∗ = dD/4e , the smallest

integer ≥ D/4. For this specific choice of u∗, we have

log(u∗) +
D

4u∗
≤ log(

D

4
+ 1) +

D

4(D/4)
= log(D/4 + 1) + 1. (30)

Combining (29) and (30) yields (27).

To prove (28) from (26), we can choose the integer k in (26) as k∗ = 1 if γhi ≤ m/ρ and as k∗ = d
√
ργhi /m − 1e if

γhi > m/ρ, and by the similar arguments in (30), it is straightforward to see that (28) follows at once from (26). This completes

the proof of Corollary 1.
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Now we are ready to present our results under the asymptotic regime when Type I and II error probabilities constraints

α = β = ε go to 0. The following theorem and its corollaries present the asymptotic properties of the symmetric CISPRT

with γli = −γhi , and indicate that our non-asymptotic upper bounds in (27) and (28) are actually first-order sharp under the

asymptotic regime.

Theorem 2. Under the symmetric local false alarm constraints α = β = ε in (2), consider the CISPRT algorithm with the

thresholds γhi = −γhi defined as

γhi = −γli =
Nr2 + 1

N
∆ε, (31)

where ∆ε is the solution ∆ of

∆− log(1 +
1

4
∆)− 1 = log(ρ−1) + log(ε−1). (32)

Then this CISPRT algorithm satisfies local false alarm constraints α = β = ε in (2), and

lim
ε→0

E1(Ti)

M(ε)
= Nr2 + 1 (33)

for all i = 1, 2, · · · , N, as α = β = ε→ 0.

Corollary 2. Among the family of the CISPRTs with the weight matrix W of the form in (17), the optimal one with the

smallest asymptotically expected sample size in (33) is attained by the weight matrix Wopt in (17) with

δopt = 2/(λN (L) + λ2(L)), (34)

which yields the minimum r value

ropt =
λN (L)− λ2(L)
λN (L) + λ2(L)

, (35)

where λN (L) and λ2(L) are the largest and second smallest eigenvalues in (16) for the Laplacian matrix L. In particular, for

the complete graph when each sensor is connected to all other sensors, we have δopt = 1/N and ropt = 0. In such a case,

the CISPRT with the optimal weight matrix Wopt in (17) and (34) becomes the centralized SPRT Tc in (5), and attains the

universal lower bound M(ε) as α = β = ε→ 0.

The proofs of Theorem 2 and its corollary follow from Theorem 1 and other well-known facts, and below we present a

high-level sketch of the proofs.

Proof of Theorem 2: Equating the upper bound (27) to ε and solving it to yield the desired threshold γhi in (31) and (32).

It remains to prove (33) as ε→ 0.

Now as ε → 0, it is not difficult to show that ∆ε ∼ log(ε−1) by (32). Here and below we denote by x(ε) ∼ y(ε) if and

only if limε→0(x(ε)/y(ε)) = 1. Hence, by (23), as ε→ 0,

γhi = −γli = (1 + o(1))
Nr2 + 1

N
log(ε−1)→∞. (36)

Thus it suffices to investigate the asymptotic expression of E1(Ti) of the symmetric CISPRT with γli = −γhi in (36).

On the one hand, our improved upper bound (26) in Theorem 1 implies that

E1(Ti) ≤ (1 + o(1))
1

m
γhi , (37)
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since γhi →∞. On the other hand, by the false alarm constraints, P1(δi = 0) ≤ β = ε→ 0 and thus P1(δi = 0)(γhi − γli) =

o(γhi ) as γhi →∞ when γli = −γhi . By the lower bound in (22) and relation (36), we have

E1(Ti) ≥ (1 + o(1))
1

m
γhi . (38)

Relation (33) then follows at once from (36), (37), (38), and Relation (9) which impliesM(ε) ∼ 1
Nm log(ε−1) as ε→ 0. Thus

the theorem holds.

Proof of Corollary 2: By (33), it suffices to minimize the second largest eigenvalue r of W among all weight matrices W

of the form in (17). It is shown in reference [32] that the corresponding optimal solution and value are given by (34) and (35).

As for the complete graph, its Laplacian matrix is L = NIN×N − 11T , where the vector 1 is an N -dimensional all one

vector. An elementary algebra shows that the eigenvalues of L are λ1 = 0 and λ2 = λ3 = · · · = λN = N. By (34) and (35),

we have δopt = 1/N and ropt = 0. Hence, for the CISPRT with the optimal weight matrix under the complete graph scenario,

each local sensor is to put equal weights to all raw sensor observations, and each and every local sensor essentially runs the

optimal centralized SPRT in (5).

Remark: Note that Corollary 2 implies that the threshold in (31) is first-order asymptotically tight in the sense that if the

thresholds γhi = −γli = Mε
Nr2+1
N ∆ε with lim infε→0Mε = M < 1 being a constant that does not depend on N and r, then

the corresponding CISPRT algorithm cannot satisfy the local false alarm constraints α = β = ε in (2). To see this, (33) would

become lim infε→0
E1(Ti)
M(ε) = M(Nr2 + 1) for any network structures. By Corollary 2, a special case is the complete graph

with r = 0, which would imply that lim infε→0
E1(Ti)
M(ε) = M. If M < 1, then we would have E1(Ti) < M(ε), and this is

a contradiction that M(ε) is the universal lower bounds for any stopping times satisfying the local false alarm constraints

α = β = ε in (2). Thus, the upper bound (25) on Type I error probability is asymptotically accurate up to first-order in the

logarithm scale to derive the thresholds.

IV. SIMULATION STUDIES

In this section, we report our simulation study results to illustrate the usefulness of our improved performance properties of

CISPRT algorithm.

We use random graph to generate the neighborhood structure of sensor as follow. Assume the N sensors correspond to N

random points in a unit square [0, 1]× [0, 1]. Two sensors are connected if and only if the distance of the corresponding two

points is less than the connectivity parameter g. In our simulation studies, we consider two choices of N = 30 and 300, and

focus on two choices of the connectivity parameter g = 0.3 and 0.9. In other words, we consider a total of 2× 2 = 4 different

distributed network structures. For the comparison, we will also consider the case of g = 1.5 >
√
2, in which the network

becomes the centralized system. For each network structure, the raw sensor observations yi(t)’s are assumed to be N(µ1, σ
2)

under H1 and N(−µ1, σ
2) under H0. Here we set µ1 = 1/

√
2 and σ = 1, so that the local Kullback-Leibler divergence in (8)

becomes m = 2µ2/σ2 = 1 at each local sensor. In each of these networks, for simplicity, we consider the symmetric scenario

when α = β = ε and when the lower and upper bounds γli and γhi of the CISPRT in (14) are given by γli ≡ −γ and γhi ≡ γ

for all i = 1, · · · , N for some γ > 0.

In order to validate the non-asymptotic upper bound in (27) or (25) on the Type I error probability of the CISPRT, Table I

reports the Monte Carlo (MC) estimates of the Type I error probabilities of the CISPRT when the thresholds γhi = −γli are

given by (23) when α = β = ε = 5%. Two kinds of Monte Carlo estimates (MCE) will be reported based on 106 runs: one is
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Network structures N = 30 N = 300

g = 1.5 g = 0.9 g = 0.3 g = 1.5 g = 0.9 g = 0.3

r = ropt in (35) 0 0.1406 0.9384 0 0.2027 0.8588

γ = γhi = −γli in (23) 0.1405 0.1823 5.3471 0.0141 0.1874 4.1826

Classical Central Bound in (6) 0.0148 – – 0.0146 – –

Original bound in (20) 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500

Our improved bound (25) 0.0398 0.0370 0.0397 0.0398 0.0398 0.0373

Our loose bound (27) 0.0824 0.0805 0.0824 0.0824 0.0824 0.0809

MCE1 of P0(δi = 1) 5× 10−6 3× 10−6 0 0 0 0

MCE2 of P0(δi = 1) 5.14× 10−6 1.686× 10−6 5.354× 10−43 1.264× 10−84 1.264× 10−84 0

TABLE I: This table reports different upper bounds and two Monte Carlo estimates (MCE) of Type I error probability of the

CISPRT with thresholds in (23): one is the naive method (MCE1) and the other is the importance sampling method (MCE2).

It confirms that both the original bound in (20) and our upper bounds in (25) or (27) do provide the upper bounds on the

Type I error probability of the CISPRT. Unfortunately, all upper bounds are very loose, and it is still an open problem to find

accurate upper bound on error probabilities in the finite-sample regime when the number N of sensors is large.

the naive method based on how many of 106 runs makes a false decision, and the other is the importance sampling technique:

for any (centralized or distributed) stopping time T ,

P0(δi = 1) = E1(
T∏
t=1

N∏
i=1

log
f0(yi(t))

f1(yi(t))
; δi = 1)

= E1 (exp(−Sc(T ))1{δi = 1}) , (39)

where Sc(T ) is the centralized likelihood ratio statistic in (4) at the stopping time T. The importance sampling technique in

(39) allows us to provide an accurate estimate of Type I error probabilities when they are very small, see [15].

From Table I, our improved non-asymptotic upper bound in (25) is less than the original bound in (20) for the CISPRT, and

both are indeed the upper bounds of Type I error probability of the CISPRT. Unfortunately, while our loose upper bound in

(27) is first-order tight as in Corollary 2, the convergence rate is extremely slow, especially when the number N of sensors is

large. Note that this slow convergence rate is intrinsic for high-dimension N under the centralized setting too. For instance,

the classical bounds in (6) for the centralized SPRT test are known to be first-order asymptotically sharp when log ε−1 is much

larger than N, but Table I shows that they were poor estimates in the finite-sample setting for the centralized system with

g = 1.5, which are much larger than the MCE. Thus it remains an open problem to find accurate estimates of Type I and Type

II error probabilities in centralized or distributed system under the modern asymptotic setting when the number N of sensors

goes to ∞.

In order to validate the non-asymptotic upper bound in (26), we simulate the expected sample size of the CISPRT in (14)

with threshold γh varying from 0 to 100 with step size 1 under H1 based on M = 2000 MC runs. Figure 1 plots three

different estimating curves of E1(Ti) of the CISPRT as the function of γh: (i) the Monte Carlo simulated expected sample

size E1(Ti) (purple dotted line); (ii) Sahu and Kar’s upper bound in (22) (blue dashed line); and (iii) our improved upper

bound in (26) (red solid line). The lower bound in (22) contains some constants that cannot be computed, and thus we focus

on our improved upper bounds. From Figure 1, our upper bounds on E1(Ti) are indeed larger than the Monte Carlo simulated

expected sample size E1(Ti), and are also better than Sahu and Kar’s original upper bound, no matter the number of sensors

and the connectivity parameter.
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Fig. 1: A comparison of three non-asymptotic bounds or estimates of E1(Ti) of the CISPRT under four different setting of

random graph depending on the number N of sensors and the connectivity parameter g. In each plot, three curves represent

three different bounds/estimates as threshold γh varies from 0 to 100 with step size 1, and these three methods ranking from

largest to smallest are as follows: (i) The blue dashed line is Sahu and Kar’s upper bound in (22); (ii) The red solid line is our

improved bound in (26); and (iii) The purple dotted line is the Monte Carlo simulated estimate of E1(Ti). The plots validate

our improved non-asymptotic upper bound in (26), though the convergence rate seems to be slow.

V. PROOF OF THEOREM 1

This section is devoted to prove Theorem 1 under the non-asymptotic setting. Let us fix the i-th local sensor, and investigate

the properties of the stopping time Ti in (13) of the CISPRT at this specific local sensor that are related to the upper bound

γh
i . Since the detailed proof is technical and involves many subscripts, we decide to abuse the notation and denote the stopping

time Ti and the upper bound γh
i in (13) simply by T and γ.

Let us first provide the high-level idea to prove Theorem 1. Note that the Type I error probability can be written as

P0(δi = 1) = P0(Si(T ) ≥ γ), (40)

where Si(T ) is the value of the local test statistic in (10) at the stopping time T. Note that in the classical sequential analysis

for the centralized setting, it is standard to use the change of measures arguments, and rewrite the Type I error probability as its

equivalent form of E1(e
−Sc(T )I(S(T ) ≥ γ)), where Sc(T ) is the centralized log-likelihood ratio in (4). The analysis on this

error probability analysis and the expected sample size E1(T ) is then based on the renewal theory and overshoot analysis for

random walks over time t. Unfortunately, such approach breaks down for distributed setting when the centralized test statistic

Sc(t) and the local test statistic S(t) can be completely different. Moreover, with large number N sensors, the overshoot
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analysis often involves constants that are exponentially increasing as N increases and thus the corresponding analysis can be

meaningless under the practical setting.

Sahu and Kar [22] proposed an alternative method to bound the Type I error probability and expected sample size directly.

Specifically, note that

P0(δi = 1) = P0(Si(T ) ≥ γ)

=
∞∑
t=1

P0(T = t, Si(t) ≥ γ)

≤
∞∑
t=1

P0(Si(t) ≥ γ)

=
∞∑
t=1

Q

(
γ − µ∗0(t)√
V ∗0 (t)

)
. (41)

Here Q(u) = P (N(0, 1) > u), and the local test statistics Si(t) are Gaussian distributed under H0, say, N(µ∗0(t), V
∗
0 (t)), at

any fixed t, since the raw sensor observations are Gaussian. Meanwhile, the expected sample size, E1(T ), is bounded by

E1(T ) =

∞∑
t=0

P1(T > t)

≤
∞∑
t=0

P1(Si(t) < γ)

≤
∞∑
t=0

Q

(
γ − µ∗1(t)√
V ∗1 (t)

)
, (42)

where the local test statistics Si(t) are Gaussian N(µ∗1(t), V
∗
1 (t)) under H1.

Due to the similarity between (41) and (42), below we will focus on the Type I error probability analysis in (41). By (8)

and (10), it was showed in [22] that

µ∗0(t) = −mt and V ∗0 (t) ≤
2m(Nr2 + 1)t

N
. (43)

In [22], the authors then combined these above results together to bound the infinite sum in (41) by splitting the interval

t ∈ [1,∞) into four subintervals:

[1,
γ

2m
], (

γ

2m
,
γ

m
], (

γ

m
,
2γ

m
], (

2γ

m
,∞). (44)

Bounding the sum in each of these four subintervals leads to the result in (20) in the original CISPRT paper.

The direct approach in (41) - (44) is non-asymptotic, but unfortunately it is too crude in general. Indeed, if we apply them

directly to investigate the Type I error probability or expected sample sizes of the centralized SPRT, the results will be much

looser as compared with those from the classical renewal theory: while the first-order terms have the same order, the coefficients

from the direct approach in (41) - (44) are much larger.

After a careful analysis, we find out that the main reason is caused by the middle two subintervals in (44), and the direct

approach in (41) - (44) can be refined to provide better bounds if we further split each of the middle two subintervals into k

sub-subintervals, for some suitable choice of k that will be optimally determined later. In fact, when we applied this new refined

approach to investigate the Type I error probability or expected sample sizes of the centralized SPRT, then the corresponding

results are first-order asymptotically equivalent to those from the classical renewal theory. This suggests that the refined direct

approach yields an accurate upper bound for complete graph regardless of the number N of sensors, and thus may also lead

to good bounds for other network structures. We acknowledge that the proof techniques are essentially that of [22], except for

the new found techniques as far as splitting the intervals are concerned in (45) below.
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Now we are ready to provide the detailed, rigorous proof of (25). First, we further split each of the middle two subintervals

into k sub-subintervals as follows. Let ` = γ
2m or γ

m , and we propose to further split the subinterval [`, 2`] as k sub-subintervals:

(
k + j − 1

k
`,

k + j

k
`] for j = 1, · · · , k. (45)

Relation (25) in Theorem 1 can be proved by bounding the infinite sum in (41) through these subintervals.

Second, we will use heavily the following well-known fact for N(0, 1) distribution:

Q(x) = P (N(0, 1) > x) ≤ 1

2
exp

(
− x2

2

)
for all x > 0. (46)

Also Q(x) is decreasing as a function of x, and thus replacing V ∗0 (t) by its upper bound in (43) yields an upper bound of

(41).

Next, by (41), (43) and (46), we have

P0(δi = 1) ≤
∞∑
t=1

Q

 γ +mt√
2mt(Nr2+1)

N


≤ 1

2

∞∑
t=1

exp

{
−N(γ +mt)2

4mt(Nr2 + 1)

}
=

1

2
(A1 +A2 +A3 +A4)

=
1

2
(A1 +

k∑
j=1

A2j +
k∑
j=1

A3j +A4), (47)

where A1, A2, A3 and A4 denote the corresponding sum when the integer index t ranges over the subintervals in (44). Here

A2j and A3j are defined as the summation over the sub-subintervals in (45) for ` = γ
2m or γ

m . In other words,

A2j =

b k+jk `c∑
t=b k+j−1

k `c+1

exp

{
−N(γ +mt)2

4mt(Nr2 + 1)

}
with ` = γ

2m , and A3j is defined similarly with ` = γ
m . Here and below bxc denotes the largest integer ≤ x.

Sahu and Kar [22] proved their results by bounding A1, A2, A3 and A4, and here we refine their results by bounding A2j’s

and A3j’s. The main mathematical tool is the simple fact that when a ≤ t ≤ b, for c = N/(4(Nr2 + 1)),

b∑
t=a

exp

{
−c (γ +mt)2

mt

}
(48)

≤
b∑
t=a

exp

{
−c
( γ2
mb

+ 2γ +mt
)}

= exp

{
−c
( γ2
mb

+ 2γ
)} exp(−cma)− exp(−cm(b+ 1))

1− exp(−cm)

≤ ρ−1 exp

{
−c
( γ2
mb

+ 2γ
)}

exp(−cma),

where the constant ρ = 1− exp(−cm) is defined in (19).

In order to help casual readers better understand our main ideas, let us first provide the bounds of the original CISPRT paper

[22] on A1 and A2. Applying (48) to the case of a = 1 and b = γ/(2m), we have

A1 ≤ ρ−1 exp(−4cγ) exp(−cm)

≤ ρ−1 exp
(
− Nγ

Nr2 + 1

)
= ρ−1 exp(−D), (49)

where the second to last relation follows from the fact that exp(−cm) < 1 and the definition of c = N/(4(Nr2 + 1)), and

the term D is defined in (21) with γ = γhi .
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Similarly, applying (48) to the case of a = γ
2m and b = γ

m , we have

A2 ≤ ρ−1 exp(−3cγ) exp(−1

2
cγ)

= ρ−1 exp(−7

2
cγ)

= ρ−1 exp
(
− 7

8

Nγ

Nr2 + 1

)
= ρ−1 exp(−7

8
D). (50)

It is easy to see that A3 satisfies (50), whereas A4 satisfies (49). A combination of (47) with the bounds in (49) and (50)

yields (20), which is the upper bound of P0(δi = 1) derived in [22].

To improve the upper bound in (20) of [22], our key observation is that the bound in (50) for A2 and A3 can be further reduced.

For that purpose, let us consider the A2j over the j-th sub-subinterval in (45), and apply (48) to the case of a = k+j−1
k

γ
2m

and b = k+j
k

γ
2m . Then for j = 1, 2, · · · , k, we have

A2j ≤ ρ−1 exp
(
− 2cγ

2k + j

k + j

)
exp

(
− cγ k + j − 1

2k

)
= ρ−1 exp(−2cγ) exp

(
− cγ( 2k

k + j
+
k + j − 1

2k
)
)

≤ ρ−1 exp(−2cγ) exp
(
− cγ(2− 1

2k
)
)

= ρ−1 exp

{
−8k − 1

8k
D

}
, (51)

where the second to last relation follows from the simple fact that u+ 1/u ≥ 2 for u = 2k/(k + j), and the last equation is

from the definition of c = N/(4(Nr2 + 1)) and D in (21).

Hence, we have

A2 =

k∑
j=1

A2j

≤ ρ−1k exp

{
−8k − 1

8k
D

}
(52)

for any k = 1, 2, · · · . Similarly, the same technique of (51) is applied to A3j or A3, and we have

A3 ≤ ρ−1k exp
{
−4k + 3

4k + 4
D

}
. (53)

for any k = 1, 2, · · · . Relation (25) in Theorem 1 then follows at once from (49), (52) and (53) by taking the minimum values

in the last two equations over all possible k’s.

The proof of (26) for the expected sample size is similar, except with different subintervals. By (8) and (10), we can show

that

µ∗1(t) = mt and V ∗1 (t) ≤
2m(Nr2 + 1)t

N
. (54)

By (42), for the CISPRT,

E1(T ) ≤
∞∑
t=0

Q(
tm− γ√

2tm(Nr2 + 1)/N
)

= B1 +B2 +B3 +B4, (55)

where B1, B2, B3, B4 correspond to the summation over t in each of the following four subintervals:

[0,
γ

m
], (

γ

m
,
3γ

2m
], (

3γ

2m
,
2γ

m
], (

2γ

m
,∞). (56)
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It turns out that the bounds derived in [22] for B1, B3, B4 are tight, and the bound on B2 is too loose. To be more specific,

in [22], the authors used the similar technique for Type I error to show that B3 ≤ 1
2ρ
−1 and B4 ≤ 1

2ρ
−1, and also bound B1

and B2 by

B1 =

bγ/mc∑
t=0

Q(
tm− γ√

2tm(Nr2 + 1)/N
) (57)

≤
bγ/mc∑
t=0

1 ≤ γ

m
+ 1,

B2 =

b3γ/(2m)c∑
t=bγ/mc+1

Q(
tm− γ√

2tm(Nr2 + 1)/N
)

≤
b3γ/(2m)c∑
t=bγ/mc+1

1

2
=

γ

4m
,

B3 ≤ 1

2
ρ−1, and B4 ≤

1

2
ρ−1

Here B1 and B2 are based on the two simple facts: (1) Q(u) = P (N(0, 1) > u) ≤ 1 for all −∞ < u <∞ and (2) Q(u) ≤ 1/2

when u > 0.

To improve the upper bound of B2, we propose to further split the subinterval ( γm ,
3γ
2m ] into k sub-subintervals:

(
γ

m
,
k + 2

k + 1

γ

m
] and (

j + 2

j + 1

γ

m
,
j + 1

j

γ

m
], for j = 2, · · · , k. (58)

Denote by B
(1)
2 and B

(j)
2 the summation as in B2 in (57) except when t is over the first and j-th sub-interval in (58),

respectively, for j = 2, · · · , k. For the first subinterval in (58), by the simple fact that Q(u) ≤ 1
2 when u ≥ 0, we have

B
(1)
2 =

1

2

(
1

k + 1

γ

m

)
. (59)

For the j-th subinterval in (58) with j = 2, · · · , k, we propose to explore relation (46), which provides a much improved

bound for Q(u) than the constant 1/2 when u > 0. That is, by (46), for j = 2, · · · , k, we have

B
(j)
2 ≤ 1

2

b j+1
j

γ
m c∑

b j+2
j+1

γ
m c+1

exp

{
−N(γ −mt)2

4mt(Nr2 + 1)

}
(60)

Our remaining arguments are similar to those in (48), with a minor twist to reflect the change of mean from µ∗0(t) to µ∗1(t).

To be more specific, as in (48), it is not difficult to see that
b∑
t=a

exp

{
−c (γ −mt)

2

mt

}
(61)

≤ ρ−1 exp

{
−c
( γ2
mb
− 2γ

)}
exp(−cma)

= ρ−1,

when a = j+2
j+1

γ
m and b = j+1

j
γ
m . Combining this with (60) yields that

B
(j)
2 ≤ 1

2
ρ−1, (62)

where the right-hand side upper bound does not depend on γ. By (59) and (62), we have

B2 ≤ 1

2

1

k + 1

γ

m
+

k∑
j=2

1

2
ρ−1
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=
1

k + 1

γ

2m
+ (k − 1)

1

2
ρ−1. (63)

Hence, by (55), (57) and (63), the expected sample size of T under H1 satisfies

E1(T ) ≤ B1 +B2 +B3 +B4

≤ γ

m
+ 1 +

[
1

k + 1

γ

2m
+
k − 1

2
ρ−1

]
+

1

2
ρ−1 +

1

2
ρ−1

=
γ

m
+

γ

2(k + 1)m
+
k + 1

2
ρ−1 + 1, (64)

for any integer k ≥ 1. When k = 1, this is just the upper bound of E1(T ) in (22) derived by [22]. Relation (26) follows

directly from (64) which holds for any k = 1, 2, · · · . This completes the proof of the theorem.

VI. CONCLUSIONS

In this article, we investigate the performance properties of the CISPRT algorithm proposed by [22]. Our focus is on

improving the non-asymptotic upper bounds on the error probabilities and expected sample sizes of the CISPRT algorithm

through a novel approach to bound the infinite sum of tail probabilities of Gaussian distributions, and it turns out that our

improved upper bound are first-order asymptotic sharp. Our results show that the more the number of sensors or the sparser

the network neighborhood connectivity is, the larger the information loss is, i.e., the larger expected sample size is needed to

achieve the desired Type I and II error probabilities.

Several future directions can be pursued for distributed sequential detection. First, it will be interesting to provide more

accurate approximations on the performance analysis of the CISPRT algorithm for any network structures, especially under the

modern asymptotic setting when the number of sensors goes to ∞. New techniques and new ideas will need to be developed.

Second, instead of binary simple hypothesis testing, it will be interesting to develop efficient algorithms when there are

nuisance parameters in the alternative hypothesis. Third, here we assume that all local sensors having different distributions

simultaneously under the alternative hypothesis H1, and in some applications, one may want to develop efficient algorithms

where only a few unknown subset of local sensors have distributions from H1. This might be closely related to sparsity

detection or false discovery rate in the modern statistics literature. Fourth, in our paper the neighborhood or network structure

is pre-specified, and it will be useful to investigate the time-varying network structure. Finally, it will also be interesting to

adapt the analysis and the technical tools in this paper to non-linear observations models or non-Gaussian noises.
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